2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/module.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
41 #include <asm/dbdma.h>
43 #include <asm/pci-bridge.h>
44 #include <asm/machdep.h>
45 #include <asm/pmac_feature.h>
46 #include <asm/sections.h>
48 #include <asm/mediabay.h>
50 #define DRV_NAME "ide-pmac"
54 #define DMA_WAIT_TIMEOUT 50
56 typedef struct pmac_ide_hwif
{
57 unsigned long regbase
;
61 unsigned broken_dma
: 1;
62 unsigned broken_dma_warn
: 1;
63 struct device_node
* node
;
64 struct macio_dev
*mdev
;
66 volatile u32 __iomem
* *kauai_fcr
;
69 /* Those fields are duplicating what is in hwif. We currently
70 * can't use the hwif ones because of some assumptions that are
71 * beeing done by the generic code about the kind of dma controller
72 * and format of the dma table. This will have to be fixed though.
74 volatile struct dbdma_regs __iomem
* dma_regs
;
75 struct dbdma_cmd
* dma_table_cpu
;
79 controller_ohare
, /* OHare based */
80 controller_heathrow
, /* Heathrow/Paddington */
81 controller_kl_ata3
, /* KeyLargo ATA-3 */
82 controller_kl_ata4
, /* KeyLargo ATA-4 */
83 controller_un_ata6
, /* UniNorth2 ATA-6 */
84 controller_k2_ata6
, /* K2 ATA-6 */
85 controller_sh_ata6
, /* Shasta ATA-6 */
88 static const char* model_name
[] = {
89 "OHare ATA", /* OHare based */
90 "Heathrow ATA", /* Heathrow/Paddington */
91 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
92 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
93 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
94 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
95 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
99 * Extra registers, both 32-bit little-endian
101 #define IDE_TIMING_CONFIG 0x200
102 #define IDE_INTERRUPT 0x300
104 /* Kauai (U2) ATA has different register setup */
105 #define IDE_KAUAI_PIO_CONFIG 0x200
106 #define IDE_KAUAI_ULTRA_CONFIG 0x210
107 #define IDE_KAUAI_POLL_CONFIG 0x220
110 * Timing configuration register definitions
113 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
114 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
115 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
116 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
117 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
119 /* 133Mhz cell, found in shasta.
120 * See comments about 100 Mhz Uninorth 2...
121 * Note that PIO_MASK and MDMA_MASK seem to overlap
123 #define TR_133_PIOREG_PIO_MASK 0xff000fff
124 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
125 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
126 #define TR_133_UDMAREG_UDMA_EN 0x00000001
128 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
129 * this one yet, it appears as a pci device (106b/0033) on uninorth
130 * internal PCI bus and it's clock is controlled like gem or fw. It
131 * appears to be an evolution of keylargo ATA4 with a timing register
132 * extended to 2 32bits registers and a similar DBDMA channel. Other
133 * registers seem to exist but I can't tell much about them.
135 * So far, I'm using pre-calculated tables for this extracted from
136 * the values used by the MacOS X driver.
138 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
139 * register controls the UDMA timings. At least, it seems bit 0
140 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
141 * cycle time in units of 10ns. Bits 8..15 are used by I don't
142 * know their meaning yet
144 #define TR_100_PIOREG_PIO_MASK 0xff000fff
145 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
146 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
147 #define TR_100_UDMAREG_UDMA_EN 0x00000001
150 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
151 * 40 connector cable and to 4 on 80 connector one.
152 * Clock unit is 15ns (66Mhz)
154 * 3 Values can be programmed:
155 * - Write data setup, which appears to match the cycle time. They
156 * also call it DIOW setup.
157 * - Ready to pause time (from spec)
158 * - Address setup. That one is weird. I don't see where exactly
159 * it fits in UDMA cycles, I got it's name from an obscure piece
160 * of commented out code in Darwin. They leave it to 0, we do as
161 * well, despite a comment that would lead to think it has a
163 * Apple also add 60ns to the write data setup (or cycle time ?) on
166 #define TR_66_UDMA_MASK 0xfff00000
167 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
168 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
169 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
170 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
171 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
172 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
173 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
174 #define TR_66_MDMA_MASK 0x000ffc00
175 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
176 #define TR_66_MDMA_RECOVERY_SHIFT 15
177 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
178 #define TR_66_MDMA_ACCESS_SHIFT 10
179 #define TR_66_PIO_MASK 0x000003ff
180 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
181 #define TR_66_PIO_RECOVERY_SHIFT 5
182 #define TR_66_PIO_ACCESS_MASK 0x0000001f
183 #define TR_66_PIO_ACCESS_SHIFT 0
185 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
186 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
188 * The access time and recovery time can be programmed. Some older
189 * Darwin code base limit OHare to 150ns cycle time. I decided to do
190 * the same here fore safety against broken old hardware ;)
191 * The HalfTick bit, when set, adds half a clock (15ns) to the access
192 * time and removes one from recovery. It's not supported on KeyLargo
193 * implementation afaik. The E bit appears to be set for PIO mode 0 and
194 * is used to reach long timings used in this mode.
196 #define TR_33_MDMA_MASK 0x003ff800
197 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
198 #define TR_33_MDMA_RECOVERY_SHIFT 16
199 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
200 #define TR_33_MDMA_ACCESS_SHIFT 11
201 #define TR_33_MDMA_HALFTICK 0x00200000
202 #define TR_33_PIO_MASK 0x000007ff
203 #define TR_33_PIO_E 0x00000400
204 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
205 #define TR_33_PIO_RECOVERY_SHIFT 5
206 #define TR_33_PIO_ACCESS_MASK 0x0000001f
207 #define TR_33_PIO_ACCESS_SHIFT 0
210 * Interrupt register definitions
212 #define IDE_INTR_DMA 0x80000000
213 #define IDE_INTR_DEVICE 0x40000000
216 * FCR Register on Kauai. Not sure what bit 0x4 is ...
218 #define KAUAI_FCR_UATA_MAGIC 0x00000004
219 #define KAUAI_FCR_UATA_RESET_N 0x00000002
220 #define KAUAI_FCR_UATA_ENABLE 0x00000001
222 /* Rounded Multiword DMA timings
224 * I gave up finding a generic formula for all controller
225 * types and instead, built tables based on timing values
226 * used by Apple in Darwin's implementation.
