2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
30 #define REGULATOR_VERSION "0.5"
32 static DEFINE_MUTEX(regulator_list_mutex
);
33 static LIST_HEAD(regulator_list
);
34 static LIST_HEAD(regulator_map_list
);
35 static int has_full_constraints
;
38 * struct regulator_map
40 * Used to provide symbolic supply names to devices.
42 struct regulator_map
{
43 struct list_head list
;
44 const char *dev_name
; /* The dev_name() for the consumer */
46 struct regulator_dev
*regulator
;
52 * One for each consumer device.
56 struct list_head list
;
61 struct device_attribute dev_attr
;
62 struct regulator_dev
*rdev
;
65 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
66 static int _regulator_disable(struct regulator_dev
*rdev
);
67 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
68 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
69 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
70 static void _notifier_call_chain(struct regulator_dev
*rdev
,
71 unsigned long event
, void *data
);
73 static const char *rdev_get_name(struct regulator_dev
*rdev
)
75 if (rdev
->constraints
&& rdev
->constraints
->name
)
76 return rdev
->constraints
->name
;
77 else if (rdev
->desc
->name
)
78 return rdev
->desc
->name
;
83 /* gets the regulator for a given consumer device */
84 static struct regulator
*get_device_regulator(struct device
*dev
)
86 struct regulator
*regulator
= NULL
;
87 struct regulator_dev
*rdev
;
89 mutex_lock(®ulator_list_mutex
);
90 list_for_each_entry(rdev
, ®ulator_list
, list
) {
91 mutex_lock(&rdev
->mutex
);
92 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
93 if (regulator
->dev
== dev
) {
94 mutex_unlock(&rdev
->mutex
);
95 mutex_unlock(®ulator_list_mutex
);
99 mutex_unlock(&rdev
->mutex
);
101 mutex_unlock(®ulator_list_mutex
);
105 /* Platform voltage constraint check */
106 static int regulator_check_voltage(struct regulator_dev
*rdev
,
107 int *min_uV
, int *max_uV
)
109 BUG_ON(*min_uV
> *max_uV
);
111 if (!rdev
->constraints
) {
112 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
113 rdev_get_name(rdev
));
116 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
117 printk(KERN_ERR
"%s: operation not allowed for %s\n",
118 __func__
, rdev_get_name(rdev
));
122 if (*max_uV
> rdev
->constraints
->max_uV
)
123 *max_uV
= rdev
->constraints
->max_uV
;
124 if (*min_uV
< rdev
->constraints
->min_uV
)
125 *min_uV
= rdev
->constraints
->min_uV
;
127 if (*min_uV
> *max_uV
)
133 /* current constraint check */
134 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
135 int *min_uA
, int *max_uA
)
137 BUG_ON(*min_uA
> *max_uA
);
139 if (!rdev
->constraints
) {
140 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
141 rdev_get_name(rdev
));
144 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
145 printk(KERN_ERR
"%s: operation not allowed for %s\n",
146 __func__
, rdev_get_name(rdev
));
150 if (*max_uA
> rdev
->constraints
->max_uA
)
151 *max_uA
= rdev
->constraints
->max_uA
;
152 if (*min_uA
< rdev
->constraints
->min_uA
)
153 *min_uA
= rdev
->constraints
->min_uA
;
155 if (*min_uA
> *max_uA
)
161 /* operating mode constraint check */
162 static int regulator_check_mode(struct regulator_dev
*rdev
, int mode
)
165 case REGULATOR_MODE_FAST
:
166 case REGULATOR_MODE_NORMAL
:
167 case REGULATOR_MODE_IDLE
:
168 case REGULATOR_MODE_STANDBY
:
174 if (!rdev
->constraints
) {
175 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
176 rdev_get_name(rdev
));
179 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
180 printk(KERN_ERR
"%s: operation not allowed for %s\n",
181 __func__
, rdev_get_name(rdev
));
184 if (!(rdev
->constraints
->valid_modes_mask
& mode
)) {
185 printk(KERN_ERR
"%s: invalid mode %x for %s\n",
186 __func__
, mode
, rdev_get_name(rdev
));
192 /* dynamic regulator mode switching constraint check */
193 static int regulator_check_drms(struct regulator_dev
*rdev
)
195 if (!rdev
->constraints
) {
196 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
197 rdev_get_name(rdev
));
200 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
201 printk(KERN_ERR
"%s: operation not allowed for %s\n",
202 __func__
, rdev_get_name(rdev
));
208 static ssize_t
device_requested_uA_show(struct device
*dev
,
209 struct device_attribute
*attr
, char *buf
)
211 struct regulator
*regulator
;
213 regulator
= get_device_regulator(dev
);
214 if (regulator
== NULL
)
217 return sprintf(buf
, "%d\n", regulator
->uA_load
);
220 static ssize_t
regulator_uV_show(struct device
*dev
,
221 struct device_attribute
*attr
, char *buf
)
223 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
226 mutex_lock(&rdev
->mutex
);
227 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
228 mutex_unlock(&rdev
->mutex
);
232 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
234 static ssize_t
regulator_uA_show(struct device
*dev
,
235 struct device_attribute
*attr
, char *buf
)
237 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
239 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
241 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
243 static ssize_t
regulator_name_show(struct device
*dev
,
244 struct device_attribute
*attr
, char *buf
)
246 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
248 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
251 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
254 case REGULATOR_MODE_FAST
:
255 return sprintf(buf
, "fast\n");
256 case REGULATOR_MODE_NORMAL
:
257 return sprintf(buf
, "normal\n");
258 case REGULATOR_MODE_IDLE
:
259 return sprintf(buf
, "idle\n");
260 case REGULATOR_MODE_STANDBY
:
261 return sprintf(buf
, "standby\n");
263 return sprintf(buf
, "unknown\n");
266 static ssize_t
regulator_opmode_show(struct device
*dev
,
267 struct device_attribute
*attr
, char *buf
)
269 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
271 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
273 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
275 static ssize_t
regulator_print_state(char *buf
, int state
)
278 return sprintf(buf
, "enabled\n");
280 return sprintf(buf
, "disabled\n");
282 return sprintf(buf
, "unknown\n");
285 static ssize_t
regulator_state_show(struct device
*dev
,
286 struct device_attribute
*attr
, char *buf
)
288 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
