brcmsmac: Remove some noisy and uninformative debug messages
[linux-2.6.git] / drivers / net / wireless / brcm80211 / brcmsmac / dma.c
blob511e45775c333acdd8a94177695f5be034083c8c
1 /*
2 * Copyright (c) 2010 Broadcom Corporation
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/pci.h>
20 #include <net/cfg80211.h>
21 #include <net/mac80211.h>
23 #include <brcmu_utils.h>
24 #include <aiutils.h>
25 #include "types.h"
26 #include "main.h"
27 #include "dma.h"
28 #include "soc.h"
29 #include "scb.h"
30 #include "ampdu.h"
31 #include "debug.h"
32 #include "brcms_trace_events.h"
35 * dma register field offset calculation
37 #define DMA64REGOFFS(field) offsetof(struct dma64regs, field)
38 #define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field))
39 #define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field))
42 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
43 * a contiguous 8kB physical address.
45 #define D64RINGALIGN_BITS 13
46 #define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
47 #define D64RINGALIGN (1 << D64RINGALIGN_BITS)
49 #define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
51 /* transmit channel control */
52 #define D64_XC_XE 0x00000001 /* transmit enable */
53 #define D64_XC_SE 0x00000002 /* transmit suspend request */
54 #define D64_XC_LE 0x00000004 /* loopback enable */
55 #define D64_XC_FL 0x00000010 /* flush request */
56 #define D64_XC_PD 0x00000800 /* parity check disable */
57 #define D64_XC_AE 0x00030000 /* address extension bits */
58 #define D64_XC_AE_SHIFT 16
60 /* transmit descriptor table pointer */
61 #define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
63 /* transmit channel status */
64 #define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
65 #define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
66 #define D64_XS0_XS_SHIFT 28
67 #define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
68 #define D64_XS0_XS_ACTIVE 0x10000000 /* active */
69 #define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
70 #define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
71 #define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
73 #define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
74 #define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
75 #define D64_XS1_XE_SHIFT 28
76 #define D64_XS1_XE_NOERR 0x00000000 /* no error */
77 #define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
78 #define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
79 #define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
80 #define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
81 #define D64_XS1_XE_COREE 0x50000000 /* core error */
83 /* receive channel control */
84 /* receive enable */
85 #define D64_RC_RE 0x00000001
86 /* receive frame offset */
87 #define D64_RC_RO_MASK 0x000000fe
88 #define D64_RC_RO_SHIFT 1
89 /* direct fifo receive (pio) mode */
90 #define D64_RC_FM 0x00000100
91 /* separate rx header descriptor enable */
92 #define D64_RC_SH 0x00000200
93 /* overflow continue */
94 #define D64_RC_OC 0x00000400
95 /* parity check disable */
96 #define D64_RC_PD 0x00000800
97 /* address extension bits */
98 #define D64_RC_AE 0x00030000
99 #define D64_RC_AE_SHIFT 16
101 /* flags for dma controller */
102 /* partity enable */
103 #define DMA_CTRL_PEN (1 << 0)
104 /* rx overflow continue */
105 #define DMA_CTRL_ROC (1 << 1)
106 /* allow rx scatter to multiple descriptors */
107 #define DMA_CTRL_RXMULTI (1 << 2)
108 /* Unframed Rx/Tx data */
109 #define DMA_CTRL_UNFRAMED (1 << 3)
111 /* receive descriptor table pointer */
112 #define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
114 /* receive channel status */
115 #define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
116 #define D64_RS0_RS_MASK 0xf0000000 /* receive state */
117 #define D64_RS0_RS_SHIFT 28
118 #define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
119 #define D64_RS0_RS_ACTIVE 0x10000000 /* active */
120 #define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
121 #define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
122 #define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
124 #define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
125 #define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
126 #define D64_RS1_RE_SHIFT 28
127 #define D64_RS1_RE_NOERR 0x00000000 /* no error */
128 #define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
129 #define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
130 #define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
131 #define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
132 #define D64_RS1_RE_COREE 0x50000000 /* core error */
134 /* fifoaddr */
135 #define D64_FA_OFF_MASK 0xffff /* offset */
136 #define D64_FA_SEL_MASK 0xf0000 /* select */
137 #define D64_FA_SEL_SHIFT 16
138 #define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
139 #define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
140 #define D64_FA_SEL_RDD 0x40000 /* receive dma data */
141 #define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
142 #define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
143 #define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
144 #define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
145 #define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
146 #define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
147 #define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
149 /* descriptor control flags 1 */
150 #define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
151 #define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
152 #define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
153 #define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
154 #define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
156 /* descriptor control flags 2 */
157 /* buffer byte count. real data len must <= 16KB */
158 #define D64_CTRL2_BC_MASK 0x00007fff
159 /* address extension bits */
160 #define D64_CTRL2_AE 0x00030000
161 #define D64_CTRL2_AE_SHIFT 16
162 /* parity bit */
163 #define D64_CTRL2_PARITY 0x00040000
165 /* control flags in the range [27:20] are core-specific and not defined here */
166 #define D64_CTRL_CORE_MASK 0x0ff00000
168 #define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
169 #define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
170 #define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
171 #define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
174 * packet headroom necessary to accommodate the largest header
175 * in the system, (i.e TXOFF). By doing, we avoid the need to
176 * allocate an extra buffer for the header when bridging to WL.
177 * There is a compile time check in wlc.c which ensure that this
178 * value is at least as big as TXOFF. This value is used in
179 * dma_rxfill().