228 struct mdma_timings_t
{
234 struct mdma_timings_t mdma_timings_33
[] =
247 struct mdma_timings_t mdma_timings_33k
[] =
260 struct mdma_timings_t mdma_timings_66
[] =
273 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
275 int addrSetup
; /* ??? */
278 } kl66_udma_timings
[] =
280 { 0, 180, 120 }, /* Mode 0 */
281 { 0, 150, 90 }, /* 1 */
282 { 0, 120, 60 }, /* 2 */
283 { 0, 90, 45 }, /* 3 */
284 { 0, 90, 30 } /* 4 */
287 /* UniNorth 2 ATA/100 timings */
288 struct kauai_timing
{
293 static struct kauai_timing kauai_pio_timings
[] =
295 { 930 , 0x08000fff },
296 { 600 , 0x08000a92 },
297 { 383 , 0x0800060f },
298 { 360 , 0x08000492 },
299 { 330 , 0x0800048f },
300 { 300 , 0x080003cf },
301 { 270 , 0x080003cc },
302 { 240 , 0x0800038b },
303 { 239 , 0x0800030c },
304 { 180 , 0x05000249 },
305 { 120 , 0x04000148 },
309 static struct kauai_timing kauai_mdma_timings
[] =
311 { 1260 , 0x00fff000 },
312 { 480 , 0x00618000 },
313 { 360 , 0x00492000 },
314 { 270 , 0x0038e000 },
315 { 240 , 0x0030c000 },
316 { 210 , 0x002cb000 },
317 { 180 , 0x00249000 },
318 { 150 , 0x00209000 },
319 { 120 , 0x00148000 },
323 static struct kauai_timing kauai_udma_timings
[] =
325 { 120 , 0x000070c0 },
334 static struct kauai_timing shasta_pio_timings
[] =
336 { 930 , 0x08000fff },
337 { 600 , 0x0A000c97 },
338 { 383 , 0x07000712 },
339 { 360 , 0x040003cd },
340 { 330 , 0x040003cd },
341 { 300 , 0x040003cd },
342 { 270 , 0x040003cd },
343 { 240 , 0x040003cd },
344 { 239 , 0x040003cd },
345 { 180 , 0x0400028b },
346 { 120 , 0x0400010a },
350 static struct kauai_timing shasta_mdma_timings
[] =
352 { 1260 , 0x00fff000 },
353 { 480 , 0x00820800 },
354 { 360 , 0x00820800 },
355 { 270 , 0x00820800 },
356 { 240 , 0x00820800 },
357 { 210 , 0x00820800 },
358 { 180 , 0x00820800 },
359 { 150 , 0x0028b000 },
360 { 120 , 0x001ca000 },
364 static struct kauai_timing shasta_udma133_timings
[] =
366 { 120 , 0x00035901, },
367 { 90 , 0x000348b1, },
368 { 60 , 0x00033881, },
369 { 45 , 0x00033861, },
370 { 30 , 0x00033841, },
371 { 20 , 0x00033031, },
372 { 15 , 0x00033021, },
378 kauai_lookup_timing(struct kauai_timing
* table
, int cycle_time
)
382 for (i
=0; table
[i
].cycle_time
; i
++)
383 if (cycle_time
> table
[i
+1].cycle_time
)
384 return table
[i
].timing_reg
;
389 /* allow up to 256 DBDMA commands per xfer */
390 #define MAX_DCMDS 256
393 * Wait 1s for disk to answer on IDE bus after a hard reset
394 * of the device (via GPIO/FCR).
396 * Some devices seem to "pollute" the bus even after dropping
397 * the BSY bit (typically some combo drives slave on the UDMA
398 * bus) after a hard reset. Since we hard reset all drives on
399 * KeyLargo ATA66, we have to keep that delay around. I may end
400 * up not hard resetting anymore on these and keep the delay only
401 * for older interfaces instead (we have to reset when coming
402 * from MacOS...) --BenH.
404 #define IDE_WAKEUP_DELAY (1*HZ)
406 static int pmac_ide_init_dma(ide_hwif_t
*, const struct ide_port_info
*);
408 #define PMAC_IDE_REG(x) \
409 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
412 * Apply the timings of the proper unit (master/slave) to the shared
413 * timing register when selecting that unit. This version is for
414 * ASICs with a single timing register
416 static void pmac_ide_apply_timings(ide_drive_t
*drive
)
418 ide_hwif_t
*hwif
= drive
->hwif
;
419 pmac_ide_hwif_t
*pmif
=
420 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
423 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
425 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
426 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
430 * Apply the timings of the proper unit (master/slave) to the shared
431 * timing register when selecting that unit. This version is for
432 * ASICs with a dual timing register (Kauai)
434 static void pmac_ide_kauai_apply_timings(ide_drive_t
*drive
)
436 ide_hwif_t
*hwif
= drive
->hwif
;
437 pmac_ide_hwif_t
*pmif
=
438 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
441 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
442 writel(pmif
->timings
[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
444 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
445 writel(pmif
->timings
[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
447 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
451 * Force an update of controller timing values for a given drive
454 pmac_ide_do_update_timings(ide_drive_t
*drive
)
456 ide_hwif_t
*hwif
= drive
->hwif
;
457 pmac_ide_hwif_t
*pmif
=
458 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
460 if (pmif
->kind
== controller_sh_ata6
||
461 pmif
->kind
== controller_un_ata6
||
462 pmif
->kind
== controller_k2_ata6
)
463 pmac_ide_kauai_apply_timings(drive
);
465 pmac_ide_apply_timings(drive
);
468 static void pmac_dev_select(ide_drive_t
*drive
)
470 pmac_ide_apply_timings(drive
);
472 writeb(drive
->select
| ATA_DEVICE_OBS
,
473 (void __iomem
*)drive
->hwif
->io_ports
.device_addr
);
476 static void pmac_kauai_dev_select(ide_drive_t
*drive
)
478 pmac_ide_kauai_apply_timings(drive
);
480 writeb(drive
->select
| ATA_DEVICE_OBS
,
481 (void __iomem
*)drive
->hwif
->io_ports
.device_addr
);
484 static void pmac_exec_command(ide_hwif_t
*hwif
, u8 cmd
)
486 writeb(cmd
, (void __iomem
*)hwif
->io_ports
.command_addr
);
487 (void)readl((void __iomem
*)(hwif
->io_ports
.data_addr
488 + IDE_TIMING_CONFIG
));
491 static void pmac_write_devctl(ide_hwif_t
*hwif
, u8 ctl
)
493 writeb(ctl
, (void __iomem
*)hwif
->io_ports
.ctl_addr
);
494 (void)readl((void __iomem
*)(hwif
->io_ports
.data_addr
495 + IDE_TIMING_CONFIG
));
499 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
501 static void pmac_ide_set_pio_mode(ide_hwif_t
