gru: generic infrastructure for context options
[linux-2.6.git] / fs / namei.c
blob527119afb6a5cca3bea37efde7e6206e04052795
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
88 * [10-Sep-98 Alan Modra] Another symlink change.
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
111 static int __link_path_walk(const char *name, struct nameidata *nd);
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 static int do_getname(const char __user *filename, char *page)
122 int retval;
123 unsigned long len = PATH_MAX;
125 if (!segment_eq(get_fs(), KERNEL_DS)) {
126 if ((unsigned long) filename >= TASK_SIZE)
127 return -EFAULT;
128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 len = TASK_SIZE - (unsigned long) filename;
132 retval = strncpy_from_user(page, filename, len);
133 if (retval > 0) {
134 if (retval < len)
135 return 0;
136 return -ENAMETOOLONG;
137 } else if (!retval)
138 retval = -ENOENT;
139 return retval;
142 char * getname(const char __user * filename)
144 char *tmp, *result;
146 result = ERR_PTR(-ENOMEM);
147 tmp = __getname();
148 if (tmp) {
149 int retval = do_getname(filename, tmp);
151 result = tmp;
152 if (retval < 0) {
153 __putname(tmp);
154 result = ERR_PTR(retval);
157 audit_getname(result);
158 return result;
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
164 if (unlikely(!audit_dummy_context()))
165 audit_putname(name);
166 else
167 __putname(name);
169 EXPORT_SYMBOL(putname);
170 #endif
174 * generic_permission - check for access rights on a Posix-like filesystem
175 * @inode: inode to check access rights for
176 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
177 * @check_acl: optional callback to check for Posix ACLs
179 * Used to check for read/write/execute permissions on a file.
180 * We use "fsuid" for this, letting us set arbitrary permissions
181 * for filesystem access without changing the "normal" uids which
182 * are used for other things..
184 int generic_permission(struct inode *inode, int mask,
185 int (*check_acl)(struct inode *inode, int mask))
187 umode_t mode = inode->i_mode;
189 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
191 if (current_fsuid() == inode->i_uid)
192 mode >>= 6;
193 else {
194 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
195 int error = check_acl(inode, mask);
196 if (error == -EACCES)
197 goto check_capabilities;
198 else if (error != -EAGAIN)
199 return error;
202 if (in_group_p(inode->i_gid))
203 mode >>= 3;
207 * If the DACs are ok we don't need any capability check.
209 if ((mask & ~mode) == 0)
210 return 0;
212 check_capabilities:
214 * Read/write DACs are always overridable.
215 * Executable DACs are overridable if at least one exec bit is set.
217 if (!(mask & MAY_EXEC) || execute_ok(inode))
218 if (capable(CAP_DAC_OVERRIDE))
219 return 0;
222 * Searching includes executable on directories, else just read.
224 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
225 if (capable(CAP_DAC_READ_SEARCH))
226 return 0;
228 return -EACCES;
232 * inode_permission - check for access rights to a given inode
233 * @inode: inode to check permission on
234 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
236 * Used to check for read/write/execute permissions on an inode.
237 * We use "fsuid" for this, letting us set arbitrary permissions
238 * for filesystem access without changing the "normal" uids which
239 * are used for other things.
241 int inode_permission(struct inode *inode, int mask)
243 int retval;
245 if (mask & MAY_WRITE) {
246 umode_t mode = inode->i_mode;
249 * Nobody gets write access to a read-only fs.
251 if (IS_RDONLY(inode) &&
252 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
253 return -EROFS;
256 * Nobody gets write access to an immutable file.
258 if (IS_IMMUTABLE(inode))
259 return -EACCES;
262 if (inode->i_op->permission)
263 retval = inode->i_op->permission(inode, mask);
264 else
265 retval = generic_permission(inode, mask, NULL);
267 if (retval)
268 return retval;
270 retval = devcgroup_inode_permission(inode, mask);
271 if (retval)
272 return retval;
274 return security_inode_permission(inode,
275 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
279 * file_permission - check for additional access rights to a given file
280 * @file: file to check access rights for
281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
283 * Used to check for read/write/execute permissions on an already opened
284 * file.
286 * Note:
287 * Do not use this function in new code. All access checks should
288 * be done using inode_permission().
290 int file_permission(struct file *file, int mask)
292 return inode_permission(file->f_path.dentry->d_inode, mask);
296 * get_write_access() gets write permission for a file.
297 * put_write_access() releases this write permission.
298 * This is used for regular files.
299 * We cannot support write (and maybe mmap read-write shared) accesses and
300 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
301 * can have the following values:
302 * 0: no writers, no VM_DENYWRITE mappings
303 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
304 * > 0: (i_writecount) users are writing to the file.
306 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
307 * except for the cases where we don't hold i_writecount yet. Then we need to
308 * use {get,deny}_write_access() - these functions check the sign and refuse
309 * to do the change if sign is wrong. Exclusion between them is provided by
310 * the inode->i_lock spinlock.
313 int get_write_access(struct inode * inode)
315 spin_lock(&inode->i_lock);
316 if (atomic_read(&inode->i_writecount) < 0) {
317 spin_unlock(&inode->i_lock);
318 return -ETXTBSY;
320 atomic_inc(&inode->i_writecount);
321 spin_unlock(&inode->i_lock);
323 return 0;
326 int deny_write_access(struct file * file)
328 struct inode *inode = file->f_path.dentry->d_inode;
330 spin_lock(&inode->i_lock);
331 if (atomic_read(&inode->i_writecount) > 0) {
332 spin_unlock(&inode->i_lock);
333 return -ETXTBSY;
335 atomic_dec(&inode->i_writecount);
336 spin_unlock(&inode->i_lock);
338 return 0;
342 * path_get - get a reference to a path
343 * @path: path to get the reference to
345 * Given a path increment the reference count to the dentry and the vfsmount.
347 void path_get(struct path *path)
349 mntget(path->mnt);
350 dget(path->dentry);
352 EXPORT_SYMBOL(path_get);
355 * path_put - put a reference to a path
356 * @path: path to put the reference to
358 * Given a path decrement the reference count to the dentry and the vfsmount.
360 void path_put(struct path *path)
362 dput(path->dentry);
363 mntput(path->mnt);
365 EXPORT_SYMBOL(path_put);
368 * release_open_intent - free up open intent resources
369 * @nd: pointer to nameidata
371 void release_open_intent(struct nameidata *nd)
373 if (nd->intent.open.file->f_path.dentry == NULL)
374 put_filp(nd->intent.open.file);
375 else
376 fput(nd->intent.open.file);
379 static inline struct dentry *
380 do_revalidate(struct dentry *dentry, struct nameidata *nd)
382 int status = dentry->d_op->d_revalidate(dentry, nd);
383 if (unlikely(status <= 0)) {
385 * The dentry failed validation.
386 * If d_revalidate returned 0 attempt to invalidate
387 * the dentry otherwise d_revalidate is asking us
388 * to return a fail status.
390 if (!status) {
391 if (!d_invalidate(dentry)) {
392 dput(dentry);
393 dentry = NULL;
395 } else {
396 dput(dentry);
397 dentry = ERR_PTR(status);
400 return dentry;
404 * Internal lookup() using the new generic dcache.
405 * SMP-safe
407 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
409 struct dentry * dentry = __d_lookup(parent, name);
411 /* lockess __d_lookup may fail due to concurrent d_move()
412 * in some unrelated directory, so try with d_lookup
414 if (!dentry)
415 dentry = d_lookup(parent, name);
417 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
418 dentry = do_revalidate(dentry, nd);
420 return dentry;
424 * Short-cut version of permission(), for calling by
425 * path_walk(), when dcache lock is held. Combines parts
426 * of permission() and generic_permission(), and tests ONLY for
427 * MAY_EXEC permission.
429 * If appropriate, check DAC only. If not appropriate, or
430 * short-cut DAC fails, then call permission() to do more
431 * complete permission check.
433 static int exec_permission_lite(struct inode *inode)
435 umode_t mode = inode->i_mode;
437 if (inode->i_op->permission)
438 return -EAGAIN;
440 if (current_fsuid() == inode->i_uid)
441 mode >>= 6;
442 else if (in_group_p(inode->i_gid))
443 mode >>= 3;
445 if (mode & MAY_EXEC)
446 goto ok;
448 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
449 goto ok;
451 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
452 goto ok;
454 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
455 goto ok;
457 return -EACCES;
459 return security_inode_permission(inode, MAY_EXEC);
463 * This is called when everything else fails, and we actually have
464 * to go to the low-level filesystem to find out what we should do..
466 * We get the directory semaphore, and after getting that we also
467 * make sure that nobody added the entry to the dcache in the meantime..
468 * SMP-safe
470 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
472 struct dentry * result;
473 struct inode *dir = parent->d_inode;
475 mutex_lock(&dir->i_mutex);
477 * First re-do the cached lookup just in case it was created
478 * while we waited for the directory semaphore..
480 * FIXME! This could use version numbering or similar to
481 * avoid unnecessary cache lookups.
483 * The "dcache_lock" is purely to protect the RCU list walker
484 * from concurrent renames at this point (we mustn't get false
485 * negatives from the RCU list walk here, unlike the optimistic
486 * fast walk).
