perf events: Add stalled cycles generic event - PERF_COUNT_HW_STALLED_CYCLES
[linux-2.6.git] / include / linux / perf_event.h
blobac636dd20a0c3224763a1c7e8a640bdd7aaa74f0
1 /*
2 * Performance events:
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
22 * User-space ABI bits:
26 * attr.type
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
36 PERF_TYPE_MAX, /* non-ABI */
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
44 enum perf_hw_id {
46 * Common hardware events, generalized by the kernel:
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES = 7,
57 PERF_COUNT_HW_MAX, /* non-ABI */
61 * Generalized hardware cache events:
63 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
64 * { read, write, prefetch } x
65 * { accesses, misses }
67 enum perf_hw_cache_id {
68 PERF_COUNT_HW_CACHE_L1D = 0,
69 PERF_COUNT_HW_CACHE_L1I = 1,
70 PERF_COUNT_HW_CACHE_LL = 2,
71 PERF_COUNT_HW_CACHE_DTLB = 3,
72 PERF_COUNT_HW_CACHE_ITLB = 4,
73 PERF_COUNT_HW_CACHE_BPU = 5,
75 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
78 enum perf_hw_cache_op_id {
79 PERF_COUNT_HW_CACHE_OP_READ = 0,
80 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
81 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
83 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
86 enum perf_hw_cache_op_result_id {
87 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
88 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
90 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
94 * Special "software" events provided by the kernel, even if the hardware
95 * does not support performance events. These events measure various
96 * physical and sw events of the kernel (and allow the profiling of them as
97 * well):
99 enum perf_sw_ids {
100 PERF_COUNT_SW_CPU_CLOCK = 0,
101 PERF_COUNT_SW_TASK_CLOCK = 1,
102 PERF_COUNT_SW_PAGE_FAULTS = 2,
103 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
104 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
105 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
106 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
107 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
108 PERF_COUNT_SW_EMULATION_FAULTS = 8,
110 PERF_COUNT_SW_MAX, /* non-ABI */
114 * Bits that can be set in attr.sample_type to request information
115 * in the overflow packets.
117 enum perf_event_sample_format {
118 PERF_SAMPLE_IP = 1U << 0,
119 PERF_SAMPLE_TID = 1U << 1,
120 PERF_SAMPLE_TIME = 1U << 2,
121 PERF_SAMPLE_ADDR = 1U << 3,
122 PERF_SAMPLE_READ = 1U << 4,
123 PERF_SAMPLE_CALLCHAIN = 1U << 5,
124 PERF_SAMPLE_ID = 1U << 6,
125 PERF_SAMPLE_CPU = 1U << 7,
126 PERF_SAMPLE_PERIOD = 1U << 8,
127 PERF_SAMPLE_STREAM_ID = 1U << 9,
128 PERF_SAMPLE_RAW = 1U << 10,
130 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
134 * The format of the data returned by read() on a perf event fd,
135 * as specified by attr.read_format:
137 * struct read_format {
138 * { u64 value;
139 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
140 * { u64 time_running; } && PERF_FORMAT_RUNNING
141 * { u64 id; } && PERF_FORMAT_ID
142 * } && !PERF_FORMAT_GROUP
144 * { u64 nr;
145 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
146 * { u64 time_running; } && PERF_FORMAT_RUNNING
147 * { u64 value;
148 * { u64 id; } && PERF_FORMAT_ID
149 * } cntr[nr];
150 * } && PERF_FORMAT_GROUP
151 * };
153 enum perf_event_read_format {
154 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
155 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
156 PERF_FORMAT_ID = 1U << 2,
157 PERF_FORMAT_GROUP = 1U << 3,
159 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
162 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
165 * Hardware event_id to monitor via a performance monitoring event:
167 struct perf_event_attr {
170 * Major type: hardware/software/tracepoint/etc.
172 __u32 type;
175 * Size of the attr structure, for fwd/bwd compat.
177 __u32 size;
180 * Type specific configuration information.