*hwif
, ide_drive_t
*drive
)
503 pmac_ide_hwif_t
*pmif
=
504 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
505 const u8 pio
= drive
->pio_mode
- XFER_PIO_0
;
506 struct ide_timing
*tim
= ide_timing_find_mode(XFER_PIO_0
+ pio
);
508 unsigned accessTicks
, recTicks
;
509 unsigned accessTime
, recTime
;
510 unsigned int cycle_time
;
512 /* which drive is it ? */
513 timings
= &pmif
->timings
[drive
->dn
& 1];
516 cycle_time
= ide_pio_cycle_time(drive
, pio
);
518 switch (pmif
->kind
) {
519 case controller_sh_ata6
: {
521 u32 tr
= kauai_lookup_timing(shasta_pio_timings
, cycle_time
);
522 t
= (t
& ~TR_133_PIOREG_PIO_MASK
) | tr
;
525 case controller_un_ata6
:
526 case controller_k2_ata6
: {
528 u32 tr
= kauai_lookup_timing(kauai_pio_timings
, cycle_time
);
529 t
= (t
& ~TR_100_PIOREG_PIO_MASK
) | tr
;
532 case controller_kl_ata4
:
534 recTime
= cycle_time
- tim
->active
- tim
->setup
;
535 recTime
= max(recTime
, 150U);
536 accessTime
= tim
->active
;
537 accessTime
= max(accessTime
, 150U);
538 accessTicks
= SYSCLK_TICKS_66(accessTime
);
539 accessTicks
= min(accessTicks
, 0x1fU
);
540 recTicks
= SYSCLK_TICKS_66(recTime
);
541 recTicks
= min(recTicks
, 0x1fU
);
542 t
= (t
& ~TR_66_PIO_MASK
) |
543 (accessTicks
<< TR_66_PIO_ACCESS_SHIFT
) |
544 (recTicks
<< TR_66_PIO_RECOVERY_SHIFT
);
549 recTime
= cycle_time
- tim
->active
- tim
->setup
;
550 recTime
= max(recTime
, 150U);
551 accessTime
= tim
->active
;
552 accessTime
= max(accessTime
, 150U);
553 accessTicks
= SYSCLK_TICKS(accessTime
);
554 accessTicks
= min(accessTicks
, 0x1fU
);
555 accessTicks
= max(accessTicks
, 4U);
556 recTicks
= SYSCLK_TICKS(recTime
);
557 recTicks
= min(recTicks
, 0x1fU
);
558 recTicks
= max(recTicks
, 5U) - 4;
560 recTicks
--; /* guess, but it's only for PIO0, so... */
563 t
= (t
& ~TR_33_PIO_MASK
) |
564 (accessTicks
<< TR_33_PIO_ACCESS_SHIFT
) |
565 (recTicks
<< TR_33_PIO_RECOVERY_SHIFT
);
572 #ifdef IDE_PMAC_DEBUG
573 printk(KERN_ERR
"%s: Set PIO timing for mode %d, reg: 0x%08x\n",
574 drive
->name
, pio
, *timings
);
578 pmac_ide_do_update_timings(drive
);
582 * Calculate KeyLargo ATA/66 UDMA timings
585 set_timings_udma_ata4(u32
*timings
, u8 speed
)
587 unsigned rdyToPauseTicks
, wrDataSetupTicks
, addrTicks
;
589 if (speed
> XFER_UDMA_4
)
592 rdyToPauseTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].rdy2pause
);
593 wrDataSetupTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].wrDataSetup
);
594 addrTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].addrSetup
);
596 *timings
= ((*timings
) & ~(TR_66_UDMA_MASK
| TR_66_MDMA_MASK
)) |
597 (wrDataSetupTicks
<< TR_66_UDMA_WRDATASETUP_SHIFT
) |
598 (rdyToPauseTicks
<< TR_66_UDMA_RDY2PAUS_SHIFT
) |
599 (addrTicks
<<TR_66_UDMA_ADDRSETUP_SHIFT
) |
601 #ifdef IDE_PMAC_DEBUG
602 printk(KERN_ERR
"ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
603 speed
& 0xf, *timings
);
610 * Calculate Kauai ATA/100 UDMA timings
613 set_timings_udma_ata6(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
615 struct ide_timing
*t
= ide_timing_find_mode(speed
);
618 if (speed
> XFER_UDMA_5
|| t
== NULL
)
620 tr
= kauai_lookup_timing(kauai_udma_timings
, (int)t
->udma
);
621 *ultra_timings
= ((*ultra_timings
) & ~TR_100_UDMAREG_UDMA_MASK
) | tr
;
622 *ultra_timings
= (*ultra_timings
) | TR_100_UDMAREG_UDMA_EN
;
628 * Calculate Shasta ATA/133 UDMA timings
631 set_timings_udma_shasta(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
633 struct ide_timing
*t
= ide_timing_find_mode(speed
);
636 if (speed
> XFER_UDMA_6
|| t
== NULL
)
638 tr
= kauai_lookup_timing(shasta_udma133_timings
, (int)t
->udma
);
639 *ultra_timings
= ((*ultra_timings
) & ~TR_133_UDMAREG_UDMA_MASK
) | tr
;
640 *ultra_timings
= (*ultra_timings
) | TR_133_UDMAREG_UDMA_EN
;
646 * Calculate MDMA timings for all cells
649 set_timings_mdma(ide_drive_t
*drive
, int intf_type
, u32
*timings
, u32
*timings2
,
653 int cycleTime
, accessTime
= 0, recTime
= 0;
654 unsigned accessTicks
, recTicks
;
655 struct mdma_timings_t
* tm
= NULL
;
658 /* Get default cycle time for mode */
659 switch(speed
& 0xf) {
660 case 0: cycleTime
= 480; break;
661 case 1: cycleTime
= 150; break;
662 case 2: cycleTime
= 120; break;
668 /* Check if drive provides explicit DMA cycle time */
669 if ((id
[ATA_ID_FIELD_VALID
] & 2) && id
[ATA_ID_EIDE_DMA_TIME
])
670 cycleTime
= max_t(int, id
[ATA_ID_EIDE_DMA_TIME
], cycleTime
);
672 /* OHare limits according to some old Apple sources */
673 if ((intf_type
== controller_ohare
) && (cycleTime
< 150))
675 /* Get the proper timing array for this controller */
677 case controller_sh_ata6
:
678 case controller_un_ata6
:
679 case controller_k2_ata6
:
681 case controller_kl_ata4
:
682 tm
= mdma_timings_66
;
684 case controller_kl_ata3
:
685 tm
= mdma_timings_33k
;
688 tm
= mdma_timings_33
;
692 /* Lookup matching access & recovery times */
695 if (tm
[i
+1].cycleTime
< cycleTime
)
699 cycleTime
= tm
[i
].cycleTime
;
700 accessTime
= tm
[i
].accessTime
;
701 recTime
= tm
[i
].recoveryTime
;
703 #ifdef IDE_PMAC_DEBUG
704 printk(KERN_ERR
"%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
705 drive
->name
, cycleTime
, accessTime
, recTime
);
709 case controller_sh_ata6
: {
711 u32 tr
= kauai_lookup_timing(shasta_mdma_timings
, cycleTime
);
712 *timings
= ((*timings
) & ~TR_133_PIOREG_MDMA_MASK
) | tr
;
713 *timings2
= (*timings2
) & ~TR_133_UDMAREG_UDMA_EN
;
715 case controller_un_ata6
:
716 case controller_k2_ata6
: {
718 u32 tr
= kauai_lookup_timing(kauai_mdma_timings
, cycleTime
);
719 *timings
= ((*timings
) & ~TR_100_PIOREG_MDMA_MASK
) | tr
;
720 *timings2
= (*timings2
) & ~TR_100_UDMAREG_UDMA_EN
;
723 case controller_kl_ata4
:
725 accessTicks
= SYSCLK_TICKS_66(accessTime
);