488 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
490 result = d_lookup(parent, name);
491 if (!result) {
492 struct dentry *dentry;
494 /* Don't create child dentry for a dead directory. */
495 result = ERR_PTR(-ENOENT);
496 if (IS_DEADDIR(dir))
497 goto out_unlock;
499 dentry = d_alloc(parent, name);
500 result = ERR_PTR(-ENOMEM);
501 if (dentry) {
502 result = dir->i_op->lookup(dir, dentry, nd);
503 if (result)
504 dput(dentry);
505 else
506 result = dentry;
508 out_unlock:
509 mutex_unlock(&dir->i_mutex);
510 return result;
514 * Uhhuh! Nasty case: the cache was re-populated while
515 * we waited on the semaphore. Need to revalidate.
517 mutex_unlock(&dir->i_mutex);
518 if (result->d_op && result->d_op->d_revalidate) {
519 result = do_revalidate(result, nd);
520 if (!result)
521 result = ERR_PTR(-ENOENT);
523 return result;
527 * Wrapper to retry pathname resolution whenever the underlying
528 * file system returns an ESTALE.
530 * Retry the whole path once, forcing real lookup requests
531 * instead of relying on the dcache.
533 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
535 struct path save = nd->path;
536 int result;
538 /* make sure the stuff we saved doesn't go away */
539 path_get(&save);
541 result = __link_path_walk(name, nd);
542 if (result == -ESTALE) {
543 /* nd->path had been dropped */
544 nd->path = save;
545 path_get(&nd->path);
546 nd->flags |= LOOKUP_REVAL;
547 result = __link_path_walk(name, nd);
550 path_put(&save);
552 return result;
555 static __always_inline void set_root(struct nameidata *nd)
557 if (!nd->root.mnt) {
558 struct fs_struct *fs = current->fs;
559 read_lock(&fs->lock);
560 nd->root = fs->root;
561 path_get(&nd->root);
562 read_unlock(&fs->lock);
566 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
568 int res = 0;
569 char *name;
570 if (IS_ERR(link))
571 goto fail;
573 if (*link == '/') {
574 set_root(nd);
575 path_put(&nd->path);
576 nd->path = nd->root;
577 path_get(&nd->root);
580 res = link_path_walk(link, nd);
581 if (nd->depth || res || nd->last_type!=LAST_NORM)
582 return res;
584 * If it is an iterative symlinks resolution in open_namei() we
585 * have to copy the last component. And all that crap because of
586 * bloody create() on broken symlinks. Furrfu...
588 name = __getname();
589 if (unlikely(!name)) {
590 path_put(&nd->path);
591 return -ENOMEM;
593 strcpy(name, nd->last.name);
594 nd->last.name = name;
595 return 0;
596 fail:
597 path_put(&nd->path);
598 return PTR_ERR(link);
601 static void path_put_conditional(struct path *path, struct nameidata *nd)
603 dput(path->dentry);
604 if (path->mnt != nd->path.mnt)
605 mntput(path->mnt);
608 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
610 dput(nd->path.dentry);
611 if (nd->path.mnt != path->mnt)
612 mntput(nd->path.mnt);
613 nd->path.mnt = path->mnt;
614 nd->path.dentry = path->dentry;
617 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
619 int error;
620 void *cookie;
621 struct dentry *dentry = path->dentry;
623 touch_atime(path->mnt, dentry);
624 nd_set_link(nd, NULL);
626 if (path->mnt != nd->path.mnt) {
627 path_to_nameidata(path, nd);
628 dget(dentry);
630 mntget(path->mnt);
631 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
632 error = PTR_ERR(cookie);
633 if (!IS_ERR(cookie)) {
634 char *s = nd_get_link(nd);
635 error = 0;
636 if (s)
637 error = __vfs_follow_link(nd, s);
638 if (dentry->d_inode->i_op->put_link)
639 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
641 path_put(path);
643 return error;
647 * This limits recursive symlink follows to 8, while
648 * limiting consecutive symlinks to 40.
650 * Without that kind of total limit, nasty chains of consecutive
651 * symlinks can cause almost arbitrarily long lookups.
653 static inline int do_follow_link(struct path *path, struct nameidata *nd)
655 int err = -ELOOP;
656 if (current->link_count >= MAX_NESTED_LINKS)
657 goto loop;
658 if (current->total_link_count >= 40)
659 goto loop;
660 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
661 cond_resched();
662 err = security_inode_follow_link(path->dentry, nd);
663 if (err)
664 goto loop;
665 current->link_count++;
666 current->total_link_count++;
667 nd->depth++;
668 err = __do_follow_link(path, nd);
669 current->link_count--;
670 nd->depth--;
671 return err;
672 loop:
673 path_put_conditional(path, nd);
674 path_put(&nd->path);
675 return err;
678 int follow_up(struct path *path)
680 struct vfsmount *parent;
681 struct dentry *mountpoint;
682 spin_lock(&vfsmount_lock);
683 parent = path->mnt->mnt_parent;
684 if (parent == path->mnt) {
685 spin_unlock(&vfsmount_lock);
686 return 0;
688 mntget(parent);
689 mountpoint = dget(path->mnt->mnt_mountpoint);
690 spin_unlock(&vfsmount_lock);
691 dput(path->dentry);
692 path->dentry = mountpoint;
693 mntput(path->mnt);
694 path->mnt = parent;
695 return 1;
698 /* no need for dcache_lock, as serialization is taken care in
699 * namespace.c
701 static int __follow_mount(struct path *path)
703 int res = 0;
704 while (d_mountpoint(path->dentry)) {
705 struct vfsmount *mounted = lookup_mnt(path);
706 if (!mounted)
707 break;
708 dput(path->dentry);
709 if (res)
710 mntput(path->mnt);
711 path->mnt = mounted;
712 path->dentry = dget(mounted->mnt_root);
713 res = 1;
715 return res;
718 static void follow_mount(struct path *path)
720 while (d_mountpoint(path->dentry)) {
721 struct vfsmount *mounted = lookup_mnt(path);
722 if (!mounted)
723 break;
724 dput(path->dentry);
725 mntput(path->mnt);
726 path->mnt = mounted;
727 path->dentry = dget(mounted->mnt_root);
731 /* no need for dcache_lock, as serialization is taken care in
732 * namespace.c
734 int follow_down(struct path *path)
736 struct vfsmount *mounted;
738 mounted = lookup_mnt(path);
739 if (mounted) {
740 dput(path->dentry);
741 mntput(path->mnt);
742 path->mnt = mounted;
743 path->dentry = dget(mounted->mnt_root);
744 return 1;
746 return 0;
749 static __always_inline void follow_dotdot(struct nameidata *nd)
751 set_root(nd);
753 while(1) {
754 struct vfsmount *parent;
755 struct dentry *old = nd->path.dentry;
757 if (nd->path.dentry == nd->root.dentry &&
758 nd->path.mnt == nd->root.mnt) {
759 break;
761 spin_lock(&dcache_lock);
762 if (nd->path.dentry != nd->path.mnt->mnt_root) {
763 nd->path.dentry = dget(nd->path.dentry->d_parent);
764 spin_unlock(&dcache_lock);
765 dput(old);
766 break;
768 spin_unlock(&dcache_lock);
769 spin_lock(&vfsmount_lock);
770 parent = nd->path.mnt->mnt_parent;
771 if (parent == nd->path.mnt) {
772 spin_unlock(&vfsmount_lock);
773 break;
775 mntget(parent);
776 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
777 spin_unlock(&vfsmount_lock);
778 dput(old);
779 mntput(nd->path.mnt);
780 nd->path.mnt = parent;
782 follow_mount(&nd->path);
786 * It's more convoluted than I'd like it to be, but... it's still fairly
787 * small and for now I'd prefer to have fast path as straight as possible.
788 * It _is_ time-critical.
790 static int do_lookup(struct nameidata *nd, struct qstr *name,
791 struct path *path)
793 struct vfsmount *mnt = nd->path.mnt;
794 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
796 if (!dentry)
797 goto need_lookup;
798 if (dentry->d_op && dentry->d_op->d_revalidate)
799 goto need_revalidate;
800 done:
801 path->mnt = mnt;
802 path->dentry = dentry;
803 __follow_mount(path);
804 return 0;
806 need_lookup:
807 dentry = real_lookup(nd->path.dentry, name, nd);
808 if (IS_ERR(dentry))
809 goto fail;
810 goto done;
812 need_revalidate:
813 dentry = do_revalidate(dentry, nd);
814 if (!dentry)
815 goto need_lookup;
816 if (IS_ERR(dentry))
817 goto fail;
818 goto done;
820 fail:
821 return PTR_ERR(dentry);
825 * Name resolution.
826 * This is the basic name resolution function, turning a pathname into
827 * the final dentry. We expect 'base' to be positive and a directory.
829 * Returns 0 and nd will have valid dentry and mnt on success.
830 * Returns error and drops reference to input namei data on failure.