291 mutex_lock(&rdev
->mutex
);
292 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
293 mutex_unlock(&rdev
->mutex
);
297 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
299 static ssize_t
regulator_status_show(struct device
*dev
,
300 struct device_attribute
*attr
, char *buf
)
302 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
306 status
= rdev
->desc
->ops
->get_status(rdev
);
311 case REGULATOR_STATUS_OFF
:
314 case REGULATOR_STATUS_ON
:
317 case REGULATOR_STATUS_ERROR
:
320 case REGULATOR_STATUS_FAST
:
323 case REGULATOR_STATUS_NORMAL
:
326 case REGULATOR_STATUS_IDLE
:
329 case REGULATOR_STATUS_STANDBY
:
336 return sprintf(buf
, "%s\n", label
);
338 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
340 static ssize_t
regulator_min_uA_show(struct device
*dev
,
341 struct device_attribute
*attr
, char *buf
)
343 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
345 if (!rdev
->constraints
)
346 return sprintf(buf
, "constraint not defined\n");
348 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
350 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
352 static ssize_t
regulator_max_uA_show(struct device
*dev
,
353 struct device_attribute
*attr
, char *buf
)
355 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
357 if (!rdev
->constraints
)
358 return sprintf(buf
, "constraint not defined\n");
360 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
362 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
364 static ssize_t
regulator_min_uV_show(struct device
*dev
,
365 struct device_attribute
*attr
, char *buf
)
367 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
369 if (!rdev
->constraints
)
370 return sprintf(buf
, "constraint not defined\n");
372 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
374 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
376 static ssize_t
regulator_max_uV_show(struct device
*dev
,
377 struct device_attribute
*attr
, char *buf
)
379 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
381 if (!rdev
->constraints
)
382 return sprintf(buf
, "constraint not defined\n");
384 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
386 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
388 static ssize_t
regulator_total_uA_show(struct device
*dev
,
389 struct device_attribute
*attr
, char *buf
)
391 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
392 struct regulator
*regulator
;
395 mutex_lock(&rdev
->mutex
);
396 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
397 uA
+= regulator
->uA_load
;
398 mutex_unlock(&rdev
->mutex
);
399 return sprintf(buf
, "%d\n", uA
);
401 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
403 static ssize_t
regulator_num_users_show(struct device
*dev
,
404 struct device_attribute
*attr
, char *buf
)
406 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
407 return sprintf(buf
, "%d\n", rdev
->use_count
);
410 static ssize_t
regulator_type_show(struct device
*dev
,
411 struct device_attribute
*attr
, char *buf
)
413 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
415 switch (rdev
->desc
->type
) {
416 case REGULATOR_VOLTAGE
:
417 return sprintf(buf
, "voltage\n");
418 case REGULATOR_CURRENT
:
419 return sprintf(buf
, "current\n");
421 return sprintf(buf
, "unknown\n");
424 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
425 struct device_attribute
*attr
, char *buf
)
427 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
429 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
431 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
432 regulator_suspend_mem_uV_show
, NULL
);
434 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
435 struct device_attribute
*attr
, char *buf
)
437 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
439 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
441 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
442 regulator_suspend_disk_uV_show
, NULL
);
444 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
445 struct device_attribute
*attr
, char *buf
)
447 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
449 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
451 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
452 regulator_suspend_standby_uV_show
, NULL
);
454 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 return regulator_print_opmode(buf
,
460 rdev
->constraints
->state_mem
.mode
);
462 static DEVICE_ATTR(suspend_mem_mode
, 0444,
463 regulator_suspend_mem_mode_show
, NULL
);
465 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
466 struct device_attribute
*attr
, char *buf
)
468 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
470 return regulator_print_opmode(buf
,
471 rdev
->constraints
->state_disk
.mode
);
473 static DEVICE_ATTR(suspend_disk_mode
, 0444,
474 regulator_suspend_disk_mode_show
, NULL
);
476 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
477 struct device_attribute
*attr
, char *buf
)
479 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
481 return regulator_print_opmode(buf
,
482 rdev
->constraints
->state_standby
.mode
);
484 static DEVICE_ATTR(suspend_standby_mode
, 0444,
485 regulator_suspend_standby_mode_show
, NULL
);
487 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
488 struct device_attribute
*attr
, char *buf
)
490 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
492 return regulator_print_state(buf
,
493 rdev
->constraints
->state_mem
.enabled
);
495 static DEVICE_ATTR(suspend_mem_state
, 0444,
496 regulator_suspend_mem_state_show
, NULL
);
498 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
499 struct device_attribute
*attr
, char *buf
)
501 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
503 return regulator_print_state(buf
,
504 rdev
->constraints
->state_disk
.enabled
);
506 static DEVICE_ATTR(suspend_disk_state
, 0444,
507 regulator_suspend_disk_state_show
, NULL
);
509 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
510 struct device_attribute
*attr
, char *buf
)
512 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
514 return regulator_print_state(buf
,
515 rdev
->constraints
->state_standby
.enabled
);
517 static DEVICE_ATTR(suspend_standby_state
, 0444,
518 regulator_suspend_standby_state_show
, NULL
);
522 * These are the only attributes are present for all regulators.
