2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
38 #include "blk-cgroup.h"
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
45 DEFINE_IDA(blk_queue_ida
);
48 * For the allocated request tables
50 static struct kmem_cache
*request_cachep
;
53 * For queue allocation
55 struct kmem_cache
*blk_requestq_cachep
;
58 * Controlling structure to kblockd
60 static struct workqueue_struct
*kblockd_workqueue
;
62 static void drive_stat_acct(struct request
*rq
, int new_io
)
64 struct hd_struct
*part
;
65 int rw
= rq_data_dir(rq
);
68 if (!blk_do_io_stat(rq
))
71 cpu
= part_stat_lock();
75 part_stat_inc(cpu
, part
, merges
[rw
]);
77 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
78 if (!hd_struct_try_get(part
)) {
80 * The partition is already being removed,
81 * the request will be accounted on the disk only
83 * We take a reference on disk->part0 although that
84 * partition will never be deleted, so we can treat
85 * it as any other partition.
87 part
= &rq
->rq_disk
->part0
;
90 part_round_stats(cpu
, part
);
91 part_inc_in_flight(part
, rw
);
98 void blk_queue_congestion_threshold(struct request_queue
*q
)
102 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
103 if (nr
> q
->nr_requests
)
105 q
->nr_congestion_on
= nr
;
107 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
110 q
->nr_congestion_off
= nr
;
114 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
117 * Locates the passed device's request queue and returns the address of its
120 * Will return NULL if the request queue cannot be located.
122 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
124 struct backing_dev_info
*ret
= NULL
;
125 struct request_queue
*q
= bdev_get_queue(bdev
);
128 ret
= &q
->backing_dev_info
;
131 EXPORT_SYMBOL(blk_get_backing_dev_info
);
133 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
135 memset(rq
, 0, sizeof(*rq
));
137 INIT_LIST_HEAD(&rq
->queuelist
);
138 INIT_LIST_HEAD(&rq
->timeout_list
);
141 rq
->__sector
= (sector_t
) -1;
142 INIT_HLIST_NODE(&rq
->hash
);
143 RB_CLEAR_NODE(&rq
->rb_node
);
145 rq
->cmd_len
= BLK_MAX_CDB
;
148 rq
->start_time
= jiffies
;
149 set_start_time_ns(rq
);
152 EXPORT_SYMBOL(blk_rq_init
);
154 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
155 unsigned int nbytes
, int error
)
158 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
159 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
162 if (unlikely(nbytes
> bio
->bi_size
)) {
163 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
164 __func__
, nbytes
, bio
->bi_size
);
165 nbytes
= bio
->bi_size
;
168 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
169 set_bit(BIO_QUIET
, &bio
->bi_flags
);
171 bio
->bi_size
-= nbytes
;
172 bio
->bi_sector
+= (nbytes
>> 9);
174 if (bio_integrity(bio
))
175 bio_integrity_advance(bio
, nbytes
);
177 /* don't actually finish bio if it's part of flush sequence */
178 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
179 bio_endio(bio
, error
);
182 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
186 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
187 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
190 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
191 (unsigned long long)blk_rq_pos(rq
),
192 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
193 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
194 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
196 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
197 printk(KERN_INFO
" cdb: ");
198 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
199 printk("%02x ", rq
->cmd
[bit
]);
203 EXPORT_SYMBOL(blk_dump_rq_flags
);
205 static void blk_delay_work(struct work_struct
*work
)
207 struct request_queue
*q
;
209 q
= container_of(work
, struct request_queue
, delay_work
.work
);
210 spin_lock_irq(q
->queue_lock
);
212 spin_unlock_irq(q
->queue_lock
);
216 * blk_delay_queue - restart queueing after defined interval
217 * @q: The &struct request_queue in question
218 * @msecs: Delay in msecs
221 * Sometimes queueing needs to be postponed for a little while, to allow
222 * resources to come back. This function will make sure that queueing is
223 * restarted around the specified time. Queue lock must be held.
225 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
227 if (likely(!blk_queue_dead(q
)))
228 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
229 msecs_to_jiffies(msecs
));
231 EXPORT_SYMBOL(blk_delay_queue
);
234 * blk_start_queue - restart a previously stopped queue
235 * @q: The &struct request_queue in question
238 * blk_start_queue() will clear the stop flag on the queue, and call
239 * the request_fn for the queue if it was in a stopped state when
240 * entered. Also see blk_stop_queue(). Queue lock must be held.
242 void blk_start_queue(struct request_queue
*q
)
244 WARN_ON(!irqs_disabled());
246 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
249 EXPORT_SYMBOL(blk_start_queue
);
252 * blk_stop_queue - stop a queue
253 * @q: The &struct request_queue in question
256 * The Linux block layer assumes that a block driver will consume all
257 * entries on the request queue when the request_fn strategy is called.
258 * Often this will not happen, because of hardware limitations (queue
259 * depth settings). If a device driver gets a 'queue full' response,
260 * or if it simply chooses not to queue more I/O at one point, it can
261 * call this function to prevent the request_fn from being called until
262 * the driver has signalled it's ready to go again. This happens by calling
263 * blk_start_queue() to restart queue operations. Queue lock must be held.
265 void blk_stop_queue(struct request_queue
*q
)
267 cancel_delayed_work(&q
->delay_work
);
268 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
270 EXPORT_SYMBOL(blk_stop_queue
);
273 * blk_sync_queue - cancel any pending callbacks on a queue
277 * The block layer may perform asynchronous callback activity
278 * on a queue, such as calling the unplug function after a timeout.
279 * A block device may call blk_sync_queue to ensure that any
280 * such activity is cancelled, thus allowing it to release resources
281 * that the callbacks might use. The caller must already have made sure
282 * that its ->make_request_fn will not re-add plugging prior to calling
285 * This function does not cancel any asynchronous activity arising
286 * out of elevator or throttling code. That would require elevaotor_exit()
287 * and blkcg_exit_queue() to be called with queue lock initialized.
290 void blk_sync_queue(struct request_queue
*q
)
292 del_timer_sync(&q
->timeout
);
293 cancel_delayed_work_sync(&q
->delay_work
);
295 EXPORT_SYMBOL(blk_sync_queue
);
298 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
299 * @q: The queue to run
302 * Invoke request handling on a queue if there are any pending requests.
303 * May be used to restart request handling after a request has completed.
304 * This variant runs the queue whether or not the queue has been
305 * stopped. Must be called with the queue lock held and interrupts
306 * disabled. See also @blk_run_queue.
308 inline void __blk_run_queue_uncond(struct request_queue
*q
)
310 if (unlikely(blk_queue_dead(q
)))
314 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
315 * the queue lock internally. As a result multiple threads may be
316 * running such a request function concurrently. Keep track of the
317 * number of active request_fn invocations such that blk_drain_queue()
318 * can wait until all these request_fn calls have finished.
320 q
->request_fn_active
++;
322 q
->request_fn_active
--;
326 * __blk_run_queue - run a single device queue
327 * @q: The queue to run
330 * See @blk_run_queue. This variant must be called with the queue lock
331 * held and interrupts disabled.
333 void __blk_run_queue(struct request_queue
*q
)
335 if (unlikely(blk_queue_stopped(q
)))
338 __blk_run_queue_uncond(q
);
340 EXPORT_SYMBOL(__blk_run_queue
);
343 * blk_run_queue_async - run a single device queue in workqueue context
344 * @q: The queue to run
347 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
348 * of us. The caller must hold the queue lock.
350 void blk_run_queue_async(struct request_queue
*q
)
352 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
353 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
355 EXPORT_SYMBOL(blk_run_queue_async
);
358 * blk_run_queue - run a single device queue
359 * @q: The queue to run
362 * Invoke request handling on this queue, if it has pending work to do.
363 * May be used to restart queueing when a request has completed.
365 void blk_run_queue(struct request_queue
*q
)
369 spin_lock_irqsave(q
->queue_lock
, flags
);
371 spin_unlock_irqrestore(q
->queue_lock
, flags
);
373 EXPORT_SYMBOL(blk_run_queue
);
375 void blk_put_queue(struct request_queue
*q
)
377 kobject_put(&q
->kobj
);
379 EXPORT_SYMBOL(blk_put_queue
);
382 * __blk_drain_queue - drain requests from request_queue
384 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
386 * Drain requests from @q. If @drain_all is set, all requests are drained.
387 * If not, only ELVPRIV requests are drained. The caller is responsible
388 * for ensuring that no new requests which need to be drained are queued.
390 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
391 __releases(q
->queue_lock
)
392 __acquires(q
->queue_lock
)
396 lockdep_assert_held(q
->queue_lock
);
402 * The caller might be trying to drain @q before its
403 * elevator is initialized.
406 elv_drain_elevator(q
);
408 blkcg_drain_queue(q
);
411 * This function might be called on a queue which failed
412 * driver init after queue creation or is not yet fully
413 * active yet. Some drivers (e.g. fd and loop) get unhappy
414 * in such cases. Kick queue iff dispatch queue has
415 * something on it and @q has request_fn set.