832 static int __link_path_walk(const char *name, struct nameidata *nd)
834 struct path next;
835 struct inode *inode;
836 int err;
837 unsigned int lookup_flags = nd->flags;
839 while (*name=='/')
840 name++;
841 if (!*name)
842 goto return_reval;
844 inode = nd->path.dentry->d_inode;
845 if (nd->depth)
846 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
848 /* At this point we know we have a real path component. */
849 for(;;) {
850 unsigned long hash;
851 struct qstr this;
852 unsigned int c;
854 nd->flags |= LOOKUP_CONTINUE;
855 err = exec_permission_lite(inode);
856 if (err == -EAGAIN)
857 err = inode_permission(nd->path.dentry->d_inode,
858 MAY_EXEC);
859 if (!err)
860 err = ima_path_check(&nd->path, MAY_EXEC,
861 IMA_COUNT_UPDATE);
862 if (err)
863 break;
865 this.name = name;
866 c = *(const unsigned char *)name;
868 hash = init_name_hash();
869 do {
870 name++;
871 hash = partial_name_hash(c, hash);
872 c = *(const unsigned char *)name;
873 } while (c && (c != '/'));
874 this.len = name - (const char *) this.name;
875 this.hash = end_name_hash(hash);
877 /* remove trailing slashes? */
878 if (!c)
879 goto last_component;
880 while (*++name == '/');
881 if (!*name)
882 goto last_with_slashes;
885 * "." and ".." are special - ".." especially so because it has
886 * to be able to know about the current root directory and
887 * parent relationships.
889 if (this.name[0] == '.') switch (this.len) {
890 default:
891 break;
892 case 2:
893 if (this.name[1] != '.')
894 break;
895 follow_dotdot(nd);
896 inode = nd->path.dentry->d_inode;
897 /* fallthrough */
898 case 1:
899 continue;
902 * See if the low-level filesystem might want
903 * to use its own hash..
905 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
906 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
907 &this);
908 if (err < 0)
909 break;
911 /* This does the actual lookups.. */
912 err = do_lookup(nd, &this, &next);
913 if (err)
914 break;
916 err = -ENOENT;
917 inode = next.dentry->d_inode;
918 if (!inode)
919 goto out_dput;
921 if (inode->i_op->follow_link) {
922 err = do_follow_link(&next, nd);
923 if (err)
924 goto return_err;
925 err = -ENOENT;
926 inode = nd->path.dentry->d_inode;
927 if (!inode)
928 break;
929 } else
930 path_to_nameidata(&next, nd);
931 err = -ENOTDIR;
932 if (!inode->i_op->lookup)
933 break;
934 continue;
935 /* here ends the main loop */
937 last_with_slashes:
938 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
939 last_component:
940 /* Clear LOOKUP_CONTINUE iff it was previously unset */
941 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
942 if (lookup_flags & LOOKUP_PARENT)
943 goto lookup_parent;
944 if (this.name[0] == '.') switch (this.len) {
945 default:
946 break;
947 case 2:
948 if (this.name[1] != '.')
949 break;
950 follow_dotdot(nd);
951 inode = nd->path.dentry->d_inode;
952 /* fallthrough */
953 case 1:
954 goto return_reval;
956 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
957 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
958 &this);
959 if (err < 0)
960 break;
962 err = do_lookup(nd, &this, &next);
963 if (err)
964 break;
965 inode = next.dentry->d_inode;
966 if ((lookup_flags & LOOKUP_FOLLOW)
967 && inode && inode->i_op->follow_link) {
968 err = do_follow_link(&next, nd);
969 if (err)
970 goto return_err;
971 inode = nd->path.dentry->d_inode;
972 } else
973 path_to_nameidata(&next, nd);
974 err = -ENOENT;
975 if (!inode)
976 break;
977 if (lookup_flags & LOOKUP_DIRECTORY) {
978 err = -ENOTDIR;
979 if (!inode->i_op->lookup)
980 break;
982 goto return_base;
983 lookup_parent:
984 nd->last = this;
985 nd->last_type = LAST_NORM;
986 if (this.name[0] != '.')
987 goto return_base;
988 if (this.len == 1)
989 nd->last_type = LAST_DOT;
990 else if (this.len == 2 && this.name[1] == '.')
991 nd->last_type = LAST_DOTDOT;
992 else
993 goto return_base;
994 return_reval:
996 * We bypassed the ordinary revalidation routines.
997 * We may need to check the cached dentry for staleness.
999 if (nd->path.dentry && nd->path.dentry->d_sb &&
1000 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1001 err = -ESTALE;
1002 /* Note: we do not d_invalidate() */
1003 if (!nd->path.dentry->d_op->d_revalidate(
1004 nd->path.dentry, nd))
1005 break;
1007 return_base:
1008 return 0;
1009 out_dput:
1010 path_put_conditional(&next, nd);
1011 break;
1013 path_put(&nd->path);
1014 return_err:
1015 return err;
1018 static int path_walk(const char *name, struct nameidata *nd)
1020 current->total_link_count = 0;
1021 return link_path_walk(name, nd);
1024 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1026 int retval = 0;
1027 int fput_needed;
1028 struct file *file;
1030 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1031 nd->flags = flags;
1032 nd->depth = 0;
1033 nd->root.mnt = NULL;
1035 if (*name=='/') {
1036 set_root(nd);
1037 nd->path = nd->root;
1038 path_get(&nd->root);
1039 } else if (dfd == AT_FDCWD) {
1040 struct fs_struct *fs = current->fs;
1041 read_lock(&fs->lock);
1042 nd->path = fs->pwd;
1043 path_get(&fs->pwd);
1044 read_unlock(&fs->lock);
1045 } else {
1046 struct dentry *dentry;
1048 file = fget_light(dfd, &fput_needed);
1049 retval = -EBADF;
1050 if (!file)
1051 goto out_fail;
1053 dentry = file->f_path.dentry;
1055 retval = -ENOTDIR;
1056 if (!S_ISDIR(dentry->d_inode->i_mode))
1057 goto fput_fail;
1059 retval = file_permission(file, MAY_EXEC);
1060 if (retval)
1061 goto fput_fail;
1063 nd->path = file->f_path;
1064 path_get(&file->f_path);
1066 fput_light(file, fput_needed);
1068 return 0;
1070 fput_fail:
1071 fput_light(file, fput_needed);
1072 out_fail:
1073 return retval;
1076 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1077 static int do_path_lookup(int dfd, const char *name,
1078 unsigned int flags, struct nameidata *nd)
1080 int retval = path_init(dfd, name, flags, nd);
1081 if (!retval)
1082 retval = path_walk(name, nd);
1083 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1084 nd->path.dentry->d_inode))
1085 audit_inode(name, nd->path.dentry);
1086 if (nd->root.mnt) {
1087 path_put(&nd->root);
1088 nd->root.mnt = NULL;
1090 return retval;
1093 int path_lookup(const char *name, unsigned int flags,
1094 struct nameidata *nd)
1096 return do_path_lookup(AT_FDCWD, name, flags, nd);
1099 int kern_path(const char *name, unsigned int flags, struct path *path)
1101 struct nameidata nd;
1102 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1103 if (!res)
1104 *path = nd.path;
1105 return res;
1109 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1110 * @dentry: pointer to dentry of the base directory
1111 * @mnt: pointer to vfs mount of the base directory
1112 * @name: pointer to file name
1113 * @flags: lookup flags
1114 * @nd: pointer to nameidata
1116 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1117 const char *name, unsigned int flags,
1118 struct nameidata *nd)
1120 int retval;
1122 /* same as do_path_lookup */
1123 nd->last_type = LAST_ROOT;
1124 nd->flags = flags;
1125 nd->depth = 0;
1127 nd->path.dentry = dentry;
1128 nd->path.mnt = mnt;
1129 path_get(&nd->path);
1130 nd->root = nd->path;
1131 path_get(&nd->root);
1133 retval = path_walk(name, nd);
1134 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1135 nd->path.dentry->d_inode))
1136 audit_inode(name, nd->path.dentry);
1138 path_put(&nd->root);
1139 nd->root.mnt = NULL;
1141 return retval;
1145 * path_lookup_open - lookup a file path with open intent
1146 * @dfd: the directory to use as base, or AT_FDCWD
1147 * @name: pointer to file name
1148 * @lookup_flags: lookup intent flags
1149 * @nd: pointer to nameidata
1150 * @open_flags: open intent flags
1152 static int path_lookup_open(int dfd, const char *name,
1153 unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1155 struct file *filp = get_empty_filp();
1156 int err;
1158 if (filp == NULL)
1159 return -ENFILE;
1160 nd->intent.open.file = filp;
1161 nd->intent.open.flags = open_flags;
1162 nd->intent.open.create_mode = 0;
1163 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1164 if (IS_ERR(nd->intent.open.file)) {
1165 if (err == 0) {
1166 err = PTR_ERR(nd->intent.open.file);
1167 path_put(&nd->path);
1169 } else if (err != 0)
1170 release_open_intent(nd);
1171 return err;
1174 static struct dentry *__lookup_hash(struct qstr *name,
1175 struct dentry *base, struct nameidata *nd)
1177 struct dentry *dentry;
1178 struct inode *inode;
1179 int err;
1181 inode = base->d_inode;
1184 * See if the low-level filesystem might want
1185 * to use its own hash..
1187 if (base->d_op && base->d_op->d_hash) {
1188 err = base->d_op->d_hash(base, name);
1189 dentry = ERR_PTR(err);
1190 if (err < 0)
1191 goto out;
1194 dentry = cached_lookup(base, name, nd);
1195 if (!dentry) {
1196 struct dentry *new;
1198 /* Don't create child dentry for a dead directory. */
1199 dentry = ERR_PTR(-ENOENT);
1200 if (IS_DEADDIR(inode))
1201 goto out;
1203 new = d_alloc(base, name);
1204 dentry = ERR_PTR(-ENOMEM);
1205 if (!new)
1206 goto out;
1207 dentry = inode->i_op->lookup(inode, new, nd);
1208 if (!dentry)
1209 dentry = new;
1210 else
1211 dput(new);
1213 out:
1214 return dentry;
1218 * Restricted form of lookup. Doesn't follow links, single-component only,
1219 * needs parent already locked. Doesn't follow mounts.