182 __u64 config;
184 union {
185 __u64 sample_period;
186 __u64 sample_freq;
189 __u64 sample_type;
190 __u64 read_format;
192 __u64 disabled : 1, /* off by default */
193 inherit : 1, /* children inherit it */
194 pinned : 1, /* must always be on PMU */
195 exclusive : 1, /* only group on PMU */
196 exclude_user : 1, /* don't count user */
197 exclude_kernel : 1, /* ditto kernel */
198 exclude_hv : 1, /* ditto hypervisor */
199 exclude_idle : 1, /* don't count when idle */
200 mmap : 1, /* include mmap data */
201 comm : 1, /* include comm data */
202 freq : 1, /* use freq, not period */
203 inherit_stat : 1, /* per task counts */
204 enable_on_exec : 1, /* next exec enables */
205 task : 1, /* trace fork/exit */
206 watermark : 1, /* wakeup_watermark */
208 * precise_ip:
210 * 0 - SAMPLE_IP can have arbitrary skid
211 * 1 - SAMPLE_IP must have constant skid
212 * 2 - SAMPLE_IP requested to have 0 skid
213 * 3 - SAMPLE_IP must have 0 skid
215 * See also PERF_RECORD_MISC_EXACT_IP
217 precise_ip : 2, /* skid constraint */
218 mmap_data : 1, /* non-exec mmap data */
219 sample_id_all : 1, /* sample_type all events */
221 __reserved_1 : 45;
223 union {
224 __u32 wakeup_events; /* wakeup every n events */
225 __u32 wakeup_watermark; /* bytes before wakeup */
228 __u32 bp_type;
229 union {
230 __u64 bp_addr;
231 __u64 config1; /* extension of config */
233 union {
234 __u64 bp_len;
235 __u64 config2; /* extension of config1 */
240 * Ioctls that can be done on a perf event fd:
242 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
243 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
244 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
245 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
246 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
247 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
248 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
250 enum perf_event_ioc_flags {
251 PERF_IOC_FLAG_GROUP = 1U << 0,
255 * Structure of the page that can be mapped via mmap
257 struct perf_event_mmap_page {
258 __u32 version; /* version number of this structure */
259 __u32 compat_version; /* lowest version this is compat with */
262 * Bits needed to read the hw events in user-space.
264 * u32 seq;
265 * s64 count;
267 * do {
268 * seq = pc->lock;
270 * barrier()
271 * if (pc->index) {
272 * count = pmc_read(pc->index - 1);
273 * count += pc->offset;
274 * } else
275 * goto regular_read;
277 * barrier();
278 * } while (pc->lock != seq);
280 * NOTE: for obvious reason this only works on self-monitoring
281 * processes.
283 __u32 lock; /* seqlock for synchronization */
284 __u32 index; /* hardware event identifier */
285 __s64 offset; /* add to hardware event value */
286 __u64 time_enabled; /* time event active */
287 __u64 time_running; /* time event on cpu */
290 * Hole for extension of the self monitor capabilities
293 __u64 __reserved[123]; /* align to 1k */
296 * Control data for the mmap() data buffer.
298 * User-space reading the @data_head value should issue an rmb(), on
299 * SMP capable platforms, after reading this value -- see
300 * perf_event_wakeup().
302 * When the mapping is PROT_WRITE the @data_tail value should be
303 * written by userspace to reflect the last read data. In this case
304 * the kernel will not over-write unread data.
306 __u64 data_head; /* head in the data section */
307 __u64 data_tail; /* user-space written tail */
310 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
311 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
312 #define PERF_RECORD_MISC_KERNEL (1 << 0)
313 #define PERF_RECORD_MISC_USER (2 << 0)
314 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
315 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
316 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
319 * Indicates that the content of PERF_SAMPLE_IP points to
320 * the actual instruction that triggered the event. See also
321 * perf_event_attr::precise_ip.
323 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
325 * Reserve the last bit to indicate some extended misc field
327 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
329 struct perf_event_header {
330 __u32 type;
331 __u16 misc;
332 __u16 size;
335 enum perf_event_type {
338 * If perf_event_attr.sample_id_all is set then all event types will
339 * have the sample_type selected fields related to where/when
340 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
341 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
342 * the perf_event_header and the fields already present for the existing
343 * fields, i.e. at the end of the payload. That way a newer perf.data
344 * file will be supported by older perf tools, with these new optional
345 * fields being ignored.
