ath9k_hw: remove a useless function for setting the mac address
[linux-2.6.git] / drivers / net / wireless / ath / ath9k / hw.c
blob83e04613f785e1575e4193e08af32beb12a5aaa0
1 /*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
33 static int __init ath9k_init(void)
35 return 0;
37 module_init(ath9k_init);
39 static void __exit ath9k_exit(void)
41 return;
43 module_exit(ath9k_exit);
45 /* Private hardware callbacks */
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
57 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
59 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
61 return priv_ops->macversion_supported(ah->hw_version.macVersion);
64 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65 struct ath9k_channel *chan)
67 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
70 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
72 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73 return;
75 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
78 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
80 /* You will not have this callback if using the old ANI */
81 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82 return;
84 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
87 /********************/
88 /* Helper Functions */
89 /********************/
91 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
93 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
95 if (!ah->curchan) /* should really check for CCK instead */
96 return usecs *ATH9K_CLOCK_RATE_CCK;
97 if (conf->channel->band == IEEE80211_BAND_2GHZ)
98 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
100 if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
101 return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
102 else
103 return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
106 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
108 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
110 if (conf_is_ht40(conf))
111 return ath9k_hw_mac_clks(ah, usecs) * 2;
112 else
113 return ath9k_hw_mac_clks(ah, usecs);
116 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
118 int i;
120 BUG_ON(timeout < AH_TIME_QUANTUM);
122 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123 if ((REG_READ(ah, reg) & mask) == val)
124 return true;
126 udelay(AH_TIME_QUANTUM);
129 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
130 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131 timeout, reg, REG_READ(ah, reg), mask, val);
133 return false;
135 EXPORT_SYMBOL(ath9k_hw_wait);
137 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
139 u32 retval;
140 int i;
142 for (i = 0, retval = 0; i < n; i++) {
143 retval = (retval << 1) | (val & 1);
144 val >>= 1;
146 return retval;
149 bool ath9k_get_channel_edges(struct ath_hw *ah,
150 u16 flags, u16 *low,
151 u16 *high)
153 struct ath9k_hw_capabilities *pCap = &ah->caps;
155 if (flags & CHANNEL_5GHZ) {
156 *low = pCap->low_5ghz_chan;
157 *high = pCap->high_5ghz_chan;
158 return true;
160 if ((flags & CHANNEL_2GHZ)) {
161 *low = pCap->low_2ghz_chan;
162 *high = pCap->high_2ghz_chan;
163 return true;
165 return false;
168 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
169 u8 phy, int kbps,
170 u32 frameLen, u16 rateix,
171 bool shortPreamble)
173 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
175 if (kbps == 0)
176 return 0;
178 switch (phy) {
179 case WLAN_RC_PHY_CCK:
180 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
181 if (shortPreamble)
182 phyTime >>= 1;
183 numBits = frameLen << 3;
184 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
185 break;
186 case WLAN_RC_PHY_OFDM:
187 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
188 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189 numBits = OFDM_PLCP_BITS + (frameLen << 3);
190 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191 txTime = OFDM_SIFS_TIME_QUARTER
192 + OFDM_PREAMBLE_TIME_QUARTER
193 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194 } else if (ah->curchan &&
195 IS_CHAN_HALF_RATE(ah->curchan)) {
196 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
197 numBits = OFDM_PLCP_BITS + (frameLen << 3);
198 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199 txTime = OFDM_SIFS_TIME_HALF +
200 OFDM_PREAMBLE_TIME_HALF
201 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
202 } else {
203 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204 numBits = OFDM_PLCP_BITS + (frameLen << 3);
205 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207 + (numSymbols * OFDM_SYMBOL_TIME);
209 break;
210 default:
211 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
212 "Unknown phy %u (rate ix %u)\n", phy, rateix);
213 txTime = 0;
214 break;
217 return txTime;
219 EXPORT_SYMBOL(ath9k_hw_computetxtime);
221 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222 struct ath9k_channel *chan,
223 struct chan_centers *centers)
225 int8_t extoff;
227 if (!IS_CHAN_HT40(chan)) {
228 centers->ctl_center = centers->ext_center =
229 centers->synth_center = chan->channel;
230 return;
233 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
234 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
235 centers->synth_center =
236 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237 extoff = 1;
238 } else {
239 centers->synth_center =
240 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241 extoff = -1;
244 centers->ctl_center =
245 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246 /* 25 MHz spacing is supported by hw but not on upper layers */
247 centers->ext_center =
248 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
251 /******************/
252 /* Chip Revisions */
253 /******************/
255 static void ath9k_hw_read_revisions(struct ath_hw *ah)
257 u32 val;
259 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
261 if (val == 0xFF) {
262 val = REG_READ(ah, AR_SREV);
263 ah->hw_version.macVersion =
264 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
265 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
266 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
267 } else {
268 if (!AR_SREV_9100(ah))
269 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
271 ah->hw_version.macRev = val & AR_SREV_REVISION;
273 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
274 ah->is_pciexpress = true;
278 /************************************/
279 /* HW Attach, Detach, Init Routines */
280 /************************************/
282 static void ath9k_hw_disablepcie(struct ath_hw *ah)
284 if (AR_SREV_9100(ah))
285 return;
287 ENABLE_REGWRITE_BUFFER(ah);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
299 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
301 REGWRITE_BUFFER_FLUSH(ah);
302 DISABLE_REGWRITE_BUFFER(ah);
305 /* This should work for all families including legacy */
306 static bool ath9k_hw_chip_test(struct ath_hw *ah)
308 struct ath_common *common = ath9k_hw_common(ah);
309 u32 regAddr[2] = { AR_STA_ID0 };
310 u32 regHold[2];
311 u32 patternData[4] = { 0x55555555,
312 0xaaaaaaaa,
313 0x66666666,
314 0x99999999 };
315 int i, j, loop_max;
317 if (!AR_SREV_9300_20_OR_LATER(ah)) {
318 loop_max = 2;
319 regAddr[1] = AR_PHY_BASE + (8 << 2);
320 } else
321 loop_max = 1;
323 for (i = 0; i < loop_max; i++) {
324 u32 addr = regAddr[i];
325 u32 wrData, rdData;
327 regHold[i] = REG_READ(ah, addr);
328 for (j = 0; j < 0x100; j++) {
329 wrData = (j << 16) | j;
330 REG_WRITE(ah, addr, wrData);
331 rdData = REG_READ(ah, addr);
332 if (rdData != wrData) {
333 ath_print(common, ATH_DBG_FATAL,
334 "address test failed "
335 "addr: 0x%08x - wr:0x%08x != "
336 "rd:0x%08x\n",
337 addr, wrData, rdData);
338 return false;
341 for (j = 0; j < 4; j++) {
342 wrData = patternData[j];
343 REG_WRITE(ah, addr, wrData);
344 rdData = REG_READ(ah, addr);
345 if (wrData != rdData) {
346 ath_print(common, ATH_DBG_FATAL,
347 "address test failed "
348 "addr: 0x%08x - wr:0x%08x != "
349 "rd:0x%08x\n",
350 addr, wrData, rdData);
351 return false;
354 REG_WRITE(ah, regAddr[i], regHold[i]);
356 udelay(100);
358 return true;
361 static void ath9k_hw_init_config(struct ath_hw *ah)
363 int i;
365 ah->config.dma_beacon_response_time = 2;
366 ah->config.sw_beacon_response_time = 10;
367 ah->config.additional_swba_backoff = 0;
368 ah->config.ack_6mb = 0x0;
369 ah->config.cwm_ignore_extcca = 0;
370 ah->config.pcie_powersave_enable = 0;
371 ah->config.pcie_clock_req = 0;
372 ah->config.pcie_waen = 0;
373 ah->config.analog_shiftreg = 1;
374 ah->config.ofdm_trig_low = 200;
375 ah->config.ofdm_trig_high = 500;
376 ah->config.cck_trig_high = 200;
377 ah->config.cck_trig_low = 100;
378 ah->config.enable_ani = true;
380 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
381 ah->config.spurchans[i][0] = AR_NO_SPUR;
382 ah->config.spurchans[i][1] = AR_NO_SPUR;
385 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
386 ah->config.ht_enable = 1;
387 else
388 ah->config.ht_enable = 0;
390 ah->config.rx_intr_mitigation = true;
393 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
394 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
395 * This means we use it for all AR5416 devices, and the few
396 * minor PCI AR9280 devices out there.
398 * Serialization is required because these devices do not handle
399 * well the case of two concurrent reads/writes due to the latency
400 * involved. During one read/write another read/write can be issued
401 * on another CPU while the previous read/write may still be working
402 * on our hardware, if we hit this case the hardware poops in a loop.
403 * We prevent this by serializing reads and writes.
405 * This issue is not present on PCI-Express devices or pre-AR5416
406 * devices (legacy, 802.11abg).