1220 * SMP-safe.
1222 static struct dentry *lookup_hash(struct nameidata *nd)
1224 int err;
1226 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1227 if (err)
1228 return ERR_PTR(err);
1229 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1232 static int __lookup_one_len(const char *name, struct qstr *this,
1233 struct dentry *base, int len)
1235 unsigned long hash;
1236 unsigned int c;
1238 this->name = name;
1239 this->len = len;
1240 if (!len)
1241 return -EACCES;
1243 hash = init_name_hash();
1244 while (len--) {
1245 c = *(const unsigned char *)name++;
1246 if (c == '/' || c == '\0')
1247 return -EACCES;
1248 hash = partial_name_hash(c, hash);
1250 this->hash = end_name_hash(hash);
1251 return 0;
1255 * lookup_one_len - filesystem helper to lookup single pathname component
1256 * @name: pathname component to lookup
1257 * @base: base directory to lookup from
1258 * @len: maximum length @len should be interpreted to
1260 * Note that this routine is purely a helper for filesystem usage and should
1261 * not be called by generic code. Also note that by using this function the
1262 * nameidata argument is passed to the filesystem methods and a filesystem
1263 * using this helper needs to be prepared for that.
1265 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1267 int err;
1268 struct qstr this;
1270 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1272 err = __lookup_one_len(name, &this, base, len);
1273 if (err)
1274 return ERR_PTR(err);
1276 err = inode_permission(base->d_inode, MAY_EXEC);
1277 if (err)
1278 return ERR_PTR(err);
1279 return __lookup_hash(&this, base, NULL);
1283 * lookup_one_noperm - bad hack for sysfs
1284 * @name: pathname component to lookup
1285 * @base: base directory to lookup from
1287 * This is a variant of lookup_one_len that doesn't perform any permission
1288 * checks. It's a horrible hack to work around the braindead sysfs
1289 * architecture and should not be used anywhere else.
1291 * DON'T USE THIS FUNCTION EVER, thanks.
1293 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1295 int err;
1296 struct qstr this;
1298 err = __lookup_one_len(name, &this, base, strlen(name));
1299 if (err)
1300 return ERR_PTR(err);
1301 return __lookup_hash(&this, base, NULL);
1304 int user_path_at(int dfd, const char __user *name, unsigned flags,
1305 struct path *path)
1307 struct nameidata nd;
1308 char *tmp = getname(name);
1309 int err = PTR_ERR(tmp);
1310 if (!IS_ERR(tmp)) {
1312 BUG_ON(flags & LOOKUP_PARENT);
1314 err = do_path_lookup(dfd, tmp, flags, &nd);
1315 putname(tmp);
1316 if (!err)
1317 *path = nd.path;
1319 return err;
1322 static int user_path_parent(int dfd, const char __user *path,
1323 struct nameidata *nd, char **name)
1325 char *s = getname(path);
1326 int error;
1328 if (IS_ERR(s))
1329 return PTR_ERR(s);
1331 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1332 if (error)
1333 putname(s);
1334 else
1335 *name = s;
1337 return error;
1341 * It's inline, so penalty for filesystems that don't use sticky bit is
1342 * minimal.
1344 static inline int check_sticky(struct inode *dir, struct inode *inode)
1346 uid_t fsuid = current_fsuid();
1348 if (!(dir->i_mode & S_ISVTX))
1349 return 0;
1350 if (inode->i_uid == fsuid)
1351 return 0;
1352 if (dir->i_uid == fsuid)
1353 return 0;
1354 return !capable(CAP_FOWNER);
1358 * Check whether we can remove a link victim from directory dir, check
1359 * whether the type of victim is right.
1360 * 1. We can't do it if dir is read-only (done in permission())
1361 * 2. We should have write and exec permissions on dir
1362 * 3. We can't remove anything from append-only dir
1363 * 4. We can't do anything with immutable dir (done in permission())
1364 * 5. If the sticky bit on dir is set we should either
1365 * a. be owner of dir, or
1366 * b. be owner of victim, or
1367 * c. have CAP_FOWNER capability
1368 * 6. If the victim is append-only or immutable we can't do antyhing with
1369 * links pointing to it.
1370 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1371 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1372 * 9. We can't remove a root or mountpoint.
1373 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1374 * nfs_async_unlink().
1376 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1378 int error;
1380 if (!victim->d_inode)
1381 return -ENOENT;
1383 BUG_ON(victim->d_parent->d_inode != dir);
1384 audit_inode_child(victim->d_name.name, victim, dir);
1386 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1387 if (error)
1388 return error;
1389 if (IS_APPEND(dir))
1390 return -EPERM;
1391 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1392 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1393 return -EPERM;
1394 if (isdir) {
1395 if (!S_ISDIR(victim->d_inode->i_mode))
1396 return -ENOTDIR;
1397 if (IS_ROOT(victim))
1398 return -EBUSY;
1399 } else if (S_ISDIR(victim->d_inode->i_mode))
1400 return -EISDIR;
1401 if (IS_DEADDIR(dir))
1402 return -ENOENT;
1403 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1404 return -EBUSY;
1405 return 0;
1408 /* Check whether we can create an object with dentry child in directory
1409 * dir.
1410 * 1. We can't do it if child already exists (open has special treatment for
1411 * this case, but since we are inlined it's OK)
1412 * 2. We can't do it if dir is read-only (done in permission())
1413 * 3. We should have write and exec permissions on dir
1414 * 4. We can't do it if dir is immutable (done in permission())
1416 static inline int may_create(struct inode *dir, struct dentry *child)
1418 if (child->d_inode)
1419 return -EEXIST;
1420 if (IS_DEADDIR(dir))
1421 return -ENOENT;
1422 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1426 * O_DIRECTORY translates into forcing a directory lookup.
1428 static inline int lookup_flags(unsigned int f)
1430 unsigned long retval = LOOKUP_FOLLOW;
1432 if (f & O_NOFOLLOW)
1433 retval &= ~LOOKUP_FOLLOW;
1435 if (f & O_DIRECTORY)
1436 retval |= LOOKUP_DIRECTORY;
1438 return retval;
1442 * p1 and p2 should be directories on the same fs.
1444 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1446 struct dentry *p;
1448 if (p1 == p2) {
1449 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1450 return NULL;
1453 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1455 p = d_ancestor(p2, p1);
1456 if (p) {
1457 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1458 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1459 return p;
1462 p = d_ancestor(p1, p2);
1463 if (p) {
1464 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1465 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1466 return p;
1469 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1470 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1471 return NULL;
1474 void unlock_rename(struct dentry *p1, struct dentry *p2)
1476 mutex_unlock(&p1->d_inode->i_mutex);
1477 if (p1 != p2) {
1478 mutex_unlock(&p2->d_inode->i_mutex);
1479 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1483 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1484 struct nameidata *nd)
1486 int error = may_create(dir, dentry);
1488 if (error)
1489 return error;
1491 if (!dir->i_op->create)
1492 return -EACCES; /* shouldn't it be ENOSYS? */
1493 mode &= S_IALLUGO;
1494 mode |= S_IFREG;
1495 error = security_inode_create(dir, dentry, mode);
1496 if (error)
1497 return error;
1498 vfs_dq_init(dir);
1499 error = dir->i_op->create(dir, dentry, mode, nd);
1500 if (!error)
1501 fsnotify_create(dir, dentry);
1502 return error;
1505 int may_open(struct path *path, int acc_mode, int flag)
1507 struct dentry *dentry = path->dentry;
1508 struct inode *inode = dentry->d_inode;
1509 int error;
1511 if (!inode)
1512 return -ENOENT;
1514 switch (inode->i_mode & S_IFMT) {
1515 case S_IFLNK:
1516 return -ELOOP;
1517 case S_IFDIR:
1518 if (acc_mode & MAY_WRITE)
1519 return -EISDIR;
1520 break;
1521 case S_IFBLK:
1522 case S_IFCHR:
1523 if (path->mnt->mnt_flags & MNT_NODEV)
1524 return -EACCES;
1525 /*FALLTHRU*/
1526 case S_IFIFO:
1527 case S_IFSOCK:
1528 flag &= ~O_TRUNC;
1529 break;
1532 error = inode_permission(inode, acc_mode);
1533 if (error)
1534 return error;
1536 error = ima_path_check(path,
1537 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC),
1538 IMA_COUNT_UPDATE);
1539 if (error)
1540 return error;
1542 * An append-only file must be opened in append mode for writing.
1544 if (IS_APPEND(inode)) {
1545 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1546 return -EPERM;
1547 if (flag & O_TRUNC)
1548 return -EPERM;
1551 /* O_NOATIME can only be set by the owner or superuser */
1552 if (flag & O_NOATIME)
1553 if (!is_owner_or_cap(inode))
1554 return -EPERM;
1557 * Ensure there are no outstanding leases on the file.