182 #define BCMEXTRAHDROOM 172
184 #define MAXNAMEL 8 /* 8 char names */
186 /* macros to convert between byte offsets and indexes */
187 #define B2I(bytes, type) ((bytes) / sizeof(type))
188 #define I2B(index, type) ((index) * sizeof(type))
190 #define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
191 #define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
193 #define PCI64ADDR_HIGH 0x80000000 /* address[63] */
194 #define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
197 * DMA Descriptor
198 * Descriptors are only read by the hardware, never written back.
200 struct dma64desc {
201 __le32 ctrl1; /* misc control bits & bufcount */
202 __le32 ctrl2; /* buffer count and address extension */
203 __le32 addrlow; /* memory address of the date buffer, bits 31:0 */
204 __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
207 /* dma engine software state */
208 struct dma_info {
209 struct dma_pub dma; /* exported structure */
210 char name[MAXNAMEL]; /* callers name for diag msgs */
212 struct bcma_device *core;
213 struct device *dmadev;
215 /* session information for AMPDU */
216 struct brcms_ampdu_session ampdu_session;
218 bool dma64; /* this dma engine is operating in 64-bit mode */
219 bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
221 /* 64-bit dma tx engine registers */
222 uint d64txregbase;
223 /* 64-bit dma rx engine registers */
224 uint d64rxregbase;
225 /* pointer to dma64 tx descriptor ring */
226 struct dma64desc *txd64;
227 /* pointer to dma64 rx descriptor ring */
228 struct dma64desc *rxd64;
230 u16 dmadesc_align; /* alignment requirement for dma descriptors */
232 u16 ntxd; /* # tx descriptors tunable */
233 u16 txin; /* index of next descriptor to reclaim */
234 u16 txout; /* index of next descriptor to post */
235 /* pointer to parallel array of pointers to packets */
236 struct sk_buff **txp;
237 /* Aligned physical address of descriptor ring */
238 dma_addr_t txdpa;
239 /* Original physical address of descriptor ring */
240 dma_addr_t txdpaorig;
241 u16 txdalign; /* #bytes added to alloc'd mem to align txd */
242 u32 txdalloc; /* #bytes allocated for the ring */
243 u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
244 * is not just an index, it needs all 13 bits to be
245 * an offset from the addr register.
248 u16 nrxd; /* # rx descriptors tunable */
249 u16 rxin; /* index of next descriptor to reclaim */
250 u16 rxout; /* index of next descriptor to post */
251 /* pointer to parallel array of pointers to packets */
252 struct sk_buff **rxp;
253 /* Aligned physical address of descriptor ring */
254 dma_addr_t rxdpa;
255 /* Original physical address of descriptor ring */
256 dma_addr_t rxdpaorig;
257 u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
258 u32 rxdalloc; /* #bytes allocated for the ring */
259 u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
261 /* tunables */
262 unsigned int rxbufsize; /* rx buffer size in bytes, not including
263 * the extra headroom
265 uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
266 * stack, e.g. some rx pkt buffers will be
267 * bridged to tx side without byte copying.
268 * The extra headroom needs to be large enough
269 * to fit txheader needs. Some dongle driver may
270 * not need it.
272 uint nrxpost; /* # rx buffers to keep posted */
273 unsigned int rxoffset; /* rxcontrol offset */
274 /* add to get dma address of descriptor ring, low 32 bits */
275 uint ddoffsetlow;
276 /* high 32 bits */
277 uint ddoffsethigh;
278 /* add to get dma address of data buffer, low 32 bits */
279 uint dataoffsetlow;
280 /* high 32 bits */
281 uint dataoffsethigh;
282 /* descriptor base need to be aligned or not */
283 bool aligndesc_4k;
286 /* Check for odd number of 1's */
287 static u32 parity32(__le32 data)
289 /* no swap needed for counting 1's */
290 u32 par_data = *(u32 *)&data;
292 par_data ^= par_data >> 16;
293 par_data ^= par_data >> 8;
294 par_data ^= par_data >> 4;
295 par_data ^= par_data >> 2;
296 par_data ^= par_data >> 1;
298 return par_data & 1;
301 static bool dma64_dd_parity(struct dma64desc *dd)
303 return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
306 /* descriptor bumping functions */
308 static uint xxd(uint x, uint n)
310 return x & (n - 1); /* faster than %, but n must be power of 2 */
313 static uint txd(struct dma_info *di, uint x)
315 return xxd(x, di->ntxd);
318 static uint rxd(struct dma_info *di, uint x)
320 return xxd(x, di->nrxd);
323 static uint nexttxd(struct dma_info *di, uint i)
325 return txd(di, i + 1);
328 static uint prevtxd(struct dma_info *di, uint i)
330 return txd(di, i - 1);
333 static uint nextrxd(struct dma_info *di, uint i)
335 return rxd(di, i + 1);
338 static uint ntxdactive(struct dma_info *di, uint h, uint t)
340 return txd(di, t-h);
343 static uint nrxdactive(struct dma_info *di, uint h, uint t)
345 return rxd(di, t-h);
348 static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
350 uint dmactrlflags;
352 if (di == NULL) {
353 brcms_dbg_dma(di->core, "NULL dma handle\n");
354 return 0;
357 dmactrlflags = di->dma.dmactrlflags;
358 dmactrlflags &= ~mask;
359 dmactrlflags |= flags;
361 /* If trying to enable parity, check if parity is actually supported */
362 if (dmactrlflags & DMA_CTRL_PEN) {
363 u32 control;
365 control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
366 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
367 control | D64_XC_PD);
368 if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
369 D64_XC_PD)
370 /* We *can* disable it so it is supported,
371 * restore control register
373 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