417 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
420 drain
|= q
->nr_rqs_elvpriv
;
421 drain
|= q
->request_fn_active
;
424 * Unfortunately, requests are queued at and tracked from
425 * multiple places and there's no single counter which can
426 * be drained. Check all the queues and counters.
429 drain
|= !list_empty(&q
->queue_head
);
430 for (i
= 0; i
< 2; i
++) {
431 drain
|= q
->nr_rqs
[i
];
432 drain
|= q
->in_flight
[i
];
433 drain
|= !list_empty(&q
->flush_queue
[i
]);
440 spin_unlock_irq(q
->queue_lock
);
444 spin_lock_irq(q
->queue_lock
);
448 * With queue marked dead, any woken up waiter will fail the
449 * allocation path, so the wakeup chaining is lost and we're
450 * left with hung waiters. We need to wake up those waiters.
453 struct request_list
*rl
;
455 blk_queue_for_each_rl(rl
, q
)
456 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
457 wake_up_all(&rl
->wait
[i
]);
462 * blk_queue_bypass_start - enter queue bypass mode
463 * @q: queue of interest
465 * In bypass mode, only the dispatch FIFO queue of @q is used. This
466 * function makes @q enter bypass mode and drains all requests which were
467 * throttled or issued before. On return, it's guaranteed that no request
468 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
469 * inside queue or RCU read lock.
471 void blk_queue_bypass_start(struct request_queue
*q
)
475 spin_lock_irq(q
->queue_lock
);
476 drain
= !q
->bypass_depth
++;
477 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
478 spin_unlock_irq(q
->queue_lock
);
481 spin_lock_irq(q
->queue_lock
);
482 __blk_drain_queue(q
, false);
483 spin_unlock_irq(q
->queue_lock
);
485 /* ensure blk_queue_bypass() is %true inside RCU read lock */
489 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
492 * blk_queue_bypass_end - leave queue bypass mode
493 * @q: queue of interest
495 * Leave bypass mode and restore the normal queueing behavior.
497 void blk_queue_bypass_end(struct request_queue
*q
)
499 spin_lock_irq(q
->queue_lock
);
500 if (!--q
->bypass_depth
)
501 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
502 WARN_ON_ONCE(q
->bypass_depth
< 0);
503 spin_unlock_irq(q
->queue_lock
);
505 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
508 * blk_cleanup_queue - shutdown a request queue
509 * @q: request queue to shutdown
511 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
512 * put it. All future requests will be failed immediately with -ENODEV.
514 void blk_cleanup_queue(struct request_queue
*q
)
516 spinlock_t
*lock
= q
->queue_lock
;
518 /* mark @q DYING, no new request or merges will be allowed afterwards */
519 mutex_lock(&q
->sysfs_lock
);
520 queue_flag_set_unlocked(QUEUE_FLAG_DYING
, q
);
524 * A dying queue is permanently in bypass mode till released. Note
525 * that, unlike blk_queue_bypass_start(), we aren't performing
526 * synchronize_rcu() after entering bypass mode to avoid the delay
527 * as some drivers create and destroy a lot of queues while
528 * probing. This is still safe because blk_release_queue() will be
529 * called only after the queue refcnt drops to zero and nothing,
530 * RCU or not, would be traversing the queue by then.
533 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
535 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
536 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
537 queue_flag_set(QUEUE_FLAG_DYING
, q
);
538 spin_unlock_irq(lock
);
539 mutex_unlock(&q
->sysfs_lock
);
542 * Drain all requests queued before DYING marking. Set DEAD flag to
543 * prevent that q->request_fn() gets invoked after draining finished.
546 __blk_drain_queue(q
, true);
547 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
548 spin_unlock_irq(lock
);
550 /* @q won't process any more request, flush async actions */
551 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
555 if (q
->queue_lock
!= &q
->__queue_lock
)
556 q
->queue_lock
= &q
->__queue_lock
;
557 spin_unlock_irq(lock
);
559 /* @q is and will stay empty, shutdown and put */
562 EXPORT_SYMBOL(blk_cleanup_queue
);
564 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
567 if (unlikely(rl
->rq_pool
))
571 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
572 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
573 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
574 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
576 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
577 mempool_free_slab
, request_cachep
,
585 void blk_exit_rl(struct request_list
*rl
)
588 mempool_destroy(rl
->rq_pool
);
591 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
593 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
595 EXPORT_SYMBOL(blk_alloc_queue
);
597 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
599 struct request_queue
*q
;
602 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
603 gfp_mask
| __GFP_ZERO
, node_id
);
607 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
611 q
->backing_dev_info
.ra_pages
=
612 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
613 q
->backing_dev_info
.state
= 0;
614 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
615 q
->backing_dev_info
.name
= "block";
618 err
= bdi_init(&q
->backing_dev_info
);
622 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
623 laptop_mode_timer_fn
, (unsigned long) q
);
624 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
625 INIT_LIST_HEAD(&q
->queue_head
);
626 INIT_LIST_HEAD(&q
->timeout_list
);
627 INIT_LIST_HEAD(&q
->icq_list
);
628 #ifdef CONFIG_BLK_CGROUP
629 INIT_LIST_HEAD(&q
->blkg_list
);
631 INIT_LIST_HEAD(&q
->flush_queue
[0]);
632 INIT_LIST_HEAD(&q
->flush_queue
[1]);
633 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
634 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
636 kobject_init(&q
->kobj
, &blk_queue_ktype
);
638 mutex_init(&q
->sysfs_lock
);
639 spin_lock_init(&q
->__queue_lock
);
642 * By default initialize queue_lock to internal lock and driver can
643 * override it later if need be.
645 q
->queue_lock
= &q
->__queue_lock
;
648 * A queue starts its life with bypass turned on to avoid
649 * unnecessary bypass on/off overhead and nasty surprises during
650 * init. The initial bypass will be finished when the queue is
651 * registered by blk_register_queue().
654 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
656 if (blkcg_init_queue(q
))
662 ida_simple_remove(&blk_queue_ida
, q
->id
);
664 kmem_cache_free(blk_requestq_cachep
, q
);
667 EXPORT_SYMBOL(blk_alloc_queue_node
);
670 * blk_init_queue - prepare a request queue for use with a block device
671 * @rfn: The function to be called to process requests that have been
672 * placed on the queue.
673 * @lock: Request queue spin lock
676 * If a block device wishes to use the standard request handling procedures,
677 * which sorts requests and coalesces adjacent requests, then it must
678 * call blk_init_queue(). The function @rfn will be called when there
679 * are requests on the queue that need to be processed. If the device
680 * supports plugging, then @rfn may not be called immediately when requests
681 * are available on the queue, but may be called at some time later instead.
682 * Plugged queues are generally unplugged when a buffer belonging to one
683 * of the requests on the queue is needed, or due to memory pressure.
685 * @rfn is not required, or even expected, to remove all requests off the
686 * queue, but only as many as it can handle at a time. If it does leave
687 * requests on the queue, it is responsible for arranging that the requests
688 * get dealt with eventually.
690 * The queue spin lock must be held while manipulating the requests on the
691 * request queue; this lock will be taken also from interrupt context, so irq
692 * disabling is needed for it.
694 * Function returns a pointer to the initialized request queue, or %NULL if
698 * blk_init_queue() must be paired with a blk_cleanup_queue() call
699 * when the block device is deactivated (such as at module unload).
702 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
704 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
706 EXPORT_SYMBOL(blk_init_queue
);
708 struct request_queue
*
709 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
711 struct request_queue
*uninit_q
, *q
;
713 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
717 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
719 blk_cleanup_queue(uninit_q
);
723 EXPORT_SYMBOL(blk_init_queue_node
);
725 struct request_queue
*
726 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
732 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
736 q
->prep_rq_fn
= NULL
;
737 q
->unprep_rq_fn
= NULL
;
738 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
740 /* Override internal queue lock with supplied lock pointer */
742 q
->queue_lock
= lock
;
745 * This also sets hw/phys segments, boundary and size
747 blk_queue_make_request(q
, blk_queue_bio
);
749 q
->sg_reserved_size
= INT_MAX
;
752 if (elevator_init(q
, NULL
))
756 EXPORT_SYMBOL(blk_init_allocated_queue
);
758 bool blk_get_queue(struct request_queue
*q
)
760 if (likely(!blk_queue_dying(q
))) {
767 EXPORT_SYMBOL(blk_get_queue
);
769 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
771 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
772 elv_put_request(rl
->q
, rq
);
774 put_io_context(rq
->elv
.icq
->ioc
);
777 mempool_free(rq
, rl
->rq_pool
);
781 * ioc_batching returns true if the ioc is a valid batching request and
782 * should be given priority access to a request.