347 * The MMAP events record the PROT_EXEC mappings so that we can
348 * correlate userspace IPs to code. They have the following structure:
350 * struct {
351 * struct perf_event_header header;
353 * u32 pid, tid;
354 * u64 addr;
355 * u64 len;
356 * u64 pgoff;
357 * char filename[];
358 * };
360 PERF_RECORD_MMAP = 1,
363 * struct {
364 * struct perf_event_header header;
365 * u64 id;
366 * u64 lost;
367 * };
369 PERF_RECORD_LOST = 2,
372 * struct {
373 * struct perf_event_header header;
375 * u32 pid, tid;
376 * char comm[];
377 * };
379 PERF_RECORD_COMM = 3,
382 * struct {
383 * struct perf_event_header header;
384 * u32 pid, ppid;
385 * u32 tid, ptid;
386 * u64 time;
387 * };
389 PERF_RECORD_EXIT = 4,
392 * struct {
393 * struct perf_event_header header;
394 * u64 time;
395 * u64 id;
396 * u64 stream_id;
397 * };
399 PERF_RECORD_THROTTLE = 5,
400 PERF_RECORD_UNTHROTTLE = 6,
403 * struct {
404 * struct perf_event_header header;
405 * u32 pid, ppid;
406 * u32 tid, ptid;
407 * u64 time;
408 * };
410 PERF_RECORD_FORK = 7,
413 * struct {
414 * struct perf_event_header header;
415 * u32 pid, tid;
417 * struct read_format values;
418 * };
420 PERF_RECORD_READ = 8,
423 * struct {
424 * struct perf_event_header header;
426 * { u64 ip; } && PERF_SAMPLE_IP
427 * { u32 pid, tid; } && PERF_SAMPLE_TID
428 * { u64 time; } && PERF_SAMPLE_TIME
429 * { u64 addr; } && PERF_SAMPLE_ADDR
430 * { u64 id; } && PERF_SAMPLE_ID
431 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
432 * { u32 cpu, res; } && PERF_SAMPLE_CPU
433 * { u64 period; } && PERF_SAMPLE_PERIOD
435 * { struct read_format values; } && PERF_SAMPLE_READ
437 * { u64 nr,
438 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
441 * # The RAW record below is opaque data wrt the ABI
443 * # That is, the ABI doesn't make any promises wrt to
444 * # the stability of its content, it may vary depending
445 * # on event, hardware, kernel version and phase of
446 * # the moon.
448 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
451 * { u32 size;
452 * char data[size];}&& PERF_SAMPLE_RAW
453 * };
455 PERF_RECORD_SAMPLE = 9,
457 PERF_RECORD_MAX, /* non-ABI */
460 enum perf_callchain_context {
461 PERF_CONTEXT_HV = (__u64)-32,
462 PERF_CONTEXT_KERNEL = (__u64)-128,
463 PERF_CONTEXT_USER = (__u64)-512,
465 PERF_CONTEXT_GUEST = (__u64)-2048,
466 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
467 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
469 PERF_CONTEXT_MAX = (__u64)-4095,
472 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
473 #define PERF_FLAG_FD_OUTPUT (1U << 1)
474 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
476 #ifdef __KERNEL__
478 * Kernel-internal data types and definitions:
481 #ifdef CONFIG_PERF_EVENTS
482 # include <linux/cgroup.h>
483 # include <asm/perf_event.h>
484 # include <asm/local64.h>
485 #endif
487 struct perf_guest_info_callbacks {
488 int (*is_in_guest) (void);
489 int (*is_user_mode) (void);
490 unsigned long (*get_guest_ip) (void);
493 #ifdef CONFIG_HAVE_HW_BREAKPOINT
494 #include <asm/hw_breakpoint.h>
495 #endif
497 #include <linux/list.h>
498 #include <linux/mutex.h>
499 #include <linux/rculist.h>
500 #include <linux/rcupdate.h>
501 #include <linux/spinlock.h>
502 #include <linux/hrtimer.h>
503 #include <linux/fs.h>
504 #include <linux/pid_namespace.h>
505 #include <linux/workqueue.h>
506 #include <linux/ftrace.h>
507 #include <linux/cpu.h>
508 #include <linux/irq_work.h>
509 #include <linux/jump_label_ref.h>
510 #include <asm/atomic.h>
511 #include <asm/local.h>
513 #define PERF_MAX_STACK_DEPTH 255
