goku_udc: Don't use create_proc_read_entry()
[linux-2.6.git] / arch / um / kernel / process.c
blobb462b13c5bae3e8dd7211e205f2bf14a0347d821
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Licensed under the GPL
5 */
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include <as-layout.h>
27 #include <kern_util.h>
28 #include <os.h>
29 #include <skas.h>
32 * This is a per-cpu array. A processor only modifies its entry and it only
33 * cares about its entry, so it's OK if another processor is modifying its
34 * entry.
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
38 static inline int external_pid(void)
40 /* FIXME: Need to look up userspace_pid by cpu */
41 return userspace_pid[0];
44 int pid_to_processor_id(int pid)
46 int i;
48 for (i = 0; i < ncpus; i++) {
49 if (cpu_tasks[i].pid == pid)
50 return i;
52 return -1;
55 void free_stack(unsigned long stack, int order)
57 free_pages(stack, order);
60 unsigned long alloc_stack(int order, int atomic)
62 unsigned long page;
63 gfp_t flags = GFP_KERNEL;
65 if (atomic)
66 flags = GFP_ATOMIC;
67 page = __get_free_pages(flags, order);
69 return page;
72 static inline void set_current(struct task_struct *task)
74 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
75 { external_pid(), task });
78 extern void arch_switch_to(struct task_struct *to);
80 void *__switch_to(struct task_struct *from, struct task_struct *to)
82 to->thread.prev_sched = from;
83 set_current(to);
85 do {
86 current->thread.saved_task = NULL;
88 switch_threads(&from->thread.switch_buf,
89 &to->thread.switch_buf);
91 arch_switch_to(current);
93 if (current->thread.saved_task)
94 show_regs(&(current->thread.regs));
95 to = current->thread.saved_task;
96 from = current;
97 } while (current->thread.saved_task);
99 return current->thread.prev_sched;
102 void interrupt_end(void)
104 if (need_resched())
105 schedule();
106 if (test_thread_flag(TIF_SIGPENDING))
107 do_signal();
108 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
109 tracehook_notify_resume(&current->thread.regs);
112 void exit_thread(void)
116 int get_current_pid(void)
118 return task_pid_nr(current);
122 * This is called magically, by its address being stuffed in a jmp_buf
123 * and being longjmp-d to.
125 void new_thread_handler(void)
127 int (*fn)(void *), n;
128 void *arg;
130 if (current->thread.prev_sched != NULL)
131 schedule_tail(current->thread.prev_sched);
132 current->thread.prev_sched = NULL;
134 fn = current->thread.request.u.thread.proc;
135 arg = current->thread.request.u.thread.arg;
138 * callback returns only if the kernel thread execs a process
140 n = fn(arg);
141 userspace(&current->thread.regs.regs);
144 /* Called magically, see new_thread_handler above */
145 void fork_handler(void)
147 force_flush_all();
149 schedule_tail(current->thread.prev_sched);
152 * XXX: if interrupt_end() calls schedule, this call to
153 * arch_switch_to isn't needed. We could want to apply this to
154 * improve performance. -bb
156 arch_switch_to(current);
158 current->thread.prev_sched = NULL;
160 userspace(&current->thread.regs.regs);
163 int copy_thread(unsigned long clone_flags, unsigned long sp,
164 unsigned long arg, struct task_struct * p)
166 void (*handler)(void);
167 int kthread = current->flags & PF_KTHREAD;
168 int ret = 0;
170 p->thread = (struct thread_struct) INIT_THREAD;
172 if (!kthread) {
173 memcpy(&p->thread.regs.regs, current_pt_regs(),
174 sizeof(p->thread.regs.regs));
175 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
176 if (sp != 0)
177 REGS_SP(p->thread.regs.regs.gp) = sp;
179 handler = fork_handler;
181 arch_copy_thread(&current->thread.arch, &p->thread.arch);
182 } else {
183 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
184 p->thread.request.u.thread.proc = (int (*)(void *))sp;
185 p->thread.request.u.thread.arg = (void *)arg;
186 handler = new_thread_handler;
189 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
191 if (!kthread) {
192 clear_flushed_tls(p);
195 * Set a new TLS for the child thread?
197 if (clone_flags & CLONE_SETTLS)
198 ret = arch_copy_tls(p);
201 return ret;
204 void initial_thread_cb(void (*proc)(void *), void *arg)
206 int save_kmalloc_ok = kmalloc_ok;
208 kmalloc_ok = 0;
209 initial_thread_cb_skas(proc, arg);
210 kmalloc_ok = save_kmalloc_ok;
213 void default_idle(void)
215 unsigned long long nsecs;
217 while (1) {
218 /* endless idle loop with no priority at all */
221 * although we are an idle CPU, we do not want to
222 * get into the scheduler unnecessarily.