523 * Other attributes are a function of regulator functionality.
525 static struct device_attribute regulator_dev_attrs
[] = {
526 __ATTR(name
, 0444, regulator_name_show
, NULL
),
527 __ATTR(num_users
, 0444, regulator_num_users_show
, NULL
),
528 __ATTR(type
, 0444, regulator_type_show
, NULL
),
532 static void regulator_dev_release(struct device
*dev
)
534 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
538 static struct class regulator_class
= {
540 .dev_release
= regulator_dev_release
,
541 .dev_attrs
= regulator_dev_attrs
,
544 /* Calculate the new optimum regulator operating mode based on the new total
545 * consumer load. All locks held by caller */
546 static void drms_uA_update(struct regulator_dev
*rdev
)
548 struct regulator
*sibling
;
549 int current_uA
= 0, output_uV
, input_uV
, err
;
552 err
= regulator_check_drms(rdev
);
553 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
554 !rdev
->desc
->ops
->get_voltage
|| !rdev
->desc
->ops
->set_mode
)
557 /* get output voltage */
558 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
562 /* get input voltage */
563 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
564 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
566 input_uV
= rdev
->constraints
->input_uV
;
570 /* calc total requested load */
571 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
572 current_uA
+= sibling
->uA_load
;
574 /* now get the optimum mode for our new total regulator load */
575 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
576 output_uV
, current_uA
);
578 /* check the new mode is allowed */
579 err
= regulator_check_mode(rdev
, mode
);
581 rdev
->desc
->ops
->set_mode(rdev
, mode
);
584 static int suspend_set_state(struct regulator_dev
*rdev
,
585 struct regulator_state
*rstate
)
590 can_set_state
= rdev
->desc
->ops
->set_suspend_enable
&&
591 rdev
->desc
->ops
->set_suspend_disable
;
593 /* If we have no suspend mode configration don't set anything;
594 * only warn if the driver actually makes the suspend mode
597 if (!rstate
->enabled
&& !rstate
->disabled
) {
599 printk(KERN_WARNING
"%s: No configuration for %s\n",
600 __func__
, rdev_get_name(rdev
));
604 if (rstate
->enabled
&& rstate
->disabled
) {
605 printk(KERN_ERR
"%s: invalid configuration for %s\n",
606 __func__
, rdev_get_name(rdev
));
610 if (!can_set_state
) {
611 printk(KERN_ERR
"%s: no way to set suspend state\n",
617 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
619 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
621 printk(KERN_ERR
"%s: failed to enabled/disable\n", __func__
);
625 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
626 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
628 printk(KERN_ERR
"%s: failed to set voltage\n",
634 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
635 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
637 printk(KERN_ERR
"%s: failed to set mode\n", __func__
);
644 /* locks held by caller */
645 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
647 if (!rdev
->constraints
)
651 case PM_SUSPEND_STANDBY
:
652 return suspend_set_state(rdev
,
653 &rdev
->constraints
->state_standby
);
655 return suspend_set_state(rdev
,
656 &rdev
->constraints
->state_mem
);
658 return suspend_set_state(rdev
,
659 &rdev
->constraints
->state_disk
);
665 static void print_constraints(struct regulator_dev
*rdev
)
667 struct regulation_constraints
*constraints
= rdev
->constraints
;
672 if (constraints
->min_uV
&& constraints
->max_uV
) {
673 if (constraints
->min_uV
== constraints
->max_uV
)
674 count
+= sprintf(buf
+ count
, "%d mV ",
675 constraints
->min_uV
/ 1000);
677 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
678 constraints
->min_uV
/ 1000,
679 constraints
->max_uV
/ 1000);
682 if (!constraints
->min_uV
||
683 constraints
->min_uV
!= constraints
->max_uV
) {
684 ret
= _regulator_get_voltage(rdev
);
686 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
689 if (constraints
->min_uA
&& constraints
->max_uA
) {
690 if (constraints
->min_uA
== constraints
->max_uA
)
691 count
+= sprintf(buf
+ count
, "%d mA ",
692 constraints
->min_uA
/ 1000);
694 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
695 constraints
->min_uA
/ 1000,
696 constraints
->max_uA
/ 1000);
699 if (!constraints
->min_uA
||
700 constraints
->min_uA
!= constraints
->max_uA
) {
701 ret
= _regulator_get_current_limit(rdev
);
703 count
+= sprintf(buf
+ count
, "at %d uA ", ret
/ 1000);
706 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
707 count
+= sprintf(buf
+ count
, "fast ");
708 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
709 count
+= sprintf(buf
+ count
, "normal ");
710 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
711 count
+= sprintf(buf
+ count
, "idle ");
712 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
713 count
+= sprintf(buf
+ count
, "standby");
715 printk(KERN_INFO
"regulator: %s: %s\n", rdev_get_name(rdev
), buf
);
718 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
719 struct regulation_constraints
*constraints
)
721 struct regulator_ops
*ops
= rdev
->desc
->ops
;
722 const char *name
= rdev_get_name(rdev
);
725 /* do we need to apply the constraint voltage */
726 if (rdev
->constraints
->apply_uV
&&
727 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
&&
729 ret
= ops
->set_voltage(rdev
,
730 rdev
->constraints
->min_uV
, rdev
->constraints
->max_uV
);
732 printk(KERN_ERR
"%s: failed to apply %duV constraint to %s\n",
734 rdev
->constraints
->min_uV
, name
);
735 rdev
->constraints
= NULL
;
740 /* constrain machine-level voltage specs to fit
741 * the actual range supported by this regulator.