515 struct perf_callchain_entry {
516 __u64 nr;
517 __u64 ip[PERF_MAX_STACK_DEPTH];
520 struct perf_raw_record {
521 u32 size;
522 void *data;
525 struct perf_branch_entry {
526 __u64 from;
527 __u64 to;
528 __u64 flags;
531 struct perf_branch_stack {
532 __u64 nr;
533 struct perf_branch_entry entries[0];
536 struct task_struct;
539 * struct hw_perf_event - performance event hardware details:
541 struct hw_perf_event {
542 #ifdef CONFIG_PERF_EVENTS
543 union {
544 struct { /* hardware */
545 u64 config;
546 u64 last_tag;
547 unsigned long config_base;
548 unsigned long event_base;
549 int idx;
550 int last_cpu;
551 unsigned int extra_reg;
552 u64 extra_config;
553 int extra_alloc;
555 struct { /* software */
556 struct hrtimer hrtimer;
558 #ifdef CONFIG_HAVE_HW_BREAKPOINT
559 struct { /* breakpoint */
560 struct arch_hw_breakpoint info;
561 struct list_head bp_list;
563 * Crufty hack to avoid the chicken and egg
564 * problem hw_breakpoint has with context
565 * creation and event initalization.
567 struct task_struct *bp_target;
569 #endif
571 int state;
572 local64_t prev_count;
573 u64 sample_period;
574 u64 last_period;
575 local64_t period_left;
576 u64 interrupts;
578 u64 freq_time_stamp;
579 u64 freq_count_stamp;
580 #endif
584 * hw_perf_event::state flags
586 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
587 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
588 #define PERF_HES_ARCH 0x04
590 struct perf_event;
593 * Common implementation detail of pmu::{start,commit,cancel}_txn
595 #define PERF_EVENT_TXN 0x1
598 * struct pmu - generic performance monitoring unit
600 struct pmu {
601 struct list_head entry;
603 struct device *dev;
604 char *name;
605 int type;
607 int * __percpu pmu_disable_count;
608 struct perf_cpu_context * __percpu pmu_cpu_context;
609 int task_ctx_nr;
612 * Fully disable/enable this PMU, can be used to protect from the PMI
613 * as well as for lazy/batch writing of the MSRs.
615 void (*pmu_enable) (struct pmu *pmu); /* optional */
616 void (*pmu_disable) (struct pmu *pmu); /* optional */
619 * Try and initialize the event for this PMU.
620 * Should return -ENOENT when the @event doesn't match this PMU.
622 int (*event_init) (struct perf_event *event);
624 #define PERF_EF_START 0x01 /* start the counter when adding */
625 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
626 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
629 * Adds/Removes a counter to/from the PMU, can be done inside
630 * a transaction, see the ->*_txn() methods.
632 int (*add) (struct perf_event *event, int flags);
633 void (*del) (struct perf_event *event, int flags);
636 * Starts/Stops a counter present on the PMU. The PMI handler
637 * should stop the counter when perf_event_overflow() returns
638 * !0. ->start() will be used to continue.
640 void (*start) (struct perf_event *event, int flags);
641 void (*stop) (struct perf_event *event, int flags);
644 * Updates the counter value of the event.
646 void (*read) (struct perf_event *event);
649 * Group events scheduling is treated as a transaction, add
650 * group events as a whole and perform one schedulability test.
651 * If the test fails, roll back the whole group
653 * Start the transaction, after this ->add() doesn't need to
654 * do schedulability tests.
656 void (*start_txn) (struct pmu *pmu); /* optional */
658 * If ->start_txn() disabled the ->add() schedulability test
659 * then ->commit_txn() is required to perform one. On success
660 * the transaction is closed. On error the transaction is kept
661 * open until ->cancel_txn() is called.
