2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
35 #include <asm/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
60 static phys_addr_t io_tlb_start
, io_tlb_end
;
63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
66 static unsigned long io_tlb_nslabs
;
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
71 static unsigned long io_tlb_overflow
= 32*1024;
73 static phys_addr_t io_tlb_overflow_buffer
;
76 * This is a free list describing the number of free entries available from
79 static unsigned int *io_tlb_list
;
80 static unsigned int io_tlb_index
;
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
86 static phys_addr_t
*io_tlb_orig_addr
;
89 * Protect the above data structures in the map and unmap calls
91 static DEFINE_SPINLOCK(io_tlb_lock
);
93 static int late_alloc
;
96 setup_io_tlb_npages(char *str
)
99 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
105 if (!strcmp(str
, "force"))
110 __setup("swiotlb=", setup_io_tlb_npages
);
111 /* make io_tlb_overflow tunable too? */
113 unsigned long swiotlb_nr_tbl(void)
115 return io_tlb_nslabs
;
117 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
118 /* Note that this doesn't work with highmem page */
119 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
120 volatile void *address
)
122 return phys_to_dma(hwdev
, virt_to_phys(address
));
125 static bool no_iotlb_memory
;
127 void swiotlb_print_info(void)
129 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
130 unsigned char *vstart
, *vend
;
132 if (no_iotlb_memory
) {
133 pr_warn("software IO TLB: No low mem\n");
137 vstart
= phys_to_virt(io_tlb_start
);
138 vend
= phys_to_virt(io_tlb_end
);
140 printk(KERN_INFO
"software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
141 (unsigned long long)io_tlb_start
,
142 (unsigned long long)io_tlb_end
,
143 bytes
>> 20, vstart
, vend
- 1);
146 int __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
148 void *v_overflow_buffer
;
149 unsigned long i
, bytes
;
151 bytes
= nslabs
<< IO_TLB_SHIFT
;
153 io_tlb_nslabs
= nslabs
;
154 io_tlb_start
= __pa(tlb
);
155 io_tlb_end
= io_tlb_start
+ bytes
;
158 * Get the overflow emergency buffer
160 v_overflow_buffer
= alloc_bootmem_low_pages_nopanic(
161 PAGE_ALIGN(io_tlb_overflow
));
162 if (!v_overflow_buffer
)
165 io_tlb_overflow_buffer
= __pa(v_overflow_buffer
);
168 * Allocate and initialize the free list array. This array is used
169 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
170 * between io_tlb_start and io_tlb_end.
172 io_tlb_list
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
173 for (i
= 0; i
< io_tlb_nslabs
; i
++)
174 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
176 io_tlb_orig_addr
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
179 swiotlb_print_info();
185 * Statically reserve bounce buffer space and initialize bounce buffer data
186 * structures for the software IO TLB used to implement the DMA API.
189 swiotlb_init(int verbose
)
191 /* default to 64MB */
192 size_t default_size
= 64UL<<20;
193 unsigned char *vstart
;
196 if (!io_tlb_nslabs
) {
197 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
198 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
201 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
203 /* Get IO TLB memory from the low pages */
204 vstart
= alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes
));
205 if (vstart
&& !swiotlb_init_with_tbl(vstart
, io_tlb_nslabs
, verbose
))
209 free_bootmem(io_tlb_start
,
210 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
211 pr_warn("Cannot allocate SWIOTLB buffer");
212 no_iotlb_memory
= true;
216 * Systems with larger DMA zones (those that don't support ISA) can
217 * initialize the swiotlb later using the slab allocator if needed.
218 * This should be just like above, but with some error catching.