743 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
744 int count
= rdev
->desc
->n_voltages
;
746 int min_uV
= INT_MAX
;
747 int max_uV
= INT_MIN
;
748 int cmin
= constraints
->min_uV
;
749 int cmax
= constraints
->max_uV
;
751 /* it's safe to autoconfigure fixed-voltage supplies
752 and the constraints are used by list_voltage. */
753 if (count
== 1 && !cmin
) {
756 constraints
->min_uV
= cmin
;
757 constraints
->max_uV
= cmax
;
760 /* voltage constraints are optional */
761 if ((cmin
== 0) && (cmax
== 0))
764 /* else require explicit machine-level constraints */
765 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
766 pr_err("%s: %s '%s' voltage constraints\n",
767 __func__
, "invalid", name
);
771 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
772 for (i
= 0; i
< count
; i
++) {
775 value
= ops
->list_voltage(rdev
, i
);
779 /* maybe adjust [min_uV..max_uV] */
780 if (value
>= cmin
&& value
< min_uV
)
782 if (value
<= cmax
&& value
> max_uV
)
786 /* final: [min_uV..max_uV] valid iff constraints valid */
787 if (max_uV
< min_uV
) {
788 pr_err("%s: %s '%s' voltage constraints\n",
789 __func__
, "unsupportable", name
);
793 /* use regulator's subset of machine constraints */
794 if (constraints
->min_uV
< min_uV
) {
795 pr_debug("%s: override '%s' %s, %d -> %d\n",
796 __func__
, name
, "min_uV",
797 constraints
->min_uV
, min_uV
);
798 constraints
->min_uV
= min_uV
;
800 if (constraints
->max_uV
> max_uV
) {
801 pr_debug("%s: override '%s' %s, %d -> %d\n",
802 __func__
, name
, "max_uV",
803 constraints
->max_uV
, max_uV
);
804 constraints
->max_uV
= max_uV
;
812 * set_machine_constraints - sets regulator constraints
813 * @rdev: regulator source
814 * @constraints: constraints to apply
816 * Allows platform initialisation code to define and constrain
817 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
818 * Constraints *must* be set by platform code in order for some
819 * regulator operations to proceed i.e. set_voltage, set_current_limit,
822 static int set_machine_constraints(struct regulator_dev
*rdev
,
823 struct regulation_constraints
*constraints
)
827 struct regulator_ops
*ops
= rdev
->desc
->ops
;
829 rdev
->constraints
= constraints
;
831 name
= rdev_get_name(rdev
);
833 ret
= machine_constraints_voltage(rdev
, constraints
);
837 /* do we need to setup our suspend state */
838 if (constraints
->initial_state
) {
839 ret
= suspend_prepare(rdev
, constraints
->initial_state
);
841 printk(KERN_ERR
"%s: failed to set suspend state for %s\n",
843 rdev
->constraints
= NULL
;
848 if (constraints
->initial_mode
) {
849 if (!ops
->set_mode
) {
850 printk(KERN_ERR
"%s: no set_mode operation for %s\n",
856 ret
= ops
->set_mode(rdev
, constraints
->initial_mode
);
859 "%s: failed to set initial mode for %s: %d\n",
860 __func__
, name
, ret
);
865 /* If the constraints say the regulator should be on at this point
866 * and we have control then make sure it is enabled.
868 if ((constraints
->always_on
|| constraints
->boot_on
) && ops
->enable
) {
869 ret
= ops
->enable(rdev
);
871 printk(KERN_ERR
"%s: failed to enable %s\n",
873 rdev
->constraints
= NULL
;
878 print_constraints(rdev
);
884 * set_supply - set regulator supply regulator
885 * @rdev: regulator name
886 * @supply_rdev: supply regulator name
888 * Called by platform initialisation code to set the supply regulator for this
889 * regulator. This ensures that a regulators supply will also be enabled by the
890 * core if it's child is enabled.