663 int (*commit_txn) (struct pmu *pmu); /* optional */
665 * Will cancel the transaction, assumes ->del() is called
666 * for each successful ->add() during the transaction.
668 void (*cancel_txn) (struct pmu *pmu); /* optional */
672 * enum perf_event_active_state - the states of a event
674 enum perf_event_active_state {
675 PERF_EVENT_STATE_ERROR = -2,
676 PERF_EVENT_STATE_OFF = -1,
677 PERF_EVENT_STATE_INACTIVE = 0,
678 PERF_EVENT_STATE_ACTIVE = 1,
681 struct file;
683 #define PERF_BUFFER_WRITABLE 0x01
685 struct perf_buffer {
686 atomic_t refcount;
687 struct rcu_head rcu_head;
688 #ifdef CONFIG_PERF_USE_VMALLOC
689 struct work_struct work;
690 int page_order; /* allocation order */
691 #endif
692 int nr_pages; /* nr of data pages */
693 int writable; /* are we writable */
695 atomic_t poll; /* POLL_ for wakeups */
697 local_t head; /* write position */
698 local_t nest; /* nested writers */
699 local_t events; /* event limit */
700 local_t wakeup; /* wakeup stamp */
701 local_t lost; /* nr records lost */
703 long watermark; /* wakeup watermark */
705 struct perf_event_mmap_page *user_page;
706 void *data_pages[0];
709 struct perf_sample_data;
711 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
712 struct perf_sample_data *,
713 struct pt_regs *regs);
715 enum perf_group_flag {
716 PERF_GROUP_SOFTWARE = 0x1,
719 #define SWEVENT_HLIST_BITS 8
720 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
722 struct swevent_hlist {
723 struct hlist_head heads[SWEVENT_HLIST_SIZE];
724 struct rcu_head rcu_head;
727 #define PERF_ATTACH_CONTEXT 0x01
728 #define PERF_ATTACH_GROUP 0x02
729 #define PERF_ATTACH_TASK 0x04
731 #ifdef CONFIG_CGROUP_PERF
733 * perf_cgroup_info keeps track of time_enabled for a cgroup.
734 * This is a per-cpu dynamically allocated data structure.
736 struct perf_cgroup_info {
737 u64 time;
738 u64 timestamp;
741 struct perf_cgroup {
742 struct cgroup_subsys_state css;
743 struct perf_cgroup_info *info; /* timing info, one per cpu */
745 #endif
748 * struct perf_event - performance event kernel representation:
750 struct perf_event {
751 #ifdef CONFIG_PERF_EVENTS
752 struct list_head group_entry;
753 struct list_head event_entry;
754 struct list_head sibling_list;
755 struct hlist_node hlist_entry;
756 int nr_siblings;
757 int group_flags;
758 struct perf_event *group_leader;
759 struct pmu *pmu;
761 enum perf_event_active_state state;
762 unsigned int attach_state;
763 local64_t count;
764 atomic64_t child_count;
767 * These are the total time in nanoseconds that the event
768 * has been enabled (i.e. eligible to run, and the task has
769 * been scheduled in, if this is a per-task event)
770 * and running (scheduled onto the CPU), respectively.
772 * They are computed from tstamp_enabled, tstamp_running and
773 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
775 u64 total_time_enabled;
776 u64 total_time_running;
779 * These are timestamps used for computing total_time_enabled
780 * and total_time_running when the event is in INACTIVE or
781 * ACTIVE state, measured in nanoseconds from an arbitrary point
782 * in time.
783 * tstamp_enabled: the notional time when the event was enabled
784 * tstamp_running: the notional time when the event was scheduled on
785 * tstamp_stopped: in INACTIVE state, the notional time when the
786 * event was scheduled off.
788 u64 tstamp_enabled;
789 u64 tstamp_running;
790 u64 tstamp_stopped;
793 * timestamp shadows the actual context timing but it can
794 * be safely used in NMI interrupt context. It reflects the
795 * context time as it was when the event was last scheduled in.
797 * ctx_time already accounts for ctx->timestamp. Therefore to
798 * compute ctx_time for a sample, simply add perf_clock().