726 accessTicks
= min(accessTicks
, 0x1fU
);
727 accessTicks
= max(accessTicks
, 0x1U
);
728 recTicks
= SYSCLK_TICKS_66(recTime
);
729 recTicks
= min(recTicks
, 0x1fU
);
730 recTicks
= max(recTicks
, 0x3U
);
731 /* Clear out mdma bits and disable udma */
732 *timings
= ((*timings
) & ~(TR_66_MDMA_MASK
| TR_66_UDMA_MASK
)) |
733 (accessTicks
<< TR_66_MDMA_ACCESS_SHIFT
) |
734 (recTicks
<< TR_66_MDMA_RECOVERY_SHIFT
);
736 case controller_kl_ata3
:
737 /* 33Mhz cell on KeyLargo */
738 accessTicks
= SYSCLK_TICKS(accessTime
);
739 accessTicks
= max(accessTicks
, 1U);
740 accessTicks
= min(accessTicks
, 0x1fU
);
741 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
742 recTicks
= SYSCLK_TICKS(recTime
);
743 recTicks
= max(recTicks
, 1U);
744 recTicks
= min(recTicks
, 0x1fU
);
745 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
746 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
747 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
750 /* 33Mhz cell on others */
752 int origAccessTime
= accessTime
;
753 int origRecTime
= recTime
;
755 accessTicks
= SYSCLK_TICKS(accessTime
);
756 accessTicks
= max(accessTicks
, 1U);
757 accessTicks
= min(accessTicks
, 0x1fU
);
758 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
759 recTicks
= SYSCLK_TICKS(recTime
);
760 recTicks
= max(recTicks
, 2U) - 1;
761 recTicks
= min(recTicks
, 0x1fU
);
762 recTime
= (recTicks
+ 1) * IDE_SYSCLK_NS
;
763 if ((accessTicks
> 1) &&
764 ((accessTime
- IDE_SYSCLK_NS
/2) >= origAccessTime
) &&
765 ((recTime
- IDE_SYSCLK_NS
/2) >= origRecTime
)) {
769 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
770 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
771 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
773 *timings
|= TR_33_MDMA_HALFTICK
;
776 #ifdef IDE_PMAC_DEBUG
777 printk(KERN_ERR
"%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
778 drive
->name
, speed
& 0xf, *timings
);
782 static void pmac_ide_set_dma_mode(ide_hwif_t
*hwif
, ide_drive_t
*drive
)
784 pmac_ide_hwif_t
*pmif
=
785 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
787 u32
*timings
, *timings2
, tl
[2];
788 u8 unit
= drive
->dn
& 1;
789 const u8 speed
= drive
->dma_mode
;
791 timings
= &pmif
->timings
[unit
];
792 timings2
= &pmif
->timings
[unit
+2];
794 /* Copy timings to local image */
798 if (speed
>= XFER_UDMA_0
) {
799 if (pmif
->kind
== controller_kl_ata4
)
800 ret
= set_timings_udma_ata4(&tl
[0], speed
);
801 else if (pmif
->kind
== controller_un_ata6
802 || pmif
->kind
== controller_k2_ata6
)
803 ret
= set_timings_udma_ata6(&tl
[0], &tl
[1], speed
);
804 else if (pmif
->kind
== controller_sh_ata6
)
805 ret
= set_timings_udma_shasta(&tl
[0], &tl
[1], speed
);
809 set_timings_mdma(drive
, pmif
->kind
, &tl
[0], &tl
[1], speed
);
814 /* Apply timings to controller */
818 pmac_ide_do_update_timings(drive
);
822 * Blast some well known "safe" values to the timing registers at init or
823 * wakeup from sleep time, before we do real calculation
826 sanitize_timings(pmac_ide_hwif_t
*pmif
)
828 unsigned int value
, value2
= 0;
831 case controller_sh_ata6
:
835 case controller_un_ata6
:
836 case controller_k2_ata6
:
840 case controller_kl_ata4
:
843 case controller_kl_ata3
:
846 case controller_heathrow
:
847 case controller_ohare
:
852 pmif
->timings
[0] = pmif
->timings
[1] = value
;
853 pmif
->timings
[2] = pmif
->timings
[3] = value2
;
856 static int on_media_bay(pmac_ide_hwif_t
*pmif
)
858 return pmif
->mdev
&& pmif
->mdev
->media_bay
!= NULL
;
861 /* Suspend call back, should be called after the child devices
862 * have actually been suspended
864 static int pmac_ide_do_suspend(pmac_ide_hwif_t
*pmif
)
866 /* We clear the timings */
867 pmif
->timings
[0] = 0;
868 pmif
->timings
[1] = 0;
870 disable_irq(pmif
->irq
);
872 /* The media bay will handle itself just fine */
873 if (on_media_bay(pmif
))
876 /* Kauai has bus control FCRs directly here */
877 if (pmif
->kauai_fcr
) {
878 u32 fcr
= readl(pmif
->kauai_fcr
);
879 fcr
&= ~(KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
);
880 writel(fcr
, pmif
->kauai_fcr
);
883 /* Disable the bus on older machines and the cell on kauai */
884 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
,
890 /* Resume call back, should be called before the child devices
893 static int pmac_ide_do_resume(pmac_ide_hwif_t
*pmif
)
895 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
896 if (!on_media_bay(pmif
)) {
897 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 1);
898 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
, 1);
900 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 0);
902 /* Kauai has it different */
903 if (pmif
->kauai_fcr
) {
904 u32 fcr
= readl(pmif
->kauai_fcr
);
905 fcr
|= KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
;
906 writel(fcr
, pmif
->kauai_fcr
);
909 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
912 /* Sanitize drive timings */
913 sanitize_timings(pmif
);
915 enable_irq(pmif
->irq
);
920 static u8
pmac_ide_cable_detect(ide_hwif_t
*hwif
)
922 pmac_ide_hwif_t
*pmif
=
923 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
924 struct device_node
*np
= pmif
->node
;
925 const char *cable
= of_get_property(np
, "cable-type", NULL
);
926 struct device_node
*root
= of_find_node_by_path("/");
927 const char *model
= of_get_property(root
, "model", NULL
);
929 /* Get cable type from device-tree. */
930 if (cable
&& !strncmp(cable
, "80-", 3)) {
931 /* Some drives fail to detect 80c cable in PowerBook */
932 /* These machine use proprietary short IDE cable anyway */
933 if (!strncmp(model
, "PowerBook", 9))
934 return ATA_CBL_PATA40_SHORT
;
936 return ATA_CBL_PATA80
;
940 * G5's seem to have incorrect cable type in device-tree.