892 static int set_supply(struct regulator_dev
*rdev
,
893 struct regulator_dev
*supply_rdev
)
897 err
= sysfs_create_link(&rdev
->dev
.kobj
, &supply_rdev
->dev
.kobj
,
901 "%s: could not add device link %s err %d\n",
902 __func__
, supply_rdev
->dev
.kobj
.name
, err
);
905 rdev
->supply
= supply_rdev
;
906 list_add(&rdev
->slist
, &supply_rdev
->supply_list
);
912 * set_consumer_device_supply: Bind a regulator to a symbolic supply
913 * @rdev: regulator source
914 * @consumer_dev: device the supply applies to
915 * @consumer_dev_name: dev_name() string for device supply applies to
916 * @supply: symbolic name for supply
918 * Allows platform initialisation code to map physical regulator
919 * sources to symbolic names for supplies for use by devices. Devices
920 * should use these symbolic names to request regulators, avoiding the
921 * need to provide board-specific regulator names as platform data.
923 * Only one of consumer_dev and consumer_dev_name may be specified.
925 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
926 struct device
*consumer_dev
, const char *consumer_dev_name
,
929 struct regulator_map
*node
;
932 if (consumer_dev
&& consumer_dev_name
)
935 if (!consumer_dev_name
&& consumer_dev
)
936 consumer_dev_name
= dev_name(consumer_dev
);
941 if (consumer_dev_name
!= NULL
)
946 list_for_each_entry(node
, ®ulator_map_list
, list
) {
947 if (consumer_dev_name
!= node
->dev_name
)
949 if (strcmp(node
->supply
, supply
) != 0)
952 dev_dbg(consumer_dev
, "%s/%s is '%s' supply; fail %s/%s\n",
953 dev_name(&node
->regulator
->dev
),
954 node
->regulator
->desc
->name
,
956 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
960 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
964 node
->regulator
= rdev
;
965 node
->supply
= supply
;
968 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
969 if (node
->dev_name
== NULL
) {
975 list_add(&node
->list
, ®ulator_map_list
);
979 static void unset_consumer_device_supply(struct regulator_dev
*rdev
,
980 const char *consumer_dev_name
, struct device
*consumer_dev
)
982 struct regulator_map
*node
, *n
;
984 if (consumer_dev
&& !consumer_dev_name
)
985 consumer_dev_name
= dev_name(consumer_dev
);
987 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
988 if (rdev
!= node
->regulator
)
991 if (consumer_dev_name
&& node
->dev_name
&&
992 strcmp(consumer_dev_name
, node
->dev_name
))
995 list_del(&node
->list
);
996 kfree(node
->dev_name
);
1002 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1004 struct regulator_map
*node
, *n
;
1006 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1007 if (rdev
== node
->regulator
) {
1008 list_del(&node
->list
);
1009 kfree(node
->dev_name
);
1016 #define REG_STR_SIZE 32
1018 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1020 const char *supply_name
)
1022 struct regulator
*regulator
;
1023 char buf
[REG_STR_SIZE
];
1026 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1027 if (regulator
== NULL
)
1030 mutex_lock(&rdev
->mutex
);
1031 regulator
->rdev
= rdev
;
1032 list_add(®ulator
->list
, &rdev
->consumer_list
);
1035 /* create a 'requested_microamps_name' sysfs entry */
1036 size
= scnprintf(buf
, REG_STR_SIZE
, "microamps_requested_%s",
1038 if (size
>= REG_STR_SIZE
)
1041 regulator
->dev
= dev
;
1042 sysfs_attr_init(®ulator
->dev_attr
.attr
);
1043 regulator
->dev_attr
.attr
.name
= kstrdup(buf
, GFP_KERNEL
);
1044 if (regulator
->dev_attr
.attr
.name
== NULL
)
1047 regulator
->dev_attr
.attr
.owner
= THIS_MODULE
;
1048 regulator
->dev_attr
.attr
.mode
= 0444;
1049 regulator
->dev_attr
.show
= device_requested_uA_show
;
1050 err
= device_create_file(dev
, ®ulator
->dev_attr
);
1052 printk(KERN_WARNING
"%s: could not add regulator_dev"
1053 " load sysfs\n", __func__
);
1057 /* also add a link to the device sysfs entry */
1058 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1059 dev
->kobj
.name
, supply_name
);
1060 if (size
>= REG_STR_SIZE
)
1063 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1064 if (regulator
->supply_name
== NULL
)
1067 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1071 "%s: could not add device link %s err %d\n",
1072 __func__
, dev
->kobj
.name
, err
);
1073 device_remove_file(dev
, ®ulator
->dev_attr
);
1077 mutex_unlock(&rdev
->mutex
);
1080 kfree(regulator
->supply_name
);
1082 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1084 kfree(regulator
->dev_attr
.attr
.name
);
1086 list_del(®ulator
->list
);
1088 mutex_unlock(&rdev
->mutex
);
1092 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1094 if (!rdev
->desc
->ops
->enable_time
)
1096 return rdev
->desc
->ops
->enable_time(rdev
);
1099 /* Internal regulator request function */
1100 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1103 struct regulator_dev
*rdev
;
1104 struct regulator_map
*map
;
1105 struct regulator
*regulator
= ERR_PTR(-ENODEV
);
1106 const char *devname
= NULL
;
1110 printk(KERN_ERR
"regulator: get() with no identifier\n");
1115 devname
= dev_name(dev
);
1117 mutex_lock(®ulator_list_mutex
);
1119 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1120 /* If the mapping has a device set up it must match */
1121 if (map
->dev_name
&&
1122 (!devname
|| strcmp(map
->dev_name
, devname
)))
1125 if (strcmp(map
->supply
, id
) == 0) {
1126 rdev
= map
->regulator
;
1131 #ifdef CONFIG_REGULATOR_DUMMY
1133 devname
= "deviceless";
1135 /* If the board didn't flag that it was fully constrained then
1136 * substitute in a dummy regulator so consumers can continue.