408 if (num_possible_cpus() > 1)
409 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
412 static void ath9k_hw_init_defaults(struct ath_hw *ah)
414 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
416 regulatory->country_code = CTRY_DEFAULT;
417 regulatory->power_limit = MAX_RATE_POWER;
418 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
420 ah->hw_version.magic = AR5416_MAGIC;
421 ah->hw_version.subvendorid = 0;
423 ah->ah_flags = 0;
424 if (!AR_SREV_9100(ah))
425 ah->ah_flags = AH_USE_EEPROM;
427 ah->atim_window = 0;
428 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
429 ah->beacon_interval = 100;
430 ah->enable_32kHz_clock = DONT_USE_32KHZ;
431 ah->slottime = (u32) -1;
432 ah->globaltxtimeout = (u32) -1;
433 ah->power_mode = ATH9K_PM_UNDEFINED;
436 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
438 struct ath_common *common = ath9k_hw_common(ah);
439 u32 sum;
440 int i;
441 u16 eeval;
442 u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
444 sum = 0;
445 for (i = 0; i < 3; i++) {
446 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
447 sum += eeval;
448 common->macaddr[2 * i] = eeval >> 8;
449 common->macaddr[2 * i + 1] = eeval & 0xff;
451 if (sum == 0 || sum == 0xffff * 3)
452 return -EADDRNOTAVAIL;
454 return 0;
457 static int ath9k_hw_post_init(struct ath_hw *ah)
459 int ecode;
461 if (!AR_SREV_9271(ah)) {
462 if (!ath9k_hw_chip_test(ah))
463 return -ENODEV;
466 if (!AR_SREV_9300_20_OR_LATER(ah)) {
467 ecode = ar9002_hw_rf_claim(ah);
468 if (ecode != 0)
469 return ecode;
472 ecode = ath9k_hw_eeprom_init(ah);
473 if (ecode != 0)
474 return ecode;
476 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
477 "Eeprom VER: %d, REV: %d\n",
478 ah->eep_ops->get_eeprom_ver(ah),
479 ah->eep_ops->get_eeprom_rev(ah));
481 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
482 if (ecode) {
483 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
484 "Failed allocating banks for "
485 "external radio\n");
486 return ecode;
489 if (!AR_SREV_9100(ah)) {
490 ath9k_hw_ani_setup(ah);
491 ath9k_hw_ani_init(ah);
494 return 0;
497 static void ath9k_hw_attach_ops(struct ath_hw *ah)
499 if (AR_SREV_9300_20_OR_LATER(ah))
500 ar9003_hw_attach_ops(ah);
501 else
502 ar9002_hw_attach_ops(ah);
505 /* Called for all hardware families */
506 static int __ath9k_hw_init(struct ath_hw *ah)
508 struct ath_common *common = ath9k_hw_common(ah);
509 int r = 0;
511 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
512 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
514 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
515 ath_print(common, ATH_DBG_FATAL,
516 "Couldn't reset chip\n");
517 return -EIO;
520 ath9k_hw_init_defaults(ah);
521 ath9k_hw_init_config(ah);
523 ath9k_hw_attach_ops(ah);
525 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
526 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
527 return -EIO;
530 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
531 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
532 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
533 ah->config.serialize_regmode =
534 SER_REG_MODE_ON;
535 } else {
536 ah->config.serialize_regmode =
537 SER_REG_MODE_OFF;
541 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
542 ah->config.serialize_regmode);
544 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
545 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
546 else
547 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
549 if (!ath9k_hw_macversion_supported(ah)) {
550 ath_print(common, ATH_DBG_FATAL,
551 "Mac Chip Rev 0x%02x.%x is not supported by "
552 "this driver\n", ah->hw_version.macVersion,
553 ah->hw_version.macRev);
554 return -EOPNOTSUPP;
557 if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
558 ah->is_pciexpress = false;
560 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
561 ath9k_hw_init_cal_settings(ah);
563 ah->ani_function = ATH9K_ANI_ALL;
564 if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
565 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
566 if (!AR_SREV_9300_20_OR_LATER(ah))
567 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
569 ath9k_hw_init_mode_regs(ah);
572 * Configire PCIE after Ini init. SERDES values now come from ini file
573 * This enables PCIe low power mode.
575 if (AR_SREV_9300_20_OR_LATER(ah)) {
576 u32 regval;
577 unsigned int i;
579 /* Set Bits 16 and 17 in the AR_WA register. */
580 regval = REG_READ(ah, AR_WA);
581 regval |= 0x00030000;
582 REG_WRITE(ah, AR_WA, regval);
584 for (i = 0; i < ah->iniPcieSerdesLowPower.ia_rows; i++) {
585 REG_WRITE(ah,
586 INI_RA(&ah->iniPcieSerdesLowPower, i, 0),
587 INI_RA(&ah->iniPcieSerdesLowPower, i, 1));
591 if (ah->is_pciexpress)
592 ath9k_hw_configpcipowersave(ah, 0, 0);
593 else
594 ath9k_hw_disablepcie(ah);
596 if (!AR_SREV_9300_20_OR_LATER(ah))
597 ar9002_hw_cck_chan14_spread(ah);
599 r = ath9k_hw_post_init(ah);
600 if (r)
601 return r;
603 ath9k_hw_init_mode_gain_regs(ah);
604 r = ath9k_hw_fill_cap_info(ah);
605 if (r)
606 return r;
608 r = ath9k_hw_init_macaddr(ah);
609 if (r) {
610 ath_print(common, ATH_DBG_FATAL,
611 "Failed to initialize MAC address\n");
612 return r;
615 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
616 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
617 else
618 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
620 if (AR_SREV_9300_20_OR_LATER(ah))
621 ar9003_hw_set_nf_limits(ah);
623 ath9k_init_nfcal_hist_buffer(ah);
624 ah->bb_watchdog_timeout_ms = 25;
626 common->state = ATH_HW_INITIALIZED;
628 return 0;
631 int ath9k_hw_init(struct ath_hw *ah)
633 int ret;
634 struct ath_common *common = ath9k_hw_common(ah);
636 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
637 switch (ah->hw_version.devid) {
638 case AR5416_DEVID_PCI:
639 case AR5416_DEVID_PCIE:
640 case AR5416_AR9100_DEVID:
641 case AR9160_DEVID_PCI:
642 case AR9280_DEVID_PCI:
643 case AR9280_DEVID_PCIE:
644 case AR9285_DEVID_PCIE:
645 case AR9287_DEVID_PCI:
646 case AR9287_DEVID_PCIE:
647 case AR2427_DEVID_PCIE:
648 case AR9300_DEVID_PCIE:
649 break;
650 default:
651 if (common->bus_ops->ath_bus_type == ATH_USB)
652 break;
653 ath_print(common, ATH_DBG_FATAL,
654 "Hardware device ID 0x%04x not supported\n",
655 ah->hw_version.devid);
656 return -EOPNOTSUPP;
659 ret = __ath9k_hw_init(ah);
660 if (ret) {
661 ath_print(common, ATH_DBG_FATAL,
662 "Unable to initialize hardware; "
663 "initialization status: %d\n", ret);
664 return ret;
667 return 0;
669 EXPORT_SYMBOL(ath9k_hw_init);
671 static void ath9k_hw_init_qos(struct ath_hw *ah)
673 ENABLE_REGWRITE_BUFFER(ah);
675 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
676 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
678 REG_WRITE(ah, AR_QOS_NO_ACK,
679 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
680 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
681 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
683 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
684 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
685 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
686 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
687 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
689 REGWRITE_BUFFER_FLUSH(ah);
690 DISABLE_REGWRITE_BUFFER(ah);
693 static void ath9k_hw_init_pll(struct ath_hw *ah,
694 struct ath9k_channel *chan)
696 u32 pll = ath9k_hw_compute_pll_control(ah, chan);
698 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
700 /* Switch the core clock for ar9271 to 117Mhz */
701 if (AR_SREV_9271(ah)) {
702 udelay(500);
703 REG_WRITE(ah, 0x50040, 0x304);
706 udelay(RTC_PLL_SETTLE_DELAY);
708 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
711 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
712 enum nl80211_iftype opmode)
714 u32 imr_reg = AR_IMR_TXERR |
715 AR_IMR_TXURN |
716 AR_IMR_RXERR |
717 AR_IMR_RXORN |
718 AR_IMR_BCNMISC;
720 if (AR_SREV_9300_20_OR_LATER(ah)) {
721 imr_reg |= AR_IMR_RXOK_HP;
722 if (ah->config.rx_intr_mitigation)
723 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
724 else
725 imr_reg |= AR_IMR_RXOK_LP;
727 } else {
728 if (ah->config.rx_intr_mitigation)
729 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
730 else
731 imr_reg |= AR_IMR_RXOK;
734 if (ah->config.tx_intr_mitigation)
735 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
736 else
737 imr_reg |= AR_IMR_TXOK;
739 if (opmode == NL80211_IFTYPE_AP)
740 imr_reg |= AR_IMR_MIB;
742 ENABLE_REGWRITE_BUFFER(ah);
744 REG_WRITE(ah, AR_IMR, imr_reg);
745 ah->imrs2_reg |= AR_IMR_S2_GTT;
746 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
748 if (!AR_SREV_9100(ah)) {
749 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
750 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
751 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
754 REGWRITE_BUFFER_FLUSH(ah);
755 DISABLE_REGWRITE_BUFFER(ah);
757 if (AR_SREV_9300_20_OR_LATER(ah)) {
758 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
759 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
760 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
761 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
765 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
767 u32 val = ath9k_hw_mac_to_clks(ah, us);
768 val = min(val, (u32) 0xFFFF);
769 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
772 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
774 u32 val = ath9k_hw_mac_to_clks(ah, us);
775 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
776 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
779 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
781 u32 val = ath9k_hw_mac_to_clks(ah, us);
782 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
783 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
786 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
788 if (tu > 0xFFFF) {
789 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
790 "bad global tx timeout %u\n", tu);
791 ah->globaltxtimeout = (u32) -1;
792 return false;
793 } else {
794 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
795 ah->globaltxtimeout = tu;
796 return true;
800 void ath9k_hw_init_global_settings(struct ath_hw *ah)
802 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
803 int acktimeout;
804 int slottime;
805 int sifstime;
807 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
808 ah->misc_mode);
810 if (ah->misc_mode != 0)
811 REG_WRITE(ah, AR_PCU_MISC,
812 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
814 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
815 sifstime = 16;
816 else
817 sifstime = 10;
819 /* As defined by IEEE 802.11-2007 17.3.8.6 */
820 slottime = ah->slottime + 3 * ah->coverage_class;
821 acktimeout = slottime + sifstime;
824 * Workaround for early ACK timeouts, add an offset to match the
825 * initval's 64us ack timeout value.