374 control);
375 else
376 /* Not supported, don't allow it to be enabled */
377 dmactrlflags &= ~DMA_CTRL_PEN;
380 di->dma.dmactrlflags = dmactrlflags;
382 return dmactrlflags;
385 static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
387 u32 w;
388 bcma_set32(di->core, ctrl_offset, D64_XC_AE);
389 w = bcma_read32(di->core, ctrl_offset);
390 bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
391 return (w & D64_XC_AE) == D64_XC_AE;
395 * return true if this dma engine supports DmaExtendedAddrChanges,
396 * otherwise false
398 static bool _dma_isaddrext(struct dma_info *di)
400 /* DMA64 supports full 32- or 64-bit operation. AE is always valid */
402 /* not all tx or rx channel are available */
403 if (di->d64txregbase != 0) {
404 if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
405 brcms_dbg_dma(di->core,
406 "%s: DMA64 tx doesn't have AE set\n",
407 di->name);
408 return true;
409 } else if (di->d64rxregbase != 0) {
410 if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
411 brcms_dbg_dma(di->core,
412 "%s: DMA64 rx doesn't have AE set\n",
413 di->name);
414 return true;
417 return false;
420 static bool _dma_descriptor_align(struct dma_info *di)
422 u32 addrl;
424 /* Check to see if the descriptors need to be aligned on 4K/8K or not */
425 if (di->d64txregbase != 0) {
426 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
427 addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
428 if (addrl != 0)
429 return false;
430 } else if (di->d64rxregbase != 0) {
431 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
432 addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
433 if (addrl != 0)
434 return false;
436 return true;
440 * Descriptor table must start at the DMA hardware dictated alignment, so
441 * allocated memory must be large enough to support this requirement.
443 static void *dma_alloc_consistent(struct dma_info *di, uint size,
444 u16 align_bits, uint *alloced,
445 dma_addr_t *pap)
447 if (align_bits) {
448 u16 align = (1 << align_bits);
449 if (!IS_ALIGNED(PAGE_SIZE, align))
450 size += align;
451 *alloced = size;
453 return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
456 static
457 u8 dma_align_sizetobits(uint size)
459 u8 bitpos = 0;
460 while (size >>= 1)
461 bitpos++;
462 return bitpos;
465 /* This function ensures that the DMA descriptor ring will not get allocated
466 * across Page boundary. If the allocation is done across the page boundary
467 * at the first time, then it is freed and the allocation is done at
468 * descriptor ring size aligned location. This will ensure that the ring will
469 * not cross page boundary
471 static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
472 u16 *alignbits, uint *alloced,
473 dma_addr_t *descpa)
475 void *va;
476 u32 desc_strtaddr;
477 u32 alignbytes = 1 << *alignbits;
479 va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
481 if (NULL == va)
482 return NULL;
484 desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
485 if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
486 & boundary)) {
487 *alignbits = dma_align_sizetobits(size);
488 dma_free_coherent(di->dmadev, size, va, *descpa);
489 va = dma_alloc_consistent(di, size, *alignbits,
490 alloced, descpa);
492 return va;
495 static bool dma64_alloc(struct dma_info *di, uint direction)
497 u16 size;
498 uint ddlen;
499 void *va;
500 uint alloced = 0;
501 u16 align;
502 u16 align_bits;
504 ddlen = sizeof(struct dma64desc);
506 size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
507 align_bits = di->dmadesc_align;
508 align = (1 << align_bits);
510 if (direction == DMA_TX) {
511 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
512 &alloced, &di->txdpaorig);
513 if (va == NULL) {
514 brcms_dbg_dma(di->core,
515 "%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
516 di->name);
517 return false;
519 align = (1 << align_bits);
520 di->txd64 = (struct dma64desc *)
521 roundup((unsigned long)va, align);
522 di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
523 di->txdpa = di->txdpaorig + di->txdalign;
524 di->txdalloc = alloced;
525 } else {
526 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
527 &alloced, &di->rxdpaorig);
528 if (va == NULL) {
529 brcms_dbg_dma(di->core,
530 "%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
531 di->name);
532 return false;
534 align = (1 << align_bits);
535 di->rxd64 = (struct dma64desc *)
536 roundup((unsigned long)va, align);
537 di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
538 di->rxdpa = di->rxdpaorig + di->rxdalign;
539 di->rxdalloc = alloced;
542 return true;
545 static bool _dma_alloc(struct dma_info *di, uint direction)
547 return dma64_alloc(di, direction);
550 struct dma_pub *dma_attach(char *name, struct brcms_c_info *wlc,
551 uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
552 uint rxbufsize, int rxextheadroom,
553 uint nrxpost, uint rxoffset)
555 struct si_pub *sih = wlc->hw->sih;
556 struct bcma_device *core = wlc->hw->d11core;
557 struct dma_info *di;
558 u8 rev = core->id.rev;
559 uint size;
560 struct si_info *sii = container_of(sih, struct si_info, pub);
562 /* allocate private info structure */
563 di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
564 if (di == NULL)
565 return NULL;
567 di->dma64 =
568 ((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
570 /* init dma reg info */
571 di->core = core;
572 di->d64txregbase = txregbase;
573 di->d64rxregbase = rxregbase;
576 * Default flags (which can be changed by the driver calling
577 * dma_ctrlflags before enable): For backwards compatibility
578 * both Rx Overflow Continue and Parity are DISABLED.