221 swiotlb_late_init_with_default_size(size_t default_size
)
223 unsigned long bytes
, req_nslabs
= io_tlb_nslabs
;
224 unsigned char *vstart
= NULL
;
228 if (!io_tlb_nslabs
) {
229 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
230 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
234 * Get IO TLB memory from the low pages
236 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
237 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
238 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
240 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
241 vstart
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
249 io_tlb_nslabs
= req_nslabs
;
252 if (order
!= get_order(bytes
)) {
253 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
254 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
255 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
257 rc
= swiotlb_late_init_with_tbl(vstart
, io_tlb_nslabs
);
259 free_pages((unsigned long)vstart
, order
);
264 swiotlb_late_init_with_tbl(char *tlb
, unsigned long nslabs
)
266 unsigned long i
, bytes
;
267 unsigned char *v_overflow_buffer
;
269 bytes
= nslabs
<< IO_TLB_SHIFT
;
271 io_tlb_nslabs
= nslabs
;
272 io_tlb_start
= virt_to_phys(tlb
);
273 io_tlb_end
= io_tlb_start
+ bytes
;
275 memset(tlb
, 0, bytes
);
278 * Get the overflow emergency buffer
280 v_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
281 get_order(io_tlb_overflow
));
282 if (!v_overflow_buffer
)
285 io_tlb_overflow_buffer
= virt_to_phys(v_overflow_buffer
);
288 * Allocate and initialize the free list array. This array is used
289 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
290 * between io_tlb_start and io_tlb_end.
292 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
293 get_order(io_tlb_nslabs
* sizeof(int)));
297 for (i
= 0; i
< io_tlb_nslabs
; i
++)
298 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
301 io_tlb_orig_addr
= (phys_addr_t
*)
302 __get_free_pages(GFP_KERNEL
,
303 get_order(io_tlb_nslabs
*
304 sizeof(phys_addr_t
)));
305 if (!io_tlb_orig_addr
)
308 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
310 swiotlb_print_info();
317 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
321 free_pages((unsigned long)v_overflow_buffer
,
322 get_order(io_tlb_overflow
));
323 io_tlb_overflow_buffer
= 0;
331 void __init
swiotlb_free(void)
333 if (!io_tlb_orig_addr
)
337 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer
),
338 get_order(io_tlb_overflow
));
339 free_pages((unsigned long)io_tlb_orig_addr
,
340 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
341 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
343 free_pages((unsigned long)phys_to_virt(io_tlb_start
),
344 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
346 free_bootmem_late(io_tlb_overflow_buffer
,
347 PAGE_ALIGN(io_tlb_overflow
));
348 free_bootmem_late(__pa(io_tlb_orig_addr
),
349 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
350 free_bootmem_late(__pa(io_tlb_list
),
351 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
352 free_bootmem_late(io_tlb_start
,
353 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
358 static int is_swiotlb_buffer(phys_addr_t paddr
)
360 return paddr
>= io_tlb_start
&& paddr
< io_tlb_end
;
364 * Bounce: copy the swiotlb buffer back to the original dma location
366 static void swiotlb_bounce(phys_addr_t orig_addr
, phys_addr_t tlb_addr
,
367 size_t size
, enum dma_data_direction dir
)
369 unsigned long pfn
= PFN_DOWN(orig_addr
);
370 unsigned char *vaddr
= phys_to_virt(tlb_addr
);
372 if (PageHighMem(pfn_to_page(pfn
))) {
373 /* The buffer does not have a mapping. Map it in and copy */
374 unsigned int offset
= orig_addr
& ~PAGE_MASK
;
380 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
382 local_irq_save(flags
);
383 buffer
= kmap_atomic(pfn_to_page(pfn
));
384 if (dir
== DMA_TO_DEVICE
)
385 memcpy(vaddr
, buffer
+ offset
, sz
);
387 memcpy(buffer
+ offset
, vaddr
, sz
);
388 kunmap_atomic(buffer
);
389 local_irq_restore(flags
);
396 } else if (dir
== DMA_TO_DEVICE
) {
397 memcpy(vaddr
, phys_to_virt(orig_addr
), size
);
399 memcpy(phys_to_virt(orig_addr
), vaddr
, size
);
403 phys_addr_t
swiotlb_tbl_map_single(struct device
*hwdev
,
404 dma_addr_t tbl_dma_addr
,
405 phys_addr_t orig_addr
, size_t size
,
406 enum dma_data_direction dir
)
409 phys_addr_t tlb_addr
;
410 unsigned int nslots
, stride
, index
, wrap
;
413 unsigned long offset_slots
;
414 unsigned long max_slots
;
417 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
419 mask
= dma_get_seg_boundary(hwdev
);
421 tbl_dma_addr
&= mask
;
423 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
426 * Carefully handle integer overflow which can occur when mask == ~0UL.