826 * This was initially only meant to work around an issue with delayed
827 * BA frames in some implementations, but it has been found to fix ACK
828 * timeout issues in other cases as well.
830 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
831 acktimeout += 64 - sifstime - ah->slottime;
833 ath9k_hw_setslottime(ah, slottime);
834 ath9k_hw_set_ack_timeout(ah, acktimeout);
835 ath9k_hw_set_cts_timeout(ah, acktimeout);
836 if (ah->globaltxtimeout != (u32) -1)
837 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
839 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
841 void ath9k_hw_deinit(struct ath_hw *ah)
843 struct ath_common *common = ath9k_hw_common(ah);
845 if (common->state < ATH_HW_INITIALIZED)
846 goto free_hw;
848 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
850 free_hw:
851 ath9k_hw_rf_free_ext_banks(ah);
853 EXPORT_SYMBOL(ath9k_hw_deinit);
855 /*******/
856 /* INI */
857 /*******/
859 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
861 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
863 if (IS_CHAN_B(chan))
864 ctl |= CTL_11B;
865 else if (IS_CHAN_G(chan))
866 ctl |= CTL_11G;
867 else
868 ctl |= CTL_11A;
870 return ctl;
873 /****************************************/
874 /* Reset and Channel Switching Routines */
875 /****************************************/
877 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
879 struct ath_common *common = ath9k_hw_common(ah);
880 u32 regval;
882 ENABLE_REGWRITE_BUFFER(ah);
885 * set AHB_MODE not to do cacheline prefetches
887 if (!AR_SREV_9300_20_OR_LATER(ah)) {
888 regval = REG_READ(ah, AR_AHB_MODE);
889 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
893 * let mac dma reads be in 128 byte chunks
895 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
896 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
898 REGWRITE_BUFFER_FLUSH(ah);
899 DISABLE_REGWRITE_BUFFER(ah);
902 * Restore TX Trigger Level to its pre-reset value.
903 * The initial value depends on whether aggregation is enabled, and is
904 * adjusted whenever underruns are detected.
906 if (!AR_SREV_9300_20_OR_LATER(ah))
907 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
909 ENABLE_REGWRITE_BUFFER(ah);
912 * let mac dma writes be in 128 byte chunks
914 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
915 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
918 * Setup receive FIFO threshold to hold off TX activities
920 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
922 if (AR_SREV_9300_20_OR_LATER(ah)) {
923 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
924 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
926 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
927 ah->caps.rx_status_len);
931 * reduce the number of usable entries in PCU TXBUF to avoid
932 * wrap around issues.
934 if (AR_SREV_9285(ah)) {
935 /* For AR9285 the number of Fifos are reduced to half.
936 * So set the usable tx buf size also to half to
937 * avoid data/delimiter underruns
939 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
940 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
941 } else if (!AR_SREV_9271(ah)) {
942 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
943 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
946 REGWRITE_BUFFER_FLUSH(ah);
947 DISABLE_REGWRITE_BUFFER(ah);
949 if (AR_SREV_9300_20_OR_LATER(ah))
950 ath9k_hw_reset_txstatus_ring(ah);
953 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
955 u32 val;
957 val = REG_READ(ah, AR_STA_ID1);
958 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
959 switch (opmode) {
960 case NL80211_IFTYPE_AP:
961 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
962 | AR_STA_ID1_KSRCH_MODE);
963 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
964 break;
965 case NL80211_IFTYPE_ADHOC:
966 case NL80211_IFTYPE_MESH_POINT:
967 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
968 | AR_STA_ID1_KSRCH_MODE);
969 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
970 break;
971 case NL80211_IFTYPE_STATION:
972 case NL80211_IFTYPE_MONITOR:
973 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
974 break;
978 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
979 u32 *coef_mantissa, u32 *coef_exponent)
981 u32 coef_exp, coef_man;
983 for (coef_exp = 31; coef_exp > 0; coef_exp--)
984 if ((coef_scaled >> coef_exp) & 0x1)
985 break;
987 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
989 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
991 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
992 *coef_exponent = coef_exp - 16;
995 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
997 u32 rst_flags;
998 u32 tmpReg;
1000 if (AR_SREV_9100(ah)) {
1001 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1002 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1003 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1004 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1005 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1008 ENABLE_REGWRITE_BUFFER(ah);
1010 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1011 AR_RTC_FORCE_WAKE_ON_INT);
1013 if (AR_SREV_9100(ah)) {
1014 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1015 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1016 } else {
1017 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1018 if (tmpReg &
1019 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1020 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1021 u32 val;
1022 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1024 val = AR_RC_HOSTIF;
1025 if (!AR_SREV_9300_20_OR_LATER(ah))
1026 val |= AR_RC_AHB;
1027 REG_WRITE(ah, AR_RC, val);
1029 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1030 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1032 rst_flags = AR_RTC_RC_MAC_WARM;
1033 if (type == ATH9K_RESET_COLD)
1034 rst_flags |= AR_RTC_RC_MAC_COLD;
1037 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1039 REGWRITE_BUFFER_FLUSH(ah);
1040 DISABLE_REGWRITE_BUFFER(ah);
1042 udelay(50);
1044 REG_WRITE(ah, AR_RTC_RC, 0);
1045 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1046 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1047 "RTC stuck in MAC reset\n");
1048 return false;
1051 if (!AR_SREV_9100(ah))
1052 REG_WRITE(ah, AR_RC, 0);
1054 if (AR_SREV_9100(ah))
1055 udelay(50);
1057 return true;
1060 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1062 ENABLE_REGWRITE_BUFFER(ah);
1064 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1065 AR_RTC_FORCE_WAKE_ON_INT);
1067 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1068 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1070 REG_WRITE(ah, AR_RTC_RESET, 0);
1072 REGWRITE_BUFFER_FLUSH(ah);
1073 DISABLE_REGWRITE_BUFFER(ah);
1075 if (!AR_SREV_9300_20_OR_LATER(ah))
1076 udelay(2);
1078 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1079 REG_WRITE(ah, AR_RC, 0);
1081 REG_WRITE(ah, AR_RTC_RESET, 1);
1083 if (!ath9k_hw_wait(ah,
1084 AR_RTC_STATUS,
1085 AR_RTC_STATUS_M,
1086 AR_RTC_STATUS_ON,
1087 AH_WAIT_TIMEOUT)) {
1088 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1089 "RTC not waking up\n");
1090 return false;
1093 ath9k_hw_read_revisions(ah);
1095 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1098 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1100 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1101 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1103 switch (type) {
1104 case ATH9K_RESET_POWER_ON:
1105 return ath9k_hw_set_reset_power_on(ah);
1106 case ATH9K_RESET_WARM:
1107 case ATH9K_RESET_COLD:
1108 return ath9k_hw_set_reset(ah, type);
1109 default:
1110 return false;
1114 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1115 struct ath9k_channel *chan)
1117 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1118 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1119 return false;
1120 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1121 return false;
1123 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1124 return false;
1126 ah->chip_fullsleep = false;
1127 ath9k_hw_init_pll(ah, chan);
1128 ath9k_hw_set_rfmode(ah, chan);
1130 return true;
1133 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1134 struct ath9k_channel *chan)
1136 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1137 struct ath_common *common = ath9k_hw_common(ah);
1138 struct ieee80211_channel *channel = chan->chan;
1139 u32 qnum;
1140 int r;
1142 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1143 if (ath9k_hw_numtxpending(ah, qnum)) {
1144 ath_print(common, ATH_DBG_QUEUE,
1145 "Transmit frames pending on "
1146 "queue %d\n", qnum);
1147 return false;
1151 if (!ath9k_hw_rfbus_req(ah)) {
1152 ath_print(common, ATH_DBG_FATAL,
1153 "Could not kill baseband RX\n");
1154 return false;
1157 ath9k_hw_set_channel_regs(ah, chan);
1159 r = ath9k_hw_rf_set_freq(ah, chan);
1160 if (r) {
1161 ath_print(common, ATH_DBG_FATAL,
1162 "Failed to set channel\n");
1163 return false;
1166 ah->eep_ops->set_txpower(ah, chan,
1167 ath9k_regd_get_ctl(regulatory, chan),
1168 channel->max_antenna_gain * 2,
1169 channel->max_power * 2,
1170 min((u32) MAX_RATE_POWER,
1171 (u32) regulatory->power_limit));