580 _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
582 brcms_dbg_dma(di->core, "%s: %s flags 0x%x ntxd %d nrxd %d "
583 "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
584 "txregbase %u rxregbase %u\n", name, "DMA64",
585 di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
586 rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
588 /* make a private copy of our callers name */
589 strncpy(di->name, name, MAXNAMEL);
590 di->name[MAXNAMEL - 1] = '\0';
592 di->dmadev = core->dma_dev;
594 /* save tunables */
595 di->ntxd = (u16) ntxd;
596 di->nrxd = (u16) nrxd;
598 /* the actual dma size doesn't include the extra headroom */
599 di->rxextrahdrroom =
600 (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
601 if (rxbufsize > BCMEXTRAHDROOM)
602 di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
603 else
604 di->rxbufsize = (u16) rxbufsize;
606 di->nrxpost = (u16) nrxpost;
607 di->rxoffset = (u8) rxoffset;
610 * figure out the DMA physical address offset for dd and data
611 * PCI/PCIE: they map silicon backplace address to zero
612 * based memory, need offset
613 * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
614 * swapped region for data buffer, not descriptor
616 di->ddoffsetlow = 0;
617 di->dataoffsetlow = 0;
618 /* for pci bus, add offset */
619 if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) {
620 /* add offset for pcie with DMA64 bus */
621 di->ddoffsetlow = 0;
622 di->ddoffsethigh = SI_PCIE_DMA_H32;
624 di->dataoffsetlow = di->ddoffsetlow;
625 di->dataoffsethigh = di->ddoffsethigh;
627 /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
628 if ((core->id.id == BCMA_CORE_SDIO_DEV)
629 && ((rev > 0) && (rev <= 2)))
630 di->addrext = false;
631 else if ((core->id.id == BCMA_CORE_I2S) &&
632 ((rev == 0) || (rev == 1)))
633 di->addrext = false;
634 else
635 di->addrext = _dma_isaddrext(di);
637 /* does the descriptor need to be aligned and if yes, on 4K/8K or not */
638 di->aligndesc_4k = _dma_descriptor_align(di);
639 if (di->aligndesc_4k) {
640 di->dmadesc_align = D64RINGALIGN_BITS;
641 if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
642 /* for smaller dd table, HW relax alignment reqmnt */
643 di->dmadesc_align = D64RINGALIGN_BITS - 1;
644 } else {
645 di->dmadesc_align = 4; /* 16 byte alignment */
648 brcms_dbg_dma(di->core, "DMA descriptor align_needed %d, align %d\n",
649 di->aligndesc_4k, di->dmadesc_align);
651 /* allocate tx packet pointer vector */
652 if (ntxd) {
653 size = ntxd * sizeof(void *);
654 di->txp = kzalloc(size, GFP_ATOMIC);
655 if (di->txp == NULL)
656 goto fail;
659 /* allocate rx packet pointer vector */
660 if (nrxd) {
661 size = nrxd * sizeof(void *);
662 di->rxp = kzalloc(size, GFP_ATOMIC);
663 if (di->rxp == NULL)
664 goto fail;
668 * allocate transmit descriptor ring, only need ntxd descriptors
669 * but it must be aligned
671 if (ntxd) {
672 if (!_dma_alloc(di, DMA_TX))
673 goto fail;
677 * allocate receive descriptor ring, only need nrxd descriptors
678 * but it must be aligned
680 if (nrxd) {
681 if (!_dma_alloc(di, DMA_RX))
682 goto fail;
685 if ((di->ddoffsetlow != 0) && !di->addrext) {
686 if (di->txdpa > SI_PCI_DMA_SZ) {
687 brcms_dbg_dma(di->core,
688 "%s: txdpa 0x%x: addrext not supported\n",
689 di->name, (u32)di->txdpa);
690 goto fail;
692 if (di->rxdpa > SI_PCI_DMA_SZ) {
693 brcms_dbg_dma(di->core,
694 "%s: rxdpa 0x%x: addrext not supported\n",
695 di->name, (u32)di->rxdpa);
696 goto fail;
700 /* Initialize AMPDU session */
701 brcms_c_ampdu_reset_session(&di->ampdu_session, wlc);
703 brcms_dbg_dma(di->core,
704 "ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
705 di->ddoffsetlow, di->ddoffsethigh,
706 di->dataoffsetlow, di->dataoffsethigh,
707 di->addrext);
709 return (struct dma_pub *) di;
711 fail:
712 dma_detach((struct dma_pub *)di);
713 return NULL;
716 static inline void
717 dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
718 dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
720 u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
722 /* PCI bus with big(>1G) physical address, use address extension */
723 if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
724 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
725 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
726 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
727 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
728 } else {
729 /* address extension for 32-bit PCI */
730 u32 ae;
732 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
733 pa &= ~PCI32ADDR_HIGH;
735 ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
736 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
737 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
738 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