224 if (need_resched())
225 schedule();
227 tick_nohz_idle_enter();
228 rcu_idle_enter();
229 nsecs = disable_timer();
230 idle_sleep(nsecs);
231 rcu_idle_exit();
232 tick_nohz_idle_exit();
236 void cpu_idle(void)
238 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
239 default_idle();
242 int __cant_sleep(void) {
243 return in_atomic() || irqs_disabled() || in_interrupt();
244 /* Is in_interrupt() really needed? */
247 int user_context(unsigned long sp)
249 unsigned long stack;
251 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
252 return stack != (unsigned long) current_thread_info();
255 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
257 void do_uml_exitcalls(void)
259 exitcall_t *call;
261 call = &__uml_exitcall_end;
262 while (--call >= &__uml_exitcall_begin)
263 (*call)();
266 char *uml_strdup(const char *string)
268 return kstrdup(string, GFP_KERNEL);
270 EXPORT_SYMBOL(uml_strdup);
272 int copy_to_user_proc(void __user *to, void *from, int size)
274 return copy_to_user(to, from, size);
277 int copy_from_user_proc(void *to, void __user *from, int size)
279 return copy_from_user(to, from, size);
282 int clear_user_proc(void __user *buf, int size)
284 return clear_user(buf, size);
287 int strlen_user_proc(char __user *str)
289 return strlen_user(str);
292 int smp_sigio_handler(void)
294 #ifdef CONFIG_SMP
295 int cpu = current_thread_info()->cpu;
296 IPI_handler(cpu);
297 if (cpu != 0)
298 return 1;
299 #endif
300 return 0;
303 int cpu(void)
305 return current_thread_info()->cpu;
308 static atomic_t using_sysemu = ATOMIC_INIT(0);
309 int sysemu_supported;
311 void set_using_sysemu(int value)
313 if (value > sysemu_supported)
314 return;
315 atomic_set(&using_sysemu, value);
318 int get_using_sysemu(void)
320 return atomic_read(&using_sysemu);
323 static int sysemu_proc_show(struct seq_file *m, void *v)
325 seq_printf(m, "%d\n", get_using_sysemu());
326 return 0;
329 static int sysemu_proc_open(struct inode *inode, struct file *file)
331 return single_open(file, sysemu_proc_show, NULL);
334 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
335 size_t count, loff_t *pos)
337 char tmp[2];
339 if (copy_from_user(tmp, buf, 1))
340 return -EFAULT;
342 if (tmp[0] >= '0' && tmp[0] <= '2')
343 set_using_sysemu(tmp[0] - '0');
344 /* We use the first char, but pretend to write everything */
345 return count;
348 static const struct file_operations sysemu_proc_fops = {
349 .owner = THIS_MODULE,
350 .open = sysemu_proc_open,
351 .read = seq_read,
352 .llseek = seq_lseek,
353 .release = single_release,
354 .write = sysemu_proc_write,
357 int __init make_proc_sysemu(void)
359 struct proc_dir_entry *ent;
360 if (!sysemu_supported)
361 return 0;
363 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
365 if (ent == NULL)
367 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
368 return 0;
371 return 0;
374 late_initcall(make_proc_sysemu);
376 int singlestepping(void * t)
378 struct task_struct *task = t ? t : current;
380 if (!(task->ptrace & PT_DTRACE))
381 return 0;
383 if (task->thread.singlestep_syscall)
384 return 1;
386 return 2;
390 * Only x86 and x86_64 have an arch_align_stack().
391 * All other arches have "#define arch_align_stack(x) (x)"
392 * in their asm/system.h
393 * As this is included in UML from asm-um/system-generic.h,
394 * we can use it to behave as the subarch does.
396 #ifndef arch_align_stack
397 unsigned long arch_align_stack(unsigned long sp)
399 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
400 sp -= get_random_int() % 8192;
401 return sp & ~0xf;
403 #endif
405 unsigned long get_wchan(struct task_struct *p)
407 unsigned long stack_page, sp, ip;
408 bool seen_sched = 0;
410 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
411 return 0;
413 stack_page = (unsigned long) task_stack_page(p);
414 /* Bail if the process has no kernel stack for some reason */
415 if (stack_page == 0)
416 return 0;
418 sp = p->thread.switch_buf->JB_SP;
420 * Bail if the stack pointer is below the bottom of the kernel
421 * stack for some reason
423 if (sp < stack_page)
424 return 0;
426 while (sp < stack_page + THREAD_SIZE) {
427 ip = *((unsigned long *) sp);
428 if (in_sched_functions(ip))
429 /* Ignore everything until we're above the scheduler */
430 seen_sched = 1;
431 else if (kernel_text_address(ip) && seen_sched)
432 return ip;
434 sp += sizeof(unsigned long);
437 return 0;
440 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
442 int cpu = current_thread_info()->cpu;
444 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);