941 * Let's assume they have a 80 conductor cable, this seem
942 * to be always the case unless the user mucked around.
944 if (of_device_is_compatible(np
, "K2-UATA") ||
945 of_device_is_compatible(np
, "shasta-ata"))
946 return ATA_CBL_PATA80
;
948 return ATA_CBL_PATA40
;
951 static void pmac_ide_init_dev(ide_drive_t
*drive
)
953 ide_hwif_t
*hwif
= drive
->hwif
;
954 pmac_ide_hwif_t
*pmif
=
955 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
957 if (on_media_bay(pmif
)) {
958 if (check_media_bay(pmif
->mdev
->media_bay
) == MB_CD
) {
959 drive
->dev_flags
&= ~IDE_DFLAG_NOPROBE
;
962 drive
->dev_flags
|= IDE_DFLAG_NOPROBE
;
966 static const struct ide_tp_ops pmac_tp_ops
= {
967 .exec_command
= pmac_exec_command
,
968 .read_status
= ide_read_status
,
969 .read_altstatus
= ide_read_altstatus
,
970 .write_devctl
= pmac_write_devctl
,
972 .dev_select
= pmac_dev_select
,
973 .tf_load
= ide_tf_load
,
974 .tf_read
= ide_tf_read
,
976 .input_data
= ide_input_data
,
977 .output_data
= ide_output_data
,
980 static const struct ide_tp_ops pmac_ata6_tp_ops
= {
981 .exec_command
= pmac_exec_command
,
982 .read_status
= ide_read_status
,
983 .read_altstatus
= ide_read_altstatus
,
984 .write_devctl
= pmac_write_devctl
,
986 .dev_select
= pmac_kauai_dev_select
,
987 .tf_load
= ide_tf_load
,
988 .tf_read
= ide_tf_read
,
990 .input_data
= ide_input_data
,
991 .output_data
= ide_output_data
,
994 static const struct ide_port_ops pmac_ide_ata4_port_ops
= {
995 .init_dev
= pmac_ide_init_dev
,
996 .set_pio_mode
= pmac_ide_set_pio_mode
,
997 .set_dma_mode
= pmac_ide_set_dma_mode
,
998 .cable_detect
= pmac_ide_cable_detect
,
1001 static const struct ide_port_ops pmac_ide_port_ops
= {
1002 .init_dev
= pmac_ide_init_dev
,
1003 .set_pio_mode
= pmac_ide_set_pio_mode
,
1004 .set_dma_mode
= pmac_ide_set_dma_mode
,
1007 static const struct ide_dma_ops pmac_dma_ops
;
1009 static const struct ide_port_info pmac_port_info
= {
1011 .init_dma
= pmac_ide_init_dma
,
1012 .chipset
= ide_pmac
,
1013 .tp_ops
= &pmac_tp_ops
,
1014 .port_ops
= &pmac_ide_port_ops
,
1015 .dma_ops
= &pmac_dma_ops
,
1016 .host_flags
= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
|
1017 IDE_HFLAG_POST_SET_MODE
|
1019 IDE_HFLAG_UNMASK_IRQS
,
1020 .pio_mask
= ATA_PIO4
,
1021 .mwdma_mask
= ATA_MWDMA2
,
1025 * Setup, register & probe an IDE channel driven by this driver, this is
1026 * called by one of the 2 probe functions (macio or PCI).
1028 static int pmac_ide_setup_device(pmac_ide_hwif_t
*pmif
, struct ide_hw
*hw
)
1030 struct device_node
*np
= pmif
->node
;
1032 struct ide_host
*host
;
1034 struct ide_hw
*hws
[] = { hw
};
1035 struct ide_port_info d
= pmac_port_info
;
1038 pmif
->broken_dma
= pmif
->broken_dma_warn
= 0;
1039 if (of_device_is_compatible(np
, "shasta-ata")) {
1040 pmif
->kind
= controller_sh_ata6
;
1041 d
.tp_ops
= &pmac_ata6_tp_ops
;
1042 d
.port_ops
= &pmac_ide_ata4_port_ops
;
1043 d
.udma_mask
= ATA_UDMA6
;
1044 } else if (of_device_is_compatible(np
, "kauai-ata")) {
1045 pmif
->kind
= controller_un_ata6
;
1046 d
.tp_ops
= &pmac_ata6_tp_ops
;
1047 d
.port_ops
= &pmac_ide_ata4_port_ops
;
1048 d
.udma_mask
= ATA_UDMA5
;
1049 } else if (of_device_is_compatible(np
, "K2-UATA")) {
1050 pmif
->kind
= controller_k2_ata6
;
1051 d
.tp_ops
= &pmac_ata6_tp_ops
;
1052 d
.port_ops
= &pmac_ide_ata4_port_ops
;
1053 d
.udma_mask
= ATA_UDMA5
;
1054 } else if (of_device_is_compatible(np
, "keylargo-ata")) {
1055 if (strcmp(np
->name
, "ata-4") == 0) {
1056 pmif
->kind
= controller_kl_ata4
;
1057 d
.port_ops
= &pmac_ide_ata4_port_ops
;
1058 d
.udma_mask
= ATA_UDMA4
;
1060 pmif
->kind
= controller_kl_ata3
;
1061 } else if (of_device_is_compatible(np
, "heathrow-ata")) {
1062 pmif
->kind
= controller_heathrow
;
1064 pmif
->kind
= controller_ohare
;
1065 pmif
->broken_dma
= 1;
1068 bidp
= of_get_property(np
, "AAPL,bus-id", NULL
);
1069 pmif
->aapl_bus_id
= bidp
? *bidp
: 0;
1071 /* On Kauai-type controllers, we make sure the FCR is correct */
1072 if (pmif
->kauai_fcr
)
1073 writel(KAUAI_FCR_UATA_MAGIC
|
1074 KAUAI_FCR_UATA_RESET_N
|
1075 KAUAI_FCR_UATA_ENABLE
, pmif
->kauai_fcr
);
1077 /* Make sure we have sane timings */