784 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
790 * Make sure the process is able to allocate at least 1 request
791 * even if the batch times out, otherwise we could theoretically
794 return ioc
->nr_batch_requests
== q
->nr_batching
||
795 (ioc
->nr_batch_requests
> 0
796 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
800 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
801 * will cause the process to be a "batcher" on all queues in the system. This
802 * is the behaviour we want though - once it gets a wakeup it should be given
805 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
807 if (!ioc
|| ioc_batching(q
, ioc
))
810 ioc
->nr_batch_requests
= q
->nr_batching
;
811 ioc
->last_waited
= jiffies
;
814 static void __freed_request(struct request_list
*rl
, int sync
)
816 struct request_queue
*q
= rl
->q
;
819 * bdi isn't aware of blkcg yet. As all async IOs end up root
820 * blkcg anyway, just use root blkcg state.
822 if (rl
== &q
->root_rl
&&
823 rl
->count
[sync
] < queue_congestion_off_threshold(q
))
824 blk_clear_queue_congested(q
, sync
);
826 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
827 if (waitqueue_active(&rl
->wait
[sync
]))
828 wake_up(&rl
->wait
[sync
]);
830 blk_clear_rl_full(rl
, sync
);
835 * A request has just been released. Account for it, update the full and
836 * congestion status, wake up any waiters. Called under q->queue_lock.
838 static void freed_request(struct request_list
*rl
, unsigned int flags
)
840 struct request_queue
*q
= rl
->q
;
841 int sync
= rw_is_sync(flags
);
845 if (flags
& REQ_ELVPRIV
)
848 __freed_request(rl
, sync
);
850 if (unlikely(rl
->starved
[sync
^ 1]))
851 __freed_request(rl
, sync
^ 1);
855 * Determine if elevator data should be initialized when allocating the
856 * request associated with @bio.
858 static bool blk_rq_should_init_elevator(struct bio
*bio
)
864 * Flush requests do not use the elevator so skip initialization.
865 * This allows a request to share the flush and elevator data.
867 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
874 * rq_ioc - determine io_context for request allocation
875 * @bio: request being allocated is for this bio (can be %NULL)
877 * Determine io_context to use for request allocation for @bio. May return
878 * %NULL if %current->io_context doesn't exist.
880 static struct io_context
*rq_ioc(struct bio
*bio
)
882 #ifdef CONFIG_BLK_CGROUP
883 if (bio
&& bio
->bi_ioc
)
886 return current
->io_context
;
890 * __get_request - get a free request
891 * @rl: request list to allocate from
892 * @rw_flags: RW and SYNC flags
893 * @bio: bio to allocate request for (can be %NULL)
894 * @gfp_mask: allocation mask
896 * Get a free request from @q. This function may fail under memory
897 * pressure or if @q is dead.
899 * Must be callled with @q->queue_lock held and,
900 * Returns %NULL on failure, with @q->queue_lock held.
901 * Returns !%NULL on success, with @q->queue_lock *not held*.
903 static struct request
*__get_request(struct request_list
*rl
, int rw_flags
,
904 struct bio
*bio
, gfp_t gfp_mask
)
906 struct request_queue
*q
= rl
->q
;
908 struct elevator_type
*et
= q
->elevator
->type
;
909 struct io_context
*ioc
= rq_ioc(bio
);
910 struct io_cq
*icq
= NULL
;
911 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
914 if (unlikely(blk_queue_dying(q
)))
917 may_queue
= elv_may_queue(q
, rw_flags
);
918 if (may_queue
== ELV_MQUEUE_NO
)
921 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
922 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
924 * The queue will fill after this allocation, so set
925 * it as full, and mark this process as "batching".
926 * This process will be allowed to complete a batch of
927 * requests, others will be blocked.
929 if (!blk_rl_full(rl
, is_sync
)) {
930 ioc_set_batching(q
, ioc
);
931 blk_set_rl_full(rl
, is_sync
);
933 if (may_queue
!= ELV_MQUEUE_MUST
934 && !ioc_batching(q
, ioc
)) {
936 * The queue is full and the allocating
937 * process is not a "batcher", and not
938 * exempted by the IO scheduler
945 * bdi isn't aware of blkcg yet. As all async IOs end up
946 * root blkcg anyway, just use root blkcg state.
948 if (rl
== &q
->root_rl
)
949 blk_set_queue_congested(q
, is_sync
);
953 * Only allow batching queuers to allocate up to 50% over the defined
954 * limit of requests, otherwise we could have thousands of requests
955 * allocated with any setting of ->nr_requests
957 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
960 q
->nr_rqs
[is_sync
]++;
961 rl
->count
[is_sync
]++;
962 rl
->starved
[is_sync
] = 0;
965 * Decide whether the new request will be managed by elevator. If
966 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
967 * prevent the current elevator from being destroyed until the new
968 * request is freed. This guarantees icq's won't be destroyed and
969 * makes creating new ones safe.
971 * Also, lookup icq while holding queue_lock. If it doesn't exist,
972 * it will be created after releasing queue_lock.
974 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
975 rw_flags
|= REQ_ELVPRIV
;
977 if (et
->icq_cache
&& ioc
)
978 icq
= ioc_lookup_icq(ioc
, q
);
981 if (blk_queue_io_stat(q
))
982 rw_flags
|= REQ_IO_STAT
;
983 spin_unlock_irq(q
->queue_lock
);
985 /* allocate and init request */
986 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
991 blk_rq_set_rl(rq
, rl
);
992 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
995 if (rw_flags
& REQ_ELVPRIV
) {
996 if (unlikely(et
->icq_cache
&& !icq
)) {
998 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1004 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1007 /* @rq->elv.icq holds io_context until @rq is freed */
1009 get_io_context(icq
->ioc
);
1013 * ioc may be NULL here, and ioc_batching will be false. That's
1014 * OK, if the queue is under the request limit then requests need
1015 * not count toward the nr_batch_requests limit. There will always
1016 * be some limit enforced by BLK_BATCH_TIME.
1018 if (ioc_batching(q
, ioc
))
1019 ioc
->nr_batch_requests
--;
1021 trace_block_getrq(q
, bio
, rw_flags
& 1);
1026 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1027 * and may fail indefinitely under memory pressure and thus
1028 * shouldn't stall IO. Treat this request as !elvpriv. This will
1029 * disturb iosched and blkcg but weird is bettern than dead.
1031 printk_ratelimited(KERN_WARNING
"%s: request aux data allocation failed, iosched may be disturbed\n",
1032 dev_name(q
->backing_dev_info
.dev
));
1034 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
1037 spin_lock_irq(q
->queue_lock
);
1038 q
->nr_rqs_elvpriv
--;
1039 spin_unlock_irq(q
->queue_lock
);
1044 * Allocation failed presumably due to memory. Undo anything we
1045 * might have messed up.
1047 * Allocating task should really be put onto the front of the wait
1048 * queue, but this is pretty rare.
1050 spin_lock_irq(q
->queue_lock
);
1051 freed_request(rl
, rw_flags
);
1054 * in the very unlikely event that allocation failed and no
1055 * requests for this direction was pending, mark us starved so that
1056 * freeing of a request in the other direction will notice
1057 * us. another possible fix would be to split the rq mempool into
1061 if (unlikely(rl
->count
[is_sync
] == 0))
1062 rl
->starved
[is_sync
] = 1;
1067 * get_request - get a free request
1068 * @q: request_queue to allocate request from
1069 * @rw_flags: RW and SYNC flags
1070 * @bio: bio to allocate request for (can be %NULL)
1071 * @gfp_mask: allocation mask
1073 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1074 * function keeps retrying under memory pressure and fails iff @q is dead.
1076 * Must be callled with @q->queue_lock held and,
1077 * Returns %NULL on failure, with @q->queue_lock held.
1078 * Returns !%NULL on success, with @q->queue_lock *not held*.
1080 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
1081 struct bio
*bio
, gfp_t gfp_mask
)
1083 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1085 struct request_list
*rl
;
1088 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1090 rq
= __get_request(rl
, rw_flags
, bio
, gfp_mask
);
1094 if (!(gfp_mask
& __GFP_WAIT
) || unlikely(blk_queue_dying(q
))) {
1099 /* wait on @rl and retry */
1100 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1101 TASK_UNINTERRUPTIBLE
);
1103 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1105 spin_unlock_irq(q
->queue_lock
);
1109 * After sleeping, we become a "batching" process and will be able
1110 * to allocate at least one request, and up to a big batch of them
1111 * for a small period time. See ioc_batching, ioc_set_batching
1113 ioc_set_batching(q
, current
->io_context
);
1115 spin_lock_irq(q
->queue_lock
);
1116 finish_wait(&rl
->wait
[is_sync
], &wait
);
1121 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1125 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1127 /* create ioc upfront */
1128 create_io_context(gfp_mask
, q
->node
);
1130 spin_lock_irq(q
->queue_lock
);
1131 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1133 spin_unlock_irq(q
->queue_lock
);
1134 /* q->queue_lock is unlocked at this point */
1138 EXPORT_SYMBOL(blk_get_request
);
1141 * blk_make_request - given a bio, allocate a corresponding struct request.
1142 * @q: target request queue
1143 * @bio: The bio describing the memory mappings that will be submitted for IO.