1173 ath9k_hw_rfbus_done(ah);
1175 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1176 ath9k_hw_set_delta_slope(ah, chan);
1178 ath9k_hw_spur_mitigate_freq(ah, chan);
1180 if (!chan->oneTimeCalsDone)
1181 chan->oneTimeCalsDone = true;
1183 return true;
1186 bool ath9k_hw_check_alive(struct ath_hw *ah)
1188 int count = 50;
1189 u32 reg;
1191 if (AR_SREV_9285_10_OR_LATER(ah))
1192 return true;
1194 do {
1195 reg = REG_READ(ah, AR_OBS_BUS_1);
1197 if ((reg & 0x7E7FFFEF) == 0x00702400)
1198 continue;
1200 switch (reg & 0x7E000B00) {
1201 case 0x1E000000:
1202 case 0x52000B00:
1203 case 0x18000B00:
1204 continue;
1205 default:
1206 return true;
1208 } while (count-- > 0);
1210 return false;
1212 EXPORT_SYMBOL(ath9k_hw_check_alive);
1214 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1215 bool bChannelChange)
1217 struct ath_common *common = ath9k_hw_common(ah);
1218 u32 saveLedState;
1219 struct ath9k_channel *curchan = ah->curchan;
1220 u32 saveDefAntenna;
1221 u32 macStaId1;
1222 u64 tsf = 0;
1223 int i, r;
1225 ah->txchainmask = common->tx_chainmask;
1226 ah->rxchainmask = common->rx_chainmask;
1228 if (!ah->chip_fullsleep) {
1229 ath9k_hw_abortpcurecv(ah);
1230 if (!ath9k_hw_stopdmarecv(ah))
1231 ath_print(common, ATH_DBG_XMIT,
1232 "Failed to stop receive dma\n");
1235 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1236 return -EIO;
1238 if (curchan && !ah->chip_fullsleep)
1239 ath9k_hw_getnf(ah, curchan);
1241 if (bChannelChange &&
1242 (ah->chip_fullsleep != true) &&
1243 (ah->curchan != NULL) &&
1244 (chan->channel != ah->curchan->channel) &&
1245 ((chan->channelFlags & CHANNEL_ALL) ==
1246 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1247 !AR_SREV_9280(ah)) {
1249 if (ath9k_hw_channel_change(ah, chan)) {
1250 ath9k_hw_loadnf(ah, ah->curchan);
1251 ath9k_hw_start_nfcal(ah);
1252 return 0;
1256 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1257 if (saveDefAntenna == 0)
1258 saveDefAntenna = 1;
1260 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1262 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1263 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1264 tsf = ath9k_hw_gettsf64(ah);
1266 saveLedState = REG_READ(ah, AR_CFG_LED) &
1267 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1268 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1270 ath9k_hw_mark_phy_inactive(ah);
1272 /* Only required on the first reset */
1273 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1274 REG_WRITE(ah,
1275 AR9271_RESET_POWER_DOWN_CONTROL,
1276 AR9271_RADIO_RF_RST);
1277 udelay(50);
1280 if (!ath9k_hw_chip_reset(ah, chan)) {
1281 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1282 return -EINVAL;
1285 /* Only required on the first reset */
1286 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1287 ah->htc_reset_init = false;
1288 REG_WRITE(ah,
1289 AR9271_RESET_POWER_DOWN_CONTROL,
1290 AR9271_GATE_MAC_CTL);
1291 udelay(50);
1294 /* Restore TSF */
1295 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1296 ath9k_hw_settsf64(ah, tsf);
1298 if (AR_SREV_9280_10_OR_LATER(ah))
1299 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1301 if (!AR_SREV_9300_20_OR_LATER(ah))
1302 ar9002_hw_enable_async_fifo(ah);
1304 r = ath9k_hw_process_ini(ah, chan);
1305 if (r)
1306 return r;
1308 /* Setup MFP options for CCMP */
1309 if (AR_SREV_9280_20_OR_LATER(ah)) {
1310 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1311 * frames when constructing CCMP AAD. */
1312 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1313 0xc7ff);
1314 ah->sw_mgmt_crypto = false;
1315 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1316 /* Disable hardware crypto for management frames */
1317 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1318 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1319 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1320 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1321 ah->sw_mgmt_crypto = true;
1322 } else
1323 ah->sw_mgmt_crypto = true;
1325 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1326 ath9k_hw_set_delta_slope(ah, chan);
1328 ath9k_hw_spur_mitigate_freq(ah, chan);
1329 ah->eep_ops->set_board_values(ah, chan);
1331 ath9k_hw_set_operating_mode(ah, ah->opmode);
1333 ENABLE_REGWRITE_BUFFER(ah);
1335 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1336 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1337 | macStaId1
1338 | AR_STA_ID1_RTS_USE_DEF
1339 | (ah->config.
1340 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1341 | ah->sta_id1_defaults);
1342 ath_hw_setbssidmask(common);
1343 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1344 ath9k_hw_write_associd(ah);
1345 REG_WRITE(ah, AR_ISR, ~0);
1346 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1348 REGWRITE_BUFFER_FLUSH(ah);
1349 DISABLE_REGWRITE_BUFFER(ah);
1351 r = ath9k_hw_rf_set_freq(ah, chan);
1352 if (r)
1353 return r;
1355 ENABLE_REGWRITE_BUFFER(ah);
1357 for (i = 0; i < AR_NUM_DCU; i++)
1358 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1360 REGWRITE_BUFFER_FLUSH(ah);
1361 DISABLE_REGWRITE_BUFFER(ah);
1363 ah->intr_txqs = 0;
1364 for (i = 0; i < ah->caps.total_queues; i++)
1365 ath9k_hw_resettxqueue(ah, i);
1367 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1368 ath9k_hw_ani_cache_ini_regs(ah);
1369 ath9k_hw_init_qos(ah);
1371 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1372 ath9k_enable_rfkill(ah);
1374 ath9k_hw_init_global_settings(ah);
1376 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1377 ar9002_hw_update_async_fifo(ah);
1378 ar9002_hw_enable_wep_aggregation(ah);
1381 REG_WRITE(ah, AR_STA_ID1,
1382 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1384 ath9k_hw_set_dma(ah);
1386 REG_WRITE(ah, AR_OBS, 8);
1388 if (ah->config.rx_intr_mitigation) {
1389 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1390 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1393 if (ah->config.tx_intr_mitigation) {
1394 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1395 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1398 ath9k_hw_init_bb(ah, chan);
1400 if (!ath9k_hw_init_cal(ah, chan))
1401 return -EIO;
1403 ENABLE_REGWRITE_BUFFER(ah);
1405 ath9k_hw_restore_chainmask(ah);
1406 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1408 REGWRITE_BUFFER_FLUSH(ah);
1409 DISABLE_REGWRITE_BUFFER(ah);
1412 * For big endian systems turn on swapping for descriptors
1414 if (AR_SREV_9100(ah)) {
1415 u32 mask;
1416 mask = REG_READ(ah, AR_CFG);
1417 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1418 ath_print(common, ATH_DBG_RESET,
1419 "CFG Byte Swap Set 0x%x\n", mask);
1420 } else {
1421 mask =
1422 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1423 REG_WRITE(ah, AR_CFG, mask);
1424 ath_print(common, ATH_DBG_RESET,
1425 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1427 } else {
1428 if (common->bus_ops->ath_bus_type == ATH_USB) {
1429 /* Configure AR9271 target WLAN */
1430 if (AR_SREV_9271(ah))
1431 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1432 else
1433 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1435 #ifdef __BIG_ENDIAN
1436 else
1437 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1438 #endif
1441 if (ah->btcoex_hw.enabled)
1442 ath9k_hw_btcoex_enable(ah);
1444 if (AR_SREV_9300_20_OR_LATER(ah)) {
1445 ath9k_hw_loadnf(ah, curchan);
1446 ath9k_hw_start_nfcal(ah);
1447 ar9003_hw_bb_watchdog_config(ah);
1450 return 0;
1452 EXPORT_SYMBOL(ath9k_hw_reset);
1454 /************************/
1455 /* Key Cache Management */
1456 /************************/
1458 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1460 u32 keyType;
1462 if (entry >= ah->caps.keycache_size) {
1463 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1464 "keychache entry %u out of range\n", entry);
1465 return false;
1468 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1470 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1471 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1472 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1473 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1474 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1475 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1476 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1477 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1479 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1480 u16 micentry = entry + 64;
1482 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1483 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1484 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1485 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1489 return true;
1491 EXPORT_SYMBOL(ath9k_hw_keyreset);
1493 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1495 u32 macHi, macLo;
1496 u32 unicast_flag = AR_KEYTABLE_VALID;
1498 if (entry >= ah->caps.keycache_size) {
1499 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1500 "keychache entry %u out of range\n", entry);
1501 return false;
1504 if (mac != NULL) {
1506 * AR_KEYTABLE_VALID indicates that the address is a unicast
1507 * address, which must match the transmitter address for
1508 * decrypting frames.