1559 error = break_lease(inode, flag);
1560 if (error)
1561 return error;
1563 if (flag & O_TRUNC) {
1564 error = get_write_access(inode);
1565 if (error)
1566 return error;
1569 * Refuse to truncate files with mandatory locks held on them.
1571 error = locks_verify_locked(inode);
1572 if (!error)
1573 error = security_path_truncate(path, 0,
1574 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1575 if (!error) {
1576 vfs_dq_init(inode);
1578 error = do_truncate(dentry, 0,
1579 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1580 NULL);
1582 put_write_access(inode);
1583 if (error)
1584 return error;
1585 } else
1586 if (flag & FMODE_WRITE)
1587 vfs_dq_init(inode);
1589 return 0;
1593 * Be careful about ever adding any more callers of this
1594 * function. Its flags must be in the namei format, not
1595 * what get passed to sys_open().
1597 static int __open_namei_create(struct nameidata *nd, struct path *path,
1598 int flag, int mode)
1600 int error;
1601 struct dentry *dir = nd->path.dentry;
1603 if (!IS_POSIXACL(dir->d_inode))
1604 mode &= ~current_umask();
1605 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1606 if (error)
1607 goto out_unlock;
1608 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1609 out_unlock:
1610 mutex_unlock(&dir->d_inode->i_mutex);
1611 dput(nd->path.dentry);
1612 nd->path.dentry = path->dentry;
1613 if (error)
1614 return error;
1615 /* Don't check for write permission, don't truncate */
1616 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1620 * Note that while the flag value (low two bits) for sys_open means:
1621 * 00 - read-only
1622 * 01 - write-only
1623 * 10 - read-write
1624 * 11 - special
1625 * it is changed into
1626 * 00 - no permissions needed
1627 * 01 - read-permission
1628 * 10 - write-permission
1629 * 11 - read-write
1630 * for the internal routines (ie open_namei()/follow_link() etc)
1631 * This is more logical, and also allows the 00 "no perm needed"
1632 * to be used for symlinks (where the permissions are checked
1633 * later).
1636 static inline int open_to_namei_flags(int flag)
1638 if ((flag+1) & O_ACCMODE)
1639 flag++;
1640 return flag;
1643 static int open_will_write_to_fs(int flag, struct inode *inode)
1646 * We'll never write to the fs underlying
1647 * a device file.
1649 if (special_file(inode->i_mode))
1650 return 0;
1651 return (flag & O_TRUNC);
1655 * Note that the low bits of the passed in "open_flag"
1656 * are not the same as in the local variable "flag". See
1657 * open_to_namei_flags() for more details.
1659 struct file *do_filp_open(int dfd, const char *pathname,
1660 int open_flag, int mode, int acc_mode)
1662 struct file *filp;
1663 struct nameidata nd;
1664 int error;
1665 struct path path;
1666 struct dentry *dir;
1667 int count = 0;
1668 int will_write;
1669 int flag = open_to_namei_flags(open_flag);
1671 if (!acc_mode)
1672 acc_mode = MAY_OPEN | ACC_MODE(flag);
1674 /* O_TRUNC implies we need access checks for write permissions */
1675 if (flag & O_TRUNC)
1676 acc_mode |= MAY_WRITE;
1678 /* Allow the LSM permission hook to distinguish append
1679 access from general write access. */
1680 if (flag & O_APPEND)
1681 acc_mode |= MAY_APPEND;
1684 * The simplest case - just a plain lookup.
1686 if (!(flag & O_CREAT)) {
1687 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1688 &nd, flag);
1689 if (error)
1690 return ERR_PTR(error);
1691 goto ok;
1695 * Create - we need to know the parent.
1697 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1698 if (error)
1699 return ERR_PTR(error);
1700 error = path_walk(pathname, &nd);
1701 if (error)
1702 return ERR_PTR(error);
1703 if (unlikely(!audit_dummy_context()))
1704 audit_inode(pathname, nd.path.dentry);
1707 * We have the parent and last component. First of all, check
1708 * that we are not asked to creat(2) an obvious directory - that
1709 * will not do.
1711 error = -EISDIR;
1712 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1713 goto exit_parent;
1715 error = -ENFILE;
1716 filp = get_empty_filp();
1717 if (filp == NULL)
1718 goto exit_parent;
1719 nd.intent.open.file = filp;
1720 nd.intent.open.flags = flag;
1721 nd.intent.open.create_mode = mode;
1722 dir = nd.path.dentry;
1723 nd.flags &= ~LOOKUP_PARENT;
1724 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1725 if (flag & O_EXCL)
1726 nd.flags |= LOOKUP_EXCL;
1727 mutex_lock(&dir->d_inode->i_mutex);
1728 path.dentry = lookup_hash(&nd);
1729 path.mnt = nd.path.mnt;
1731 do_last:
1732 error = PTR_ERR(path.dentry);
1733 if (IS_ERR(path.dentry)) {
1734 mutex_unlock(&dir->d_inode->i_mutex);
1735 goto exit;
1738 if (IS_ERR(nd.intent.open.file)) {
1739 error = PTR_ERR(nd.intent.open.file);
1740 goto exit_mutex_unlock;
1743 /* Negative dentry, just create the file */
1744 if (!path.dentry->d_inode) {
1746 * This write is needed to ensure that a
1747 * ro->rw transition does not occur between
1748 * the time when the file is created and when
1749 * a permanent write count is taken through
1750 * the 'struct file' in nameidata_to_filp().
1752 error = mnt_want_write(nd.path.mnt);
1753 if (error)
1754 goto exit_mutex_unlock;
1755 error = __open_namei_create(&nd, &path, flag, mode);
1756 if (error) {
1757 mnt_drop_write(nd.path.mnt);
1758 goto exit;
1760 filp = nameidata_to_filp(&nd, open_flag);
1761 mnt_drop_write(nd.path.mnt);
1762 return filp;
1766 * It already exists.
1768 mutex_unlock(&dir->d_inode->i_mutex);
1769 audit_inode(pathname, path.dentry);
1771 error = -EEXIST;
1772 if (flag & O_EXCL)
1773 goto exit_dput;
1775 if (__follow_mount(&path)) {
1776 error = -ELOOP;
1777 if (flag & O_NOFOLLOW)
1778 goto exit_dput;
1781 error = -ENOENT;
1782 if (!path.dentry->d_inode)
1783 goto exit_dput;
1784 if (path.dentry->d_inode->i_op->follow_link)
1785 goto do_link;
1787 path_to_nameidata(&path, &nd);
1788 error = -EISDIR;
1789 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1790 goto exit;
1793 * Consider:
1794 * 1. may_open() truncates a file
1795 * 2. a rw->ro mount transition occurs
1796 * 3. nameidata_to_filp() fails due to
1797 * the ro mount.
1798 * That would be inconsistent, and should
1799 * be avoided. Taking this mnt write here
1800 * ensures that (2) can not occur.
1802 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1803 if (will_write) {
1804 error = mnt_want_write(nd.path.mnt);
1805 if (error)
1806 goto exit;
1808 error = may_open(&nd.path, acc_mode, flag);
1809 if (error) {
1810 if (will_write)
1811 mnt_drop_write(nd.path.mnt);
1812 goto exit;
1814 filp = nameidata_to_filp(&nd, open_flag);
1816 * It is now safe to drop the mnt write
1817 * because the filp has had a write taken
1818 * on its behalf.
1820 if (will_write)
1821 mnt_drop_write(nd.path.mnt);
1822 return filp;
1824 exit_mutex_unlock:
1825 mutex_unlock(&dir->d_inode->i_mutex);
1826 exit_dput:
1827 path_put_conditional(&path, &nd);
1828 exit:
1829 if (!IS_ERR(nd.intent.open.file))
1830 release_open_intent(&nd);
1831 exit_parent:
1832 if (nd.root.mnt)
1833 path_put(&nd.root);
1834 path_put(&nd.path);
1835 return ERR_PTR(error);
1837 do_link:
1838 error = -ELOOP;
1839 if (flag & O_NOFOLLOW)
1840 goto exit_dput;
1842 * This is subtle. Instead of calling do_follow_link() we do the
1843 * thing by hands. The reason is that this way we have zero link_count
1844 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1845 * After that we have the parent and last component, i.e.
1846 * we are in the same situation as after the first path_walk().
1847 * Well, almost - if the last component is normal we get its copy
1848 * stored in nd->last.name and we will have to putname() it when we
1849 * are done. Procfs-like symlinks just set LAST_BIND.
1851 nd.flags |= LOOKUP_PARENT;
1852 error = security_inode_follow_link(path.dentry, &nd);
1853 if (error)
1854 goto exit_dput;
1855 error = __do_follow_link(&path, &nd);
1856 if (error) {
1857 /* Does someone understand code flow here? Or it is only
1858 * me so stupid? Anathema to whoever designed this non-sense
1859 * with "intent.open".
