KVM: Make unloading of FPU state when putting vcpu arch-independent
[linux-2.6.git] / drivers / kvm / vmx.c
blob0c082faaa6db813bd529892633f94dfdd7aae7db
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86.h"
20 #include "x86_emulate.h"
21 #include "irq.h"
22 #include "vmx.h"
23 #include "segment_descriptor.h"
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
32 #include <asm/io.h>
33 #include <asm/desc.h>
35 MODULE_AUTHOR("Qumranet");
36 MODULE_LICENSE("GPL");
38 static int bypass_guest_pf = 1;
39 module_param(bypass_guest_pf, bool, 0);
41 struct vmcs {
42 u32 revision_id;
43 u32 abort;
44 char data[0];
47 struct vcpu_vmx {
48 struct kvm_vcpu vcpu;
49 int launched;
50 u8 fail;
51 u32 idt_vectoring_info;
52 struct kvm_msr_entry *guest_msrs;
53 struct kvm_msr_entry *host_msrs;
54 int nmsrs;
55 int save_nmsrs;
56 int msr_offset_efer;
57 #ifdef CONFIG_X86_64
58 int msr_offset_kernel_gs_base;
59 #endif
60 struct vmcs *vmcs;
61 struct {
62 int loaded;
63 u16 fs_sel, gs_sel, ldt_sel;
64 int gs_ldt_reload_needed;
65 int fs_reload_needed;
66 int guest_efer_loaded;
67 } host_state;
68 struct {
69 struct {
70 bool pending;
71 u8 vector;
72 unsigned rip;
73 } irq;
74 } rmode;
77 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
79 return container_of(vcpu, struct vcpu_vmx, vcpu);
82 static int init_rmode_tss(struct kvm *kvm);
84 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
85 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
87 static struct page *vmx_io_bitmap_a;
88 static struct page *vmx_io_bitmap_b;
90 static struct vmcs_config {
91 int size;
92 int order;
93 u32 revision_id;
94 u32 pin_based_exec_ctrl;
95 u32 cpu_based_exec_ctrl;
96 u32 cpu_based_2nd_exec_ctrl;
97 u32 vmexit_ctrl;
98 u32 vmentry_ctrl;
99 } vmcs_config;
101 #define VMX_SEGMENT_FIELD(seg) \
102 [VCPU_SREG_##seg] = { \
103 .selector = GUEST_##seg##_SELECTOR, \
104 .base = GUEST_##seg##_BASE, \
105 .limit = GUEST_##seg##_LIMIT, \
106 .ar_bytes = GUEST_##seg##_AR_BYTES, \
109 static struct kvm_vmx_segment_field {
110 unsigned selector;
111 unsigned base;
112 unsigned limit;
113 unsigned ar_bytes;
114 } kvm_vmx_segment_fields[] = {
115 VMX_SEGMENT_FIELD(CS),
116 VMX_SEGMENT_FIELD(DS),
117 VMX_SEGMENT_FIELD(ES),
118 VMX_SEGMENT_FIELD(FS),
119 VMX_SEGMENT_FIELD(GS),
120 VMX_SEGMENT_FIELD(SS),
121 VMX_SEGMENT_FIELD(TR),
122 VMX_SEGMENT_FIELD(LDTR),
126 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
127 * away by decrementing the array size.
129 static const u32 vmx_msr_index[] = {
130 #ifdef CONFIG_X86_64
131 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
132 #endif
133 MSR_EFER, MSR_K6_STAR,
135 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
137 static void load_msrs(struct kvm_msr_entry *e, int n)
139 int i;
141 for (i = 0; i < n; ++i)
142 wrmsrl(e[i].index, e[i].data);
145 static void save_msrs(struct kvm_msr_entry *e, int n)
147 int i;
149 for (i = 0; i < n; ++i)
150 rdmsrl(e[i].index, e[i].data);
153 static inline int is_page_fault(u32 intr_info)
155 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156 INTR_INFO_VALID_MASK)) ==
157 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
160 static inline int is_no_device(u32 intr_info)
162 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163 INTR_INFO_VALID_MASK)) ==
164 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
167 static inline int is_invalid_opcode(u32 intr_info)
169 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
170 INTR_INFO_VALID_MASK)) ==
171 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
174 static inline int is_external_interrupt(u32 intr_info)
176 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
177 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
180 static inline int cpu_has_vmx_tpr_shadow(void)
182 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
185 static inline int vm_need_tpr_shadow(struct kvm *kvm)
187 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
190 static inline int cpu_has_secondary_exec_ctrls(void)
192 return (vmcs_config.cpu_based_exec_ctrl &
193 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
196 static inline int vm_need_secondary_exec_ctrls(struct kvm *kvm)
198 return ((cpu_has_secondary_exec_ctrls()) && (irqchip_in_kernel(kvm)));
201 static inline int cpu_has_vmx_virtualize_apic_accesses(void)
203 return (vmcs_config.cpu_based_2nd_exec_ctrl &
204 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
207 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
209 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
210 (irqchip_in_kernel(kvm)));
213 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
215 int i;
217 for (i = 0; i < vmx->nmsrs; ++i)
218 if (vmx->guest_msrs[i].index == msr)
219 return i;
220 return -1;
223 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
225 int i;
227 i = __find_msr_index(vmx, msr);
228 if (i >= 0)
229 return &vmx->guest_msrs[i];
230 return NULL;
233 static void vmcs_clear(struct vmcs *vmcs)
235 u64 phys_addr = __pa(vmcs);
236 u8 error;
238 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
239 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
240 : "cc", "memory");
241 if (error)
242 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
243 vmcs, phys_addr);
246 static void __vcpu_clear(void *arg)
248 struct vcpu_vmx *vmx = arg;
249 int cpu = raw_smp_processor_id();
251 if (vmx->vcpu.cpu == cpu)
252 vmcs_clear(vmx->vmcs);
253 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
254 per_cpu(current_vmcs, cpu) = NULL;
255 rdtscll(vmx->vcpu.host_tsc);
258 static void vcpu_clear(struct vcpu_vmx *vmx)
260 if (vmx->vcpu.cpu == -1)
261 return;
262 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
263 vmx->launched = 0;
266 static unsigned long vmcs_readl(unsigned long field)
268 unsigned long value;
270 asm volatile (ASM_VMX_VMREAD_RDX_RAX
271 : "=a"(value) : "d"(field) : "cc");
272 return value;
275 static u16 vmcs_read16(unsigned long field)
277 return vmcs_readl(field);
280 static u32 vmcs_read32(unsigned long field)
282 return vmcs_readl(field);
285 static u64 vmcs_read64(unsigned long field)
287 #ifdef CONFIG_X86_64
288 return vmcs_readl(field);
289 #else
290 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
291 #endif
294 static noinline void vmwrite_error(unsigned long field, unsigned long value)
296 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
297 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
298 dump_stack();
301 static void vmcs_writel(unsigned long field, unsigned long value)
303 u8 error;
305 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
306 : "=q"(error) : "a"(value), "d"(field) : "cc");
307 if (unlikely(error))
308 vmwrite_error(field, value);
311 static void vmcs_write16(unsigned long field, u16 value)
313 vmcs_writel(field, value);
316 static void vmcs_write32(unsigned long field, u32 value)
318 vmcs_writel(field, value);
321 static void vmcs_write64(unsigned long field, u64 value)
323 #ifdef CONFIG_X86_64
324 vmcs_writel(field, value);
325 #else
326 vmcs_writel(field, value);
327 asm volatile ("");
328 vmcs_writel(field+1, value >> 32);
329 #endif
332 static void vmcs_clear_bits(unsigned long field, u32 mask)
334 vmcs_writel(field, vmcs_readl(field) & ~mask);
337 static void vmcs_set_bits(unsigned long field, u32 mask)
339 vmcs_writel(field, vmcs_readl(field) | mask);
342 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
344 u32 eb;
346 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
347 if (!vcpu->fpu_active)
348 eb |= 1u << NM_VECTOR;
349 if (vcpu->guest_debug.enabled)
350 eb |= 1u << 1;
351 if (vcpu->rmode.active)
352 eb = ~0;
353 vmcs_write32(EXCEPTION_BITMAP, eb);
356 static void reload_tss(void)
358 #ifndef CONFIG_X86_64
361 * VT restores TR but not its size. Useless.