1509 * Not setting this bit allows the hardware to use the key
1510 * for multicast frame decryption.
1512 if (mac[0] & 0x01)
1513 unicast_flag = 0;
1515 macHi = (mac[5] << 8) | mac[4];
1516 macLo = (mac[3] << 24) |
1517 (mac[2] << 16) |
1518 (mac[1] << 8) |
1519 mac[0];
1520 macLo >>= 1;
1521 macLo |= (macHi & 1) << 31;
1522 macHi >>= 1;
1523 } else {
1524 macLo = macHi = 0;
1526 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1527 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1529 return true;
1531 EXPORT_SYMBOL(ath9k_hw_keysetmac);
1533 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1534 const struct ath9k_keyval *k,
1535 const u8 *mac)
1537 const struct ath9k_hw_capabilities *pCap = &ah->caps;
1538 struct ath_common *common = ath9k_hw_common(ah);
1539 u32 key0, key1, key2, key3, key4;
1540 u32 keyType;
1542 if (entry >= pCap->keycache_size) {
1543 ath_print(common, ATH_DBG_FATAL,
1544 "keycache entry %u out of range\n", entry);
1545 return false;
1548 switch (k->kv_type) {
1549 case ATH9K_CIPHER_AES_OCB:
1550 keyType = AR_KEYTABLE_TYPE_AES;
1551 break;
1552 case ATH9K_CIPHER_AES_CCM:
1553 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1554 ath_print(common, ATH_DBG_ANY,
1555 "AES-CCM not supported by mac rev 0x%x\n",
1556 ah->hw_version.macRev);
1557 return false;
1559 keyType = AR_KEYTABLE_TYPE_CCM;
1560 break;
1561 case ATH9K_CIPHER_TKIP:
1562 keyType = AR_KEYTABLE_TYPE_TKIP;
1563 if (ATH9K_IS_MIC_ENABLED(ah)
1564 && entry + 64 >= pCap->keycache_size) {
1565 ath_print(common, ATH_DBG_ANY,
1566 "entry %u inappropriate for TKIP\n", entry);
1567 return false;
1569 break;
1570 case ATH9K_CIPHER_WEP:
1571 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1572 ath_print(common, ATH_DBG_ANY,
1573 "WEP key length %u too small\n", k->kv_len);
1574 return false;
1576 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1577 keyType = AR_KEYTABLE_TYPE_40;
1578 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1579 keyType = AR_KEYTABLE_TYPE_104;
1580 else
1581 keyType = AR_KEYTABLE_TYPE_128;
1582 break;
1583 case ATH9K_CIPHER_CLR:
1584 keyType = AR_KEYTABLE_TYPE_CLR;
1585 break;
1586 default:
1587 ath_print(common, ATH_DBG_FATAL,
1588 "cipher %u not supported\n", k->kv_type);
1589 return false;
1592 key0 = get_unaligned_le32(k->kv_val + 0);
1593 key1 = get_unaligned_le16(k->kv_val + 4);
1594 key2 = get_unaligned_le32(k->kv_val + 6);
1595 key3 = get_unaligned_le16(k->kv_val + 10);
1596 key4 = get_unaligned_le32(k->kv_val + 12);
1597 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1598 key4 &= 0xff;
1601 * Note: Key cache registers access special memory area that requires
1602 * two 32-bit writes to actually update the values in the internal
1603 * memory. Consequently, the exact order and pairs used here must be
1604 * maintained.
1607 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1608 u16 micentry = entry + 64;
1611 * Write inverted key[47:0] first to avoid Michael MIC errors
1612 * on frames that could be sent or received at the same time.
1613 * The correct key will be written in the end once everything
1614 * else is ready.
1616 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1617 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1619 /* Write key[95:48] */
1620 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1621 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1623 /* Write key[127:96] and key type */
1624 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1625 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1627 /* Write MAC address for the entry */
1628 (void) ath9k_hw_keysetmac(ah, entry, mac);
1630 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1632 * TKIP uses two key cache entries:
1633 * Michael MIC TX/RX keys in the same key cache entry
1634 * (idx = main index + 64):
1635 * key0 [31:0] = RX key [31:0]
1636 * key1 [15:0] = TX key [31:16]
1637 * key1 [31:16] = reserved
1638 * key2 [31:0] = RX key [63:32]
1639 * key3 [15:0] = TX key [15:0]
1640 * key3 [31:16] = reserved
1641 * key4 [31:0] = TX key [63:32]
1643 u32 mic0, mic1, mic2, mic3, mic4;
1645 mic0 = get_unaligned_le32(k->kv_mic + 0);
1646 mic2 = get_unaligned_le32(k->kv_mic + 4);
1647 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1648 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1649 mic4 = get_unaligned_le32(k->kv_txmic + 4);
1651 /* Write RX[31:0] and TX[31:16] */
1652 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1653 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1655 /* Write RX[63:32] and TX[15:0] */
1656 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1657 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1659 /* Write TX[63:32] and keyType(reserved) */
1660 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1661 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1662 AR_KEYTABLE_TYPE_CLR);
1664 } else {
1666 * TKIP uses four key cache entries (two for group
1667 * keys):
1668 * Michael MIC TX/RX keys are in different key cache
1669 * entries (idx = main index + 64 for TX and
1670 * main index + 32 + 96 for RX):
1671 * key0 [31:0] = TX/RX MIC key [31:0]
1672 * key1 [31:0] = reserved
1673 * key2 [31:0] = TX/RX MIC key [63:32]
1674 * key3 [31:0] = reserved
1675 * key4 [31:0] = reserved
1677 * Upper layer code will call this function separately
1678 * for TX and RX keys when these registers offsets are
1679 * used.
1681 u32 mic0, mic2;
1683 mic0 = get_unaligned_le32(k->kv_mic + 0);
1684 mic2 = get_unaligned_le32(k->kv_mic + 4);
1686 /* Write MIC key[31:0] */
1687 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1688 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1690 /* Write MIC key[63:32] */
1691 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1692 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1694 /* Write TX[63:32] and keyType(reserved) */
1695 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1696 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1697 AR_KEYTABLE_TYPE_CLR);
1700 /* MAC address registers are reserved for the MIC entry */
1701 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1702 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1705 * Write the correct (un-inverted) key[47:0] last to enable
1706 * TKIP now that all other registers are set with correct
1707 * values.
1709 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1710 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1711 } else {
1712 /* Write key[47:0] */
1713 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1714 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1716 /* Write key[95:48] */
1717 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1718 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1720 /* Write key[127:96] and key type */
1721 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1722 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1724 /* Write MAC address for the entry */
1725 (void) ath9k_hw_keysetmac(ah, entry, mac);
1728 return true;
1730 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1732 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
1734 if (entry < ah->caps.keycache_size) {
1735 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
1736 if (val & AR_KEYTABLE_VALID)
1737 return true;
1739 return false;
1741 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
1743 /******************************/
1744 /* Power Management (Chipset) */
1745 /******************************/
1748 * Notify Power Mgt is disabled in self-generated frames.
1749 * If requested, force chip to sleep.
1751 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1753 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1754 if (setChip) {
1756 * Clear the RTC force wake bit to allow the
1757 * mac to go to sleep.
1759 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1760 AR_RTC_FORCE_WAKE_EN);
1761 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1762 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1764 /* Shutdown chip. Active low */
1765 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1766 REG_CLR_BIT(ah, (AR_RTC_RESET),
1767 AR_RTC_RESET_EN);
1772 * Notify Power Management is enabled in self-generating
1773 * frames. If request, set power mode of chip to
1774 * auto/normal. Duration in units of 128us (1/8 TU).
1776 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1778 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1779 if (setChip) {
1780 struct ath9k_hw_capabilities *pCap = &ah->caps;
1782 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1783 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1784 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1785 AR_RTC_FORCE_WAKE_ON_INT);
1786 } else {
1788 * Clear the RTC force wake bit to allow the
1789 * mac to go to sleep.