1138 if (!has_full_constraints
) {
1139 pr_warning("%s supply %s not found, using dummy regulator\n",
1141 rdev
= dummy_regulator_rdev
;
1146 mutex_unlock(®ulator_list_mutex
);
1150 if (rdev
->exclusive
) {
1151 regulator
= ERR_PTR(-EPERM
);
1155 if (exclusive
&& rdev
->open_count
) {
1156 regulator
= ERR_PTR(-EBUSY
);
1160 if (!try_module_get(rdev
->owner
))
1163 regulator
= create_regulator(rdev
, dev
, id
);
1164 if (regulator
== NULL
) {
1165 regulator
= ERR_PTR(-ENOMEM
);
1166 module_put(rdev
->owner
);
1171 rdev
->exclusive
= 1;
1173 ret
= _regulator_is_enabled(rdev
);
1175 rdev
->use_count
= 1;
1177 rdev
->use_count
= 0;
1181 mutex_unlock(®ulator_list_mutex
);
1187 * regulator_get - lookup and obtain a reference to a regulator.
1188 * @dev: device for regulator "consumer"
1189 * @id: Supply name or regulator ID.
1191 * Returns a struct regulator corresponding to the regulator producer,
1192 * or IS_ERR() condition containing errno.
1194 * Use of supply names configured via regulator_set_device_supply() is
1195 * strongly encouraged. It is recommended that the supply name used
1196 * should match the name used for the supply and/or the relevant
1197 * device pins in the datasheet.
1199 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1201 return _regulator_get(dev
, id
, 0);
1203 EXPORT_SYMBOL_GPL(regulator_get
);
1206 * regulator_get_exclusive - obtain exclusive access to a regulator.
1207 * @dev: device for regulator "consumer"
1208 * @id: Supply name or regulator ID.
1210 * Returns a struct regulator corresponding to the regulator producer,
1211 * or IS_ERR() condition containing errno. Other consumers will be
1212 * unable to obtain this reference is held and the use count for the
1213 * regulator will be initialised to reflect the current state of the
1216 * This is intended for use by consumers which cannot tolerate shared
1217 * use of the regulator such as those which need to force the
1218 * regulator off for correct operation of the hardware they are
1221 * Use of supply names configured via regulator_set_device_supply() is
1222 * strongly encouraged. It is recommended that the supply name used
1223 * should match the name used for the supply and/or the relevant
1224 * device pins in the datasheet.
1226 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1228 return _regulator_get(dev
, id
, 1);
1230 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1233 * regulator_put - "free" the regulator source
1234 * @regulator: regulator source
1236 * Note: drivers must ensure that all regulator_enable calls made on this
1237 * regulator source are balanced by regulator_disable calls prior to calling
1240 void regulator_put(struct regulator
*regulator
)
1242 struct regulator_dev
*rdev
;
1244 if (regulator
== NULL
|| IS_ERR(regulator
))
1247 mutex_lock(®ulator_list_mutex
);
1248 rdev
= regulator
->rdev
;
1250 /* remove any sysfs entries */
1251 if (regulator
->dev
) {
1252 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1253 kfree(regulator
->supply_name
);
1254 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1255 kfree(regulator
->dev_attr
.attr
.name
);
1257 list_del(®ulator
->list
);
1261 rdev
->exclusive
= 0;
1263 module_put(rdev
->owner
);
1264 mutex_unlock(®ulator_list_mutex
);
1266 EXPORT_SYMBOL_GPL(regulator_put
);
1268 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
1270 if (!rdev
->constraints
)
1273 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
1279 /* locks held by regulator_enable() */
1280 static int _regulator_enable(struct regulator_dev
*rdev
)
1284 /* do we need to enable the supply regulator first */
1286 ret
= _regulator_enable(rdev
->supply
);
1288 printk(KERN_ERR
"%s: failed to enable %s: %d\n",
1289 __func__
, rdev_get_name(rdev
), ret
);
1294 /* check voltage and requested load before enabling */
1295 if (rdev
->constraints
&&
1296 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1297 drms_uA_update(rdev
);
1299 if (rdev
->use_count
== 0) {
1300 /* The regulator may on if it's not switchable or left on */
1301 ret
= _regulator_is_enabled(rdev
);
1302 if (ret
== -EINVAL
|| ret
== 0) {
1303 if (!_regulator_can_change_status(rdev
))
1306 if (!rdev
->desc
->ops
->enable
)
1309 /* Query before enabling in case configuration
1311 ret
= _regulator_get_enable_time(rdev
);
1316 "%s: enable_time() failed for %s: %d\n",
1317 __func__
, rdev_get_name(rdev
),
1322 /* Allow the regulator to ramp; it would be useful
1323 * to extend this for bulk operations so that the
1324 * regulators can ramp together. */
1325 ret
= rdev
->desc
->ops
->enable(rdev
);
1330 mdelay(delay
/ 1000);
1334 } else if (ret
< 0) {
1335 printk(KERN_ERR
"%s: is_enabled() failed for %s: %d\n",
1336 __func__
, rdev_get_name(rdev
), ret
);
1339 /* Fallthrough on positive return values - already enabled */
1348 * regulator_enable - enable regulator output
1349 * @regulator: regulator source
1351 * Request that the regulator be enabled with the regulator output at
1352 * the predefined voltage or current value. Calls to regulator_enable()
1353 * must be balanced with calls to regulator_disable().