363 struct descriptor_table gdt;
364 struct segment_descriptor *descs;
366 get_gdt(&gdt);
367 descs = (void *)gdt.base;
368 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
369 load_TR_desc();
370 #endif
373 static void load_transition_efer(struct vcpu_vmx *vmx)
375 int efer_offset = vmx->msr_offset_efer;
376 u64 host_efer = vmx->host_msrs[efer_offset].data;
377 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
378 u64 ignore_bits;
380 if (efer_offset < 0)
381 return;
383 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
384 * outside long mode
386 ignore_bits = EFER_NX | EFER_SCE;
387 #ifdef CONFIG_X86_64
388 ignore_bits |= EFER_LMA | EFER_LME;
389 /* SCE is meaningful only in long mode on Intel */
390 if (guest_efer & EFER_LMA)
391 ignore_bits &= ~(u64)EFER_SCE;
392 #endif
393 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
394 return;
396 vmx->host_state.guest_efer_loaded = 1;
397 guest_efer &= ~ignore_bits;
398 guest_efer |= host_efer & ignore_bits;
399 wrmsrl(MSR_EFER, guest_efer);
400 vmx->vcpu.stat.efer_reload++;
403 static void reload_host_efer(struct vcpu_vmx *vmx)
405 if (vmx->host_state.guest_efer_loaded) {
406 vmx->host_state.guest_efer_loaded = 0;
407 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
411 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
413 struct vcpu_vmx *vmx = to_vmx(vcpu);
415 if (vmx->host_state.loaded)
416 return;
418 vmx->host_state.loaded = 1;
420 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
421 * allow segment selectors with cpl > 0 or ti == 1.
423 vmx->host_state.ldt_sel = read_ldt();
424 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
425 vmx->host_state.fs_sel = read_fs();
426 if (!(vmx->host_state.fs_sel & 7)) {
427 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
428 vmx->host_state.fs_reload_needed = 0;
429 } else {
430 vmcs_write16(HOST_FS_SELECTOR, 0);
431 vmx->host_state.fs_reload_needed = 1;
433 vmx->host_state.gs_sel = read_gs();
434 if (!(vmx->host_state.gs_sel & 7))
435 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
436 else {
437 vmcs_write16(HOST_GS_SELECTOR, 0);
438 vmx->host_state.gs_ldt_reload_needed = 1;
441 #ifdef CONFIG_X86_64
442 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
443 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
444 #else
445 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
446 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
447 #endif
449 #ifdef CONFIG_X86_64
450 if (is_long_mode(&vmx->vcpu))
451 save_msrs(vmx->host_msrs +
452 vmx->msr_offset_kernel_gs_base, 1);
454 #endif
455 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
456 load_transition_efer(vmx);
459 static void vmx_load_host_state(struct vcpu_vmx *vmx)
461 unsigned long flags;
463 if (!vmx->host_state.loaded)
464 return;
466 ++vmx->vcpu.stat.host_state_reload;
467 vmx->host_state.loaded = 0;
468 if (vmx->host_state.fs_reload_needed)
469 load_fs(vmx->host_state.fs_sel);
470 if (vmx->host_state.gs_ldt_reload_needed) {
471 load_ldt(vmx->host_state.ldt_sel);
473 * If we have to reload gs, we must take care to
474 * preserve our gs base.
476 local_irq_save(flags);
477 load_gs(vmx->host_state.gs_sel);
478 #ifdef CONFIG_X86_64
479 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
480 #endif
481 local_irq_restore(flags);
483 reload_tss();
484 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
485 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
486 reload_host_efer(vmx);
490 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
491 * vcpu mutex is already taken.
493 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
495 struct vcpu_vmx *vmx = to_vmx(vcpu);
496 u64 phys_addr = __pa(vmx->vmcs);
497 u64 tsc_this, delta;
499 if (vcpu->cpu != cpu) {
500 vcpu_clear(vmx);
501 kvm_migrate_apic_timer(vcpu);
504 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
505 u8 error;
507 per_cpu(current_vmcs, cpu) = vmx->vmcs;
508 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
509 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
510 : "cc");
511 if (error)
512 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
513 vmx->vmcs, phys_addr);
516 if (vcpu->cpu != cpu) {
517 struct descriptor_table dt;
518 unsigned long sysenter_esp;
520 vcpu->cpu = cpu;
522 * Linux uses per-cpu TSS and GDT, so set these when switching
523 * processors.
525 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
526 get_gdt(&dt);
527 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
529 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
530 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
533 * Make sure the time stamp counter is monotonous.
535 rdtscll(tsc_this);
536 delta = vcpu->host_tsc - tsc_this;
537 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
541 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
543 vmx_load_host_state(to_vmx(vcpu));
546 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
548 if (vcpu->fpu_active)
549 return;
550 vcpu->fpu_active = 1;
551 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
552 if (vcpu->cr0 & X86_CR0_TS)
553 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
554 update_exception_bitmap(vcpu);
557 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
559 if (!vcpu->fpu_active)
560 return;
561 vcpu->fpu_active = 0;
562 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
563 update_exception_bitmap(vcpu);
566 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
568 vcpu_clear(to_vmx(vcpu));
571 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
573 return vmcs_readl(GUEST_RFLAGS);
576 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
578 if (vcpu->rmode.active)
579 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
580 vmcs_writel(GUEST_RFLAGS, rflags);
583 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
585 unsigned long rip;
586 u32 interruptibility;
588 rip = vmcs_readl(GUEST_RIP);
589 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
590 vmcs_writel(GUEST_RIP, rip);
593 * We emulated an instruction, so temporary interrupt blocking
594 * should be removed, if set.
596 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
597 if (interruptibility & 3)
598 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
599 interruptibility & ~3);
600 vcpu->interrupt_window_open = 1;
603 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
605 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
606 vmcs_readl(GUEST_RIP));
607 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
608 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
609 GP_VECTOR |
610 INTR_TYPE_EXCEPTION |
611 INTR_INFO_DELIEVER_CODE_MASK |
612 INTR_INFO_VALID_MASK);
615 static void vmx_inject_ud(struct kvm_vcpu *vcpu)
617 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
618 UD_VECTOR |
619 INTR_TYPE_EXCEPTION |
620 INTR_INFO_VALID_MASK);
624 * Swap MSR entry in host/guest MSR entry array.
626 #ifdef CONFIG_X86_64
627 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
629 struct kvm_msr_entry tmp;
631 tmp = vmx->guest_msrs[to];
632 vmx->guest_msrs[to] = vmx->guest_msrs[from];
633 vmx->guest_msrs[from] = tmp;
634 tmp = vmx->host_msrs[to];
635 vmx->host_msrs[to] = vmx->host_msrs[from];
636 vmx->host_msrs[from] = tmp;
638 #endif
641 * Set up the vmcs to automatically save and restore system
642 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
643 * mode, as fiddling with msrs is very expensive.
645 static void setup_msrs(struct vcpu_vmx *vmx)
647 int save_nmsrs;
649 save_nmsrs = 0;
650 #ifdef CONFIG_X86_64
651 if (is_long_mode(&vmx->vcpu)) {
652 int index;
654 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
655 if (index >= 0)
656 move_msr_up(vmx, index, save_nmsrs++);
657 index = __find_msr_index(vmx, MSR_LSTAR);
658 if (index >= 0)
659 move_msr_up(vmx, index, save_nmsrs++);
660 index = __find_msr_index(vmx, MSR_CSTAR);
661 if (index >= 0)
662 move_msr_up(vmx, index, save_nmsrs++);
663 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
664 if (index >= 0)
665 move_msr_up(vmx, index, save_nmsrs++);
667 * MSR_K6_STAR is only needed on long mode guests, and only
668 * if efer.sce is enabled.
670 index = __find_msr_index(vmx, MSR_K6_STAR);
671 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
672 move_msr_up(vmx, index, save_nmsrs++);
674 #endif
675 vmx->save_nmsrs = save_nmsrs;
677 #ifdef CONFIG_X86_64
678 vmx->msr_offset_kernel_gs_base =
679 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
680 #endif
681 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
685 * reads and returns guest's timestamp counter "register"
686 * guest_tsc = host_tsc + tsc_offset -- 21.3
688 static u64 guest_read_tsc(void)
690 u64 host_tsc, tsc_offset;
692 rdtscll(host_tsc);
693 tsc_offset = vmcs_read64(TSC_OFFSET);
694 return host_tsc + tsc_offset;
698 * writes 'guest_tsc' into guest's timestamp counter "register"
699 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
701 static void guest_write_tsc(u64 guest_tsc)
703 u64 host_tsc;
705 rdtscll(host_tsc);
706 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
710 * Reads an msr value (of 'msr_index') into 'pdata'.
711 * Returns 0 on success, non-0 otherwise.
712 * Assumes vcpu_load() was already called.