739 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
741 if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
742 if (dma64_dd_parity(&ddring[outidx]))
743 ddring[outidx].ctrl2 =
744 cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
748 /* !! may be called with core in reset */
749 void dma_detach(struct dma_pub *pub)
751 struct dma_info *di = (struct dma_info *)pub;
753 brcms_dbg_dma(di->core, "%s:\n", di->name);
755 /* free dma descriptor rings */
756 if (di->txd64)
757 dma_free_coherent(di->dmadev, di->txdalloc,
758 ((s8 *)di->txd64 - di->txdalign),
759 (di->txdpaorig));
760 if (di->rxd64)
761 dma_free_coherent(di->dmadev, di->rxdalloc,
762 ((s8 *)di->rxd64 - di->rxdalign),
763 (di->rxdpaorig));
765 /* free packet pointer vectors */
766 kfree(di->txp);
767 kfree(di->rxp);
769 /* free our private info structure */
770 kfree(di);
774 /* initialize descriptor table base address */
775 static void
776 _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
778 if (!di->aligndesc_4k) {
779 if (direction == DMA_TX)
780 di->xmtptrbase = pa;
781 else
782 di->rcvptrbase = pa;
785 if ((di->ddoffsetlow == 0)
786 || !(pa & PCI32ADDR_HIGH)) {
787 if (direction == DMA_TX) {
788 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
789 pa + di->ddoffsetlow);
790 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
791 di->ddoffsethigh);
792 } else {
793 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
794 pa + di->ddoffsetlow);
795 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
796 di->ddoffsethigh);
798 } else {
799 /* DMA64 32bits address extension */
800 u32 ae;
802 /* shift the high bit(s) from pa to ae */
803 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
804 pa &= ~PCI32ADDR_HIGH;
806 if (direction == DMA_TX) {
807 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
808 pa + di->ddoffsetlow);
809 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
810 di->ddoffsethigh);
811 bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
812 D64_XC_AE, (ae << D64_XC_AE_SHIFT));
813 } else {
814 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
815 pa + di->ddoffsetlow);
816 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
817 di->ddoffsethigh);
818 bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
819 D64_RC_AE, (ae << D64_RC_AE_SHIFT));
824 static void _dma_rxenable(struct dma_info *di)
826 uint dmactrlflags = di->dma.dmactrlflags;
827 u32 control;
829 brcms_dbg_dma(di->core, "%s:\n", di->name);
831 control = D64_RC_RE | (bcma_read32(di->core,
832 DMA64RXREGOFFS(di, control)) &
833 D64_RC_AE);
835 if ((dmactrlflags & DMA_CTRL_PEN) == 0)
836 control |= D64_RC_PD;
838 if (dmactrlflags & DMA_CTRL_ROC)
839 control |= D64_RC_OC;
841 bcma_write32(di->core, DMA64RXREGOFFS(di, control),
842 ((di->rxoffset << D64_RC_RO_SHIFT) | control));
845 void dma_rxinit(struct dma_pub *pub)
847 struct dma_info *di = (struct dma_info *)pub;
849 brcms_dbg_dma(di->core, "%s:\n", di->name);
851 if (di->nrxd == 0)
852 return;
854 di->rxin = di->rxout = 0;
856 /* clear rx descriptor ring */
857 memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
859 /* DMA engine with out alignment requirement requires table to be inited
860 * before enabling the engine
862 if (!di->aligndesc_4k)
863 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
865 _dma_rxenable(di);
867 if (di->aligndesc_4k)
868 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
871 static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
873 uint i, curr;
874 struct sk_buff *rxp;
875 dma_addr_t pa;
877 i = di->rxin;
879 /* return if no packets posted */
880 if (i == di->rxout)
881 return NULL;
883 curr =
884 B2I(((bcma_read32(di->core,
885 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
886 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
888 /* ignore curr if forceall */
889 if (!forceall && (i == curr))
890 return NULL;
892 /* get the packet pointer that corresponds to the rx descriptor */
893 rxp = di->rxp[i];
894 di->rxp[i] = NULL;
896 pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
898 /* clear this packet from the descriptor ring */
899 dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
901 di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
902 di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
904 di->rxin = nextrxd(di, i);
906 return rxp;
909 static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
911 if (di->nrxd == 0)
912 return NULL;
914 return dma64_getnextrxp(di, forceall);
918 * !! rx entry routine
919 * returns the number packages in the next frame, or 0 if there are no more
920 * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
921 * supported with pkts chain
922 * otherwise, it's treated as giant pkt and will be tossed.