1144 * It may be a chained-bio properly constructed by block/bio layer.
1145 * @gfp_mask: gfp flags to be used for memory allocation
1147 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1148 * type commands. Where the struct request needs to be farther initialized by
1149 * the caller. It is passed a &struct bio, which describes the memory info of
1152 * The caller of blk_make_request must make sure that bi_io_vec
1153 * are set to describe the memory buffers. That bio_data_dir() will return
1154 * the needed direction of the request. (And all bio's in the passed bio-chain
1155 * are properly set accordingly)
1157 * If called under none-sleepable conditions, mapped bio buffers must not
1158 * need bouncing, by calling the appropriate masked or flagged allocator,
1159 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1162 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1163 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1164 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1165 * completion of a bio that hasn't been submitted yet, thus resulting in a
1166 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1167 * of bio_alloc(), as that avoids the mempool deadlock.
1168 * If possible a big IO should be split into smaller parts when allocation
1169 * fails. Partial allocation should not be an error, or you risk a live-lock.
1171 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1174 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1177 return ERR_PTR(-ENOMEM
);
1180 struct bio
*bounce_bio
= bio
;
1183 blk_queue_bounce(q
, &bounce_bio
);
1184 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1185 if (unlikely(ret
)) {
1186 blk_put_request(rq
);
1187 return ERR_PTR(ret
);
1193 EXPORT_SYMBOL(blk_make_request
);
1196 * blk_requeue_request - put a request back on queue
1197 * @q: request queue where request should be inserted
1198 * @rq: request to be inserted
1201 * Drivers often keep queueing requests until the hardware cannot accept
1202 * more, when that condition happens we need to put the request back
1203 * on the queue. Must be called with queue lock held.
1205 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1207 blk_delete_timer(rq
);
1208 blk_clear_rq_complete(rq
);
1209 trace_block_rq_requeue(q
, rq
);
1211 if (blk_rq_tagged(rq
))
1212 blk_queue_end_tag(q
, rq
);
1214 BUG_ON(blk_queued_rq(rq
));
1216 elv_requeue_request(q
, rq
);
1218 EXPORT_SYMBOL(blk_requeue_request
);
1220 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1223 drive_stat_acct(rq
, 1);
1224 __elv_add_request(q
, rq
, where
);
1227 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1230 if (now
== part
->stamp
)
1233 if (part_in_flight(part
)) {
1234 __part_stat_add(cpu
, part
, time_in_queue
,
1235 part_in_flight(part
) * (now
- part
->stamp
));
1236 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1242 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1243 * @cpu: cpu number for stats access
1244 * @part: target partition
1246 * The average IO queue length and utilisation statistics are maintained
1247 * by observing the current state of the queue length and the amount of
1248 * time it has been in this state for.
1250 * Normally, that accounting is done on IO completion, but that can result
1251 * in more than a second's worth of IO being accounted for within any one
1252 * second, leading to >100% utilisation. To deal with that, we call this
1253 * function to do a round-off before returning the results when reading
1254 * /proc/diskstats. This accounts immediately for all queue usage up to
1255 * the current jiffies and restarts the counters again.
1257 void part_round_stats(int cpu
, struct hd_struct
*part
)
1259 unsigned long now
= jiffies
;
1262 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1263 part_round_stats_single(cpu
, part
, now
);
1265 EXPORT_SYMBOL_GPL(part_round_stats
);
1268 * queue lock must be held
1270 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1274 if (unlikely(--req
->ref_count
))
1277 elv_completed_request(q
, req
);
1279 /* this is a bio leak */
1280 WARN_ON(req
->bio
!= NULL
);
1283 * Request may not have originated from ll_rw_blk. if not,
1284 * it didn't come out of our reserved rq pools
1286 if (req
->cmd_flags
& REQ_ALLOCED
) {
1287 unsigned int flags
= req
->cmd_flags
;
1288 struct request_list
*rl
= blk_rq_rl(req
);
1290 BUG_ON(!list_empty(&req
->queuelist
));
1291 BUG_ON(!hlist_unhashed(&req
->hash
));
1293 blk_free_request(rl
, req
);
1294 freed_request(rl
, flags
);
1298 EXPORT_SYMBOL_GPL(__blk_put_request
);
1300 void blk_put_request(struct request
*req
)
1302 unsigned long flags
;
1303 struct request_queue
*q
= req
->q
;
1305 spin_lock_irqsave(q
->queue_lock
, flags
);
1306 __blk_put_request(q
, req
);
1307 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1309 EXPORT_SYMBOL(blk_put_request
);
1312 * blk_add_request_payload - add a payload to a request
1313 * @rq: request to update
1314 * @page: page backing the payload
1315 * @len: length of the payload.
1317 * This allows to later add a payload to an already submitted request by
1318 * a block driver. The driver needs to take care of freeing the payload
1321 * Note that this is a quite horrible hack and nothing but handling of
1322 * discard requests should ever use it.
1324 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1327 struct bio
*bio
= rq
->bio
;
1329 bio
->bi_io_vec
->bv_page
= page
;
1330 bio
->bi_io_vec
->bv_offset
= 0;
1331 bio
->bi_io_vec
->bv_len
= len
;
1335 bio
->bi_phys_segments
= 1;
1337 rq
->__data_len
= rq
->resid_len
= len
;
1338 rq
->nr_phys_segments
= 1;
1339 rq
->buffer
= bio_data(bio
);
1341 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1343 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1346 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1348 if (!ll_back_merge_fn(q
, req
, bio
))
1351 trace_block_bio_backmerge(q
, req
, bio
);
1353 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1354 blk_rq_set_mixed_merge(req
);
1356 req
->biotail
->bi_next
= bio
;
1358 req
->__data_len
+= bio
->bi_size
;
1359 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1361 drive_stat_acct(req
, 0);
1365 static bool bio_attempt_front_merge(struct request_queue
*q
,
1366 struct request
*req
, struct bio
*bio
)
1368 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1370 if (!ll_front_merge_fn(q
, req
, bio
))
1373 trace_block_bio_frontmerge(q
, req
, bio
);
1375 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1376 blk_rq_set_mixed_merge(req
);
1378 bio
->bi_next
= req
->bio
;
1382 * may not be valid. if the low level driver said
1383 * it didn't need a bounce buffer then it better
1384 * not touch req->buffer either...
1386 req
->buffer
= bio_data(bio
);
1387 req
->__sector
= bio
->bi_sector
;
1388 req
->__data_len
+= bio
->bi_size
;
1389 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1391 drive_stat_acct(req
, 0);
1396 * attempt_plug_merge - try to merge with %current's plugged list
1397 * @q: request_queue new bio is being queued at
1398 * @bio: new bio being queued
1399 * @request_count: out parameter for number of traversed plugged requests
1401 * Determine whether @bio being queued on @q can be merged with a request
1402 * on %current's plugged list. Returns %true if merge was successful,
1405 * Plugging coalesces IOs from the same issuer for the same purpose without
1406 * going through @q->queue_lock. As such it's more of an issuing mechanism
1407 * than scheduling, and the request, while may have elvpriv data, is not
1408 * added on the elevator at this point. In addition, we don't have
1409 * reliable access to the elevator outside queue lock. Only check basic
1410 * merging parameters without querying the elevator.
1412 static bool attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1413 unsigned int *request_count
)
1415 struct blk_plug
*plug
;
1419 plug
= current
->plug
;
1424 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1430 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1433 el_ret
= blk_try_merge(rq
, bio
);
1434 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1435 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1438 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1439 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1448 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1450 req
->cmd_type
= REQ_TYPE_FS
;
1452 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1453 if (bio
->bi_rw
& REQ_RAHEAD
)
1454 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1457 req
->__sector
= bio
->bi_sector
;
1458 req
->ioprio
= bio_prio(bio
);
1459 blk_rq_bio_prep(req
->q
, req
, bio
);
1462 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1464 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1465 struct blk_plug
*plug
;
1466 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1467 struct request
*req
;
1468 unsigned int request_count
= 0;
1471 * low level driver can indicate that it wants pages above a
1472 * certain limit bounced to low memory (ie for highmem, or even
1473 * ISA dma in theory)
1475 blk_queue_bounce(q
, &bio
);
1477 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1478 bio_endio(bio
, -EIO
);
1482 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1483 spin_lock_irq(q
->queue_lock
);
1484 where
= ELEVATOR_INSERT_FLUSH
;
1489 * Check if we can merge with the plugged list before grabbing
1492 if (attempt_plug_merge(q
, bio
, &request_count
))
1495 spin_lock_irq(q
->queue_lock
);
1497 el_ret
= elv_merge(q
, &req
, bio
);
1498 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1499 if (bio_attempt_back_merge(q
, req
, bio
)) {
1500 elv_bio_merged(q
, req
, bio
);
1501 if (!attempt_back_merge(q
, req
))
1502 elv_merged_request(q
, req
, el_ret
);
1505 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1506 if (bio_attempt_front_merge(q
, req
, bio
)) {
1507 elv_bio_merged(q
, req
, bio
);
1508 if (!attempt_front_merge(q
, req
))
1509 elv_merged_request(q
, req
, el_ret
);
1516 * This sync check and mask will be re-done in init_request_from_bio(),
1517 * but we need to set it earlier to expose the sync flag to the
1518 * rq allocator and io schedulers.