714 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
716 u64 data;
717 struct kvm_msr_entry *msr;
719 if (!pdata) {
720 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
721 return -EINVAL;
724 switch (msr_index) {
725 #ifdef CONFIG_X86_64
726 case MSR_FS_BASE:
727 data = vmcs_readl(GUEST_FS_BASE);
728 break;
729 case MSR_GS_BASE:
730 data = vmcs_readl(GUEST_GS_BASE);
731 break;
732 case MSR_EFER:
733 return kvm_get_msr_common(vcpu, msr_index, pdata);
734 #endif
735 case MSR_IA32_TIME_STAMP_COUNTER:
736 data = guest_read_tsc();
737 break;
738 case MSR_IA32_SYSENTER_CS:
739 data = vmcs_read32(GUEST_SYSENTER_CS);
740 break;
741 case MSR_IA32_SYSENTER_EIP:
742 data = vmcs_readl(GUEST_SYSENTER_EIP);
743 break;
744 case MSR_IA32_SYSENTER_ESP:
745 data = vmcs_readl(GUEST_SYSENTER_ESP);
746 break;
747 default:
748 msr = find_msr_entry(to_vmx(vcpu), msr_index);
749 if (msr) {
750 data = msr->data;
751 break;
753 return kvm_get_msr_common(vcpu, msr_index, pdata);
756 *pdata = data;
757 return 0;
761 * Writes msr value into into the appropriate "register".
762 * Returns 0 on success, non-0 otherwise.
763 * Assumes vcpu_load() was already called.
765 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
767 struct vcpu_vmx *vmx = to_vmx(vcpu);
768 struct kvm_msr_entry *msr;
769 int ret = 0;
771 switch (msr_index) {
772 #ifdef CONFIG_X86_64
773 case MSR_EFER:
774 ret = kvm_set_msr_common(vcpu, msr_index, data);
775 if (vmx->host_state.loaded) {
776 reload_host_efer(vmx);
777 load_transition_efer(vmx);
779 break;
780 case MSR_FS_BASE:
781 vmcs_writel(GUEST_FS_BASE, data);
782 break;
783 case MSR_GS_BASE:
784 vmcs_writel(GUEST_GS_BASE, data);
785 break;
786 #endif
787 case MSR_IA32_SYSENTER_CS:
788 vmcs_write32(GUEST_SYSENTER_CS, data);
789 break;
790 case MSR_IA32_SYSENTER_EIP:
791 vmcs_writel(GUEST_SYSENTER_EIP, data);
792 break;
793 case MSR_IA32_SYSENTER_ESP:
794 vmcs_writel(GUEST_SYSENTER_ESP, data);
795 break;
796 case MSR_IA32_TIME_STAMP_COUNTER:
797 guest_write_tsc(data);
798 break;
799 default:
800 msr = find_msr_entry(vmx, msr_index);
801 if (msr) {
802 msr->data = data;
803 if (vmx->host_state.loaded)
804 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
805 break;
807 ret = kvm_set_msr_common(vcpu, msr_index, data);
810 return ret;
814 * Sync the rsp and rip registers into the vcpu structure. This allows
815 * registers to be accessed by indexing vcpu->regs.
817 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
819 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
820 vcpu->rip = vmcs_readl(GUEST_RIP);
824 * Syncs rsp and rip back into the vmcs. Should be called after possible
825 * modification.
827 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
829 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
830 vmcs_writel(GUEST_RIP, vcpu->rip);
833 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
835 unsigned long dr7 = 0x400;
836 int old_singlestep;
838 old_singlestep = vcpu->guest_debug.singlestep;
840 vcpu->guest_debug.enabled = dbg->enabled;
841 if (vcpu->guest_debug.enabled) {
842 int i;
844 dr7 |= 0x200; /* exact */
845 for (i = 0; i < 4; ++i) {
846 if (!dbg->breakpoints[i].enabled)
847 continue;
848 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
849 dr7 |= 2 << (i*2); /* global enable */
850 dr7 |= 0 << (i*4+16); /* execution breakpoint */
853 vcpu->guest_debug.singlestep = dbg->singlestep;
854 } else
855 vcpu->guest_debug.singlestep = 0;
857 if (old_singlestep && !vcpu->guest_debug.singlestep) {
858 unsigned long flags;
860 flags = vmcs_readl(GUEST_RFLAGS);
861 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
862 vmcs_writel(GUEST_RFLAGS, flags);
865 update_exception_bitmap(vcpu);
866 vmcs_writel(GUEST_DR7, dr7);
868 return 0;
871 static int vmx_get_irq(struct kvm_vcpu *vcpu)
873 struct vcpu_vmx *vmx = to_vmx(vcpu);
874 u32 idtv_info_field;
876 idtv_info_field = vmx->idt_vectoring_info;
877 if (idtv_info_field & INTR_INFO_VALID_MASK) {
878 if (is_external_interrupt(idtv_info_field))
879 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
880 else
881 printk(KERN_DEBUG "pending exception: not handled yet\n");
883 return -1;
886 static __init int cpu_has_kvm_support(void)
888 unsigned long ecx = cpuid_ecx(1);
889 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
892 static __init int vmx_disabled_by_bios(void)
894 u64 msr;
896 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
897 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
898 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
899 == MSR_IA32_FEATURE_CONTROL_LOCKED;
900 /* locked but not enabled */
903 static void hardware_enable(void *garbage)
905 int cpu = raw_smp_processor_id();
906 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
907 u64 old;
909 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
910 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
911 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
912 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
913 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
914 /* enable and lock */
915 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
916 MSR_IA32_FEATURE_CONTROL_LOCKED |
917 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
918 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
919 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
920 : "memory", "cc");
923 static void hardware_disable(void *garbage)
925 asm volatile (ASM_VMX_VMXOFF : : : "cc");
928 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
929 u32 msr, u32 *result)
931 u32 vmx_msr_low, vmx_msr_high;
932 u32 ctl = ctl_min | ctl_opt;
934 rdmsr(msr, vmx_msr_low, vmx_msr_high);
936 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
937 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
939 /* Ensure minimum (required) set of control bits are supported. */
940 if (ctl_min & ~ctl)
941 return -EIO;
943 *result = ctl;
944 return 0;
947 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
949 u32 vmx_msr_low, vmx_msr_high;
950 u32 min, opt;
951 u32 _pin_based_exec_control = 0;
952 u32 _cpu_based_exec_control = 0;
953 u32 _cpu_based_2nd_exec_control = 0;
954 u32 _vmexit_control = 0;
955 u32 _vmentry_control = 0;
957 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
958 opt = 0;
959 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
960 &_pin_based_exec_control) < 0)
961 return -EIO;
963 min = CPU_BASED_HLT_EXITING |
964 #ifdef CONFIG_X86_64
965 CPU_BASED_CR8_LOAD_EXITING |
966 CPU_BASED_CR8_STORE_EXITING |
967 #endif
968 CPU_BASED_USE_IO_BITMAPS |
969 CPU_BASED_MOV_DR_EXITING |
970 CPU_BASED_USE_TSC_OFFSETING;
971 opt = CPU_BASED_TPR_SHADOW |
972 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
973 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
974 &_cpu_based_exec_control) < 0)
975 return -EIO;
976 #ifdef CONFIG_X86_64
977 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
978 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
979 ~CPU_BASED_CR8_STORE_EXITING;
980 #endif
981 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
982 min = 0;
983 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
984 SECONDARY_EXEC_WBINVD_EXITING;
985 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
986 &_cpu_based_2nd_exec_control) < 0)
987 return -EIO;
989 #ifndef CONFIG_X86_64
990 if (!(_cpu_based_2nd_exec_control &
991 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
992 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
993 #endif
995 min = 0;
996 #ifdef CONFIG_X86_64
997 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
998 #endif
999 opt = 0;
1000 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1001 &_vmexit_control) < 0)
1002 return -EIO;
1004 min = opt = 0;
1005 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1006 &_vmentry_control) < 0)
1007 return -EIO;
1009 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1011 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1012 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1013 return -EIO;
1015 #ifdef CONFIG_X86_64
1016 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1017 if (vmx_msr_high & (1u<<16))
1018 return -EIO;
1019 #endif
1021 /* Require Write-Back (WB) memory type for VMCS accesses. */
1022 if (((vmx_msr_high >> 18) & 15) != 6)
1023 return -EIO;
1025 vmcs_conf->size = vmx_msr_high & 0x1fff;
1026 vmcs_conf->order = get_order(vmcs_config.size);
1027 vmcs_conf->revision_id = vmx_msr_low;
1029 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1030 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1031 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1032 vmcs_conf->vmexit_ctrl = _vmexit_control;
1033 vmcs_conf->vmentry_ctrl = _vmentry_control;
1035 return 0;
1038 static struct vmcs *alloc_vmcs_cpu(int cpu)
1040 int node = cpu_to_node(cpu);
1041 struct page *pages;
1042 struct vmcs *vmcs;
1044 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1045 if (!pages)
1046 return NULL;
1047 vmcs = page_address(pages);
1048 memset(vmcs, 0, vmcs_config.size);
1049 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1050 return vmcs;