923 * The DMA scattering starts with normal DMA header, followed by first
924 * buffer data. After it reaches the max size of buffer, the data continues
925 * in next DMA descriptor buffer WITHOUT DMA header
927 int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
929 struct dma_info *di = (struct dma_info *)pub;
930 struct sk_buff_head dma_frames;
931 struct sk_buff *p, *next;
932 uint len;
933 uint pkt_len;
934 int resid = 0;
935 int pktcnt = 1;
937 skb_queue_head_init(&dma_frames);
938 next_frame:
939 p = _dma_getnextrxp(di, false);
940 if (p == NULL)
941 return 0;
943 len = le16_to_cpu(*(__le16 *) (p->data));
944 brcms_dbg_dma(di->core, "%s: dma_rx len %d\n", di->name, len);
945 dma_spin_for_len(len, p);
947 /* set actual length */
948 pkt_len = min((di->rxoffset + len), di->rxbufsize);
949 __skb_trim(p, pkt_len);
950 skb_queue_tail(&dma_frames, p);
951 resid = len - (di->rxbufsize - di->rxoffset);
953 /* check for single or multi-buffer rx */
954 if (resid > 0) {
955 while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
956 pkt_len = min_t(uint, resid, di->rxbufsize);
957 __skb_trim(p, pkt_len);
958 skb_queue_tail(&dma_frames, p);
959 resid -= di->rxbufsize;
960 pktcnt++;
963 #ifdef DEBUG
964 if (resid > 0) {
965 uint cur;
966 cur =
967 B2I(((bcma_read32(di->core,
968 DMA64RXREGOFFS(di, status0)) &
969 D64_RS0_CD_MASK) - di->rcvptrbase) &
970 D64_RS0_CD_MASK, struct dma64desc);
971 brcms_dbg_dma(di->core,
972 "rxin %d rxout %d, hw_curr %d\n",
973 di->rxin, di->rxout, cur);
975 #endif /* DEBUG */
977 if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
978 brcms_dbg_dma(di->core, "%s: bad frame length (%d)\n",
979 di->name, len);
980 skb_queue_walk_safe(&dma_frames, p, next) {
981 skb_unlink(p, &dma_frames);
982 brcmu_pkt_buf_free_skb(p);
984 di->dma.rxgiants++;
985 pktcnt = 1;
986 goto next_frame;
990 skb_queue_splice_tail(&dma_frames, skb_list);
991 return pktcnt;
994 static bool dma64_rxidle(struct dma_info *di)
996 brcms_dbg_dma(di->core, "%s:\n", di->name);
998 if (di->nrxd == 0)
999 return true;
1001 return ((bcma_read32(di->core,
1002 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
1003 (bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
1004 D64_RS0_CD_MASK));
1007 static bool dma64_txidle(struct dma_info *di)
1009 if (di->ntxd == 0)
1010 return true;
1012 return ((bcma_read32(di->core,
1013 DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) ==
1014 (bcma_read32(di->core, DMA64TXREGOFFS(di, ptr)) &
1015 D64_XS0_CD_MASK));
1019 * post receive buffers
1020 * return false is refill failed completely and ring is empty this will stall
1021 * the rx dma and user might want to call rxfill again asap. This unlikely
1022 * happens on memory-rich NIC, but often on memory-constrained dongle
1024 bool dma_rxfill(struct dma_pub *pub)
1026 struct dma_info *di = (struct dma_info *)pub;
1027 struct sk_buff *p;
1028 u16 rxin, rxout;
1029 u32 flags = 0;
1030 uint n;
1031 uint i;
1032 dma_addr_t pa;
1033 uint extra_offset = 0;
1034 bool ring_empty;
1036 ring_empty = false;
1039 * Determine how many receive buffers we're lacking
1040 * from the full complement, allocate, initialize,
1041 * and post them, then update the chip rx lastdscr.
1044 rxin = di->rxin;
1045 rxout = di->rxout;
1047 n = di->nrxpost - nrxdactive(di, rxin, rxout);
1049 brcms_dbg_dma(di->core, "%s: post %d\n", di->name, n);
1051 if (di->rxbufsize > BCMEXTRAHDROOM)
1052 extra_offset = di->rxextrahdrroom;
1054 for (i = 0; i < n; i++) {
1056 * the di->rxbufsize doesn't include the extra headroom,
1057 * we need to add it to the size to be allocated
1059 p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1061 if (p == NULL) {
1062 brcms_dbg_dma(di->core, "%s: out of rxbufs\n",
1063 di->name);
1064 if (i == 0 && dma64_rxidle(di)) {
1065 brcms_dbg_dma(di->core, "%s: ring is empty !\n",
1066 di->name);
1067 ring_empty = true;
1069 di->dma.rxnobuf++;
1070 break;
1072 /* reserve an extra headroom, if applicable */
1073 if (extra_offset)
1074 skb_pull(p, extra_offset);
1076 /* Do a cached write instead of uncached write since DMA_MAP
1077 * will flush the cache.
1079 *(u32 *) (p->data) = 0;
1081 pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1082 DMA_FROM_DEVICE);
1084 /* save the free packet pointer */
1085 di->rxp[rxout] = p;
1087 /* reset flags for each descriptor */
1088 flags = 0;
1089 if (rxout == (di->nrxd - 1))
1090 flags = D64_CTRL1_EOT;
1092 dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1093 di->rxbufsize);
1094 rxout = nextrxd(di, rxout);
1097 di->rxout = rxout;
1099 /* update the chip lastdscr pointer */
1100 bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
1101 di->rcvptrbase + I2B(rxout, struct dma64desc));
1103 return ring_empty;
1106 void dma_rxreclaim(struct dma_pub *pub)
1108 struct dma_info *di = (struct dma_info *)pub;
1109 struct sk_buff *p;
1111 brcms_dbg_dma(di->core, "%s:\n", di->name);
1113 while ((p = _dma_getnextrxp(di, true)))
1114 brcmu_pkt_buf_free_skb(p);
1117 void dma_counterreset(struct dma_pub *pub)
1119 /* reset all software counters */
1120 pub->rxgiants = 0;
1121 pub->rxnobuf = 0;
1122 pub->txnobuf = 0;
1125 /* get the address of the var in order to change later */
1126 unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1128 struct dma_info *di = (struct dma_info *)pub;
1130 if (!strcmp(name, "&txavail"))
1131 return (unsigned long)&(di->dma.txavail);
1132 return 0;
1135 /* 64-bit DMA functions */
1137 void dma_txinit(struct dma_pub *pub)
1139 struct dma_info *di = (struct dma_info *)pub;
1140 u32 control = D64_XC_XE;
1142 brcms_dbg_dma(di->core, "%s:\n", di->name);
1144 if (di->ntxd == 0)
1145 return;
1147 di->txin = di->txout = 0;
1148 di->dma.txavail = di->ntxd - 1;