1078 sanitize_timings(pmif
);
1080 /* If we are on a media bay, wait for it to settle and lock it */
1082 lock_media_bay(pmif
->mdev
->media_bay
);
1084 host
= ide_host_alloc(&d
, hws
, 1);
1089 hwif
= pmif
->hwif
= host
->ports
[0];
1091 if (on_media_bay(pmif
)) {
1092 /* Fixup bus ID for media bay */
1094 pmif
->aapl_bus_id
= 1;
1095 } else if (pmif
->kind
== controller_ohare
) {
1096 /* The code below is having trouble on some ohare machines
1097 * (timing related ?). Until I can put my hand on one of these
1098 * units, I keep the old way
1100 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, 0, 1);
1102 /* This is necessary to enable IDE when net-booting */
1103 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 1);
1104 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, pmif
->aapl_bus_id
, 1);
1106 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 0);
1107 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1110 printk(KERN_INFO DRV_NAME
": Found Apple %s controller (%s), "
1111 "bus ID %d%s, irq %d\n", model_name
[pmif
->kind
],
1112 pmif
->mdev
? "macio" : "PCI", pmif
->aapl_bus_id
,
1113 on_media_bay(pmif
) ? " (mediabay)" : "", hw
->irq
);
1115 rc
= ide_host_register(host
, &d
, hws
);
1120 unlock_media_bay(pmif
->mdev
->media_bay
);
1124 ide_host_free(host
);
1128 static void pmac_ide_init_ports(struct ide_hw
*hw
, unsigned long base
)
1132 for (i
= 0; i
< 8; ++i
)
1133 hw
->io_ports_array
[i
] = base
+ i
* 0x10;
1135 hw
->io_ports
.ctl_addr
= base
+ 0x160;
1139 * Attach to a macio probed interface
1141 static int pmac_ide_macio_attach(struct macio_dev
*mdev
,
1142 const struct of_device_id
*match
)
1145 unsigned long regbase
;
1146 pmac_ide_hwif_t
*pmif
;
1150 pmif
= kzalloc(sizeof(*pmif
), GFP_KERNEL
);
1154 if (macio_resource_count(mdev
) == 0) {
1155 printk(KERN_WARNING
"ide-pmac: no address for %s\n",
1156 mdev
->ofdev
.dev
.of_node
->full_name
);
1161 /* Request memory resource for IO ports */
1162 if (macio_request_resource(mdev
, 0, "ide-pmac (ports)")) {
1163 printk(KERN_ERR
"ide-pmac: can't request MMIO resource for "
1164 "%s!\n", mdev
->ofdev
.dev
.of_node
->full_name
);
1169 /* XXX This is bogus. Should be fixed in the registry by checking
1170 * the kind of host interrupt controller, a bit like gatwick
1171 * fixes in irq.c. That works well enough for the single case
1172 * where that happens though...
1174 if (macio_irq_count(mdev
) == 0) {
1175 printk(KERN_WARNING
"ide-pmac: no intrs for device %s, using "
1176 "13\n", mdev
->ofdev
.dev
.of_node
->full_name
);
1177 irq
= irq_create_mapping(NULL
, 13);
1179 irq
= macio_irq(mdev
, 0);
1181 base
= ioremap(macio_resource_start(mdev
, 0), 0x400);
1182 regbase
= (unsigned long) base
;
1185 pmif
->node
= mdev
->ofdev
.dev
.of_node
;
1186 pmif
->regbase
= regbase
;
1188 pmif
->kauai_fcr
= NULL
;
1190 if (macio_resource_count(mdev
) >= 2) {
1191 if (macio_request_resource(mdev
, 1, "ide-pmac (dma)"))
1192 printk(KERN_WARNING
"ide-pmac: can't request DMA "
1193 "resource for %s!\n",
1194 mdev
->ofdev
.dev
.of_node
->full_name
);
1196 pmif
->dma_regs
= ioremap(macio_resource_start(mdev
, 1), 0x1000);
1198 pmif
->dma_regs
= NULL
;
1200 dev_set_drvdata(&mdev
->ofdev
.dev
, pmif
);
1202 memset(&hw
, 0, sizeof(hw
));
1203 pmac_ide_init_ports(&hw
, pmif
->regbase
);
1205 hw
.dev
= &mdev
->bus
->pdev
->dev
;
1206 hw
.parent
= &mdev
->ofdev
.dev
;
1208 rc
= pmac_ide_setup_device(pmif
, &hw
);
1210 /* The inteface is released to the common IDE layer */
1211 dev_set_drvdata(&mdev
->ofdev
.dev
, NULL
);
1213 if (pmif
->dma_regs
) {
1214 iounmap(pmif
->dma_regs
);
1215 macio_release_resource(mdev
, 1);
1217 macio_release_resource(mdev
, 0);
1229 pmac_ide_macio_suspend(struct macio_dev
*mdev
, pm_message_t mesg
)
1231 pmac_ide_hwif_t
*pmif
=
1232 (pmac_ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1235 if (mesg
.event
!= mdev
->ofdev
.dev
.power
.power_state
.event
1236 && (mesg
.event
& PM_EVENT_SLEEP
)) {
1237 rc
= pmac_ide_do_suspend(pmif
);
1239 mdev
->ofdev
.dev
.power
.power_state
= mesg
;
1246 pmac_ide_macio_resume(struct macio_dev
*mdev
)
1248 pmac_ide_hwif_t
*pmif
=