1791 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1792 AR_RTC_FORCE_WAKE_EN);
1797 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1799 u32 val;
1800 int i;
1802 if (setChip) {
1803 if ((REG_READ(ah, AR_RTC_STATUS) &
1804 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1805 if (ath9k_hw_set_reset_reg(ah,
1806 ATH9K_RESET_POWER_ON) != true) {
1807 return false;
1809 if (!AR_SREV_9300_20_OR_LATER(ah))
1810 ath9k_hw_init_pll(ah, NULL);
1812 if (AR_SREV_9100(ah))
1813 REG_SET_BIT(ah, AR_RTC_RESET,
1814 AR_RTC_RESET_EN);
1816 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1817 AR_RTC_FORCE_WAKE_EN);
1818 udelay(50);
1820 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1821 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1822 if (val == AR_RTC_STATUS_ON)
1823 break;
1824 udelay(50);
1825 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1826 AR_RTC_FORCE_WAKE_EN);
1828 if (i == 0) {
1829 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1830 "Failed to wakeup in %uus\n",
1831 POWER_UP_TIME / 20);
1832 return false;
1836 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1838 return true;
1841 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1843 struct ath_common *common = ath9k_hw_common(ah);
1844 int status = true, setChip = true;
1845 static const char *modes[] = {
1846 "AWAKE",
1847 "FULL-SLEEP",
1848 "NETWORK SLEEP",
1849 "UNDEFINED"
1852 if (ah->power_mode == mode)
1853 return status;
1855 ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1856 modes[ah->power_mode], modes[mode]);
1858 switch (mode) {
1859 case ATH9K_PM_AWAKE:
1860 status = ath9k_hw_set_power_awake(ah, setChip);
1861 break;
1862 case ATH9K_PM_FULL_SLEEP:
1863 ath9k_set_power_sleep(ah, setChip);
1864 ah->chip_fullsleep = true;
1865 break;
1866 case ATH9K_PM_NETWORK_SLEEP:
1867 ath9k_set_power_network_sleep(ah, setChip);
1868 break;
1869 default:
1870 ath_print(common, ATH_DBG_FATAL,
1871 "Unknown power mode %u\n", mode);
1872 return false;
1874 ah->power_mode = mode;
1876 return status;
1878 EXPORT_SYMBOL(ath9k_hw_setpower);
1880 /*******************/
1881 /* Beacon Handling */
1882 /*******************/
1884 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1886 int flags = 0;
1888 ah->beacon_interval = beacon_period;
1890 ENABLE_REGWRITE_BUFFER(ah);
1892 switch (ah->opmode) {
1893 case NL80211_IFTYPE_STATION:
1894 case NL80211_IFTYPE_MONITOR:
1895 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1896 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1897 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1898 flags |= AR_TBTT_TIMER_EN;
1899 break;
1900 case NL80211_IFTYPE_ADHOC:
1901 case NL80211_IFTYPE_MESH_POINT:
1902 REG_SET_BIT(ah, AR_TXCFG,
1903 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1904 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1905 TU_TO_USEC(next_beacon +
1906 (ah->atim_window ? ah->
1907 atim_window : 1)));
1908 flags |= AR_NDP_TIMER_EN;
1909 case NL80211_IFTYPE_AP:
1910 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1911 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1912 TU_TO_USEC(next_beacon -
1913 ah->config.
1914 dma_beacon_response_time));
1915 REG_WRITE(ah, AR_NEXT_SWBA,
1916 TU_TO_USEC(next_beacon -
1917 ah->config.
1918 sw_beacon_response_time));
1919 flags |=
1920 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1921 break;
1922 default:
1923 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1924 "%s: unsupported opmode: %d\n",
1925 __func__, ah->opmode);
1926 return;
1927 break;
1930 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1931 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1932 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1933 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1935 REGWRITE_BUFFER_FLUSH(ah);
1936 DISABLE_REGWRITE_BUFFER(ah);
1938 beacon_period &= ~ATH9K_BEACON_ENA;
1939 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1940 ath9k_hw_reset_tsf(ah);
1943 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1945 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1947 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1948 const struct ath9k_beacon_state *bs)
1950 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1951 struct ath9k_hw_capabilities *pCap = &ah->caps;
1952 struct ath_common *common = ath9k_hw_common(ah);
1954 ENABLE_REGWRITE_BUFFER(ah);
1956 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1958 REG_WRITE(ah, AR_BEACON_PERIOD,
1959 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1960 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1961 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1963 REGWRITE_BUFFER_FLUSH(ah);
1964 DISABLE_REGWRITE_BUFFER(ah);
1966 REG_RMW_FIELD(ah, AR_RSSI_THR,
1967 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1969 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1971 if (bs->bs_sleepduration > beaconintval)
1972 beaconintval = bs->bs_sleepduration;
1974 dtimperiod = bs->bs_dtimperiod;
1975 if (bs->bs_sleepduration > dtimperiod)
1976 dtimperiod = bs->bs_sleepduration;
1978 if (beaconintval == dtimperiod)
1979 nextTbtt = bs->bs_nextdtim;
1980 else
1981 nextTbtt = bs->bs_nexttbtt;
1983 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1984 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1985 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1986 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1988 ENABLE_REGWRITE_BUFFER(ah);
1990 REG_WRITE(ah, AR_NEXT_DTIM,
1991 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1992 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1994 REG_WRITE(ah, AR_SLEEP1,
1995 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1996 | AR_SLEEP1_ASSUME_DTIM);
1998 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1999 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2000 else
2001 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2003 REG_WRITE(ah, AR_SLEEP2,
2004 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2006 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2007 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2009 REGWRITE_BUFFER_FLUSH(ah);
2010 DISABLE_REGWRITE_BUFFER(ah);
2012 REG_SET_BIT(ah, AR_TIMER_MODE,
2013 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2014 AR_DTIM_TIMER_EN);
2016 /* TSF Out of Range Threshold */
2017 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2019 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2021 /*******************/
2022 /* HW Capabilities */
2023 /*******************/
2025 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2027 struct ath9k_hw_capabilities *pCap = &ah->caps;
2028 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2029 struct ath_common *common = ath9k_hw_common(ah);
2030 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2032 u16 capField = 0, eeval;
2034 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2035 regulatory->current_rd = eeval;
2037 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2038 if (AR_SREV_9285_10_OR_LATER(ah))
2039 eeval |= AR9285_RDEXT_DEFAULT;
2040 regulatory->current_rd_ext = eeval;
2042 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2044 if (ah->opmode != NL80211_IFTYPE_AP &&
2045 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2046 if (regulatory->current_rd == 0x64 ||
2047 regulatory->current_rd == 0x65)
2048 regulatory->current_rd += 5;
2049 else if (regulatory->current_rd == 0x41)
2050 regulatory->current_rd = 0x43;
2051 ath_print(common, ATH_DBG_REGULATORY,
2052 "regdomain mapped to 0x%x\n", regulatory->current_rd);
2055 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2056 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2057 ath_print(common, ATH_DBG_FATAL,
2058 "no band has been marked as supported in EEPROM.\n");
2059 return -EINVAL;
2062 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2064 if (eeval & AR5416_OPFLAGS_11A) {
2065 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2066 if (ah->config.ht_enable) {
2067 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2068 set_bit(ATH9K_MODE_11NA_HT20,
2069 pCap->wireless_modes);
2070 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2071 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2072 pCap->wireless_modes);
2073 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2074 pCap->wireless_modes);
2079 if (eeval & AR5416_OPFLAGS_11G) {
2080 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2081 if (ah->config.ht_enable) {
2082 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2083 set_bit(ATH9K_MODE_11NG_HT20,
2084 pCap->wireless_modes);
2085 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2086 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2087 pCap->wireless_modes);
2088 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2089 pCap->wireless_modes);
2094 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2096 * For AR9271 we will temporarilly uses the rx chainmax as read from
2097 * the EEPROM.