800 u64 shadow_ctx_time;
802 struct perf_event_attr attr;
803 u16 header_size;
804 u16 id_header_size;
805 u16 read_size;
806 struct hw_perf_event hw;
808 struct perf_event_context *ctx;
809 struct file *filp;
812 * These accumulate total time (in nanoseconds) that children
813 * events have been enabled and running, respectively.
815 atomic64_t child_total_time_enabled;
816 atomic64_t child_total_time_running;
819 * Protect attach/detach and child_list:
821 struct mutex child_mutex;
822 struct list_head child_list;
823 struct perf_event *parent;
825 int oncpu;
826 int cpu;
828 struct list_head owner_entry;
829 struct task_struct *owner;
831 /* mmap bits */
832 struct mutex mmap_mutex;
833 atomic_t mmap_count;
834 int mmap_locked;
835 struct user_struct *mmap_user;
836 struct perf_buffer *buffer;
838 /* poll related */
839 wait_queue_head_t waitq;
840 struct fasync_struct *fasync;
842 /* delayed work for NMIs and such */
843 int pending_wakeup;
844 int pending_kill;
845 int pending_disable;
846 struct irq_work pending;
848 atomic_t event_limit;
850 void (*destroy)(struct perf_event *);
851 struct rcu_head rcu_head;
853 struct pid_namespace *ns;
854 u64 id;
856 perf_overflow_handler_t overflow_handler;
858 #ifdef CONFIG_EVENT_TRACING
859 struct ftrace_event_call *tp_event;
860 struct event_filter *filter;
861 #endif
863 #ifdef CONFIG_CGROUP_PERF
864 struct perf_cgroup *cgrp; /* cgroup event is attach to */
865 int cgrp_defer_enabled;
866 #endif
868 #endif /* CONFIG_PERF_EVENTS */
871 enum perf_event_context_type {
872 task_context,
873 cpu_context,
877 * struct perf_event_context - event context structure
879 * Used as a container for task events and CPU events as well:
881 struct perf_event_context {
882 struct pmu *pmu;
883 enum perf_event_context_type type;
885 * Protect the states of the events in the list,
886 * nr_active, and the list:
888 raw_spinlock_t lock;
890 * Protect the list of events. Locking either mutex or lock
891 * is sufficient to ensure the list doesn't change; to change
892 * the list you need to lock both the mutex and the spinlock.
894 struct mutex mutex;
896 struct list_head pinned_groups;
897 struct list_head flexible_groups;
898 struct list_head event_list;
899 int nr_events;
900 int nr_active;
901 int is_active;
902 int nr_stat;
903 int rotate_disable;
904 atomic_t refcount;
905 struct task_struct *task;
908 * Context clock, runs when context enabled.
910 u64 time;
911 u64 timestamp;
914 * These fields let us detect when two contexts have both
915 * been cloned (inherited) from a common ancestor.
917 struct perf_event_context *parent_ctx;
918 u64 parent_gen;
919 u64 generation;
920 int pin_count;
921 struct rcu_head rcu_head;
922 int nr_cgroups; /* cgroup events present */
926 * Number of contexts where an event can trigger:
927 * task, softirq, hardirq, nmi.