1249 (pmac_ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1252 if (mdev
->ofdev
.dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1253 rc
= pmac_ide_do_resume(pmif
);
1255 mdev
->ofdev
.dev
.power
.power_state
= PMSG_ON
;
1262 * Attach to a PCI probed interface
1264 static int pmac_ide_pci_attach(struct pci_dev
*pdev
,
1265 const struct pci_device_id
*id
)
1267 struct device_node
*np
;
1268 pmac_ide_hwif_t
*pmif
;
1270 unsigned long rbase
, rlen
;
1274 np
= pci_device_to_OF_node(pdev
);
1276 printk(KERN_ERR
"ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1280 pmif
= kzalloc(sizeof(*pmif
), GFP_KERNEL
);
1284 if (pci_enable_device(pdev
)) {
1285 printk(KERN_WARNING
"ide-pmac: Can't enable PCI device for "
1286 "%s\n", np
->full_name
);
1290 pci_set_master(pdev
);
1292 if (pci_request_regions(pdev
, "Kauai ATA")) {
1293 printk(KERN_ERR
"ide-pmac: Cannot obtain PCI resources for "
1294 "%s\n", np
->full_name
);
1302 rbase
= pci_resource_start(pdev
, 0);
1303 rlen
= pci_resource_len(pdev
, 0);
1305 base
= ioremap(rbase
, rlen
);
1306 pmif
->regbase
= (unsigned long) base
+ 0x2000;
1307 pmif
->dma_regs
= base
+ 0x1000;
1308 pmif
->kauai_fcr
= base
;
1309 pmif
->irq
= pdev
->irq
;
1311 pci_set_drvdata(pdev
, pmif
);
1313 memset(&hw
, 0, sizeof(hw
));
1314 pmac_ide_init_ports(&hw
, pmif
->regbase
);
1316 hw
.dev
= &pdev
->dev
;
1318 rc
= pmac_ide_setup_device(pmif
, &hw
);
1320 /* The inteface is released to the common IDE layer */
1321 pci_set_drvdata(pdev
, NULL
);
1323 pci_release_regions(pdev
);
1335 pmac_ide_pci_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
1337 pmac_ide_hwif_t
*pmif
= pci_get_drvdata(pdev
);
1340 if (mesg
.event
!= pdev
->dev
.power
.power_state
.event
1341 && (mesg
.event
& PM_EVENT_SLEEP
)) {
1342 rc
= pmac_ide_do_suspend(pmif
);
1344 pdev
->dev
.power
.power_state
= mesg
;
1351 pmac_ide_pci_resume(struct pci_dev
*pdev
)
1353 pmac_ide_hwif_t
*pmif
= pci_get_drvdata(pdev
);
1356 if (pdev
->dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1357 rc
= pmac_ide_do_resume(pmif
);
1359 pdev
->dev
.power
.power_state
= PMSG_ON
;
1365 #ifdef CONFIG_PMAC_MEDIABAY
1366 static void pmac_ide_macio_mb_event(struct macio_dev
* mdev
, int mb_state
)
1368 pmac_ide_hwif_t
*pmif
=
1369 (pmac_ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1373 if (!pmif
->hwif
->present
)
1374 ide_port_scan(pmif
->hwif
);
1377 if (pmif
->hwif
->present
)
1378 ide_port_unregister_devices(pmif
->hwif
);
1381 #endif /* CONFIG_PMAC_MEDIABAY */
1384 static struct of_device_id pmac_ide_macio_match
[] =
1401 static struct macio_driver pmac_ide_macio_driver
=
1405 .owner
= THIS_MODULE
,
1406 .of_match_table
= pmac_ide_macio_match
,
1408 .probe
= pmac_ide_macio_attach
,
1409 .suspend
= pmac_ide_macio_suspend
,
1410 .resume
= pmac_ide_macio_resume
,
1411 #ifdef CONFIG_PMAC_MEDIABAY
1412 .mediabay_event
= pmac_ide_macio_mb_event
,
1416 static const struct pci_device_id pmac_ide_pci_match
[] = {
1417 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_ATA
), 0 },
1418 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_IPID_ATA100
), 0 },
1419 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_K2_ATA100
), 0 },
1420 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_SH_ATA
), 0 },
1421 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_IPID2_ATA
), 0 },
1425 static struct pci_driver pmac_ide_pci_driver
= {
1427 .id_table
= pmac_ide_pci_match
,
1428 .probe
= pmac_ide_pci_attach
,
1429 .suspend
= pmac_ide_pci_suspend
,
1430 .resume
= pmac_ide_pci_resume
,
1432 MODULE_DEVICE_TABLE(pci
, pmac_ide_pci_match
);
1434 int __init
pmac_ide_probe(void)
1438 if (!machine_is(powermac
))
1441 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1442 error
= pci_register_driver(&pmac_ide_pci_driver
);
1445 error
= macio_register_driver(&pmac_ide_macio_driver
);
1447 pci_unregister_driver(&pmac_ide_pci_driver
);
1451 error
= macio_register_driver(&pmac_ide_macio_driver
);
1454 error
= pci_register_driver(&pmac_ide_pci_driver
);
1456 macio_unregister_driver(&pmac_ide_macio_driver
);
1465 * pmac_ide_build_dmatable builds the DBDMA command list
1466 * for a transfer and sets the DBDMA channel to point to it.