1520 rw_flags
= bio_data_dir(bio
);
1522 rw_flags
|= REQ_SYNC
;
1525 * Grab a free request. This is might sleep but can not fail.
1526 * Returns with the queue unlocked.
1528 req
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1529 if (unlikely(!req
)) {
1530 bio_endio(bio
, -ENODEV
); /* @q is dead */
1535 * After dropping the lock and possibly sleeping here, our request
1536 * may now be mergeable after it had proven unmergeable (above).
1537 * We don't worry about that case for efficiency. It won't happen
1538 * often, and the elevators are able to handle it.
1540 init_request_from_bio(req
, bio
);
1542 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1543 req
->cpu
= raw_smp_processor_id();
1545 plug
= current
->plug
;
1548 * If this is the first request added after a plug, fire
1549 * of a plug trace. If others have been added before, check
1550 * if we have multiple devices in this plug. If so, make a
1551 * note to sort the list before dispatch.
1553 if (list_empty(&plug
->list
))
1554 trace_block_plug(q
);
1556 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1557 blk_flush_plug_list(plug
, false);
1558 trace_block_plug(q
);
1561 list_add_tail(&req
->queuelist
, &plug
->list
);
1562 drive_stat_acct(req
, 1);
1564 spin_lock_irq(q
->queue_lock
);
1565 add_acct_request(q
, req
, where
);
1568 spin_unlock_irq(q
->queue_lock
);
1571 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1574 * If bio->bi_dev is a partition, remap the location
1576 static inline void blk_partition_remap(struct bio
*bio
)
1578 struct block_device
*bdev
= bio
->bi_bdev
;
1580 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1581 struct hd_struct
*p
= bdev
->bd_part
;
1583 bio
->bi_sector
+= p
->start_sect
;
1584 bio
->bi_bdev
= bdev
->bd_contains
;
1586 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1588 bio
->bi_sector
- p
->start_sect
);
1592 static void handle_bad_sector(struct bio
*bio
)
1594 char b
[BDEVNAME_SIZE
];
1596 printk(KERN_INFO
"attempt to access beyond end of device\n");
1597 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1598 bdevname(bio
->bi_bdev
, b
),
1600 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1601 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1603 set_bit(BIO_EOF
, &bio
->bi_flags
);
1606 #ifdef CONFIG_FAIL_MAKE_REQUEST
1608 static DECLARE_FAULT_ATTR(fail_make_request
);
1610 static int __init
setup_fail_make_request(char *str
)
1612 return setup_fault_attr(&fail_make_request
, str
);
1614 __setup("fail_make_request=", setup_fail_make_request
);
1616 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1618 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1621 static int __init
fail_make_request_debugfs(void)
1623 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1624 NULL
, &fail_make_request
);
1626 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1629 late_initcall(fail_make_request_debugfs
);
1631 #else /* CONFIG_FAIL_MAKE_REQUEST */
1633 static inline bool should_fail_request(struct hd_struct
*part
,
1639 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1642 * Check whether this bio extends beyond the end of the device.
1644 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1651 /* Test device or partition size, when known. */
1652 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1654 sector_t sector
= bio
->bi_sector
;
1656 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1658 * This may well happen - the kernel calls bread()
1659 * without checking the size of the device, e.g., when
1660 * mounting a device.
1662 handle_bad_sector(bio
);
1670 static noinline_for_stack
bool
1671 generic_make_request_checks(struct bio
*bio
)
1673 struct request_queue
*q
;
1674 int nr_sectors
= bio_sectors(bio
);
1676 char b
[BDEVNAME_SIZE
];
1677 struct hd_struct
*part
;
1681 if (bio_check_eod(bio
, nr_sectors
))
1684 q
= bdev_get_queue(bio
->bi_bdev
);
1687 "generic_make_request: Trying to access "
1688 "nonexistent block-device %s (%Lu)\n",
1689 bdevname(bio
->bi_bdev
, b
),
1690 (long long) bio
->bi_sector
);
1694 if (likely(bio_is_rw(bio
) &&
1695 nr_sectors
> queue_max_hw_sectors(q
))) {
1696 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1697 bdevname(bio
->bi_bdev
, b
),
1699 queue_max_hw_sectors(q
));
1703 part
= bio
->bi_bdev
->bd_part
;
1704 if (should_fail_request(part
, bio
->bi_size
) ||
1705 should_fail_request(&part_to_disk(part
)->part0
,
1710 * If this device has partitions, remap block n
1711 * of partition p to block n+start(p) of the disk.
1713 blk_partition_remap(bio
);
1715 if (bio_check_eod(bio
, nr_sectors
))
1719 * Filter flush bio's early so that make_request based
1720 * drivers without flush support don't have to worry
1723 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1724 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1731 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1732 (!blk_queue_discard(q
) ||
1733 ((bio
->bi_rw
& REQ_SECURE
) && !blk_queue_secdiscard(q
)))) {
1738 if (bio
->bi_rw
& REQ_WRITE_SAME
&& !bdev_write_same(bio
->bi_bdev
)) {
1744 * Various block parts want %current->io_context and lazy ioc
1745 * allocation ends up trading a lot of pain for a small amount of
1746 * memory. Just allocate it upfront. This may fail and block
1747 * layer knows how to live with it.
1749 create_io_context(GFP_ATOMIC
, q
->node
);
1751 if (blk_throtl_bio(q
, bio
))
1752 return false; /* throttled, will be resubmitted later */
1754 trace_block_bio_queue(q
, bio
);
1758 bio_endio(bio
, err
);
1763 * generic_make_request - hand a buffer to its device driver for I/O
1764 * @bio: The bio describing the location in memory and on the device.
1766 * generic_make_request() is used to make I/O requests of block
1767 * devices. It is passed a &struct bio, which describes the I/O that needs
1770 * generic_make_request() does not return any status. The
1771 * success/failure status of the request, along with notification of
1772 * completion, is delivered asynchronously through the bio->bi_end_io
1773 * function described (one day) else where.
1775 * The caller of generic_make_request must make sure that bi_io_vec
1776 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1777 * set to describe the device address, and the
1778 * bi_end_io and optionally bi_private are set to describe how
1779 * completion notification should be signaled.
1781 * generic_make_request and the drivers it calls may use bi_next if this
1782 * bio happens to be merged with someone else, and may resubmit the bio to
1783 * a lower device by calling into generic_make_request recursively, which
1784 * means the bio should NOT be touched after the call to ->make_request_fn.
1786 void generic_make_request(struct bio
*bio
)
1788 struct bio_list bio_list_on_stack
;
1790 if (!generic_make_request_checks(bio
))
1794 * We only want one ->make_request_fn to be active at a time, else
1795 * stack usage with stacked devices could be a problem. So use
1796 * current->bio_list to keep a list of requests submited by a
1797 * make_request_fn function. current->bio_list is also used as a
1798 * flag to say if generic_make_request is currently active in this
1799 * task or not. If it is NULL, then no make_request is active. If
1800 * it is non-NULL, then a make_request is active, and new requests
1801 * should be added at the tail
1803 if (current
->bio_list
) {
1804 bio_list_add(current
->bio_list
, bio
);
1808 /* following loop may be a bit non-obvious, and so deserves some
1810 * Before entering the loop, bio->bi_next is NULL (as all callers
1811 * ensure that) so we have a list with a single bio.
1812 * We pretend that we have just taken it off a longer list, so
1813 * we assign bio_list to a pointer to the bio_list_on_stack,
1814 * thus initialising the bio_list of new bios to be
1815 * added. ->make_request() may indeed add some more bios
1816 * through a recursive call to generic_make_request. If it
1817 * did, we find a non-NULL value in bio_list and re-enter the loop
1818 * from the top. In this case we really did just take the bio
1819 * of the top of the list (no pretending) and so remove it from
1820 * bio_list, and call into ->make_request() again.
1822 BUG_ON(bio
->bi_next
);
1823 bio_list_init(&bio_list_on_stack
);
1824 current
->bio_list
= &bio_list_on_stack
;
1826 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1828 q
->make_request_fn(q
, bio
);
1830 bio
= bio_list_pop(current
->bio_list
);
1832 current
->bio_list
= NULL
; /* deactivate */
1834 EXPORT_SYMBOL(generic_make_request
);
1837 * submit_bio - submit a bio to the block device layer for I/O
1838 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1839 * @bio: The &struct bio which describes the I/O
1841 * submit_bio() is very similar in purpose to generic_make_request(), and
1842 * uses that function to do most of the work. Both are fairly rough
1843 * interfaces; @bio must be presetup and ready for I/O.