2099 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2100 !(eeval & AR5416_OPFLAGS_11A) &&
2101 !(AR_SREV_9271(ah)))
2102 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2103 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2104 else
2105 /* Use rx_chainmask from EEPROM. */
2106 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2108 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2109 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2111 pCap->low_2ghz_chan = 2312;
2112 pCap->high_2ghz_chan = 2732;
2114 pCap->low_5ghz_chan = 4920;
2115 pCap->high_5ghz_chan = 6100;
2117 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2118 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2119 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2121 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2122 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2123 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2125 if (ah->config.ht_enable)
2126 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2127 else
2128 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2130 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2131 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2132 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2133 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2135 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2136 pCap->total_queues =
2137 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2138 else
2139 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2141 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2142 pCap->keycache_size =
2143 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2144 else
2145 pCap->keycache_size = AR_KEYTABLE_SIZE;
2147 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2149 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2150 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2151 else
2152 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2154 if (AR_SREV_9271(ah))
2155 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2156 else if (AR_SREV_9285_10_OR_LATER(ah))
2157 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2158 else if (AR_SREV_9280_10_OR_LATER(ah))
2159 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2160 else
2161 pCap->num_gpio_pins = AR_NUM_GPIO;
2163 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2164 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2165 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2166 } else {
2167 pCap->rts_aggr_limit = (8 * 1024);
2170 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2172 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2173 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2174 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2175 ah->rfkill_gpio =
2176 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2177 ah->rfkill_polarity =
2178 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2180 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2182 #endif
2183 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2184 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2185 else
2186 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2188 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2189 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2190 else
2191 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2193 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2194 pCap->reg_cap =
2195 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2196 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2197 AR_EEPROM_EEREGCAP_EN_KK_U2 |
2198 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2199 } else {
2200 pCap->reg_cap =
2201 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2202 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2205 /* Advertise midband for AR5416 with FCC midband set in eeprom */
2206 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2207 AR_SREV_5416(ah))
2208 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2210 pCap->num_antcfg_5ghz =
2211 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2212 pCap->num_antcfg_2ghz =
2213 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2215 if (AR_SREV_9280_10_OR_LATER(ah) &&
2216 ath9k_hw_btcoex_supported(ah)) {
2217 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2218 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2220 if (AR_SREV_9285(ah)) {
2221 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2222 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2223 } else {
2224 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2226 } else {
2227 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2230 if (AR_SREV_9300_20_OR_LATER(ah)) {
2231 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2232 ATH9K_HW_CAP_FASTCLOCK;
2233 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2234 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2235 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2236 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2237 pCap->txs_len = sizeof(struct ar9003_txs);
2238 } else {
2239 pCap->tx_desc_len = sizeof(struct ath_desc);
2240 if (AR_SREV_9280_20(ah) &&
2241 ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2242 AR5416_EEP_MINOR_VER_16) ||
2243 ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2244 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2247 if (AR_SREV_9300_20_OR_LATER(ah))
2248 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2250 if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2251 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2253 return 0;
2256 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2257 u32 capability, u32 *result)
2259 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2260 switch (type) {
2261 case ATH9K_CAP_CIPHER:
2262 switch (capability) {
2263 case ATH9K_CIPHER_AES_CCM:
2264 case ATH9K_CIPHER_AES_OCB:
2265 case ATH9K_CIPHER_TKIP:
2266 case ATH9K_CIPHER_WEP:
2267 case ATH9K_CIPHER_MIC:
2268 case ATH9K_CIPHER_CLR:
2269 return true;
2270 default:
2271 return false;
2273 case ATH9K_CAP_TKIP_MIC:
2274 switch (capability) {
2275 case 0:
2276 return true;
2277 case 1:
2278 return (ah->sta_id1_defaults &
2279 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
2280 false;
2282 case ATH9K_CAP_TKIP_SPLIT:
2283 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
2284 false : true;
2285 case ATH9K_CAP_MCAST_KEYSRCH:
2286 switch (capability) {
2287 case 0:
2288 return true;
2289 case 1:
2290 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
2291 return false;
2292 } else {
2293 return (ah->sta_id1_defaults &
2294 AR_STA_ID1_MCAST_KSRCH) ? true :
2295 false;
2298 return false;
2299 case ATH9K_CAP_TXPOW:
2300 switch (capability) {
2301 case 0:
2302 return 0;
2303 case 1:
2304 *result = regulatory->power_limit;
2305 return 0;
2306 case 2:
2307 *result = regulatory->max_power_level;
2308 return 0;
2309 case 3:
2310 *result = regulatory->tp_scale;
2311 return 0;
2313 return false;
2314 case ATH9K_CAP_DS:
2315 return (AR_SREV_9280_20_OR_LATER(ah) &&
2316 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
2317 ? false : true;
2318 default:
2319 return false;
2322 EXPORT_SYMBOL(ath9k_hw_getcapability);
2324 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2325 u32 capability, u32 setting, int *status)
2327 switch (type) {
2328 case ATH9K_CAP_TKIP_MIC:
2329 if (setting)
2330 ah->sta_id1_defaults |=
2331 AR_STA_ID1_CRPT_MIC_ENABLE;
2332 else
2333 ah->sta_id1_defaults &=
2334 ~AR_STA_ID1_CRPT_MIC_ENABLE;
2335 return true;
2336 case ATH9K_CAP_MCAST_KEYSRCH:
2337 if (setting)
2338 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
2339 else
2340 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
2341 return true;
2342 default:
2343 return false;
2346 EXPORT_SYMBOL(ath9k_hw_setcapability);
2348 /****************************/
2349 /* GPIO / RFKILL / Antennae */
2350 /****************************/
2352 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2353 u32 gpio, u32 type)
2355 int addr;
2356 u32 gpio_shift, tmp;
2358 if (gpio > 11)
2359 addr = AR_GPIO_OUTPUT_MUX3;
2360 else if (gpio > 5)
2361 addr = AR_GPIO_OUTPUT_MUX2;
2362 else
2363 addr = AR_GPIO_OUTPUT_MUX1;
2365 gpio_shift = (gpio % 6) * 5;
2367 if (AR_SREV_9280_20_OR_LATER(ah)
2368 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2369 REG_RMW(ah, addr, (type << gpio_shift),
2370 (0x1f << gpio_shift));
2371 } else {
2372 tmp = REG_READ(ah, addr);
2373 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2374 tmp &= ~(0x1f << gpio_shift);
2375 tmp |= (type << gpio_shift);
2376 REG_WRITE(ah, addr, tmp);
2380 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2382 u32 gpio_shift;
2384 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2386 gpio_shift = gpio << 1;
2388 REG_RMW(ah,
2389 AR_GPIO_OE_OUT,
2390 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2391 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2393 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2395 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2397 #define MS_REG_READ(x, y) \
2398 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2400 if (gpio >= ah->caps.num_gpio_pins)
2401 return 0xffffffff;
2403 if (AR_SREV_9300_20_OR_LATER(ah))
2404 return MS_REG_READ(AR9300, gpio) != 0;
2405 else if (AR_SREV_9271(ah))
2406 return MS_REG_READ(AR9271, gpio) != 0;
2407 else if (AR_SREV_9287_10_OR_LATER(ah))
2408 return MS_REG_READ(AR9287, gpio) != 0;
2409 else if (AR_SREV_9285_10_OR_LATER(ah))
2410 return MS_REG_READ(AR9285, gpio) != 0;
2411 else if (AR_SREV_9280_10_OR_LATER(ah))
2412 return MS_REG_READ(AR928X, gpio) != 0;
2413 else
2414 return MS_REG_READ(AR, gpio) != 0;
2416 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2418 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2419 u32 ah_signal_type)
2421 u32 gpio_shift;
2423 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2425 gpio_shift = 2 * gpio;
2427 REG_RMW(ah,
2428 AR_GPIO_OE_OUT,
2429 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2430 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2432 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2434 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2436 if (AR_SREV_9271(ah))
2437 val = ~val;
2439 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2440 AR_GPIO_BIT(gpio));
2442 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2444 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2446 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2448 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2450 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2452 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2454 EXPORT_SYMBOL(ath9k_hw_setantenna);
2456 /*********************/
2457 /* General Operation */
2458 /*********************/
2460 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2462 u32 bits = REG_READ(ah, AR_RX_FILTER);
2463 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2465 if (phybits & AR_PHY_ERR_RADAR)
2466 bits |= ATH9K_RX_FILTER_PHYRADAR;
2467 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2468 bits |= ATH9K_RX_FILTER_PHYERR;
2470 return bits;
2472 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2474 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2476 u32 phybits;
2478 ENABLE_REGWRITE_BUFFER(ah);
2480 REG_WRITE(ah, AR_RX_FILTER, bits);
2482 phybits = 0;
2483 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2484 phybits |= AR_PHY_ERR_RADAR;
2485 if (bits & ATH9K_RX_FILTER_PHYERR)
2486 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2487 REG_WRITE(ah, AR_PHY_ERR, phybits);
2489 if (phybits)
2490 REG_WRITE(ah, AR_RXCFG,
2491 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2492 else
2493 REG_WRITE(ah, AR_RXCFG,