1053 static struct vmcs *alloc_vmcs(void)
1055 return alloc_vmcs_cpu(raw_smp_processor_id());
1058 static void free_vmcs(struct vmcs *vmcs)
1060 free_pages((unsigned long)vmcs, vmcs_config.order);
1063 static void free_kvm_area(void)
1065 int cpu;
1067 for_each_online_cpu(cpu)
1068 free_vmcs(per_cpu(vmxarea, cpu));
1071 static __init int alloc_kvm_area(void)
1073 int cpu;
1075 for_each_online_cpu(cpu) {
1076 struct vmcs *vmcs;
1078 vmcs = alloc_vmcs_cpu(cpu);
1079 if (!vmcs) {
1080 free_kvm_area();
1081 return -ENOMEM;
1084 per_cpu(vmxarea, cpu) = vmcs;
1086 return 0;
1089 static __init int hardware_setup(void)
1091 if (setup_vmcs_config(&vmcs_config) < 0)
1092 return -EIO;
1093 return alloc_kvm_area();
1096 static __exit void hardware_unsetup(void)
1098 free_kvm_area();
1101 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1103 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1105 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1106 vmcs_write16(sf->selector, save->selector);
1107 vmcs_writel(sf->base, save->base);
1108 vmcs_write32(sf->limit, save->limit);
1109 vmcs_write32(sf->ar_bytes, save->ar);
1110 } else {
1111 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1112 << AR_DPL_SHIFT;
1113 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1117 static void enter_pmode(struct kvm_vcpu *vcpu)
1119 unsigned long flags;
1121 vcpu->rmode.active = 0;
1123 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1124 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1125 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1127 flags = vmcs_readl(GUEST_RFLAGS);
1128 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1129 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1130 vmcs_writel(GUEST_RFLAGS, flags);
1132 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1133 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1135 update_exception_bitmap(vcpu);
1137 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1138 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1139 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1140 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1142 vmcs_write16(GUEST_SS_SELECTOR, 0);
1143 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1145 vmcs_write16(GUEST_CS_SELECTOR,
1146 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1147 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1150 static gva_t rmode_tss_base(struct kvm *kvm)
1152 if (!kvm->tss_addr) {
1153 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1154 kvm->memslots[0].npages - 3;
1155 return base_gfn << PAGE_SHIFT;
1157 return kvm->tss_addr;
1160 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1162 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1164 save->selector = vmcs_read16(sf->selector);
1165 save->base = vmcs_readl(sf->base);
1166 save->limit = vmcs_read32(sf->limit);
1167 save->ar = vmcs_read32(sf->ar_bytes);
1168 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1169 vmcs_write32(sf->limit, 0xffff);
1170 vmcs_write32(sf->ar_bytes, 0xf3);
1173 static void enter_rmode(struct kvm_vcpu *vcpu)
1175 unsigned long flags;
1177 vcpu->rmode.active = 1;
1179 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1180 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1182 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1183 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1185 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1186 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1188 flags = vmcs_readl(GUEST_RFLAGS);
1189 vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1191 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1193 vmcs_writel(GUEST_RFLAGS, flags);
1194 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1195 update_exception_bitmap(vcpu);
1197 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1198 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1199 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1201 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1202 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1203 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1204 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1205 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1207 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1208 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1209 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1210 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1212 kvm_mmu_reset_context(vcpu);
1213 init_rmode_tss(vcpu->kvm);
1216 #ifdef CONFIG_X86_64
1218 static void enter_lmode(struct kvm_vcpu *vcpu)
1220 u32 guest_tr_ar;
1222 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1223 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1224 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1225 __FUNCTION__);
1226 vmcs_write32(GUEST_TR_AR_BYTES,
1227 (guest_tr_ar & ~AR_TYPE_MASK)
1228 | AR_TYPE_BUSY_64_TSS);
1231 vcpu->shadow_efer |= EFER_LMA;
1233 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1234 vmcs_write32(VM_ENTRY_CONTROLS,
1235 vmcs_read32(VM_ENTRY_CONTROLS)
1236 | VM_ENTRY_IA32E_MODE);
1239 static void exit_lmode(struct kvm_vcpu *vcpu)
1241 vcpu->shadow_efer &= ~EFER_LMA;
1243 vmcs_write32(VM_ENTRY_CONTROLS,
1244 vmcs_read32(VM_ENTRY_CONTROLS)
1245 & ~VM_ENTRY_IA32E_MODE);
1248 #endif
1250 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1252 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1253 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1256 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1258 vmx_fpu_deactivate(vcpu);
1260 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1261 enter_pmode(vcpu);
1263 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1264 enter_rmode(vcpu);
1266 #ifdef CONFIG_X86_64
1267 if (vcpu->shadow_efer & EFER_LME) {
1268 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1269 enter_lmode(vcpu);
1270 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1271 exit_lmode(vcpu);
1273 #endif
1275 vmcs_writel(CR0_READ_SHADOW, cr0);
1276 vmcs_writel(GUEST_CR0,
1277 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1278 vcpu->cr0 = cr0;
1280 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1281 vmx_fpu_activate(vcpu);
1284 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1286 vmcs_writel(GUEST_CR3, cr3);
1287 if (vcpu->cr0 & X86_CR0_PE)
1288 vmx_fpu_deactivate(vcpu);
1291 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1293 vmcs_writel(CR4_READ_SHADOW, cr4);
1294 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1295 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1296 vcpu->cr4 = cr4;
1299 #ifdef CONFIG_X86_64
1301 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1303 struct vcpu_vmx *vmx = to_vmx(vcpu);
1304 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1306 vcpu->shadow_efer = efer;
1307 if (efer & EFER_LMA) {
1308 vmcs_write32(VM_ENTRY_CONTROLS,
1309 vmcs_read32(VM_ENTRY_CONTROLS) |
1310 VM_ENTRY_IA32E_MODE);
1311 msr->data = efer;
1313 } else {
1314 vmcs_write32(VM_ENTRY_CONTROLS,
1315 vmcs_read32(VM_ENTRY_CONTROLS) &
1316 ~VM_ENTRY_IA32E_MODE);
1318 msr->data = efer & ~EFER_LME;
1320 setup_msrs(vmx);
1323 #endif
1325 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1327 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1329 return vmcs_readl(sf->base);
1332 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1333 struct kvm_segment *var, int seg)
1335 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1336 u32 ar;
1338 var->base = vmcs_readl(sf->base);
1339 var->limit = vmcs_read32(sf->limit);
1340 var->selector = vmcs_read16(sf->selector);
1341 ar = vmcs_read32(sf->ar_bytes);
1342 if (ar & AR_UNUSABLE_MASK)
1343 ar = 0;
1344 var->type = ar & 15;
1345 var->s = (ar >> 4) & 1;
1346 var->dpl = (ar >> 5) & 3;
1347 var->present = (ar >> 7) & 1;
1348 var->avl = (ar >> 12) & 1;
1349 var->l = (ar >> 13) & 1;
1350 var->db = (ar >> 14) & 1;
1351 var->g = (ar >> 15) & 1;
1352 var->unusable = (ar >> 16) & 1;
1355 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1357 u32 ar;
1359 if (var->unusable)
1360 ar = 1 << 16;
1361 else {
1362 ar = var->type & 15;
1363 ar |= (var->s & 1) << 4;
1364 ar |= (var->dpl & 3) << 5;
1365 ar |= (var->present & 1) << 7;
1366 ar |= (var->avl & 1) << 12;
1367 ar |= (var->l & 1) << 13;
1368 ar |= (var->db & 1) << 14;
1369 ar |= (var->g & 1) << 15;
1371 if (ar == 0) /* a 0 value means unusable */
1372 ar = AR_UNUSABLE_MASK;
1374 return ar;
1377 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1378 struct kvm_segment *var, int seg)
1380 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1381 u32 ar;
1383 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1384 vcpu->rmode.tr.selector = var->selector;
1385 vcpu->rmode.tr.base = var->base;
1386 vcpu->rmode.tr.limit = var->limit;
1387 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1388 return;
1390 vmcs_writel(sf->base, var->base);
1391 vmcs_write32(sf->limit, var->limit);
1392 vmcs_write16(sf->selector, var->selector);
1393 if (vcpu->rmode.active && var->s) {
1395 * Hack real-mode segments into vm86 compatibility.