1846 void submit_bio(int rw
, struct bio
*bio
)
1851 * If it's a regular read/write or a barrier with data attached,
1852 * go through the normal accounting stuff before submission.
1854 if (bio_has_data(bio
)) {
1857 if (unlikely(rw
& REQ_WRITE_SAME
))
1858 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
1860 count
= bio_sectors(bio
);
1863 count_vm_events(PGPGOUT
, count
);
1865 task_io_account_read(bio
->bi_size
);
1866 count_vm_events(PGPGIN
, count
);
1869 if (unlikely(block_dump
)) {
1870 char b
[BDEVNAME_SIZE
];
1871 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1872 current
->comm
, task_pid_nr(current
),
1873 (rw
& WRITE
) ? "WRITE" : "READ",
1874 (unsigned long long)bio
->bi_sector
,
1875 bdevname(bio
->bi_bdev
, b
),
1880 generic_make_request(bio
);
1882 EXPORT_SYMBOL(submit_bio
);
1885 * blk_rq_check_limits - Helper function to check a request for the queue limit
1887 * @rq: the request being checked
1890 * @rq may have been made based on weaker limitations of upper-level queues
1891 * in request stacking drivers, and it may violate the limitation of @q.
1892 * Since the block layer and the underlying device driver trust @rq
1893 * after it is inserted to @q, it should be checked against @q before
1894 * the insertion using this generic function.
1896 * This function should also be useful for request stacking drivers
1897 * in some cases below, so export this function.
1898 * Request stacking drivers like request-based dm may change the queue
1899 * limits while requests are in the queue (e.g. dm's table swapping).
1900 * Such request stacking drivers should check those requests agaist
1901 * the new queue limits again when they dispatch those requests,
1902 * although such checkings are also done against the old queue limits
1903 * when submitting requests.
1905 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1907 if (!rq_mergeable(rq
))
1910 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, rq
->cmd_flags
)) {
1911 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1916 * queue's settings related to segment counting like q->bounce_pfn
1917 * may differ from that of other stacking queues.
1918 * Recalculate it to check the request correctly on this queue's
1921 blk_recalc_rq_segments(rq
);
1922 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1923 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1929 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1932 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1933 * @q: the queue to submit the request
1934 * @rq: the request being queued
1936 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1938 unsigned long flags
;
1939 int where
= ELEVATOR_INSERT_BACK
;
1941 if (blk_rq_check_limits(q
, rq
))
1945 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1948 spin_lock_irqsave(q
->queue_lock
, flags
);
1949 if (unlikely(blk_queue_dying(q
))) {
1950 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1955 * Submitting request must be dequeued before calling this function
1956 * because it will be linked to another request_queue
1958 BUG_ON(blk_queued_rq(rq
));
1960 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1961 where
= ELEVATOR_INSERT_FLUSH
;
1963 add_acct_request(q
, rq
, where
);
1964 if (where
== ELEVATOR_INSERT_FLUSH
)
1966 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1970 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1973 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1974 * @rq: request to examine
1977 * A request could be merge of IOs which require different failure
1978 * handling. This function determines the number of bytes which
1979 * can be failed from the beginning of the request without
1980 * crossing into area which need to be retried further.
1983 * The number of bytes to fail.
1986 * queue_lock must be held.
1988 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1990 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1991 unsigned int bytes
= 0;
1994 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1995 return blk_rq_bytes(rq
);
1998 * Currently the only 'mixing' which can happen is between
1999 * different fastfail types. We can safely fail portions
2000 * which have all the failfast bits that the first one has -
2001 * the ones which are at least as eager to fail as the first
2004 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2005 if ((bio
->bi_rw
& ff
) != ff
)
2007 bytes
+= bio
->bi_size
;
2010 /* this could lead to infinite loop */
2011 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2014 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2016 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2018 if (blk_do_io_stat(req
)) {
2019 const int rw
= rq_data_dir(req
);
2020 struct hd_struct
*part
;
2023 cpu
= part_stat_lock();
2025 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2030 static void blk_account_io_done(struct request
*req
)
2033 * Account IO completion. flush_rq isn't accounted as a
2034 * normal IO on queueing nor completion. Accounting the
2035 * containing request is enough.
2037 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2038 unsigned long duration
= jiffies
- req
->start_time
;
2039 const int rw
= rq_data_dir(req
);
2040 struct hd_struct
*part
;
2043 cpu
= part_stat_lock();
2046 part_stat_inc(cpu
, part
, ios
[rw
]);
2047 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2048 part_round_stats(cpu
, part
);
2049 part_dec_in_flight(part
, rw
);
2051 hd_struct_put(part
);
2057 * blk_peek_request - peek at the top of a request queue
2058 * @q: request queue to peek at
2061 * Return the request at the top of @q. The returned request
2062 * should be started using blk_start_request() before LLD starts
2066 * Pointer to the request at the top of @q if available. Null
2070 * queue_lock must be held.
2072 struct request
*blk_peek_request(struct request_queue
*q
)
2077 while ((rq
= __elv_next_request(q
)) != NULL
) {
2078 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2080 * This is the first time the device driver
2081 * sees this request (possibly after
2082 * requeueing). Notify IO scheduler.
2084 if (rq
->cmd_flags
& REQ_SORTED
)
2085 elv_activate_rq(q
, rq
);
2088 * just mark as started even if we don't start
2089 * it, a request that has been delayed should
2090 * not be passed by new incoming requests
2092 rq
->cmd_flags
|= REQ_STARTED
;
2093 trace_block_rq_issue(q
, rq
);
2096 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2097 q
->end_sector
= rq_end_sector(rq
);
2098 q
->boundary_rq
= NULL
;
2101 if (rq
->cmd_flags
& REQ_DONTPREP
)
2104 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2106 * make sure space for the drain appears we
2107 * know we can do this because max_hw_segments
2108 * has been adjusted to be one fewer than the
2111 rq
->nr_phys_segments
++;
2117 ret
= q
->prep_rq_fn(q
, rq
);
2118 if (ret
== BLKPREP_OK
) {
2120 } else if (ret
== BLKPREP_DEFER
) {
2122 * the request may have been (partially) prepped.
2123 * we need to keep this request in the front to
2124 * avoid resource deadlock. REQ_STARTED will
2125 * prevent other fs requests from passing this one.
2127 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2128 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2130 * remove the space for the drain we added
2131 * so that we don't add it again
2133 --rq
->nr_phys_segments
;
2138 } else if (ret
== BLKPREP_KILL
) {
2139 rq
->cmd_flags
|= REQ_QUIET
;
2141 * Mark this request as started so we don't trigger
2142 * any debug logic in the end I/O path.
2144 blk_start_request(rq
);
2145 __blk_end_request_all(rq
, -EIO
);
2147 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2154 EXPORT_SYMBOL(blk_peek_request
);
2156 void blk_dequeue_request(struct request
*rq
)
2158 struct request_queue
*q
= rq
->q
;
2160 BUG_ON(list_empty(&rq
->queuelist
));
2161 BUG_ON(ELV_ON_HASH(rq
));
2163 list_del_init(&rq
->queuelist
);
2166 * the time frame between a request being removed from the lists
2167 * and to it is freed is accounted as io that is in progress at
2170 if (blk_account_rq(rq
)) {
2171 q
->in_flight
[rq_is_sync(rq
)]++;
2172 set_io_start_time_ns(rq
);
2177 * blk_start_request - start request processing on the driver
2178 * @req: request to dequeue
2181 * Dequeue @req and start timeout timer on it. This hands off the
2182 * request to the driver.
2184 * Block internal functions which don't want to start timer should
2185 * call blk_dequeue_request().
2188 * queue_lock must be held.
2190 void blk_start_request(struct request
*req
)
2192 blk_dequeue_request(req
);
2195 * We are now handing the request to the hardware, initialize
2196 * resid_len to full count and add the timeout handler.
2198 req
->resid_len
= blk_rq_bytes(req
);
2199 if (unlikely(blk_bidi_rq(req
)))
2200 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2204 EXPORT_SYMBOL(blk_start_request
);
2207 * blk_fetch_request - fetch a request from a request queue
2208 * @q: request queue to fetch a request from
2211 * Return the request at the top of @q. The request is started on
2212 * return and LLD can start processing it immediately.
2215 * Pointer to the request at the top of @q if available. Null
2219 * queue_lock must be held.
2221 struct request
*blk_fetch_request(struct request_queue
*q
)
2225 rq
= blk_peek_request(q
);
2227 blk_start_request(rq
);
2230 EXPORT_SYMBOL(blk_fetch_request
);
2233 * blk_update_request - Special helper function for request stacking drivers
2234 * @req: the request being processed
2235 * @error: %0 for success, < %0 for error
2236 * @nr_bytes: number of bytes to complete @req
2239 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2240 * the request structure even if @req doesn't have leftover.
2241 * If @req has leftover, sets it up for the next range of segments.
2243 * This special helper function is only for request stacking drivers
2244 * (e.g. request-based dm) so that they can handle partial completion.