929 #define PERF_NR_CONTEXTS 4
932 * struct perf_event_cpu_context - per cpu event context structure
934 struct perf_cpu_context {
935 struct perf_event_context ctx;
936 struct perf_event_context *task_ctx;
937 int active_oncpu;
938 int exclusive;
939 struct list_head rotation_list;
940 int jiffies_interval;
941 struct pmu *active_pmu;
942 struct perf_cgroup *cgrp;
945 struct perf_output_handle {
946 struct perf_event *event;
947 struct perf_buffer *buffer;
948 unsigned long wakeup;
949 unsigned long size;
950 void *addr;
951 int page;
952 int nmi;
953 int sample;
956 #ifdef CONFIG_PERF_EVENTS
958 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
959 extern void perf_pmu_unregister(struct pmu *pmu);
961 extern int perf_num_counters(void);
962 extern const char *perf_pmu_name(void);
963 extern void __perf_event_task_sched_in(struct task_struct *task);
964 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
965 extern int perf_event_init_task(struct task_struct *child);
966 extern void perf_event_exit_task(struct task_struct *child);
967 extern void perf_event_free_task(struct task_struct *task);
968 extern void perf_event_delayed_put(struct task_struct *task);
969 extern void perf_event_print_debug(void);
970 extern void perf_pmu_disable(struct pmu *pmu);
971 extern void perf_pmu_enable(struct pmu *pmu);
972 extern int perf_event_task_disable(void);
973 extern int perf_event_task_enable(void);
974 extern void perf_event_update_userpage(struct perf_event *event);
975 extern int perf_event_release_kernel(struct perf_event *event);
976 extern struct perf_event *
977 perf_event_create_kernel_counter(struct perf_event_attr *attr,
978 int cpu,
979 struct task_struct *task,
980 perf_overflow_handler_t callback);
981 extern u64 perf_event_read_value(struct perf_event *event,
982 u64 *enabled, u64 *running);
984 struct perf_sample_data {
985 u64 type;
987 u64 ip;
988 struct {
989 u32 pid;
990 u32 tid;
991 } tid_entry;
992 u64 time;
993 u64 addr;
994 u64 id;
995 u64 stream_id;
996 struct {
997 u32 cpu;
998 u32 reserved;
999 } cpu_entry;
1000 u64 period;
1001 struct perf_callchain_entry *callchain;
1002 struct perf_raw_record *raw;
1005 static inline
1006 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
1008 data->addr = addr;
1009 data->raw = NULL;
1012 extern void perf_output_sample(struct perf_output_handle *handle,
1013 struct perf_event_header *header,
1014 struct perf_sample_data *data,
1015 struct perf_event *event);
1016 extern void perf_prepare_sample(struct perf_event_header *header,
1017 struct perf_sample_data *data,
1018 struct perf_event *event,
1019 struct pt_regs *regs);
1021 extern int perf_event_overflow(struct perf_event *event, int nmi,
1022 struct perf_sample_data *data,
1023 struct pt_regs *regs);
1025 static inline bool is_sampling_event(struct perf_event *event)
1027 return event->attr.sample_period != 0;
1031 * Return 1 for a software event, 0 for a hardware event
1033 static inline int is_software_event(struct perf_event *event)
1035 return event->pmu->task_ctx_nr == perf_sw_context;
1038 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
1040 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
1042 #ifndef perf_arch_fetch_caller_regs
1043 static inline void
1044 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1045 #endif
1048 * Take a snapshot of the regs. Skip ip and frame pointer to
1049 * the nth caller. We only need a few of the regs:
1050 * - ip for PERF_SAMPLE_IP
1051 * - cs for user_mode() tests
1052 * - bp for callchains
1053 * - eflags, for future purposes, just in case
1055 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1057 memset(regs, 0, sizeof(*regs));
1059 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1062 static __always_inline void
1063 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
1065 struct pt_regs hot_regs;
1067 JUMP_LABEL(&perf_swevent_enabled[event_id], have_event);
1068 return;
1070 have_event:
1071 if (!regs) {
1072 perf_fetch_caller_regs(&hot_regs);
1073 regs = &hot_regs;
1075 __perf_sw_event(event_id, nr, nmi, regs, addr);
1078 extern atomic_t perf_sched_events;
1080 static inline void perf_event_task_sched_in(struct task_struct *task)
1082 COND_STMT(&perf_sched_events, __perf_event_task_sched_in(task));
1085 static inline
1086 void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
1088 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1090 __perf_event_task_sched_out(task, next);
1093 extern void perf_event_mmap(struct vm_area_struct *vma);
1094 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1095 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1096 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1098 extern void perf_event_comm(struct task_struct *tsk);