1397 if (var->base == 0xffff0000 && var->selector == 0xf000)
1398 vmcs_writel(sf->base, 0xf0000);
1399 ar = 0xf3;
1400 } else
1401 ar = vmx_segment_access_rights(var);
1402 vmcs_write32(sf->ar_bytes, ar);
1405 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1407 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1409 *db = (ar >> 14) & 1;
1410 *l = (ar >> 13) & 1;
1413 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1415 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1416 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1419 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1421 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1422 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1425 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1427 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1428 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1431 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1433 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1434 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1437 static int init_rmode_tss(struct kvm *kvm)
1439 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1440 u16 data = 0;
1441 int r;
1443 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1444 if (r < 0)
1445 return 0;
1446 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1447 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1448 if (r < 0)
1449 return 0;
1450 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1451 if (r < 0)
1452 return 0;
1453 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1454 if (r < 0)
1455 return 0;
1456 data = ~0;
1457 r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1458 sizeof(u8));
1459 if (r < 0)
1460 return 0;
1461 return 1;
1464 static void seg_setup(int seg)
1466 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1468 vmcs_write16(sf->selector, 0);
1469 vmcs_writel(sf->base, 0);
1470 vmcs_write32(sf->limit, 0xffff);
1471 vmcs_write32(sf->ar_bytes, 0x93);
1474 static int alloc_apic_access_page(struct kvm *kvm)
1476 struct kvm_userspace_memory_region kvm_userspace_mem;
1477 int r = 0;
1479 mutex_lock(&kvm->lock);
1480 if (kvm->apic_access_page)
1481 goto out;
1482 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1483 kvm_userspace_mem.flags = 0;
1484 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1485 kvm_userspace_mem.memory_size = PAGE_SIZE;
1486 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1487 if (r)
1488 goto out;
1489 kvm->apic_access_page = gfn_to_page(kvm, 0xfee00);
1490 out:
1491 mutex_unlock(&kvm->lock);
1492 return r;
1496 * Sets up the vmcs for emulated real mode.
1498 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1500 u32 host_sysenter_cs;
1501 u32 junk;
1502 unsigned long a;
1503 struct descriptor_table dt;
1504 int i;
1505 unsigned long kvm_vmx_return;
1506 u32 exec_control;
1508 /* I/O */
1509 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1510 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1512 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1514 /* Control */
1515 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1516 vmcs_config.pin_based_exec_ctrl);
1518 exec_control = vmcs_config.cpu_based_exec_ctrl;
1519 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1520 exec_control &= ~CPU_BASED_TPR_SHADOW;
1521 #ifdef CONFIG_X86_64
1522 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1523 CPU_BASED_CR8_LOAD_EXITING;
1524 #endif
1526 if (!vm_need_secondary_exec_ctrls(vmx->vcpu.kvm))
1527 exec_control &= ~CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1528 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1530 if (vm_need_secondary_exec_ctrls(vmx->vcpu.kvm))
1531 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
1532 vmcs_config.cpu_based_2nd_exec_ctrl);
1534 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1535 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1536 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1538 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1539 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1540 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1542 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1543 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1544 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1545 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1546 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1547 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1548 #ifdef CONFIG_X86_64
1549 rdmsrl(MSR_FS_BASE, a);
1550 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1551 rdmsrl(MSR_GS_BASE, a);
1552 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1553 #else
1554 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1555 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1556 #endif
1558 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1560 get_idt(&dt);
1561 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1563 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1564 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1565 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1566 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1567 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1569 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1570 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1571 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1572 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1573 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1574 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1576 for (i = 0; i < NR_VMX_MSR; ++i) {
1577 u32 index = vmx_msr_index[i];
1578 u32 data_low, data_high;
1579 u64 data;
1580 int j = vmx->nmsrs;
1582 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1583 continue;
1584 if (wrmsr_safe(index, data_low, data_high) < 0)
1585 continue;
1586 data = data_low | ((u64)data_high << 32);
1587 vmx->host_msrs[j].index = index;
1588 vmx->host_msrs[j].reserved = 0;
1589 vmx->host_msrs[j].data = data;
1590 vmx->guest_msrs[j] = vmx->host_msrs[j];
1591 ++vmx->nmsrs;
1594 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1596 /* 22.2.1, 20.8.1 */
1597 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1599 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1600 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1602 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1603 if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
1604 return -ENOMEM;
1606 return 0;
1609 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1611 struct vcpu_vmx *vmx = to_vmx(vcpu);
1612 u64 msr;
1613 int ret;
1615 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1616 ret = -ENOMEM;
1617 goto out;
1620 vmx->vcpu.rmode.active = 0;
1622 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1623 set_cr8(&vmx->vcpu, 0);
1624 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1625 if (vmx->vcpu.vcpu_id == 0)
1626 msr |= MSR_IA32_APICBASE_BSP;
1627 kvm_set_apic_base(&vmx->vcpu, msr);
1629 fx_init(&vmx->vcpu);
1632 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1633 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1635 if (vmx->vcpu.vcpu_id == 0) {
1636 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1637 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1638 } else {
1639 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1640 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1642 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1643 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1645 seg_setup(VCPU_SREG_DS);
1646 seg_setup(VCPU_SREG_ES);
1647 seg_setup(VCPU_SREG_FS);
1648 seg_setup(VCPU_SREG_GS);
1649 seg_setup(VCPU_SREG_SS);
1651 vmcs_write16(GUEST_TR_SELECTOR, 0);
1652 vmcs_writel(GUEST_TR_BASE, 0);
1653 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1654 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1656 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1657 vmcs_writel(GUEST_LDTR_BASE, 0);
1658 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1659 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1661 vmcs_write32(GUEST_SYSENTER_CS, 0);
1662 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1663 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1665 vmcs_writel(GUEST_RFLAGS, 0x02);
1666 if (vmx->vcpu.vcpu_id == 0)
1667 vmcs_writel(GUEST_RIP, 0xfff0);
1668 else
1669 vmcs_writel(GUEST_RIP, 0);
1670 vmcs_writel(GUEST_RSP, 0);
1672 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1673 vmcs_writel(GUEST_DR7, 0x400);
1675 vmcs_writel(GUEST_GDTR_BASE, 0);
1676 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1678 vmcs_writel(GUEST_IDTR_BASE, 0);
1679 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1681 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1682 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1683 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1685 guest_write_tsc(0);
1687 /* Special registers */
1688 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1690 setup_msrs(vmx);
1692 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1694 if (cpu_has_vmx_tpr_shadow()) {
1695 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1696 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1697 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1698 page_to_phys(vmx->vcpu.apic->regs_page));
1699 vmcs_write32(TPR_THRESHOLD, 0);
1702 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1703 vmcs_write64(APIC_ACCESS_ADDR,
1704 page_to_phys(vmx->vcpu.kvm->apic_access_page));
1706 vmx->vcpu.cr0 = 0x60000010;
1707 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); /* enter rmode */
1708 vmx_set_cr4(&vmx->vcpu, 0);
1709 #ifdef CONFIG_X86_64
1710 vmx_set_efer(&vmx->vcpu, 0);
1711 #endif
1712 vmx_fpu_activate(&vmx->vcpu);
1713 update_exception_bitmap(&vmx->vcpu);
1715 return 0;
1717 out:
1718 return ret;
1721 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1723 struct vcpu_vmx *vmx = to_vmx(vcpu);
1725 if (vcpu->rmode.active) {
1726 vmx->rmode.irq.pending = true;
1727 vmx->rmode.irq.vector = irq;
1728 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1729 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1730 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1731 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1732 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1733 return;
1735 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1736 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1739 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1741 int word_index = __ffs(vcpu->irq_summary);
1742 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1743 int irq = word_index * BITS_PER_LONG + bit_index;
1745 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1746 if (!vcpu->irq_pending[word_index])
1747 clear_bit(word_index, &vcpu->irq_summary);
1748 vmx_inject_irq(vcpu, irq);
1752 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1753 struct kvm_run *kvm_run)
1755 u32 cpu_based_vm_exec_control;
1757 vcpu->interrupt_window_open =
1758 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1759 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1761 if (vcpu->interrupt_window_open &&
1762 vcpu->irq_summary &&
1763 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1765 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1767 kvm_do_inject_irq(vcpu);
1769 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1770 if (!vcpu->interrupt_window_open &&
1771 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1773 * Interrupts blocked. Wait for unblock.