2245 * Actual device drivers should use blk_end_request instead.
2247 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2248 * %false return from this function.
2251 * %false - this request doesn't have any more data
2252 * %true - this request has more data
2254 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2256 int total_bytes
, bio_nbytes
, next_idx
= 0;
2262 trace_block_rq_complete(req
->q
, req
);
2265 * For fs requests, rq is just carrier of independent bio's
2266 * and each partial completion should be handled separately.
2267 * Reset per-request error on each partial completion.
2269 * TODO: tj: This is too subtle. It would be better to let
2270 * low level drivers do what they see fit.
2272 if (req
->cmd_type
== REQ_TYPE_FS
)
2275 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2276 !(req
->cmd_flags
& REQ_QUIET
)) {
2281 error_type
= "recoverable transport";
2284 error_type
= "critical target";
2287 error_type
= "critical nexus";
2294 printk_ratelimited(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2295 error_type
, req
->rq_disk
?
2296 req
->rq_disk
->disk_name
: "?",
2297 (unsigned long long)blk_rq_pos(req
));
2301 blk_account_io_completion(req
, nr_bytes
);
2303 total_bytes
= bio_nbytes
= 0;
2304 while ((bio
= req
->bio
) != NULL
) {
2307 if (nr_bytes
>= bio
->bi_size
) {
2308 req
->bio
= bio
->bi_next
;
2309 nbytes
= bio
->bi_size
;
2310 req_bio_endio(req
, bio
, nbytes
, error
);
2314 int idx
= bio
->bi_idx
+ next_idx
;
2316 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2317 blk_dump_rq_flags(req
, "__end_that");
2318 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2319 __func__
, idx
, bio
->bi_vcnt
);
2323 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2324 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2327 * not a complete bvec done
2329 if (unlikely(nbytes
> nr_bytes
)) {
2330 bio_nbytes
+= nr_bytes
;
2331 total_bytes
+= nr_bytes
;
2336 * advance to the next vector
2339 bio_nbytes
+= nbytes
;
2342 total_bytes
+= nbytes
;
2348 * end more in this run, or just return 'not-done'
2350 if (unlikely(nr_bytes
<= 0))
2360 * Reset counters so that the request stacking driver
2361 * can find how many bytes remain in the request
2364 req
->__data_len
= 0;
2369 * if the request wasn't completed, update state
2372 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2373 bio
->bi_idx
+= next_idx
;
2374 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2375 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2378 req
->__data_len
-= total_bytes
;
2379 req
->buffer
= bio_data(req
->bio
);
2381 /* update sector only for requests with clear definition of sector */
2382 if (req
->cmd_type
== REQ_TYPE_FS
)
2383 req
->__sector
+= total_bytes
>> 9;
2385 /* mixed attributes always follow the first bio */
2386 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2387 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2388 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2392 * If total number of sectors is less than the first segment
2393 * size, something has gone terribly wrong.
2395 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2396 blk_dump_rq_flags(req
, "request botched");
2397 req
->__data_len
= blk_rq_cur_bytes(req
);
2400 /* recalculate the number of segments */
2401 blk_recalc_rq_segments(req
);
2405 EXPORT_SYMBOL_GPL(blk_update_request
);
2407 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2408 unsigned int nr_bytes
,
2409 unsigned int bidi_bytes
)
2411 if (blk_update_request(rq
, error
, nr_bytes
))
2414 /* Bidi request must be completed as a whole */
2415 if (unlikely(blk_bidi_rq(rq
)) &&
2416 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2419 if (blk_queue_add_random(rq
->q
))
2420 add_disk_randomness(rq
->rq_disk
);
2426 * blk_unprep_request - unprepare a request
2429 * This function makes a request ready for complete resubmission (or
2430 * completion). It happens only after all error handling is complete,
2431 * so represents the appropriate moment to deallocate any resources
2432 * that were allocated to the request in the prep_rq_fn. The queue
2433 * lock is held when calling this.
2435 void blk_unprep_request(struct request
*req
)
2437 struct request_queue
*q
= req
->q
;
2439 req
->cmd_flags
&= ~REQ_DONTPREP
;
2440 if (q
->unprep_rq_fn
)
2441 q
->unprep_rq_fn(q
, req
);
2443 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2446 * queue lock must be held
2448 static void blk_finish_request(struct request
*req
, int error
)
2450 if (blk_rq_tagged(req
))
2451 blk_queue_end_tag(req
->q
, req
);
2453 BUG_ON(blk_queued_rq(req
));
2455 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2456 laptop_io_completion(&req
->q
->backing_dev_info
);
2458 blk_delete_timer(req
);
2460 if (req
->cmd_flags
& REQ_DONTPREP
)
2461 blk_unprep_request(req
);
2464 blk_account_io_done(req
);
2467 req
->end_io(req
, error
);
2469 if (blk_bidi_rq(req
))
2470 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2472 __blk_put_request(req
->q
, req
);
2477 * blk_end_bidi_request - Complete a bidi request
2478 * @rq: the request to complete
2479 * @error: %0 for success, < %0 for error
2480 * @nr_bytes: number of bytes to complete @rq
2481 * @bidi_bytes: number of bytes to complete @rq->next_rq
2484 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2485 * Drivers that supports bidi can safely call this member for any
2486 * type of request, bidi or uni. In the later case @bidi_bytes is
2490 * %false - we are done with this request
2491 * %true - still buffers pending for this request
2493 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2494 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2496 struct request_queue
*q
= rq
->q
;
2497 unsigned long flags
;
2499 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2502 spin_lock_irqsave(q
->queue_lock
, flags
);
2503 blk_finish_request(rq
, error
);
2504 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2510 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2511 * @rq: the request to complete
2512 * @error: %0 for success, < %0 for error
2513 * @nr_bytes: number of bytes to complete @rq
2514 * @bidi_bytes: number of bytes to complete @rq->next_rq
2517 * Identical to blk_end_bidi_request() except that queue lock is
2518 * assumed to be locked on entry and remains so on return.
2521 * %false - we are done with this request
2522 * %true - still buffers pending for this request
2524 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2525 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2527 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2530 blk_finish_request(rq
, error
);
2536 * blk_end_request - Helper function for drivers to complete the request.
2537 * @rq: the request being processed
2538 * @error: %0 for success, < %0 for error
2539 * @nr_bytes: number of bytes to complete
2542 * Ends I/O on a number of bytes attached to @rq.
2543 * If @rq has leftover, sets it up for the next range of segments.
2546 * %false - we are done with this request
2547 * %true - still buffers pending for this request
2549 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2551 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2553 EXPORT_SYMBOL(blk_end_request
);
2556 * blk_end_request_all - Helper function for drives to finish the request.
2557 * @rq: the request to finish
2558 * @error: %0 for success, < %0 for error
2561 * Completely finish @rq.
2563 void blk_end_request_all(struct request
*rq
, int error
)
2566 unsigned int bidi_bytes
= 0;
2568 if (unlikely(blk_bidi_rq(rq
)))
2569 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2571 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2574 EXPORT_SYMBOL(blk_end_request_all
);
2577 * blk_end_request_cur - Helper function to finish the current request chunk.
2578 * @rq: the request to finish the current chunk for
2579 * @error: %0 for success, < %0 for error
2582 * Complete the current consecutively mapped chunk from @rq.
2585 * %false - we are done with this request
2586 * %true - still buffers pending for this request
2588 bool blk_end_request_cur(struct request
*rq
, int error
)
2590 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2592 EXPORT_SYMBOL(blk_end_request_cur
);
2595 * blk_end_request_err - Finish a request till the next failure boundary.
2596 * @rq: the request to finish till the next failure boundary for
2597 * @error: must be negative errno
2600 * Complete @rq till the next failure boundary.
2603 * %false - we are done with this request
2604 * %true - still buffers pending for this request
2606 bool blk_end_request_err(struct request
*rq
, int error
)
2608 WARN_ON(error
>= 0);
2609 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2611 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2614 * __blk_end_request - Helper function for drivers to complete the request.
2615 * @rq: the request being processed
2616 * @error: %0 for success, < %0 for error
2617 * @nr_bytes: number of bytes to complete
2620 * Must be called with queue lock held unlike blk_end_request().
2623 * %false - we are done with this request
2624 * %true - still buffers pending for this request
2626 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2628 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2630 EXPORT_SYMBOL(__blk_end_request
);
2633 * __blk_end_request_all - Helper function for drives to finish the request.
2634 * @rq: the request to finish
2635 * @error: %0 for success, < %0 for error
2638 * Completely finish @rq. Must be called with queue lock held.
2640 void __blk_end_request_all(struct request
*rq
, int error
)
2643 unsigned int bidi_bytes
= 0;
2645 if (unlikely(blk_bidi_rq(rq
)))
2646 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2648 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2651 EXPORT_SYMBOL(__blk_end_request_all
);
2654 * __blk_end_request_cur - Helper function to finish the current request chunk.