1355 * NOTE: the output value can be set by other drivers, boot loader or may be
1356 * hardwired in the regulator.
1358 int regulator_enable(struct regulator
*regulator
)
1360 struct regulator_dev
*rdev
= regulator
->rdev
;
1363 mutex_lock(&rdev
->mutex
);
1364 ret
= _regulator_enable(rdev
);
1365 mutex_unlock(&rdev
->mutex
);
1368 EXPORT_SYMBOL_GPL(regulator_enable
);
1370 /* locks held by regulator_disable() */
1371 static int _regulator_disable(struct regulator_dev
*rdev
)
1375 if (WARN(rdev
->use_count
<= 0,
1376 "unbalanced disables for %s\n",
1377 rdev_get_name(rdev
)))
1380 /* are we the last user and permitted to disable ? */
1381 if (rdev
->use_count
== 1 &&
1382 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1384 /* we are last user */
1385 if (_regulator_can_change_status(rdev
) &&
1386 rdev
->desc
->ops
->disable
) {
1387 ret
= rdev
->desc
->ops
->disable(rdev
);
1389 printk(KERN_ERR
"%s: failed to disable %s\n",
1390 __func__
, rdev_get_name(rdev
));
1394 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1398 /* decrease our supplies ref count and disable if required */
1400 _regulator_disable(rdev
->supply
);
1402 rdev
->use_count
= 0;
1403 } else if (rdev
->use_count
> 1) {
1405 if (rdev
->constraints
&&
1406 (rdev
->constraints
->valid_ops_mask
&
1407 REGULATOR_CHANGE_DRMS
))
1408 drms_uA_update(rdev
);
1416 * regulator_disable - disable regulator output
1417 * @regulator: regulator source
1419 * Disable the regulator output voltage or current. Calls to
1420 * regulator_enable() must be balanced with calls to
1421 * regulator_disable().
1423 * NOTE: this will only disable the regulator output if no other consumer
1424 * devices have it enabled, the regulator device supports disabling and
1425 * machine constraints permit this operation.
1427 int regulator_disable(struct regulator
*regulator
)
1429 struct regulator_dev
*rdev
= regulator
->rdev
;
1432 mutex_lock(&rdev
->mutex
);
1433 ret
= _regulator_disable(rdev
);
1434 mutex_unlock(&rdev
->mutex
);
1437 EXPORT_SYMBOL_GPL(regulator_disable
);
1439 /* locks held by regulator_force_disable() */
1440 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1445 if (rdev
->desc
->ops
->disable
) {
1446 /* ah well, who wants to live forever... */
1447 ret
= rdev
->desc
->ops
->disable(rdev
);
1449 printk(KERN_ERR
"%s: failed to force disable %s\n",
1450 __func__
, rdev_get_name(rdev
));
1453 /* notify other consumers that power has been forced off */
1454 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
1455 REGULATOR_EVENT_DISABLE
, NULL
);
1458 /* decrease our supplies ref count and disable if required */
1460 _regulator_disable(rdev
->supply
);
1462 rdev
->use_count
= 0;
1467 * regulator_force_disable - force disable regulator output
1468 * @regulator: regulator source
1470 * Forcibly disable the regulator output voltage or current.
1471 * NOTE: this *will* disable the regulator output even if other consumer
1472 * devices have it enabled. This should be used for situations when device
1473 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1475 int regulator_force_disable(struct regulator
*regulator
)
1479 mutex_lock(®ulator
->rdev
->mutex
);
1480 regulator
->uA_load
= 0;
1481 ret
= _regulator_force_disable(regulator
->rdev
);
1482 mutex_unlock(®ulator
->rdev
->mutex
);
1485 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1487 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1489 /* If we don't know then assume that the regulator is always on */
1490 if (!rdev
->desc
->ops
->is_enabled
)
1493 return rdev
->desc
->ops
->is_enabled(rdev
);
1497 * regulator_is_enabled - is the regulator output enabled
1498 * @regulator: regulator source
1500 * Returns positive if the regulator driver backing the source/client
1501 * has requested that the device be enabled, zero if it hasn't, else a
1502 * negative errno code.
1504 * Note that the device backing this regulator handle can have multiple
1505 * users, so it might be enabled even if regulator_enable() was never
1506 * called for this particular source.
1508 int regulator_is_enabled(struct regulator
*regulator
)
1512 mutex_lock(®ulator
->rdev
->mutex
);
1513 ret
= _regulator_is_enabled(regulator
->rdev
);
1514 mutex_unlock(®ulator
->rdev
->mutex
);
1518 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
1521 * regulator_count_voltages - count regulator_list_voltage() selectors
1522 * @regulator: regulator source
1524 * Returns number of selectors, or negative errno. Selectors are
1525 * numbered starting at zero, and typically correspond to bitfields
1526 * in hardware registers.