429 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
430 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
433 * For mappings greater than a page, we limit the stride (and
434 * hence alignment) to a page size.
436 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
437 if (size
> PAGE_SIZE
)
438 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
445 * Find suitable number of IO TLB entries size that will fit this
446 * request and allocate a buffer from that IO TLB pool.
448 spin_lock_irqsave(&io_tlb_lock
, flags
);
449 index
= ALIGN(io_tlb_index
, stride
);
450 if (index
>= io_tlb_nslabs
)
455 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
458 if (index
>= io_tlb_nslabs
)
465 * If we find a slot that indicates we have 'nslots' number of
466 * contiguous buffers, we allocate the buffers from that slot
467 * and mark the entries as '0' indicating unavailable.
469 if (io_tlb_list
[index
] >= nslots
) {
472 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
474 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
475 io_tlb_list
[i
] = ++count
;
476 tlb_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
479 * Update the indices to avoid searching in the next
482 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
483 ? (index
+ nslots
) : 0);
488 if (index
>= io_tlb_nslabs
)
490 } while (index
!= wrap
);
493 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
494 return SWIOTLB_MAP_ERROR
;
496 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
499 * Save away the mapping from the original address to the DMA address.
500 * This is needed when we sync the memory. Then we sync the buffer if
503 for (i
= 0; i
< nslots
; i
++)
504 io_tlb_orig_addr
[index
+i
] = orig_addr
+ (i
<< IO_TLB_SHIFT
);
505 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
506 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_TO_DEVICE
);
510 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single
);
513 * Allocates bounce buffer and returns its kernel virtual address.
516 phys_addr_t
map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
517 enum dma_data_direction dir
)
519 dma_addr_t start_dma_addr
= phys_to_dma(hwdev
, io_tlb_start
);
521 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
, dir
);
525 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
527 void swiotlb_tbl_unmap_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
528 size_t size
, enum dma_data_direction dir
)
531 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
532 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
533 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
536 * First, sync the memory before unmapping the entry
538 if (orig_addr
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
539 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_FROM_DEVICE
);
542 * Return the buffer to the free list by setting the corresponding
543 * entries to indicate the number of contiguous entries available.
544 * While returning the entries to the free list, we merge the entries
545 * with slots below and above the pool being returned.
547 spin_lock_irqsave(&io_tlb_lock
, flags
);
549 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
550 io_tlb_list
[index
+ nslots
] : 0);
552 * Step 1: return the slots to the free list, merging the
553 * slots with superceeding slots
555 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
556 io_tlb_list
[i
] = ++count
;
558 * Step 2: merge the returned slots with the preceding slots,
559 * if available (non zero)
561 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
562 io_tlb_list
[i
] = ++count
;
564 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
566 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single
);
568 void swiotlb_tbl_sync_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
569 size_t size
, enum dma_data_direction dir
,
570 enum dma_sync_target target
)
572 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
573 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
575 orig_addr
+= (unsigned long)tlb_addr
& ((1 << IO_TLB_SHIFT
) - 1);
579 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
580 swiotlb_bounce(orig_addr
, tlb_addr
,
581 size
, DMA_FROM_DEVICE
);
583 BUG_ON(dir
!= DMA_TO_DEVICE
);
585 case SYNC_FOR_DEVICE
:
586 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
587 swiotlb_bounce(orig_addr
, tlb_addr
,
588 size
, DMA_TO_DEVICE
);
590 BUG_ON(dir
!= DMA_FROM_DEVICE
);
596 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single
);
599 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
600 dma_addr_t
*dma_handle
, gfp_t flags
)
604 int order
= get_order(size
);
605 u64 dma_mask
= DMA_BIT_MASK(32);
607 if (hwdev
&& hwdev
->coherent_dma_mask
)
608 dma_mask
= hwdev
->coherent_dma_mask
;
610 ret
= (void *)__get_free_pages(flags
, order
);
612 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
613 if (dev_addr
+ size
- 1 > dma_mask
) {
615 * The allocated memory isn't reachable by the device.