1861 release_open_intent(&nd);
1862 return ERR_PTR(error);
1864 nd.flags &= ~LOOKUP_PARENT;
1865 if (nd.last_type == LAST_BIND)
1866 goto ok;
1867 error = -EISDIR;
1868 if (nd.last_type != LAST_NORM)
1869 goto exit;
1870 if (nd.last.name[nd.last.len]) {
1871 __putname(nd.last.name);
1872 goto exit;
1874 error = -ELOOP;
1875 if (count++==32) {
1876 __putname(nd.last.name);
1877 goto exit;
1879 dir = nd.path.dentry;
1880 mutex_lock(&dir->d_inode->i_mutex);
1881 path.dentry = lookup_hash(&nd);
1882 path.mnt = nd.path.mnt;
1883 __putname(nd.last.name);
1884 goto do_last;
1888 * filp_open - open file and return file pointer
1890 * @filename: path to open
1891 * @flags: open flags as per the open(2) second argument
1892 * @mode: mode for the new file if O_CREAT is set, else ignored
1894 * This is the helper to open a file from kernelspace if you really
1895 * have to. But in generally you should not do this, so please move
1896 * along, nothing to see here..
1898 struct file *filp_open(const char *filename, int flags, int mode)
1900 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1902 EXPORT_SYMBOL(filp_open);
1905 * lookup_create - lookup a dentry, creating it if it doesn't exist
1906 * @nd: nameidata info
1907 * @is_dir: directory flag
1909 * Simple function to lookup and return a dentry and create it
1910 * if it doesn't exist. Is SMP-safe.
1912 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1914 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1916 struct dentry *dentry = ERR_PTR(-EEXIST);
1918 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1920 * Yucky last component or no last component at all?
1921 * (foo/., foo/.., /////)
1923 if (nd->last_type != LAST_NORM)
1924 goto fail;
1925 nd->flags &= ~LOOKUP_PARENT;
1926 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1927 nd->intent.open.flags = O_EXCL;
1930 * Do the final lookup.
1932 dentry = lookup_hash(nd);
1933 if (IS_ERR(dentry))
1934 goto fail;
1936 if (dentry->d_inode)
1937 goto eexist;
1939 * Special case - lookup gave negative, but... we had foo/bar/
1940 * From the vfs_mknod() POV we just have a negative dentry -
1941 * all is fine. Let's be bastards - you had / on the end, you've
1942 * been asking for (non-existent) directory. -ENOENT for you.
1944 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1945 dput(dentry);
1946 dentry = ERR_PTR(-ENOENT);
1948 return dentry;
1949 eexist:
1950 dput(dentry);
1951 dentry = ERR_PTR(-EEXIST);
1952 fail:
1953 return dentry;
1955 EXPORT_SYMBOL_GPL(lookup_create);
1957 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1959 int error = may_create(dir, dentry);
1961 if (error)
1962 return error;
1964 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1965 return -EPERM;
1967 if (!dir->i_op->mknod)
1968 return -EPERM;
1970 error = devcgroup_inode_mknod(mode, dev);
1971 if (error)
1972 return error;
1974 error = security_inode_mknod(dir, dentry, mode, dev);
1975 if (error)
1976 return error;
1978 vfs_dq_init(dir);
1979 error = dir->i_op->mknod(dir, dentry, mode, dev);
1980 if (!error)
1981 fsnotify_create(dir, dentry);
1982 return error;
1985 static int may_mknod(mode_t mode)
1987 switch (mode & S_IFMT) {
1988 case S_IFREG:
1989 case S_IFCHR:
1990 case S_IFBLK:
1991 case S_IFIFO:
1992 case S_IFSOCK:
1993 case 0: /* zero mode translates to S_IFREG */
1994 return 0;
1995 case S_IFDIR:
1996 return -EPERM;
1997 default:
1998 return -EINVAL;
2002 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2003 unsigned, dev)
2005 int error;
2006 char *tmp;
2007 struct dentry *dentry;
2008 struct nameidata nd;
2010 if (S_ISDIR(mode))
2011 return -EPERM;
2013 error = user_path_parent(dfd, filename, &nd, &tmp);
2014 if (error)
2015 return error;
2017 dentry = lookup_create(&nd, 0);
2018 if (IS_ERR(dentry)) {
2019 error = PTR_ERR(dentry);
2020 goto out_unlock;
2022 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2023 mode &= ~current_umask();
2024 error = may_mknod(mode);
2025 if (error)
2026 goto out_dput;
2027 error = mnt_want_write(nd.path.mnt);
2028 if (error)
2029 goto out_dput;
2030 error = security_path_mknod(&nd.path, dentry, mode, dev);
2031 if (error)
2032 goto out_drop_write;
2033 switch (mode & S_IFMT) {
2034 case 0: case S_IFREG:
2035 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2036 break;
2037 case S_IFCHR: case S_IFBLK:
2038 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2039 new_decode_dev(dev));
2040 break;
2041 case S_IFIFO: case S_IFSOCK:
2042 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2043 break;
2045 out_drop_write:
2046 mnt_drop_write(nd.path.mnt);
2047 out_dput:
2048 dput(dentry);
2049 out_unlock:
2050 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2051 path_put(&nd.path);
2052 putname(tmp);
2054 return error;
2057 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2059 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2062 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2064 int error = may_create(dir, dentry);
2066 if (error)
2067 return error;
2069 if (!dir->i_op->mkdir)
2070 return -EPERM;
2072 mode &= (S_IRWXUGO|S_ISVTX);
2073 error = security_inode_mkdir(dir, dentry, mode);
2074 if (error)
2075 return error;
2077 vfs_dq_init(dir);
2078 error = dir->i_op->mkdir(dir, dentry, mode);
2079 if (!error)
2080 fsnotify_mkdir(dir, dentry);
2081 return error;
2084 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2086 int error = 0;
2087 char * tmp;
2088 struct dentry *dentry;
2089 struct nameidata nd;
2091 error = user_path_parent(dfd, pathname, &nd, &tmp);
2092 if (error)
2093 goto out_err;
2095 dentry = lookup_create(&nd, 1);
2096 error = PTR_ERR(dentry);
2097 if (IS_ERR(dentry))
2098 goto out_unlock;
2100 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2101 mode &= ~current_umask();
2102 error = mnt_want_write(nd.path.mnt);
2103 if (error)
2104 goto out_dput;
2105 error = security_path_mkdir(&nd.path, dentry, mode);
2106 if (error)
2107 goto out_drop_write;
2108 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2109 out_drop_write:
2110 mnt_drop_write(nd.path.mnt);
2111 out_dput:
2112 dput(dentry);
2113 out_unlock:
2114 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2115 path_put(&nd.path);
2116 putname(tmp);
2117 out_err:
2118 return error;
2121 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2123 return sys_mkdirat(AT_FDCWD, pathname, mode);
2127 * We try to drop the dentry early: we should have
2128 * a usage count of 2 if we're the only user of this
2129 * dentry, and if that is true (possibly after pruning
2130 * the dcache), then we drop the dentry now.
2132 * A low-level filesystem can, if it choses, legally
2133 * do a
2135 * if (!d_unhashed(dentry))
2136 * return -EBUSY;
2138 * if it cannot handle the case of removing a directory
2139 * that is still in use by something else..
2141 void dentry_unhash(struct dentry *dentry)
2143 dget(dentry);
2144 shrink_dcache_parent(dentry);
2145 spin_lock(&dcache_lock);
2146 spin_lock(&dentry->d_lock);
2147 if (atomic_read(&dentry->d_count) == 2)
2148 __d_drop(dentry);
2149 spin_unlock(&dentry->d_lock);
2150 spin_unlock(&dcache_lock);
2153 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2155 int error = may_delete(dir, dentry, 1);
2157 if (error)
2158 return error;
2160 if (!dir->i_op->rmdir)
2161 return -EPERM;
2163 vfs_dq_init(dir);
2165 mutex_lock(&dentry->d_inode->i_mutex);
2166 dentry_unhash(dentry);
2167 if (d_mountpoint(dentry))
2168 error = -EBUSY;
2169 else {
2170 error = security_inode_rmdir(dir, dentry);
2171 if (!error) {
2172 error = dir->i_op->rmdir(dir, dentry);
2173 if (!error)
2174 dentry->d_inode->i_flags |= S_DEAD;
2177 mutex_unlock(&dentry->d_inode->i_mutex);
2178 if (!error) {
2179 d_delete(dentry);
2181 dput(dentry);
2183 return error;
2186 static long do_rmdir(int dfd, const char __user *pathname)
2188 int error = 0;
2189 char * name;
2190 struct dentry *dentry;
2191 struct nameidata nd;
2193 error = user_path_parent(dfd, pathname, &nd, &name);
2194 if (error)
2195 return error;
2197 switch(nd.last_type) {
2198 case LAST_DOTDOT:
2199 error = -ENOTEMPTY;
2200 goto exit1;
2201 case LAST_DOT:
2202 error = -EINVAL;
2203 goto exit1;
2204 case LAST_ROOT:
2205 error = -EBUSY;
2206 goto exit1;
2209 nd.flags &= ~LOOKUP_PARENT;
2211 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2212 dentry = lookup_hash(&nd);
2213 error = PTR_ERR(dentry);
2214 if (IS_ERR(dentry))
2215 goto exit2;
2216 error = mnt_want_write(nd.path.mnt);
2217 if (error)
2218 goto exit3;
2219 error = security_path_rmdir(&nd.path, dentry);
2220 if (error)
2221 goto exit4;
2222 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2223 exit4:
2224 mnt_drop_write(nd.path.mnt);
2225 exit3:
2226 dput(dentry);
2227 exit2:
2228 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2229 exit1:
2230 path_put(&nd.path);
2231 putname(name);
2232 return error;
2235 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2237 return do_rmdir(AT_FDCWD, pathname);
2240 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2242 int error = may_delete(dir, dentry, 0);
2244 if (error)
2245 return error;
2247 if (!dir->i_op->unlink)
2248 return -EPERM;
2250 vfs_dq_init(dir);
2252 mutex_lock(&dentry->d_inode->i_mutex);
2253 if (d_mountpoint(dentry))
2254 error = -EBUSY;
2255 else {
2256 error = security_inode_unlink(dir, dentry);
2257 if (!error)
2258 error = dir->i_op->unlink(dir, dentry);
2260 mutex_unlock(&dentry->d_inode->i_mutex);
2262 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2263 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2264 fsnotify_link_count(dentry->d_inode);
2265 d_delete(dentry);
2268 return error;
2272 * Make sure that the actual truncation of the file will occur outside its
2273 * directory's i_mutex. Truncate can take a long time if there is a lot of
2274 * writeout happening, and we don't want to prevent access to the directory
2275 * while waiting on the I/O.