1775 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1776 else
1777 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1778 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1781 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1783 int ret;
1784 struct kvm_userspace_memory_region tss_mem = {
1785 .slot = 8,
1786 .guest_phys_addr = addr,
1787 .memory_size = PAGE_SIZE * 3,
1788 .flags = 0,
1791 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1792 if (ret)
1793 return ret;
1794 kvm->tss_addr = addr;
1795 return 0;
1798 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1800 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1802 set_debugreg(dbg->bp[0], 0);
1803 set_debugreg(dbg->bp[1], 1);
1804 set_debugreg(dbg->bp[2], 2);
1805 set_debugreg(dbg->bp[3], 3);
1807 if (dbg->singlestep) {
1808 unsigned long flags;
1810 flags = vmcs_readl(GUEST_RFLAGS);
1811 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1812 vmcs_writel(GUEST_RFLAGS, flags);
1816 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1817 int vec, u32 err_code)
1819 if (!vcpu->rmode.active)
1820 return 0;
1823 * Instruction with address size override prefix opcode 0x67
1824 * Cause the #SS fault with 0 error code in VM86 mode.
1826 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1827 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1828 return 1;
1829 return 0;
1832 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1834 struct vcpu_vmx *vmx = to_vmx(vcpu);
1835 u32 intr_info, error_code;
1836 unsigned long cr2, rip;
1837 u32 vect_info;
1838 enum emulation_result er;
1840 vect_info = vmx->idt_vectoring_info;
1841 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1843 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1844 !is_page_fault(intr_info))
1845 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1846 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1848 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1849 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1850 set_bit(irq, vcpu->irq_pending);
1851 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1854 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1855 return 1; /* already handled by vmx_vcpu_run() */
1857 if (is_no_device(intr_info)) {
1858 vmx_fpu_activate(vcpu);
1859 return 1;
1862 if (is_invalid_opcode(intr_info)) {
1863 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
1864 if (er != EMULATE_DONE)
1865 vmx_inject_ud(vcpu);
1867 return 1;
1870 error_code = 0;
1871 rip = vmcs_readl(GUEST_RIP);
1872 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1873 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1874 if (is_page_fault(intr_info)) {
1875 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1876 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1879 if (vcpu->rmode.active &&
1880 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1881 error_code)) {
1882 if (vcpu->halt_request) {
1883 vcpu->halt_request = 0;
1884 return kvm_emulate_halt(vcpu);
1886 return 1;
1889 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1890 (INTR_TYPE_EXCEPTION | 1)) {
1891 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1892 return 0;
1894 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1895 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1896 kvm_run->ex.error_code = error_code;
1897 return 0;
1900 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1901 struct kvm_run *kvm_run)
1903 ++vcpu->stat.irq_exits;
1904 return 1;
1907 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1909 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1910 return 0;
1913 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1915 unsigned long exit_qualification;
1916 int size, down, in, string, rep;
1917 unsigned port;
1919 ++vcpu->stat.io_exits;
1920 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1921 string = (exit_qualification & 16) != 0;
1923 if (string) {
1924 if (emulate_instruction(vcpu,
1925 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1926 return 0;
1927 return 1;
1930 size = (exit_qualification & 7) + 1;
1931 in = (exit_qualification & 8) != 0;
1932 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1933 rep = (exit_qualification & 32) != 0;
1934 port = exit_qualification >> 16;
1936 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1939 static void
1940 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1943 * Patch in the VMCALL instruction:
1945 hypercall[0] = 0x0f;
1946 hypercall[1] = 0x01;
1947 hypercall[2] = 0xc1;
1950 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1952 unsigned long exit_qualification;
1953 int cr;
1954 int reg;
1956 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1957 cr = exit_qualification & 15;
1958 reg = (exit_qualification >> 8) & 15;
1959 switch ((exit_qualification >> 4) & 3) {
1960 case 0: /* mov to cr */
1961 switch (cr) {
1962 case 0:
1963 vcpu_load_rsp_rip(vcpu);
1964 set_cr0(vcpu, vcpu->regs[reg]);
1965 skip_emulated_instruction(vcpu);
1966 return 1;
1967 case 3:
1968 vcpu_load_rsp_rip(vcpu);
1969 set_cr3(vcpu, vcpu->regs[reg]);
1970 skip_emulated_instruction(vcpu);
1971 return 1;
1972 case 4:
1973 vcpu_load_rsp_rip(vcpu);
1974 set_cr4(vcpu, vcpu->regs[reg]);
1975 skip_emulated_instruction(vcpu);
1976 return 1;
1977 case 8:
1978 vcpu_load_rsp_rip(vcpu);
1979 set_cr8(vcpu, vcpu->regs[reg]);
1980 skip_emulated_instruction(vcpu);
1981 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1982 return 0;
1984 break;
1985 case 2: /* clts */
1986 vcpu_load_rsp_rip(vcpu);
1987 vmx_fpu_deactivate(vcpu);
1988 vcpu->cr0 &= ~X86_CR0_TS;
1989 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1990 vmx_fpu_activate(vcpu);
1991 skip_emulated_instruction(vcpu);
1992 return 1;
1993 case 1: /*mov from cr*/
1994 switch (cr) {
1995 case 3:
1996 vcpu_load_rsp_rip(vcpu);
1997 vcpu->regs[reg] = vcpu->cr3;
1998 vcpu_put_rsp_rip(vcpu);
1999 skip_emulated_instruction(vcpu);
2000 return 1;
2001 case 8:
2002 vcpu_load_rsp_rip(vcpu);
2003 vcpu->regs[reg] = get_cr8(vcpu);
2004 vcpu_put_rsp_rip(vcpu);
2005 skip_emulated_instruction(vcpu);
2006 return 1;
2008 break;
2009 case 3: /* lmsw */
2010 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2012 skip_emulated_instruction(vcpu);
2013 return 1;
2014 default:
2015 break;
2017 kvm_run->exit_reason = 0;
2018 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2019 (int)(exit_qualification >> 4) & 3, cr);
2020 return 0;
2023 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2025 unsigned long exit_qualification;
2026 unsigned long val;
2027 int dr, reg;
2030 * FIXME: this code assumes the host is debugging the guest.
2031 * need to deal with guest debugging itself too.
2033 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2034 dr = exit_qualification & 7;
2035 reg = (exit_qualification >> 8) & 15;
2036 vcpu_load_rsp_rip(vcpu);
2037 if (exit_qualification & 16) {
2038 /* mov from dr */
2039 switch (dr) {
2040 case 6:
2041 val = 0xffff0ff0;
2042 break;
2043 case 7:
2044 val = 0x400;
2045 break;
2046 default:
2047 val = 0;
2049 vcpu->regs[reg] = val;
2050 } else {
2051 /* mov to dr */
2053 vcpu_put_rsp_rip(vcpu);
2054 skip_emulated_instruction(vcpu);
2055 return 1;
2058 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2060 kvm_emulate_cpuid(vcpu);
2061 return 1;
2064 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2066 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2067 u64 data;
2069 if (vmx_get_msr(vcpu, ecx, &data)) {
2070 vmx_inject_gp(vcpu, 0);
2071 return 1;
2074 /* FIXME: handling of bits 32:63 of rax, rdx */
2075 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2076 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2077 skip_emulated_instruction(vcpu);
2078 return 1;
2081 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2083 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2084 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2085 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2087 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2088 vmx_inject_gp(vcpu, 0);
2089 return 1;
2092 skip_emulated_instruction(vcpu);
2093 return 1;
2096 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2097 struct kvm_run *kvm_run)
2099 return 1;
2102 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2103 struct kvm_run *kvm_run)
2105 u32 cpu_based_vm_exec_control;
2107 /* clear pending irq */
2108 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2109 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2110 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2112 * If the user space waits to inject interrupts, exit as soon as
2113 * possible
2115 if (kvm_run->request_interrupt_window &&
2116 !vcpu->irq_summary) {
2117 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2118 ++vcpu->stat.irq_window_exits;
2119 return 0;
2121 return 1;
2124 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2126 skip_emulated_instruction(vcpu);
2127 return kvm_emulate_halt(vcpu);
2130 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2132 skip_emulated_instruction(vcpu);
2133 kvm_emulate_hypercall(vcpu);
2134 return 1;
2137 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2139 skip_emulated_instruction(vcpu);
2140 /* TODO: Add support for VT-d/pass-through device */
2141 return 1;
2144 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2146 u64 exit_qualification;
2147 enum emulation_result er;
2148 unsigned long offset;
2150 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2151 offset = exit_qualification & 0xffful;
2153 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2155 if (er != EMULATE_DONE) {
2156 printk(KERN_ERR
2157 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2158 offset);
2159 return -ENOTSUPP;
2161 return 1;
2165 * The exit handlers return 1 if the exit was handled fully and guest execution
2166 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2167 * to be done to userspace and return 0.