617 free_pages((unsigned long) ret
, order
);
623 * We are either out of memory or the device can't DMA to
624 * GFP_DMA memory; fall back on map_single(), which
625 * will grab memory from the lowest available address range.
627 phys_addr_t paddr
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
628 if (paddr
== SWIOTLB_MAP_ERROR
)
631 ret
= phys_to_virt(paddr
);
632 dev_addr
= phys_to_dma(hwdev
, paddr
);
634 /* Confirm address can be DMA'd by device */
635 if (dev_addr
+ size
- 1 > dma_mask
) {
636 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
637 (unsigned long long)dma_mask
,
638 (unsigned long long)dev_addr
);
640 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
641 swiotlb_tbl_unmap_single(hwdev
, paddr
,
642 size
, DMA_TO_DEVICE
);
647 *dma_handle
= dev_addr
;
648 memset(ret
, 0, size
);
652 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
655 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
658 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
660 WARN_ON(irqs_disabled());
661 if (!is_swiotlb_buffer(paddr
))
662 free_pages((unsigned long)vaddr
, get_order(size
));
664 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
665 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, DMA_TO_DEVICE
);
667 EXPORT_SYMBOL(swiotlb_free_coherent
);
670 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
674 * Ran out of IOMMU space for this operation. This is very bad.
675 * Unfortunately the drivers cannot handle this operation properly.
676 * unless they check for dma_mapping_error (most don't)
677 * When the mapping is small enough return a static buffer to limit
678 * the damage, or panic when the transfer is too big.
680 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
681 "device %s\n", size
, dev
? dev_name(dev
) : "?");
683 if (size
<= io_tlb_overflow
|| !do_panic
)
686 if (dir
== DMA_BIDIRECTIONAL
)
687 panic("DMA: Random memory could be DMA accessed\n");
688 if (dir
== DMA_FROM_DEVICE
)
689 panic("DMA: Random memory could be DMA written\n");
690 if (dir
== DMA_TO_DEVICE
)
691 panic("DMA: Random memory could be DMA read\n");
695 * Map a single buffer of the indicated size for DMA in streaming mode. The
696 * physical address to use is returned.
698 * Once the device is given the dma address, the device owns this memory until
699 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
701 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
702 unsigned long offset
, size_t size
,
703 enum dma_data_direction dir
,
704 struct dma_attrs
*attrs
)
706 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
707 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
709 BUG_ON(dir
== DMA_NONE
);
711 * If the address happens to be in the device's DMA window,
712 * we can safely return the device addr and not worry about bounce
715 if (dma_capable(dev
, dev_addr
, size
) && !swiotlb_force
)
718 /* Oh well, have to allocate and map a bounce buffer. */
719 map
= map_single(dev
, phys
, size
, dir
);
720 if (map
== SWIOTLB_MAP_ERROR
) {
721 swiotlb_full(dev
, size
, dir
, 1);
722 return phys_to_dma(dev
, io_tlb_overflow_buffer
);
725 dev_addr
= phys_to_dma(dev
, map
);
727 /* Ensure that the address returned is DMA'ble */
728 if (!dma_capable(dev
, dev_addr
, size
)) {
729 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
);
730 return phys_to_dma(dev
, io_tlb_overflow_buffer
);
735 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
738 * Unmap a single streaming mode DMA translation. The dma_addr and size must
739 * match what was provided for in a previous swiotlb_map_page call. All
740 * other usages are undefined.
742 * After this call, reads by the cpu to the buffer are guaranteed to see
743 * whatever the device wrote there.
745 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
746 size_t size
, enum dma_data_direction dir
)
748 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
750 BUG_ON(dir
== DMA_NONE
);
752 if (is_swiotlb_buffer(paddr
)) {
753 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
);
757 if (dir
!= DMA_FROM_DEVICE
)
761 * phys_to_virt doesn't work with hihgmem page but we could
762 * call dma_mark_clean() with hihgmem page here. However, we
763 * are fine since dma_mark_clean() is null on POWERPC. We can
764 * make dma_mark_clean() take a physical address if necessary.