1099 extern void perf_event_fork(struct task_struct *tsk);
1101 /* Callchains */
1102 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1104 extern void perf_callchain_user(struct perf_callchain_entry *entry,
1105 struct pt_regs *regs);
1106 extern void perf_callchain_kernel(struct perf_callchain_entry *entry,
1107 struct pt_regs *regs);
1110 static inline void
1111 perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1113 if (entry->nr < PERF_MAX_STACK_DEPTH)
1114 entry->ip[entry->nr++] = ip;
1117 extern int sysctl_perf_event_paranoid;
1118 extern int sysctl_perf_event_mlock;
1119 extern int sysctl_perf_event_sample_rate;
1121 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1122 void __user *buffer, size_t *lenp,
1123 loff_t *ppos);
1125 static inline bool perf_paranoid_tracepoint_raw(void)
1127 return sysctl_perf_event_paranoid > -1;
1130 static inline bool perf_paranoid_cpu(void)
1132 return sysctl_perf_event_paranoid > 0;
1135 static inline bool perf_paranoid_kernel(void)
1137 return sysctl_perf_event_paranoid > 1;
1140 extern void perf_event_init(void);
1141 extern void perf_tp_event(u64 addr, u64 count, void *record,
1142 int entry_size, struct pt_regs *regs,
1143 struct hlist_head *head, int rctx);
1144 extern void perf_bp_event(struct perf_event *event, void *data);
1146 #ifndef perf_misc_flags
1147 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
1148 PERF_RECORD_MISC_KERNEL)
1149 #define perf_instruction_pointer(regs) instruction_pointer(regs)
1150 #endif
1152 extern int perf_output_begin(struct perf_output_handle *handle,
1153 struct perf_event *event, unsigned int size,
1154 int nmi, int sample);
1155 extern void perf_output_end(struct perf_output_handle *handle);
1156 extern void perf_output_copy(struct perf_output_handle *handle,
1157 const void *buf, unsigned int len);
1158 extern int perf_swevent_get_recursion_context(void);
1159 extern void perf_swevent_put_recursion_context(int rctx);
1160 extern void perf_event_enable(struct perf_event *event);
1161 extern void perf_event_disable(struct perf_event *event);
1162 extern void perf_event_task_tick(void);
1163 #else
1164 static inline void
1165 perf_event_task_sched_in(struct task_struct *task) { }
1166 static inline void
1167 perf_event_task_sched_out(struct task_struct *task,
1168 struct task_struct *next) { }
1169 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1170 static inline void perf_event_exit_task(struct task_struct *child) { }
1171 static inline void perf_event_free_task(struct task_struct *task) { }
1172 static inline void perf_event_delayed_put(struct task_struct *task) { }
1173 static inline void perf_event_print_debug(void) { }
1174 static inline int perf_event_task_disable(void) { return -EINVAL; }
1175 static inline int perf_event_task_enable(void) { return -EINVAL; }
1177 static inline void
1178 perf_sw_event(u32 event_id, u64 nr, int nmi,
1179 struct pt_regs *regs, u64 addr) { }
1180 static inline void
1181 perf_bp_event(struct perf_event *event, void *data) { }
1183 static inline int perf_register_guest_info_callbacks
1184 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1185 static inline int perf_unregister_guest_info_callbacks
1186 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1188 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1189 static inline void perf_event_comm(struct task_struct *tsk) { }
1190 static inline void perf_event_fork(struct task_struct *tsk) { }
1191 static inline void perf_event_init(void) { }
1192 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1193 static inline void perf_swevent_put_recursion_context(int rctx) { }
1194 static inline void perf_event_enable(struct perf_event *event) { }
1195 static inline void perf_event_disable(struct perf_event *event) { }
1196 static inline void perf_event_task_tick(void) { }
1197 #endif
1199 #define perf_output_put(handle, x) \
1200 perf_output_copy((handle), &(x), sizeof(x))
1203 * This has to have a higher priority than migration_notifier in sched.c.
1205 #define perf_cpu_notifier(fn) \
1206 do { \
1207 static struct notifier_block fn##_nb __cpuinitdata = \
1208 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1209 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1210 (void *)(unsigned long)smp_processor_id()); \
1211 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1212 (void *)(unsigned long)smp_processor_id()); \
1213 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1214 (void *)(unsigned long)smp_processor_id()); \
1215 register_cpu_notifier(&fn##_nb); \
1216 } while (0)
1218 #endif /* __KERNEL__ */
1219 #endif /* _LINUX_PERF_EVENT_H */