2169 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2170 struct kvm_run *kvm_run) = {
2171 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2172 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2173 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2174 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2175 [EXIT_REASON_CR_ACCESS] = handle_cr,
2176 [EXIT_REASON_DR_ACCESS] = handle_dr,
2177 [EXIT_REASON_CPUID] = handle_cpuid,
2178 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2179 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2180 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2181 [EXIT_REASON_HLT] = handle_halt,
2182 [EXIT_REASON_VMCALL] = handle_vmcall,
2183 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2184 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2185 [EXIT_REASON_WBINVD] = handle_wbinvd,
2188 static const int kvm_vmx_max_exit_handlers =
2189 ARRAY_SIZE(kvm_vmx_exit_handlers);
2192 * The guest has exited. See if we can fix it or if we need userspace
2193 * assistance.
2195 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2197 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2198 struct vcpu_vmx *vmx = to_vmx(vcpu);
2199 u32 vectoring_info = vmx->idt_vectoring_info;
2201 if (unlikely(vmx->fail)) {
2202 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2203 kvm_run->fail_entry.hardware_entry_failure_reason
2204 = vmcs_read32(VM_INSTRUCTION_ERROR);
2205 return 0;
2208 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2209 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2210 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2211 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2212 if (exit_reason < kvm_vmx_max_exit_handlers
2213 && kvm_vmx_exit_handlers[exit_reason])
2214 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2215 else {
2216 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2217 kvm_run->hw.hardware_exit_reason = exit_reason;
2219 return 0;
2222 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2226 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2228 int max_irr, tpr;
2230 if (!vm_need_tpr_shadow(vcpu->kvm))
2231 return;
2233 if (!kvm_lapic_enabled(vcpu) ||
2234 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2235 vmcs_write32(TPR_THRESHOLD, 0);
2236 return;
2239 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2240 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2243 static void enable_irq_window(struct kvm_vcpu *vcpu)
2245 u32 cpu_based_vm_exec_control;
2247 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2248 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2249 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2252 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2254 struct vcpu_vmx *vmx = to_vmx(vcpu);
2255 u32 idtv_info_field, intr_info_field;
2256 int has_ext_irq, interrupt_window_open;
2257 int vector;
2259 update_tpr_threshold(vcpu);
2261 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2262 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2263 idtv_info_field = vmx->idt_vectoring_info;
2264 if (intr_info_field & INTR_INFO_VALID_MASK) {
2265 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2266 /* TODO: fault when IDT_Vectoring */
2267 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2269 if (has_ext_irq)
2270 enable_irq_window(vcpu);
2271 return;
2273 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2274 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2275 == INTR_TYPE_EXT_INTR
2276 && vcpu->rmode.active) {
2277 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2279 vmx_inject_irq(vcpu, vect);
2280 if (unlikely(has_ext_irq))
2281 enable_irq_window(vcpu);
2282 return;
2285 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2286 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2287 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2289 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2290 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2291 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2292 if (unlikely(has_ext_irq))
2293 enable_irq_window(vcpu);
2294 return;
2296 if (!has_ext_irq)
2297 return;
2298 interrupt_window_open =
2299 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2300 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2301 if (interrupt_window_open) {
2302 vector = kvm_cpu_get_interrupt(vcpu);
2303 vmx_inject_irq(vcpu, vector);
2304 kvm_timer_intr_post(vcpu, vector);
2305 } else
2306 enable_irq_window(vcpu);
2310 * Failure to inject an interrupt should give us the information
2311 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2312 * when fetching the interrupt redirection bitmap in the real-mode
2313 * tss, this doesn't happen. So we do it ourselves.
2315 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2317 vmx->rmode.irq.pending = 0;
2318 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2319 return;
2320 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2321 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2322 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2323 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2324 return;
2326 vmx->idt_vectoring_info =
2327 VECTORING_INFO_VALID_MASK
2328 | INTR_TYPE_EXT_INTR
2329 | vmx->rmode.irq.vector;
2332 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2334 struct vcpu_vmx *vmx = to_vmx(vcpu);
2335 u32 intr_info;
2338 * Loading guest fpu may have cleared host cr0.ts
2340 vmcs_writel(HOST_CR0, read_cr0());
2342 asm(
2343 /* Store host registers */
2344 #ifdef CONFIG_X86_64
2345 "push %%rdx; push %%rbp;"
2346 "push %%rcx \n\t"
2347 #else
2348 "push %%edx; push %%ebp;"
2349 "push %%ecx \n\t"
2350 #endif
2351 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2352 /* Check if vmlaunch of vmresume is needed */
2353 "cmpl $0, %c[launched](%0) \n\t"
2354 /* Load guest registers. Don't clobber flags. */
2355 #ifdef CONFIG_X86_64
2356 "mov %c[cr2](%0), %%rax \n\t"
2357 "mov %%rax, %%cr2 \n\t"
2358 "mov %c[rax](%0), %%rax \n\t"
2359 "mov %c[rbx](%0), %%rbx \n\t"
2360 "mov %c[rdx](%0), %%rdx \n\t"
2361 "mov %c[rsi](%0), %%rsi \n\t"
2362 "mov %c[rdi](%0), %%rdi \n\t"
2363 "mov %c[rbp](%0), %%rbp \n\t"
2364 "mov %c[r8](%0), %%r8 \n\t"
2365 "mov %c[r9](%0), %%r9 \n\t"
2366 "mov %c[r10](%0), %%r10 \n\t"
2367 "mov %c[r11](%0), %%r11 \n\t"
2368 "mov %c[r12](%0), %%r12 \n\t"
2369 "mov %c[r13](%0), %%r13 \n\t"
2370 "mov %c[r14](%0), %%r14 \n\t"
2371 "mov %c[r15](%0), %%r15 \n\t"
2372 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2373 #else
2374 "mov %c[cr2](%0), %%eax \n\t"
2375 "mov %%eax, %%cr2 \n\t"
2376 "mov %c[rax](%0), %%eax \n\t"
2377 "mov %c[rbx](%0), %%ebx \n\t"
2378 "mov %c[rdx](%0), %%edx \n\t"
2379 "mov %c[rsi](%0), %%esi \n\t"
2380 "mov %c[rdi](%0), %%edi \n\t"
2381 "mov %c[rbp](%0), %%ebp \n\t"
2382 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2383 #endif
2384 /* Enter guest mode */
2385 "jne .Llaunched \n\t"
2386 ASM_VMX_VMLAUNCH "\n\t"
2387 "jmp .Lkvm_vmx_return \n\t"
2388 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2389 ".Lkvm_vmx_return: "
2390 /* Save guest registers, load host registers, keep flags */
2391 #ifdef CONFIG_X86_64
2392 "xchg %0, (%%rsp) \n\t"
2393 "mov %%rax, %c[rax](%0) \n\t"
2394 "mov %%rbx, %c[rbx](%0) \n\t"
2395 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2396 "mov %%rdx, %c[rdx](%0) \n\t"
2397 "mov %%rsi, %c[rsi](%0) \n\t"
2398 "mov %%rdi, %c[rdi](%0) \n\t"
2399 "mov %%rbp, %c[rbp](%0) \n\t"
2400 "mov %%r8, %c[r8](%0) \n\t"
2401 "mov %%r9, %c[r9](%0) \n\t"
2402 "mov %%r10, %c[r10](%0) \n\t"
2403 "mov %%r11, %c[r11](%0) \n\t"
2404 "mov %%r12, %c[r12](%0) \n\t"
2405 "mov %%r13, %c[r13](%0) \n\t"
2406 "mov %%r14, %c[r14](%0) \n\t"
2407 "mov %%r15, %c[r15](%0) \n\t"
2408 "mov %%cr2, %%rax \n\t"
2409 "mov %%rax, %c[cr2](%0) \n\t"
2411 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2412 #else
2413 "xchg %0, (%%esp) \n\t"
2414 "mov %%eax, %c[rax](%0) \n\t"
2415 "mov %%ebx, %c[rbx](%0) \n\t"
2416 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2417 "mov %%edx, %c[rdx](%0) \n\t"