1150 /* clear tx descriptor ring */
1151 memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1153 /* DMA engine with out alignment requirement requires table to be inited
1154 * before enabling the engine
1156 if (!di->aligndesc_4k)
1157 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1159 if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1160 control |= D64_XC_PD;
1161 bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
1163 /* DMA engine with alignment requirement requires table to be inited
1164 * before enabling the engine
1166 if (di->aligndesc_4k)
1167 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1170 void dma_txsuspend(struct dma_pub *pub)
1172 struct dma_info *di = (struct dma_info *)pub;
1174 brcms_dbg_dma(di->core, "%s:\n", di->name);
1176 if (di->ntxd == 0)
1177 return;
1179 bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1182 void dma_txresume(struct dma_pub *pub)
1184 struct dma_info *di = (struct dma_info *)pub;
1186 brcms_dbg_dma(di->core, "%s:\n", di->name);
1188 if (di->ntxd == 0)
1189 return;
1191 bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
1194 bool dma_txsuspended(struct dma_pub *pub)
1196 struct dma_info *di = (struct dma_info *)pub;
1198 return (di->ntxd == 0) ||
1199 ((bcma_read32(di->core,
1200 DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
1201 D64_XC_SE);
1204 void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1206 struct dma_info *di = (struct dma_info *)pub;
1207 struct sk_buff *p;
1209 brcms_dbg_dma(di->core, "%s: %s\n",
1210 di->name,
1211 range == DMA_RANGE_ALL ? "all" :
1212 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1213 "transferred");
1215 if (di->txin == di->txout)
1216 return;
1218 while ((p = dma_getnexttxp(pub, range))) {
1219 /* For unframed data, we don't have any packets to free */
1220 if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1221 brcmu_pkt_buf_free_skb(p);
1225 bool dma_txreset(struct dma_pub *pub)
1227 struct dma_info *di = (struct dma_info *)pub;
1228 u32 status;
1230 if (di->ntxd == 0)
1231 return true;
1233 /* suspend tx DMA first */
1234 bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1235 SPINWAIT(((status =
1236 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1237 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
1238 (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
1239 10000);
1241 bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
1242 SPINWAIT(((status =
1243 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1244 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
1246 /* wait for the last transaction to complete */
1247 udelay(300);
1249 return status == D64_XS0_XS_DISABLED;
1252 bool dma_rxreset(struct dma_pub *pub)
1254 struct dma_info *di = (struct dma_info *)pub;
1255 u32 status;
1257 if (di->nrxd == 0)
1258 return true;
1260 bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
1261 SPINWAIT(((status =
1262 (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
1263 D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
1265 return status == D64_RS0_RS_DISABLED;
1268 static void dma_txenq(struct dma_info *di, struct sk_buff *p)
1270 unsigned char *data;
1271 uint len;
1272 u16 txout;
1273 u32 flags = 0;
1274 dma_addr_t pa;
1276 txout = di->txout;
1278 if (WARN_ON(nexttxd(di, txout) == di->txin))
1279 return;
1282 * obtain and initialize transmit descriptor entry.
1284 data = p->data;
1285 len = p->len;
1287 /* get physical address of buffer start */
1288 pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
1290 /* With a DMA segment list, Descriptor table is filled
1291 * using the segment list instead of looping over
1292 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1293 * is when end of segment list is reached.
1295 flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1296 if (txout == (di->ntxd - 1))
1297 flags |= D64_CTRL1_EOT;
1299 dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1301 txout = nexttxd(di, txout);
1303 /* save the packet */
1304 di->txp[prevtxd(di, txout)] = p;
1306 /* bump the tx descriptor index */
1307 di->txout = txout;
1310 static void ampdu_finalize(struct dma_info *di)
1312 struct brcms_ampdu_session *session = &di->ampdu_session;
1313 struct sk_buff *p;
1315 trace_brcms_ampdu_session(&session->wlc->hw->d11core->dev,
1316 session->max_ampdu_len,
1317 session->max_ampdu_frames,
1318 session->ampdu_len,
1319 skb_queue_len(&session->skb_list),
1320 session->dma_len);
1322 if (WARN_ON(skb_queue_empty(&session->skb_list)))
1323 return;
1325 brcms_c_ampdu_finalize(session);
1327 while (!skb_queue_empty(&session->skb_list)) {
1328 p = skb_dequeue(&session->skb_list);
1329 dma_txenq(di, p);
1332 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1333 di->xmtptrbase + I2B(di->txout, struct dma64desc));
1334 brcms_c_ampdu_reset_session(session, session->wlc);
1337 static void prep_ampdu_frame(struct dma_info *di, struct sk_buff *p)
1339 struct brcms_ampdu_session *session = &di->ampdu_session;
1340 int ret;
1342 ret = brcms_c_ampdu_add_frame(session, p);
1343 if (ret == -ENOSPC) {
1345 * AMPDU cannot accomodate this frame. Close out the in-
1346 * progress AMPDU session and start a new one.
1348 ampdu_finalize(di);
1349 ret = brcms_c_ampdu_add_frame(session, p);
1352 WARN_ON(ret);
1355 /* Update count of available tx descriptors based on current DMA state */
1356 static void dma_update_txavail(struct dma_info *di)
1359 * Available space is number of descriptors less the number of
1360 * active descriptors and the number of queued AMPDU frames.
1362 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) -
1363 skb_queue_len(&di->ampdu_session.skb_list) - 1;
1367 * !! tx entry routine
1368 * WARNING: call must check the return value for error.