2277 static long do_unlinkat(int dfd, const char __user *pathname)
2279 int error;
2280 char *name;
2281 struct dentry *dentry;
2282 struct nameidata nd;
2283 struct inode *inode = NULL;
2285 error = user_path_parent(dfd, pathname, &nd, &name);
2286 if (error)
2287 return error;
2289 error = -EISDIR;
2290 if (nd.last_type != LAST_NORM)
2291 goto exit1;
2293 nd.flags &= ~LOOKUP_PARENT;
2295 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2296 dentry = lookup_hash(&nd);
2297 error = PTR_ERR(dentry);
2298 if (!IS_ERR(dentry)) {
2299 /* Why not before? Because we want correct error value */
2300 if (nd.last.name[nd.last.len])
2301 goto slashes;
2302 inode = dentry->d_inode;
2303 if (inode)
2304 atomic_inc(&inode->i_count);
2305 error = mnt_want_write(nd.path.mnt);
2306 if (error)
2307 goto exit2;
2308 error = security_path_unlink(&nd.path, dentry);
2309 if (error)
2310 goto exit3;
2311 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2312 exit3:
2313 mnt_drop_write(nd.path.mnt);
2314 exit2:
2315 dput(dentry);
2317 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2318 if (inode)
2319 iput(inode); /* truncate the inode here */
2320 exit1:
2321 path_put(&nd.path);
2322 putname(name);
2323 return error;
2325 slashes:
2326 error = !dentry->d_inode ? -ENOENT :
2327 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2328 goto exit2;
2331 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2333 if ((flag & ~AT_REMOVEDIR) != 0)
2334 return -EINVAL;
2336 if (flag & AT_REMOVEDIR)
2337 return do_rmdir(dfd, pathname);
2339 return do_unlinkat(dfd, pathname);
2342 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2344 return do_unlinkat(AT_FDCWD, pathname);
2347 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2349 int error = may_create(dir, dentry);
2351 if (error)
2352 return error;
2354 if (!dir->i_op->symlink)
2355 return -EPERM;
2357 error = security_inode_symlink(dir, dentry, oldname);
2358 if (error)
2359 return error;
2361 vfs_dq_init(dir);
2362 error = dir->i_op->symlink(dir, dentry, oldname);
2363 if (!error)
2364 fsnotify_create(dir, dentry);
2365 return error;
2368 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2369 int, newdfd, const char __user *, newname)
2371 int error;
2372 char *from;
2373 char *to;
2374 struct dentry *dentry;
2375 struct nameidata nd;
2377 from = getname(oldname);
2378 if (IS_ERR(from))
2379 return PTR_ERR(from);
2381 error = user_path_parent(newdfd, newname, &nd, &to);
2382 if (error)
2383 goto out_putname;
2385 dentry = lookup_create(&nd, 0);
2386 error = PTR_ERR(dentry);
2387 if (IS_ERR(dentry))
2388 goto out_unlock;
2390 error = mnt_want_write(nd.path.mnt);
2391 if (error)
2392 goto out_dput;
2393 error = security_path_symlink(&nd.path, dentry, from);
2394 if (error)
2395 goto out_drop_write;
2396 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2397 out_drop_write:
2398 mnt_drop_write(nd.path.mnt);
2399 out_dput:
2400 dput(dentry);
2401 out_unlock:
2402 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2403 path_put(&nd.path);
2404 putname(to);
2405 out_putname:
2406 putname(from);
2407 return error;
2410 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2412 return sys_symlinkat(oldname, AT_FDCWD, newname);
2415 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2417 struct inode *inode = old_dentry->d_inode;
2418 int error;
2420 if (!inode)
2421 return -ENOENT;
2423 error = may_create(dir, new_dentry);
2424 if (error)
2425 return error;
2427 if (dir->i_sb != inode->i_sb)
2428 return -EXDEV;
2431 * A link to an append-only or immutable file cannot be created.
2433 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2434 return -EPERM;
2435 if (!dir->i_op->link)
2436 return -EPERM;
2437 if (S_ISDIR(inode->i_mode))
2438 return -EPERM;
2440 error = security_inode_link(old_dentry, dir, new_dentry);
2441 if (error)
2442 return error;
2444 mutex_lock(&inode->i_mutex);
2445 vfs_dq_init(dir);
2446 error = dir->i_op->link(old_dentry, dir, new_dentry);
2447 mutex_unlock(&inode->i_mutex);
2448 if (!error)
2449 fsnotify_link(dir, inode, new_dentry);
2450 return error;
2454 * Hardlinks are often used in delicate situations. We avoid
2455 * security-related surprises by not following symlinks on the
2456 * newname. --KAB
2458 * We don't follow them on the oldname either to be compatible
2459 * with linux 2.0, and to avoid hard-linking to directories
2460 * and other special files. --ADM
2462 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2463 int, newdfd, const char __user *, newname, int, flags)
2465 struct dentry *new_dentry;
2466 struct nameidata nd;
2467 struct path old_path;
2468 int error;
2469 char *to;
2471 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2472 return -EINVAL;
2474 error = user_path_at(olddfd, oldname,
2475 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2476 &old_path);
2477 if (error)
2478 return error;
2480 error = user_path_parent(newdfd, newname, &nd, &to);
2481 if (error)
2482 goto out;
2483 error = -EXDEV;
2484 if (old_path.mnt != nd.path.mnt)
2485 goto out_release;
2486 new_dentry = lookup_create(&nd, 0);
2487 error = PTR_ERR(new_dentry);
2488 if (IS_ERR(new_dentry))
2489 goto out_unlock;
2490 error = mnt_want_write(nd.path.mnt);
2491 if (error)
2492 goto out_dput;
2493 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2494 if (error)
2495 goto out_drop_write;
2496 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2497 out_drop_write:
2498 mnt_drop_write(nd.path.mnt);
2499 out_dput:
2500 dput(new_dentry);
2501 out_unlock:
2502 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2503 out_release:
2504 path_put(&nd.path);
2505 putname(to);
2506 out:
2507 path_put(&old_path);
2509 return error;
2512 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2514 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2518 * The worst of all namespace operations - renaming directory. "Perverted"
2519 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2520 * Problems:
2521 * a) we can get into loop creation. Check is done in is_subdir().
2522 * b) race potential - two innocent renames can create a loop together.
2523 * That's where 4.4 screws up. Current fix: serialization on
2524 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2525 * story.
2526 * c) we have to lock _three_ objects - parents and victim (if it exists).
2527 * And that - after we got ->i_mutex on parents (until then we don't know
2528 * whether the target exists). Solution: try to be smart with locking
2529 * order for inodes. We rely on the fact that tree topology may change
2530 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2531 * move will be locked. Thus we can rank directories by the tree
2532 * (ancestors first) and rank all non-directories after them.
2533 * That works since everybody except rename does "lock parent, lookup,
2534 * lock child" and rename is under ->s_vfs_rename_mutex.
2535 * HOWEVER, it relies on the assumption that any object with ->lookup()
2536 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2537 * we'd better make sure that there's no link(2) for them.
2538 * d) some filesystems don't support opened-but-unlinked directories,
2539 * either because of layout or because they are not ready to deal with
2540 * all cases correctly. The latter will be fixed (taking this sort of
2541 * stuff into VFS), but the former is not going away. Solution: the same
2542 * trick as in rmdir().
2543 * e) conversion from fhandle to dentry may come in the wrong moment - when
2544 * we are removing the target. Solution: we will have to grab ->i_mutex
2545 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2546 * ->i_mutex on parents, which works but leads to some truely excessive
2547 * locking].
2549 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2550 struct inode *new_dir, struct dentry *new_dentry)
2552 int error = 0;
2553 struct inode *target;
2556 * If we are going to change the parent - check write permissions,
2557 * we'll need to flip '..'.