2655 * @rq: the request to finish the current chunk for
2656 * @error: %0 for success, < %0 for error
2659 * Complete the current consecutively mapped chunk from @rq. Must
2660 * be called with queue lock held.
2663 * %false - we are done with this request
2664 * %true - still buffers pending for this request
2666 bool __blk_end_request_cur(struct request
*rq
, int error
)
2668 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2670 EXPORT_SYMBOL(__blk_end_request_cur
);
2673 * __blk_end_request_err - Finish a request till the next failure boundary.
2674 * @rq: the request to finish till the next failure boundary for
2675 * @error: must be negative errno
2678 * Complete @rq till the next failure boundary. Must be called
2679 * with queue lock held.
2682 * %false - we are done with this request
2683 * %true - still buffers pending for this request
2685 bool __blk_end_request_err(struct request
*rq
, int error
)
2687 WARN_ON(error
>= 0);
2688 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2690 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2692 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2695 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2696 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2698 if (bio_has_data(bio
)) {
2699 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2700 rq
->buffer
= bio_data(bio
);
2702 rq
->__data_len
= bio
->bi_size
;
2703 rq
->bio
= rq
->biotail
= bio
;
2706 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2709 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2711 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2712 * @rq: the request to be flushed
2715 * Flush all pages in @rq.
2717 void rq_flush_dcache_pages(struct request
*rq
)
2719 struct req_iterator iter
;
2720 struct bio_vec
*bvec
;
2722 rq_for_each_segment(bvec
, rq
, iter
)
2723 flush_dcache_page(bvec
->bv_page
);
2725 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2729 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2730 * @q : the queue of the device being checked
2733 * Check if underlying low-level drivers of a device are busy.
2734 * If the drivers want to export their busy state, they must set own
2735 * exporting function using blk_queue_lld_busy() first.
2737 * Basically, this function is used only by request stacking drivers
2738 * to stop dispatching requests to underlying devices when underlying
2739 * devices are busy. This behavior helps more I/O merging on the queue
2740 * of the request stacking driver and prevents I/O throughput regression
2741 * on burst I/O load.
2744 * 0 - Not busy (The request stacking driver should dispatch request)
2745 * 1 - Busy (The request stacking driver should stop dispatching request)
2747 int blk_lld_busy(struct request_queue
*q
)
2750 return q
->lld_busy_fn(q
);
2754 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2757 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2758 * @rq: the clone request to be cleaned up
2761 * Free all bios in @rq for a cloned request.
2763 void blk_rq_unprep_clone(struct request
*rq
)
2767 while ((bio
= rq
->bio
) != NULL
) {
2768 rq
->bio
= bio
->bi_next
;
2773 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2776 * Copy attributes of the original request to the clone request.
2777 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2779 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2781 dst
->cpu
= src
->cpu
;
2782 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2783 dst
->cmd_type
= src
->cmd_type
;
2784 dst
->__sector
= blk_rq_pos(src
);
2785 dst
->__data_len
= blk_rq_bytes(src
);
2786 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2787 dst
->ioprio
= src
->ioprio
;
2788 dst
->extra_len
= src
->extra_len
;
2792 * blk_rq_prep_clone - Helper function to setup clone request
2793 * @rq: the request to be setup
2794 * @rq_src: original request to be cloned
2795 * @bs: bio_set that bios for clone are allocated from
2796 * @gfp_mask: memory allocation mask for bio
2797 * @bio_ctr: setup function to be called for each clone bio.
2798 * Returns %0 for success, non %0 for failure.
2799 * @data: private data to be passed to @bio_ctr
2802 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2803 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2804 * are not copied, and copying such parts is the caller's responsibility.
2805 * Also, pages which the original bios are pointing to are not copied
2806 * and the cloned bios just point same pages.
2807 * So cloned bios must be completed before original bios, which means
2808 * the caller must complete @rq before @rq_src.
2810 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2811 struct bio_set
*bs
, gfp_t gfp_mask
,
2812 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2815 struct bio
*bio
, *bio_src
;
2820 blk_rq_init(NULL
, rq
);
2822 __rq_for_each_bio(bio_src
, rq_src
) {
2823 bio
= bio_clone_bioset(bio_src
, gfp_mask
, bs
);
2827 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2831 rq
->biotail
->bi_next
= bio
;
2834 rq
->bio
= rq
->biotail
= bio
;
2837 __blk_rq_prep_clone(rq
, rq_src
);
2844 blk_rq_unprep_clone(rq
);
2848 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2850 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2852 return queue_work(kblockd_workqueue
, work
);
2854 EXPORT_SYMBOL(kblockd_schedule_work
);
2856 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2857 struct delayed_work
*dwork
, unsigned long delay
)
2859 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2861 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2863 #define PLUG_MAGIC 0x91827364
2866 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2867 * @plug: The &struct blk_plug that needs to be initialized
2870 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2871 * pending I/O should the task end up blocking between blk_start_plug() and
2872 * blk_finish_plug(). This is important from a performance perspective, but
2873 * also ensures that we don't deadlock. For instance, if the task is blocking
2874 * for a memory allocation, memory reclaim could end up wanting to free a
2875 * page belonging to that request that is currently residing in our private
2876 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2877 * this kind of deadlock.
2879 void blk_start_plug(struct blk_plug
*plug
)
2881 struct task_struct
*tsk
= current
;
2883 plug
->magic
= PLUG_MAGIC
;
2884 INIT_LIST_HEAD(&plug
->list
);
2885 INIT_LIST_HEAD(&plug
->cb_list
);
2888 * If this is a nested plug, don't actually assign it. It will be
2889 * flushed on its own.
2893 * Store ordering should not be needed here, since a potential
2894 * preempt will imply a full memory barrier
2899 EXPORT_SYMBOL(blk_start_plug
);
2901 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2903 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2904 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2906 return !(rqa
->q
< rqb
->q
||
2907 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
2911 * If 'from_schedule' is true, then postpone the dispatch of requests
2912 * until a safe kblockd context. We due this to avoid accidental big
2913 * additional stack usage in driver dispatch, in places where the originally
2914 * plugger did not intend it.
2916 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2918 __releases(q
->queue_lock
)
2920 trace_block_unplug(q
, depth
, !from_schedule
);
2923 blk_run_queue_async(q
);
2926 spin_unlock(q
->queue_lock
);
2929 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
2931 LIST_HEAD(callbacks
);
2933 while (!list_empty(&plug
->cb_list
)) {
2934 list_splice_init(&plug
->cb_list
, &callbacks
);
2936 while (!list_empty(&callbacks
)) {
2937 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2940 list_del(&cb
->list
);
2941 cb
->callback(cb
, from_schedule
);
2946 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
2949 struct blk_plug
*plug
= current
->plug
;
2950 struct blk_plug_cb
*cb
;
2955 list_for_each_entry(cb
, &plug
->cb_list
, list
)
2956 if (cb
->callback
== unplug
&& cb
->data
== data
)
2959 /* Not currently on the callback list */
2960 BUG_ON(size
< sizeof(*cb
));
2961 cb
= kzalloc(size
, GFP_ATOMIC
);
2964 cb
->callback
= unplug
;
2965 list_add(&cb
->list
, &plug
->cb_list
);
2969 EXPORT_SYMBOL(blk_check_plugged
);
2971 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2973 struct request_queue
*q
;
2974 unsigned long flags
;
2979 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2981 flush_plug_callbacks(plug
, from_schedule
);
2982 if (list_empty(&plug
->list
))
2985 list_splice_init(&plug
->list
, &list
);
2987 list_sort(NULL
, &list
, plug_rq_cmp
);
2993 * Save and disable interrupts here, to avoid doing it for every
2994 * queue lock we have to take.
2996 local_irq_save(flags
);
2997 while (!list_empty(&list
)) {
2998 rq
= list_entry_rq(list
.next
);
2999 list_del_init(&rq
->queuelist
);
3003 * This drops the queue lock
3006 queue_unplugged(q
, depth
, from_schedule
);
3009 spin_lock(q
->queue_lock
);
3013 * Short-circuit if @q is dead
3015 if (unlikely(blk_queue_dying(q
))) {
3016 __blk_end_request_all(rq
, -ENODEV
);
3021 * rq is already accounted, so use raw insert
3023 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
3024 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3026 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3032 * This drops the queue lock
3035 queue_unplugged(q
, depth
, from_schedule
);
3037 local_irq_restore(flags
);
3040 void blk_finish_plug(struct blk_plug
*plug
)
3042 blk_flush_plug_list(plug
, false);
3044 if (plug
== current
->plug
)
3045 current
->plug
= NULL
;
3047 EXPORT_SYMBOL(blk_finish_plug
);
3049 int __init
blk_dev_init(void)
3051 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3052 sizeof(((struct request
*)0)->cmd_flags
));
3054 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3055 kblockd_workqueue
= alloc_workqueue("kblockd",
3056 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3057 if (!kblockd_workqueue
)
3058 panic("Failed to create kblockd\n");
3060 request_cachep
= kmem_cache_create("blkdev_requests",
3061 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3063 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3064 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);