766 dma_mark_clean(phys_to_virt(paddr
), size
);
769 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
770 size_t size
, enum dma_data_direction dir
,
771 struct dma_attrs
*attrs
)
773 unmap_single(hwdev
, dev_addr
, size
, dir
);
775 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
778 * Make physical memory consistent for a single streaming mode DMA translation
781 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
782 * using the cpu, yet do not wish to teardown the dma mapping, you must
783 * call this function before doing so. At the next point you give the dma
784 * address back to the card, you must first perform a
785 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
788 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
789 size_t size
, enum dma_data_direction dir
,
790 enum dma_sync_target target
)
792 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
794 BUG_ON(dir
== DMA_NONE
);
796 if (is_swiotlb_buffer(paddr
)) {
797 swiotlb_tbl_sync_single(hwdev
, paddr
, size
, dir
, target
);
801 if (dir
!= DMA_FROM_DEVICE
)
804 dma_mark_clean(phys_to_virt(paddr
), size
);
808 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
809 size_t size
, enum dma_data_direction dir
)
811 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
813 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
816 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
817 size_t size
, enum dma_data_direction dir
)
819 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
821 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
824 * Map a set of buffers described by scatterlist in streaming mode for DMA.
825 * This is the scatter-gather version of the above swiotlb_map_page
826 * interface. Here the scatter gather list elements are each tagged with the
827 * appropriate dma address and length. They are obtained via
828 * sg_dma_{address,length}(SG).
830 * NOTE: An implementation may be able to use a smaller number of
831 * DMA address/length pairs than there are SG table elements.
832 * (for example via virtual mapping capabilities)
833 * The routine returns the number of addr/length pairs actually
834 * used, at most nents.
836 * Device ownership issues as mentioned above for swiotlb_map_page are the
840 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
841 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
843 struct scatterlist
*sg
;
846 BUG_ON(dir
== DMA_NONE
);
848 for_each_sg(sgl
, sg
, nelems
, i
) {
849 phys_addr_t paddr
= sg_phys(sg
);
850 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
853 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
854 phys_addr_t map
= map_single(hwdev
, sg_phys(sg
),
856 if (map
== SWIOTLB_MAP_ERROR
) {
857 /* Don't panic here, we expect map_sg users
858 to do proper error handling. */
859 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
860 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
862 sgl
[0].dma_length
= 0;
865 sg
->dma_address
= phys_to_dma(hwdev
, map
);
867 sg
->dma_address
= dev_addr
;
868 sg
->dma_length
= sg
->length
;
872 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
875 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
876 enum dma_data_direction dir
)
878 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
880 EXPORT_SYMBOL(swiotlb_map_sg
);
883 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
884 * concerning calls here are the same as for swiotlb_unmap_page() above.
887 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
888 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
890 struct scatterlist
*sg
;
893 BUG_ON(dir
== DMA_NONE
);
895 for_each_sg(sgl
, sg
, nelems
, i
)
896 unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
899 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
902 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
903 enum dma_data_direction dir
)
905 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
907 EXPORT_SYMBOL(swiotlb_unmap_sg
);
910 * Make physical memory consistent for a set of streaming mode DMA translations
913 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
917 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
918 int nelems
, enum dma_data_direction dir
,
919 enum dma_sync_target target
)
921 struct scatterlist
*sg
;
924 for_each_sg(sgl
, sg
, nelems
, i
)
925 swiotlb_sync_single(hwdev
, sg
->dma_address
,
926 sg
->dma_length
, dir
, target
);
930 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
931 int nelems
, enum dma_data_direction dir
)
933 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
935 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
938 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
939 int nelems
, enum dma_data_direction dir
)
941 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
943 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
946 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
948 return (dma_addr
== phys_to_dma(hwdev
, io_tlb_overflow_buffer
));
950 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
953 * Return whether the given device DMA address mask can be supported
954 * properly. For example, if your device can only drive the low 24-bits
955 * during bus mastering, then you would pass 0x00ffffff as the mask to
959 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
961 return phys_to_dma(hwdev
, io_tlb_end
- 1) <= mask
;
963 EXPORT_SYMBOL(swiotlb_dma_supported
);