2559 if (new_dir != old_dir) {
2560 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2561 if (error)
2562 return error;
2565 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2566 if (error)
2567 return error;
2569 target = new_dentry->d_inode;
2570 if (target) {
2571 mutex_lock(&target->i_mutex);
2572 dentry_unhash(new_dentry);
2574 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2575 error = -EBUSY;
2576 else
2577 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2578 if (target) {
2579 if (!error)
2580 target->i_flags |= S_DEAD;
2581 mutex_unlock(&target->i_mutex);
2582 if (d_unhashed(new_dentry))
2583 d_rehash(new_dentry);
2584 dput(new_dentry);
2586 if (!error)
2587 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2588 d_move(old_dentry,new_dentry);
2589 return error;
2592 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2593 struct inode *new_dir, struct dentry *new_dentry)
2595 struct inode *target;
2596 int error;
2598 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2599 if (error)
2600 return error;
2602 dget(new_dentry);
2603 target = new_dentry->d_inode;
2604 if (target)
2605 mutex_lock(&target->i_mutex);
2606 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2607 error = -EBUSY;
2608 else
2609 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2610 if (!error) {
2611 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2612 d_move(old_dentry, new_dentry);
2614 if (target)
2615 mutex_unlock(&target->i_mutex);
2616 dput(new_dentry);
2617 return error;
2620 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2621 struct inode *new_dir, struct dentry *new_dentry)
2623 int error;
2624 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2625 const char *old_name;
2627 if (old_dentry->d_inode == new_dentry->d_inode)
2628 return 0;
2630 error = may_delete(old_dir, old_dentry, is_dir);
2631 if (error)
2632 return error;
2634 if (!new_dentry->d_inode)
2635 error = may_create(new_dir, new_dentry);
2636 else
2637 error = may_delete(new_dir, new_dentry, is_dir);
2638 if (error)
2639 return error;
2641 if (!old_dir->i_op->rename)
2642 return -EPERM;
2644 vfs_dq_init(old_dir);
2645 vfs_dq_init(new_dir);
2647 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2649 if (is_dir)
2650 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2651 else
2652 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2653 if (!error) {
2654 const char *new_name = old_dentry->d_name.name;
2655 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2656 new_dentry->d_inode, old_dentry);
2658 fsnotify_oldname_free(old_name);
2660 return error;
2663 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2664 int, newdfd, const char __user *, newname)
2666 struct dentry *old_dir, *new_dir;
2667 struct dentry *old_dentry, *new_dentry;
2668 struct dentry *trap;
2669 struct nameidata oldnd, newnd;
2670 char *from;
2671 char *to;
2672 int error;
2674 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2675 if (error)
2676 goto exit;
2678 error = user_path_parent(newdfd, newname, &newnd, &to);
2679 if (error)
2680 goto exit1;
2682 error = -EXDEV;
2683 if (oldnd.path.mnt != newnd.path.mnt)
2684 goto exit2;
2686 old_dir = oldnd.path.dentry;
2687 error = -EBUSY;
2688 if (oldnd.last_type != LAST_NORM)
2689 goto exit2;
2691 new_dir = newnd.path.dentry;
2692 if (newnd.last_type != LAST_NORM)
2693 goto exit2;
2695 oldnd.flags &= ~LOOKUP_PARENT;
2696 newnd.flags &= ~LOOKUP_PARENT;
2697 newnd.flags |= LOOKUP_RENAME_TARGET;
2699 trap = lock_rename(new_dir, old_dir);
2701 old_dentry = lookup_hash(&oldnd);
2702 error = PTR_ERR(old_dentry);
2703 if (IS_ERR(old_dentry))
2704 goto exit3;
2705 /* source must exist */
2706 error = -ENOENT;
2707 if (!old_dentry->d_inode)
2708 goto exit4;
2709 /* unless the source is a directory trailing slashes give -ENOTDIR */
2710 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2711 error = -ENOTDIR;
2712 if (oldnd.last.name[oldnd.last.len])
2713 goto exit4;
2714 if (newnd.last.name[newnd.last.len])
2715 goto exit4;
2717 /* source should not be ancestor of target */
2718 error = -EINVAL;
2719 if (old_dentry == trap)
2720 goto exit4;
2721 new_dentry = lookup_hash(&newnd);
2722 error = PTR_ERR(new_dentry);
2723 if (IS_ERR(new_dentry))
2724 goto exit4;
2725 /* target should not be an ancestor of source */
2726 error = -ENOTEMPTY;
2727 if (new_dentry == trap)
2728 goto exit5;
2730 error = mnt_want_write(oldnd.path.mnt);
2731 if (error)
2732 goto exit5;
2733 error = security_path_rename(&oldnd.path, old_dentry,
2734 &newnd.path, new_dentry);
2735 if (error)
2736 goto exit6;
2737 error = vfs_rename(old_dir->d_inode, old_dentry,
2738 new_dir->d_inode, new_dentry);
2739 exit6:
2740 mnt_drop_write(oldnd.path.mnt);
2741 exit5:
2742 dput(new_dentry);
2743 exit4:
2744 dput(old_dentry);
2745 exit3:
2746 unlock_rename(new_dir, old_dir);
2747 exit2:
2748 path_put(&newnd.path);
2749 putname(to);
2750 exit1:
2751 path_put(&oldnd.path);
2752 putname(from);
2753 exit:
2754 return error;
2757 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2759 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2762 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2764 int len;
2766 len = PTR_ERR(link);
2767 if (IS_ERR(link))
2768 goto out;
2770 len = strlen(link);
2771 if (len > (unsigned) buflen)
2772 len = buflen;
2773 if (copy_to_user(buffer, link, len))
2774 len = -EFAULT;
2775 out:
2776 return len;
2780 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2781 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2782 * using) it for any given inode is up to filesystem.
2784 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2786 struct nameidata nd;
2787 void *cookie;
2788 int res;
2790 nd.depth = 0;
2791 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2792 if (IS_ERR(cookie))
2793 return PTR_ERR(cookie);
2795 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2796 if (dentry->d_inode->i_op->put_link)
2797 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2798 return res;
2801 int vfs_follow_link(struct nameidata *nd, const char *link)
2803 return __vfs_follow_link(nd, link);
2806 /* get the link contents into pagecache */
2807 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2809 char *kaddr;
2810 struct page *page;
2811 struct address_space *mapping = dentry->d_inode->i_mapping;
2812 page = read_mapping_page(mapping, 0, NULL);
2813 if (IS_ERR(page))
2814 return (char*)page;
2815 *ppage = page;
2816 kaddr = kmap(page);
2817 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2818 return kaddr;
2821 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2823 struct page *page = NULL;
2824 char *s = page_getlink(dentry, &page);
2825 int res = vfs_readlink(dentry,buffer,buflen,s);
2826 if (page) {
2827 kunmap(page);
2828 page_cache_release(page);
2830 return res;
2833 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2835 struct page *page = NULL;
2836 nd_set_link(nd, page_getlink(dentry, &page));
2837 return page;
2840 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2842 struct page *page = cookie;
2844 if (page) {
2845 kunmap(page);
2846 page_cache_release(page);
2851 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2853 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2855 struct address_space *mapping = inode->i_mapping;
2856 struct page *page;
2857 void *fsdata;
2858 int err;
2859 char *kaddr;
2860 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2861 if (nofs)
2862 flags |= AOP_FLAG_NOFS;
2864 retry:
2865 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2866 flags, &page, &fsdata);
2867 if (err)
2868 goto fail;
2870 kaddr = kmap_atomic(page, KM_USER0);
2871 memcpy(kaddr, symname, len-1);
2872 kunmap_atomic(kaddr, KM_USER0);
2874 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2875 page, fsdata);
2876 if (err < 0)
2877 goto fail;
2878 if (err < len-1)
2879 goto retry;
2881 mark_inode_dirty(inode);
2882 return 0;
2883 fail:
2884 return err;
2887 int page_symlink(struct inode *inode, const char *symname, int len)
2889 return __page_symlink(inode, symname, len,
2890 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2893 const struct inode_operations page_symlink_inode_operations = {
2894 .readlink = generic_readlink,
2895 .follow_link = page_follow_link_light,
2896 .put_link = page_put_link,
2899 EXPORT_SYMBOL(user_path_at);
2900 EXPORT_SYMBOL(follow_down);
2901 EXPORT_SYMBOL(follow_up);
2902 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2903 EXPORT_SYMBOL(getname);
2904 EXPORT_SYMBOL(lock_rename);
2905 EXPORT_SYMBOL(lookup_one_len);
2906 EXPORT_SYMBOL(page_follow_link_light);
2907 EXPORT_SYMBOL(page_put_link);
2908 EXPORT_SYMBOL(page_readlink);
2909 EXPORT_SYMBOL(__page_symlink);
2910 EXPORT_SYMBOL(page_symlink);
2911 EXPORT_SYMBOL(page_symlink_inode_operations);
2912 EXPORT_SYMBOL(path_lookup);
2913 EXPORT_SYMBOL(kern_path);
2914 EXPORT_SYMBOL(vfs_path_lookup);
2915 EXPORT_SYMBOL(inode_permission);
2916 EXPORT_SYMBOL(file_permission);
2917 EXPORT_SYMBOL(unlock_rename);
2918 EXPORT_SYMBOL(vfs_create);
2919 EXPORT_SYMBOL(vfs_follow_link);
2920 EXPORT_SYMBOL(vfs_link);
2921 EXPORT_SYMBOL(vfs_mkdir);
2922 EXPORT_SYMBOL(vfs_mknod);
2923 EXPORT_SYMBOL(generic_permission);
2924 EXPORT_SYMBOL(vfs_readlink);
2925 EXPORT_SYMBOL(vfs_rename);
2926 EXPORT_SYMBOL(vfs_rmdir);
2927 EXPORT_SYMBOL(vfs_symlink);
2928 EXPORT_SYMBOL(vfs_unlink);
2929 EXPORT_SYMBOL(dentry_unhash);
2930 EXPORT_SYMBOL(generic_readlink);