2494 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2496 REGWRITE_BUFFER_FLUSH(ah);
2497 DISABLE_REGWRITE_BUFFER(ah);
2499 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2501 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2503 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2504 return false;
2506 ath9k_hw_init_pll(ah, NULL);
2507 return true;
2509 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2511 bool ath9k_hw_disable(struct ath_hw *ah)
2513 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2514 return false;
2516 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2517 return false;
2519 ath9k_hw_init_pll(ah, NULL);
2520 return true;
2522 EXPORT_SYMBOL(ath9k_hw_disable);
2524 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2526 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2527 struct ath9k_channel *chan = ah->curchan;
2528 struct ieee80211_channel *channel = chan->chan;
2530 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2532 ah->eep_ops->set_txpower(ah, chan,
2533 ath9k_regd_get_ctl(regulatory, chan),
2534 channel->max_antenna_gain * 2,
2535 channel->max_power * 2,
2536 min((u32) MAX_RATE_POWER,
2537 (u32) regulatory->power_limit));
2539 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2541 void ath9k_hw_setopmode(struct ath_hw *ah)
2543 ath9k_hw_set_operating_mode(ah, ah->opmode);
2545 EXPORT_SYMBOL(ath9k_hw_setopmode);
2547 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2549 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2550 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2552 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2554 void ath9k_hw_write_associd(struct ath_hw *ah)
2556 struct ath_common *common = ath9k_hw_common(ah);
2558 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2559 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2560 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2562 EXPORT_SYMBOL(ath9k_hw_write_associd);
2564 #define ATH9K_MAX_TSF_READ 10
2566 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2568 u32 tsf_lower, tsf_upper1, tsf_upper2;
2569 int i;
2571 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2572 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2573 tsf_lower = REG_READ(ah, AR_TSF_L32);
2574 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2575 if (tsf_upper2 == tsf_upper1)
2576 break;
2577 tsf_upper1 = tsf_upper2;
2580 WARN_ON( i == ATH9K_MAX_TSF_READ );
2582 return (((u64)tsf_upper1 << 32) | tsf_lower);
2584 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2586 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2588 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2589 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2591 EXPORT_SYMBOL(ath9k_hw_settsf64);
2593 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2595 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2596 AH_TSF_WRITE_TIMEOUT))
2597 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2598 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2600 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2602 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2604 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2606 if (setting)
2607 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2608 else
2609 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2611 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2613 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2615 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2616 u32 macmode;
2618 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2619 macmode = AR_2040_JOINED_RX_CLEAR;
2620 else
2621 macmode = 0;
2623 REG_WRITE(ah, AR_2040_MODE, macmode);
2626 /* HW Generic timers configuration */
2628 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2630 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2631 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2632 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2633 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2634 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2635 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2636 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2637 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2638 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2639 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2640 AR_NDP2_TIMER_MODE, 0x0002},
2641 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2642 AR_NDP2_TIMER_MODE, 0x0004},
2643 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2644 AR_NDP2_TIMER_MODE, 0x0008},
2645 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2646 AR_NDP2_TIMER_MODE, 0x0010},
2647 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2648 AR_NDP2_TIMER_MODE, 0x0020},
2649 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2650 AR_NDP2_TIMER_MODE, 0x0040},
2651 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2652 AR_NDP2_TIMER_MODE, 0x0080}
2655 /* HW generic timer primitives */
2657 /* compute and clear index of rightmost 1 */
2658 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2660 u32 b;
2662 b = *mask;
2663 b &= (0-b);
2664 *mask &= ~b;
2665 b *= debruijn32;
2666 b >>= 27;
2668 return timer_table->gen_timer_index[b];
2671 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2673 return REG_READ(ah, AR_TSF_L32);
2675 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2677 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2678 void (*trigger)(void *),
2679 void (*overflow)(void *),
2680 void *arg,
2681 u8 timer_index)
2683 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2684 struct ath_gen_timer *timer;
2686 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2688 if (timer == NULL) {
2689 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2690 "Failed to allocate memory"
2691 "for hw timer[%d]\n", timer_index);
2692 return NULL;
2695 /* allocate a hardware generic timer slot */
2696 timer_table->timers[timer_index] = timer;
2697 timer->index = timer_index;
2698 timer->trigger = trigger;
2699 timer->overflow = overflow;
2700 timer->arg = arg;
2702 return timer;
2704 EXPORT_SYMBOL(ath_gen_timer_alloc);
2706 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2707 struct ath_gen_timer *timer,
2708 u32 timer_next,
2709 u32 timer_period)
2711 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2712 u32 tsf;
2714 BUG_ON(!timer_period);
2716 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2718 tsf = ath9k_hw_gettsf32(ah);
2720 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2721 "curent tsf %x period %x"
2722 "timer_next %x\n", tsf, timer_period, timer_next);
2725 * Pull timer_next forward if the current TSF already passed it
2726 * because of software latency
2728 if (timer_next < tsf)
2729 timer_next = tsf + timer_period;
2732 * Program generic timer registers
2734 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2735 timer_next);
2736 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2737 timer_period);
2738 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2739 gen_tmr_configuration[timer->index].mode_mask);
2741 /* Enable both trigger and thresh interrupt masks */
2742 REG_SET_BIT(ah, AR_IMR_S5,
2743 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2744 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2746 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2748 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2750 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2752 if ((timer->index < AR_FIRST_NDP_TIMER) ||
2753 (timer->index >= ATH_MAX_GEN_TIMER)) {
2754 return;
2757 /* Clear generic timer enable bits. */
2758 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2759 gen_tmr_configuration[timer->index].mode_mask);
2761 /* Disable both trigger and thresh interrupt masks */
2762 REG_CLR_BIT(ah, AR_IMR_S5,
2763 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2764 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2766 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2768 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2770 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2772 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2774 /* free the hardware generic timer slot */
2775 timer_table->timers[timer->index] = NULL;
2776 kfree(timer);
2778 EXPORT_SYMBOL(ath_gen_timer_free);
2781 * Generic Timer Interrupts handling
2783 void ath_gen_timer_isr(struct ath_hw *ah)
2785 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2786 struct ath_gen_timer *timer;
2787 struct ath_common *common = ath9k_hw_common(ah);
2788 u32 trigger_mask, thresh_mask, index;
2790 /* get hardware generic timer interrupt status */
2791 trigger_mask = ah->intr_gen_timer_trigger;
2792 thresh_mask = ah->intr_gen_timer_thresh;
2793 trigger_mask &= timer_table->timer_mask.val;
2794 thresh_mask &= timer_table->timer_mask.val;
2796 trigger_mask &= ~thresh_mask;
2798 while (thresh_mask) {
2799 index = rightmost_index(timer_table, &thresh_mask);
2800 timer = timer_table->timers[index];
2801 BUG_ON(!timer);
2802 ath_print(common, ATH_DBG_HWTIMER,
2803 "TSF overflow for Gen timer %d\n", index);
2804 timer->overflow(timer->arg);
2807 while (trigger_mask) {
2808 index = rightmost_index(timer_table, &trigger_mask);
2809 timer = timer_table->timers[index];
2810 BUG_ON(!timer);
2811 ath_print(common, ATH_DBG_HWTIMER,
2812 "Gen timer[%d] trigger\n", index);
2813 timer->trigger(timer->arg);
2816 EXPORT_SYMBOL(ath_gen_timer_isr);
2818 /********/
2819 /* HTC */
2820 /********/
2822 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2824 ah->htc_reset_init = true;
2826 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2828 static struct {
2829 u32 version;
2830 const char * name;
2831 } ath_mac_bb_names[] = {
2832 /* Devices with external radios */
2833 { AR_SREV_VERSION_5416_PCI, "5416" },
2834 { AR_SREV_VERSION_5416_PCIE, "5418" },
2835 { AR_SREV_VERSION_9100, "9100" },
2836 { AR_SREV_VERSION_9160, "9160" },
2837 /* Single-chip solutions */
2838 { AR_SREV_VERSION_9280, "9280" },
2839 { AR_SREV_VERSION_9285, "9285" },
2840 { AR_SREV_VERSION_9287, "9287" },
2841 { AR_SREV_VERSION_9271, "9271" },
2842 { AR_SREV_VERSION_9300, "9300" },
2845 /* For devices with external radios */
2846 static struct {
2847 u16 version;
2848 const char * name;
2849 } ath_rf_names[] = {
2850 { 0, "5133" },
2851 { AR_RAD5133_SREV_MAJOR, "5133" },
2852 { AR_RAD5122_SREV_MAJOR, "5122" },
2853 { AR_RAD2133_SREV_MAJOR, "2133" },
2854 { AR_RAD2122_SREV_MAJOR, "2122" }
2858 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2860 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2862 int i;
2864 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2865 if (ath_mac_bb_names[i].version == mac_bb_version) {
2866 return ath_mac_bb_names[i].name;
2870 return "????";
2874 * Return the RF name. "????" is returned if the RF is unknown.
2875 * Used for devices with external radios.
2877 static const char *ath9k_hw_rf_name(u16 rf_version)
2879 int i;
2881 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2882 if (ath_rf_names[i].version == rf_version) {
2883 return ath_rf_names[i].name;
2887 return "????";
2890 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2892 int used;
2894 /* chipsets >= AR9280 are single-chip */
2895 if (AR_SREV_9280_10_OR_LATER(ah)) {
2896 used = snprintf(hw_name, len,
2897 "Atheros AR%s Rev:%x",
2898 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2899 ah->hw_version.macRev);
2901 else {
2902 used = snprintf(hw_name, len,
2903 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2904 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2905 ah->hw_version.macRev,
2906 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2907 AR_RADIO_SREV_MAJOR)),
2908 ah->hw_version.phyRev);
2911 hw_name[used] = '\0';
2913 EXPORT_SYMBOL(ath9k_hw_name);