2418 "mov %%esi, %c[rsi](%0) \n\t"
2419 "mov %%edi, %c[rdi](%0) \n\t"
2420 "mov %%ebp, %c[rbp](%0) \n\t"
2421 "mov %%cr2, %%eax \n\t"
2422 "mov %%eax, %c[cr2](%0) \n\t"
2424 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2425 #endif
2426 "setbe %c[fail](%0) \n\t"
2427 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2428 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2429 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2430 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RAX])),
2431 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBX])),
2432 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RCX])),
2433 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDX])),
2434 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RSI])),
2435 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDI])),
2436 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBP])),
2437 #ifdef CONFIG_X86_64
2438 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R8])),
2439 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R9])),
2440 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R10])),
2441 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R11])),
2442 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R12])),
2443 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R13])),
2444 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R14])),
2445 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R15])),
2446 #endif
2447 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.cr2))
2448 : "cc", "memory"
2449 #ifdef CONFIG_X86_64
2450 , "rbx", "rdi", "rsi"
2451 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2452 #else
2453 , "ebx", "edi", "rsi"
2454 #endif
2457 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2458 if (vmx->rmode.irq.pending)
2459 fixup_rmode_irq(vmx);
2461 vcpu->interrupt_window_open =
2462 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2464 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2465 vmx->launched = 1;
2467 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2469 /* We need to handle NMIs before interrupts are enabled */
2470 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2471 asm("int $2");
2474 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2475 unsigned long addr,
2476 u32 err_code)
2478 struct vcpu_vmx *vmx = to_vmx(vcpu);
2479 u32 vect_info = vmx->idt_vectoring_info;
2481 ++vcpu->stat.pf_guest;
2483 if (is_page_fault(vect_info)) {
2484 printk(KERN_DEBUG "inject_page_fault: "
2485 "double fault 0x%lx @ 0x%lx\n",
2486 addr, vmcs_readl(GUEST_RIP));
2487 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2488 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2489 DF_VECTOR |
2490 INTR_TYPE_EXCEPTION |
2491 INTR_INFO_DELIEVER_CODE_MASK |
2492 INTR_INFO_VALID_MASK);
2493 return;
2495 vcpu->cr2 = addr;
2496 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2497 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2498 PF_VECTOR |
2499 INTR_TYPE_EXCEPTION |
2500 INTR_INFO_DELIEVER_CODE_MASK |
2501 INTR_INFO_VALID_MASK);
2505 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2507 struct vcpu_vmx *vmx = to_vmx(vcpu);
2509 if (vmx->vmcs) {
2510 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2511 free_vmcs(vmx->vmcs);
2512 vmx->vmcs = NULL;
2516 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2518 struct vcpu_vmx *vmx = to_vmx(vcpu);
2520 vmx_free_vmcs(vcpu);
2521 kfree(vmx->host_msrs);
2522 kfree(vmx->guest_msrs);
2523 kvm_vcpu_uninit(vcpu);
2524 kmem_cache_free(kvm_vcpu_cache, vmx);
2527 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2529 int err;
2530 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2531 int cpu;
2533 if (!vmx)
2534 return ERR_PTR(-ENOMEM);
2536 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2537 if (err)
2538 goto free_vcpu;
2540 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2541 if (!vmx->guest_msrs) {
2542 err = -ENOMEM;
2543 goto uninit_vcpu;
2546 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2547 if (!vmx->host_msrs)
2548 goto free_guest_msrs;
2550 vmx->vmcs = alloc_vmcs();
2551 if (!vmx->vmcs)
2552 goto free_msrs;
2554 vmcs_clear(vmx->vmcs);
2556 cpu = get_cpu();
2557 vmx_vcpu_load(&vmx->vcpu, cpu);
2558 err = vmx_vcpu_setup(vmx);
2559 vmx_vcpu_put(&vmx->vcpu);
2560 put_cpu();
2561 if (err)
2562 goto free_vmcs;
2564 return &vmx->vcpu;
2566 free_vmcs:
2567 free_vmcs(vmx->vmcs);
2568 free_msrs:
2569 kfree(vmx->host_msrs);
2570 free_guest_msrs:
2571 kfree(vmx->guest_msrs);
2572 uninit_vcpu:
2573 kvm_vcpu_uninit(&vmx->vcpu);
2574 free_vcpu:
2575 kmem_cache_free(kvm_vcpu_cache, vmx);
2576 return ERR_PTR(err);
2579 static void __init vmx_check_processor_compat(void *rtn)
2581 struct vmcs_config vmcs_conf;
2583 *(int *)rtn = 0;
2584 if (setup_vmcs_config(&vmcs_conf) < 0)
2585 *(int *)rtn = -EIO;
2586 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2587 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2588 smp_processor_id());
2589 *(int *)rtn = -EIO;
2593 static struct kvm_x86_ops vmx_x86_ops = {
2594 .cpu_has_kvm_support = cpu_has_kvm_support,
2595 .disabled_by_bios = vmx_disabled_by_bios,
2596 .hardware_setup = hardware_setup,
2597 .hardware_unsetup = hardware_unsetup,
2598 .check_processor_compatibility = vmx_check_processor_compat,
2599 .hardware_enable = hardware_enable,
2600 .hardware_disable = hardware_disable,
2602 .vcpu_create = vmx_create_vcpu,
2603 .vcpu_free = vmx_free_vcpu,
2604 .vcpu_reset = vmx_vcpu_reset,
2606 .prepare_guest_switch = vmx_save_host_state,
2607 .vcpu_load = vmx_vcpu_load,
2608 .vcpu_put = vmx_vcpu_put,
2609 .vcpu_decache = vmx_vcpu_decache,
2611 .set_guest_debug = set_guest_debug,
2612 .guest_debug_pre = kvm_guest_debug_pre,
2613 .get_msr = vmx_get_msr,
2614 .set_msr = vmx_set_msr,
2615 .get_segment_base = vmx_get_segment_base,
2616 .get_segment = vmx_get_segment,
2617 .set_segment = vmx_set_segment,
2618 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2619 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2620 .set_cr0 = vmx_set_cr0,
2621 .set_cr3 = vmx_set_cr3,
2622 .set_cr4 = vmx_set_cr4,
2623 #ifdef CONFIG_X86_64
2624 .set_efer = vmx_set_efer,
2625 #endif
2626 .get_idt = vmx_get_idt,
2627 .set_idt = vmx_set_idt,
2628 .get_gdt = vmx_get_gdt,
2629 .set_gdt = vmx_set_gdt,
2630 .cache_regs = vcpu_load_rsp_rip,
2631 .decache_regs = vcpu_put_rsp_rip,
2632 .get_rflags = vmx_get_rflags,
2633 .set_rflags = vmx_set_rflags,
2635 .tlb_flush = vmx_flush_tlb,
2636 .inject_page_fault = vmx_inject_page_fault,
2638 .inject_gp = vmx_inject_gp,
2640 .run = vmx_vcpu_run,
2641 .handle_exit = kvm_handle_exit,
2642 .skip_emulated_instruction = skip_emulated_instruction,
2643 .patch_hypercall = vmx_patch_hypercall,
2644 .get_irq = vmx_get_irq,
2645 .set_irq = vmx_inject_irq,
2646 .inject_pending_irq = vmx_intr_assist,
2647 .inject_pending_vectors = do_interrupt_requests,
2649 .set_tss_addr = vmx_set_tss_addr,
2652 static int __init vmx_init(void)
2654 void *iova;
2655 int r;
2657 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2658 if (!vmx_io_bitmap_a)
2659 return -ENOMEM;
2661 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2662 if (!vmx_io_bitmap_b) {
2663 r = -ENOMEM;
2664 goto out;
2668 * Allow direct access to the PC debug port (it is often used for I/O
2669 * delays, but the vmexits simply slow things down).
2671 iova = kmap(vmx_io_bitmap_a);
2672 memset(iova, 0xff, PAGE_SIZE);
2673 clear_bit(0x80, iova);
2674 kunmap(vmx_io_bitmap_a);
2676 iova = kmap(vmx_io_bitmap_b);
2677 memset(iova, 0xff, PAGE_SIZE);
2678 kunmap(vmx_io_bitmap_b);
2680 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2681 if (r)
2682 goto out1;
2684 if (bypass_guest_pf)
2685 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2687 return 0;
2689 out1:
2690 __free_page(vmx_io_bitmap_b);
2691 out:
2692 __free_page(vmx_io_bitmap_a);
2693 return r;
2696 static void __exit vmx_exit(void)
2698 __free_page(vmx_io_bitmap_b);
2699 __free_page(vmx_io_bitmap_a);
2701 kvm_exit();
2704 module_init(vmx_init)
2705 module_exit(vmx_exit)