1468 static int pmac_ide_build_dmatable(ide_drive_t
*drive
, struct ide_cmd
*cmd
)
1470 ide_hwif_t
*hwif
= drive
->hwif
;
1471 pmac_ide_hwif_t
*pmif
=
1472 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1473 struct dbdma_cmd
*table
;
1474 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1475 struct scatterlist
*sg
;
1476 int wr
= !!(cmd
->tf_flags
& IDE_TFLAG_WRITE
);
1477 int i
= cmd
->sg_nents
, count
= 0;
1479 /* DMA table is already aligned */
1480 table
= (struct dbdma_cmd
*) pmif
->dma_table_cpu
;
1482 /* Make sure DMA controller is stopped (necessary ?) */
1483 writel((RUN
|PAUSE
|FLUSH
|WAKE
|DEAD
) << 16, &dma
->control
);
1484 while (readl(&dma
->status
) & RUN
)
1487 /* Build DBDMA commands list */
1488 sg
= hwif
->sg_table
;
1489 while (i
&& sg_dma_len(sg
)) {
1493 cur_addr
= sg_dma_address(sg
);
1494 cur_len
= sg_dma_len(sg
);
1496 if (pmif
->broken_dma
&& cur_addr
& (L1_CACHE_BYTES
- 1)) {
1497 if (pmif
->broken_dma_warn
== 0) {
1498 printk(KERN_WARNING
"%s: DMA on non aligned address, "
1499 "switching to PIO on Ohare chipset\n", drive
->name
);
1500 pmif
->broken_dma_warn
= 1;
1505 unsigned int tc
= (cur_len
< 0xfe00)? cur_len
: 0xfe00;
1507 if (count
++ >= MAX_DCMDS
) {
1508 printk(KERN_WARNING
"%s: DMA table too small\n",
1512 st_le16(&table
->command
, wr
? OUTPUT_MORE
: INPUT_MORE
);
1513 st_le16(&table
->req_count
, tc
);
1514 st_le32(&table
->phy_addr
, cur_addr
);
1516 table
->xfer_status
= 0;
1517 table
->res_count
= 0;
1526 /* convert the last command to an input/output last command */
1528 st_le16(&table
[-1].command
, wr
? OUTPUT_LAST
: INPUT_LAST
);
1529 /* add the stop command to the end of the list */
1530 memset(table
, 0, sizeof(struct dbdma_cmd
));
1531 st_le16(&table
->command
, DBDMA_STOP
);
1533 writel(hwif
->dmatable_dma
, &dma
->cmdptr
);
1537 printk(KERN_DEBUG
"%s: empty DMA table?\n", drive
->name
);
1539 return 0; /* revert to PIO for this request */
1543 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1544 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1546 static int pmac_ide_dma_setup(ide_drive_t
*drive
, struct ide_cmd
*cmd
)
1548 ide_hwif_t
*hwif
= drive
->hwif
;
1549 pmac_ide_hwif_t
*pmif
=
1550 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1551 u8 unit
= drive
->dn
& 1, ata4
= (pmif
->kind
== controller_kl_ata4
);
1552 u8 write
= !!(cmd
->tf_flags
& IDE_TFLAG_WRITE
);
1554 if (pmac_ide_build_dmatable(drive
, cmd
) == 0)
1557 /* Apple adds 60ns to wrDataSetup on reads */
1558 if (ata4
&& (pmif
->timings
[unit
] & TR_66_UDMA_EN
)) {
1559 writel(pmif
->timings
[unit
] + (write
? 0 : 0x00800000UL
),
1560 PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1561 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1568 * Kick the DMA controller into life after the DMA command has been issued
1572 pmac_ide_dma_start(ide_drive_t
*drive
)
1574 ide_hwif_t
*hwif
= drive
->hwif
;
1575 pmac_ide_hwif_t
*pmif
=
1576 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1577 volatile struct dbdma_regs __iomem
*dma
;
1579 dma
= pmif
->dma_regs
;
1581 writel((RUN
<< 16) | RUN
, &dma
->control
);
1582 /* Make sure it gets to the controller right now */
1583 (void)readl(&dma
->control
);
1587 * After a DMA transfer, make sure the controller is stopped
1590 pmac_ide_dma_end (ide_drive_t
*drive
)
1592 ide_hwif_t
*hwif
= drive
->hwif
;
1593 pmac_ide_hwif_t
*pmif
=
1594 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1595 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1598 dstat
= readl(&dma
->status
);
1599 writel(((RUN
|WAKE
|DEAD
) << 16), &dma
->control
);
1601 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1602 * in theory, but with ATAPI decices doing buffer underruns, that would
1603 * cause us to disable DMA, which isn't what we want
1605 return (dstat
& (RUN
|DEAD
)) != RUN
;
1609 * Check out that the interrupt we got was for us. We can't always know this
1610 * for sure with those Apple interfaces (well, we could on the recent ones but
1611 * that's not implemented yet), on the other hand, we don't have shared interrupts
1612 * so it's not really a problem
1615 pmac_ide_dma_test_irq (ide_drive_t
*drive
)
1617 ide_hwif_t
*hwif
= drive
->hwif
;
1618 pmac_ide_hwif_t
*pmif
=
1619 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1620 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1621 unsigned long status
, timeout
;
1623 /* We have to things to deal with here:
1625 * - The dbdma won't stop if the command was started
1626 * but completed with an error without transferring all
1627 * datas. This happens when bad blocks are met during
1628 * a multi-block transfer.
1630 * - The dbdma fifo hasn't yet finished flushing to
1631 * to system memory when the disk interrupt occurs.
1635 /* If ACTIVE is cleared, the STOP command have passed and
1636 * transfer is complete.
1638 status
= readl(&dma
->status
);
1639 if (!(status
& ACTIVE
))
1642 /* If dbdma didn't execute the STOP command yet, the
1643 * active bit is still set. We consider that we aren't
1644 * sharing interrupts (which is hopefully the case with
1645 * those controllers) and so we just try to flush the
1646 * channel for pending data in the fifo
1649 writel((FLUSH
<< 16) | FLUSH
, &dma
->control
);
1653 status
= readl(&dma
->status
);
1654 if ((status
& FLUSH
) == 0)
1656 if (++timeout
> 100) {
1657 printk(KERN_WARNING
"ide%d, ide_dma_test_irq timeout flushing channel\n",
1665 static void pmac_ide_dma_host_set(ide_drive_t
*drive
, int on
)
1670 pmac_ide_dma_lost_irq (ide_drive_t
*drive
)
1672 ide_hwif_t
*hwif
= drive
->hwif
;
1673 pmac_ide_hwif_t
*pmif
=
1674 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1675 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1676 unsigned long status
= readl(&dma
->status
);
1678 printk(KERN_ERR
"ide-pmac lost interrupt, dma status: %lx\n", status
);
1681 static const struct ide_dma_ops pmac_dma_ops
= {
1682 .dma_host_set
= pmac_ide_dma_host_set
,
1683 .dma_setup
= pmac_ide_dma_setup
,
1684 .dma_start
= pmac_ide_dma_start
,
1685 .dma_end
= pmac_ide_dma_end
,
1686 .dma_test_irq
= pmac_ide_dma_test_irq
,
1687 .dma_lost_irq
= pmac_ide_dma_lost_irq
,
1691 * Allocate the data structures needed for using DMA with an interface
1692 * and fill the proper list of functions pointers
1694 static int pmac_ide_init_dma(ide_hwif_t
*hwif
, const struct ide_port_info
*d
)
1696 pmac_ide_hwif_t
*pmif
=
1697 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1698 struct pci_dev
*dev
= to_pci_dev(hwif
->dev
);
1700 /* We won't need pci_dev if we switch to generic consistent
1703 if (dev
== NULL
|| pmif
->dma_regs
== 0)
1706 * Allocate space for the DBDMA commands.
1707 * The +2 is +1 for the stop command and +1 to allow for
1708 * aligning the start address to a multiple of 16 bytes.
1710 pmif
->dma_table_cpu
= pci_alloc_consistent(
1712 (MAX_DCMDS
+ 2) * sizeof(struct dbdma_cmd
),
1713 &hwif
->dmatable_dma
);
1714 if (pmif
->dma_table_cpu
== NULL
) {
1715 printk(KERN_ERR
"%s: unable to allocate DMA command list\n",
1720 hwif
->sg_max_nents
= MAX_DCMDS
;
1725 module_init(pmac_ide_probe
);
1727 MODULE_LICENSE("GPL");