1369 * the error(toss frames) could be fatal and cause many subsequent hard
1370 * to debug problems
1372 int dma_txfast(struct brcms_c_info *wlc, struct dma_pub *pub,
1373 struct sk_buff *p)
1375 struct dma_info *di = (struct dma_info *)pub;
1376 struct brcms_ampdu_session *session = &di->ampdu_session;
1377 struct ieee80211_tx_info *tx_info;
1378 bool is_ampdu;
1380 /* no use to transmit a zero length packet */
1381 if (p->len == 0)
1382 return 0;
1384 /* return nonzero if out of tx descriptors */
1385 if (di->dma.txavail == 0 || nexttxd(di, di->txout) == di->txin)
1386 goto outoftxd;
1388 tx_info = IEEE80211_SKB_CB(p);
1389 is_ampdu = tx_info->flags & IEEE80211_TX_CTL_AMPDU;
1390 if (is_ampdu)
1391 prep_ampdu_frame(di, p);
1392 else
1393 dma_txenq(di, p);
1395 /* tx flow control */
1396 dma_update_txavail(di);
1398 /* kick the chip */
1399 if (is_ampdu) {
1401 * Start sending data if we've got a full AMPDU, there's
1402 * no more space in the DMA ring, or the ring isn't
1403 * currently transmitting.
1405 if (skb_queue_len(&session->skb_list) == session->max_ampdu_frames ||
1406 di->dma.txavail == 0 || dma64_txidle(di))
1407 ampdu_finalize(di);
1408 } else {
1409 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1410 di->xmtptrbase + I2B(di->txout, struct dma64desc));
1413 return 0;
1415 outoftxd:
1416 brcms_dbg_dma(di->core, "%s: out of txds !!!\n", di->name);
1417 brcmu_pkt_buf_free_skb(p);
1418 di->dma.txavail = 0;
1419 di->dma.txnobuf++;
1420 return -ENOSPC;
1423 void dma_txflush(struct dma_pub *pub)
1425 struct dma_info *di = (struct dma_info *)pub;
1426 struct brcms_ampdu_session *session = &di->ampdu_session;
1428 if (!skb_queue_empty(&session->skb_list))
1429 ampdu_finalize(di);
1432 int dma_txpending(struct dma_pub *pub)
1434 struct dma_info *di = (struct dma_info *)pub;
1435 return ntxdactive(di, di->txin, di->txout);
1439 * If we have an active AMPDU session and are not transmitting,
1440 * this function will force tx to start.
1442 void dma_kick_tx(struct dma_pub *pub)
1444 struct dma_info *di = (struct dma_info *)pub;
1445 struct brcms_ampdu_session *session = &di->ampdu_session;
1447 if (!skb_queue_empty(&session->skb_list) && dma64_txidle(di))
1448 ampdu_finalize(di);
1452 * Reclaim next completed txd (txds if using chained buffers) in the range
1453 * specified and return associated packet.
1454 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1455 * transmitted as noted by the hardware "CurrDescr" pointer.
1456 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1457 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1458 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1459 * return associated packet regardless of the value of hardware pointers.
1461 struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1463 struct dma_info *di = (struct dma_info *)pub;
1464 u16 start, end, i;
1465 u16 active_desc;
1466 struct sk_buff *txp;
1468 brcms_dbg_dma(di->core, "%s: %s\n",
1469 di->name,
1470 range == DMA_RANGE_ALL ? "all" :
1471 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1472 "transferred");
1474 if (di->ntxd == 0)
1475 return NULL;
1477 txp = NULL;
1479 start = di->txin;
1480 if (range == DMA_RANGE_ALL)
1481 end = di->txout;
1482 else {
1483 end = (u16) (B2I(((bcma_read32(di->core,
1484 DMA64TXREGOFFS(di, status0)) &
1485 D64_XS0_CD_MASK) - di->xmtptrbase) &
1486 D64_XS0_CD_MASK, struct dma64desc));
1488 if (range == DMA_RANGE_TRANSFERED) {
1489 active_desc =
1490 (u16)(bcma_read32(di->core,
1491 DMA64TXREGOFFS(di, status1)) &
1492 D64_XS1_AD_MASK);
1493 active_desc =
1494 (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1495 active_desc = B2I(active_desc, struct dma64desc);
1496 if (end != active_desc)
1497 end = prevtxd(di, active_desc);
1501 if ((start == 0) && (end > di->txout))
1502 goto bogus;
1504 for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1505 dma_addr_t pa;
1506 uint size;
1508 pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1510 size =
1511 (le32_to_cpu(di->txd64[i].ctrl2) &
1512 D64_CTRL2_BC_MASK);
1514 di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1515 di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1517 txp = di->txp[i];
1518 di->txp[i] = NULL;
1520 dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
1523 di->txin = i;
1525 /* tx flow control */
1526 dma_update_txavail(di);
1528 return txp;
1530 bogus:
1531 brcms_dbg_dma(di->core, "bogus curr: start %d end %d txout %d\n",
1532 start, end, di->txout);
1533 return NULL;
1537 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1538 * modified. The modified portion of the packet is not under control of the DMA
1539 * engine. This function calls a caller-supplied function for each packet in
1540 * the caller specified dma chain.
1542 void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1543 (void *pkt, void *arg_a), void *arg_a)
1545 struct dma_info *di = (struct dma_info *) dmah;
1546 uint i = di->txin;
1547 uint end = di->txout;
1548 struct sk_buff *skb;
1549 struct ieee80211_tx_info *tx_info;
1551 while (i != end) {
1552 skb = di->txp[i];
1553 if (skb != NULL) {
1554 tx_info = (struct ieee80211_tx_info *)skb->cb;
1555 (callback_fnc)(tx_info, arg_a);
1557 i = nexttxd(di, i);