1528 int regulator_count_voltages(struct regulator
*regulator
)
1530 struct regulator_dev
*rdev
= regulator
->rdev
;
1532 return rdev
->desc
->n_voltages
? : -EINVAL
;
1534 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
1537 * regulator_list_voltage - enumerate supported voltages
1538 * @regulator: regulator source
1539 * @selector: identify voltage to list
1540 * Context: can sleep
1542 * Returns a voltage that can be passed to @regulator_set_voltage(),
1543 * zero if this selector code can't be used on this system, or a
1546 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
1548 struct regulator_dev
*rdev
= regulator
->rdev
;
1549 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1552 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
1555 mutex_lock(&rdev
->mutex
);
1556 ret
= ops
->list_voltage(rdev
, selector
);
1557 mutex_unlock(&rdev
->mutex
);
1560 if (ret
< rdev
->constraints
->min_uV
)
1562 else if (ret
> rdev
->constraints
->max_uV
)
1568 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
1571 * regulator_is_supported_voltage - check if a voltage range can be supported
1573 * @regulator: Regulator to check.
1574 * @min_uV: Minimum required voltage in uV.
1575 * @max_uV: Maximum required voltage in uV.
1577 * Returns a boolean or a negative error code.
1579 int regulator_is_supported_voltage(struct regulator
*regulator
,
1580 int min_uV
, int max_uV
)
1582 int i
, voltages
, ret
;
1584 ret
= regulator_count_voltages(regulator
);
1589 for (i
= 0; i
< voltages
; i
++) {
1590 ret
= regulator_list_voltage(regulator
, i
);
1592 if (ret
>= min_uV
&& ret
<= max_uV
)
1600 * regulator_set_voltage - set regulator output voltage
1601 * @regulator: regulator source
1602 * @min_uV: Minimum required voltage in uV
1603 * @max_uV: Maximum acceptable voltage in uV
1605 * Sets a voltage regulator to the desired output voltage. This can be set
1606 * during any regulator state. IOW, regulator can be disabled or enabled.
1608 * If the regulator is enabled then the voltage will change to the new value
1609 * immediately otherwise if the regulator is disabled the regulator will
1610 * output at the new voltage when enabled.
1612 * NOTE: If the regulator is shared between several devices then the lowest
1613 * request voltage that meets the system constraints will be used.
1614 * Regulator system constraints must be set for this regulator before
1615 * calling this function otherwise this call will fail.
1617 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
1619 struct regulator_dev
*rdev
= regulator
->rdev
;
1622 mutex_lock(&rdev
->mutex
);
1625 if (!rdev
->desc
->ops
->set_voltage
) {
1630 /* constraints check */
1631 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1634 regulator
->min_uV
= min_uV
;
1635 regulator
->max_uV
= max_uV
;
1636 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
);
1639 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
, NULL
);
1640 mutex_unlock(&rdev
->mutex
);
1643 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
1645 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
1648 if (rdev
->desc
->ops
->get_voltage
)
1649 return rdev
->desc
->ops
->get_voltage(rdev
);
1655 * regulator_get_voltage - get regulator output voltage
1656 * @regulator: regulator source
1658 * This returns the current regulator voltage in uV.
1660 * NOTE: If the regulator is disabled it will return the voltage value. This
1661 * function should not be used to determine regulator state.
1663 int regulator_get_voltage(struct regulator
*regulator
)
1667 mutex_lock(®ulator
->rdev
->mutex
);
1669 ret
= _regulator_get_voltage(regulator
->rdev
);
1671 mutex_unlock(®ulator
->rdev
->mutex
);
1675 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
1678 * regulator_set_current_limit - set regulator output current limit
1679 * @regulator: regulator source
1680 * @min_uA: Minimuum supported current in uA
1681 * @max_uA: Maximum supported current in uA
1683 * Sets current sink to the desired output current. This can be set during
1684 * any regulator state. IOW, regulator can be disabled or enabled.
1686 * If the regulator is enabled then the current will change to the new value
1687 * immediately otherwise if the regulator is disabled the regulator will
1688 * output at the new current when enabled.
1690 * NOTE: Regulator system constraints must be set for this regulator before
1691 * calling this function otherwise this call will fail.
1693 int regulator_set_current_limit(struct regulator
*regulator
,
1694 int min_uA
, int max_uA
)
1696 struct regulator_dev
*rdev
= regulator
->rdev
;
1699 mutex_lock(&rdev
->mutex
);
1702 if (!rdev
->desc
->ops
->set_current_limit
) {
1707 /* constraints check */
1708 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
1712 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
1714 mutex_unlock(&rdev
->mutex
);
1717 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
1719 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
1723 mutex_lock(&rdev
->mutex
);
1726 if (!rdev
->desc
->ops
->get_current_limit
) {
1731 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
1733 mutex_unlock(&rdev
->mutex
);
1738 * regulator_get_current_limit - get regulator output current
1739 * @regulator: regulator source
1741 * This returns the current supplied by the specified current sink in uA.
1743 * NOTE: If the regulator is disabled it will return the current value. This
1744 * function should not be used to determine regulator state.
1746 int regulator_get_current_limit(struct regulator
*regulator
)
1748 return _regulator_get_current_limit(regulator
->rdev
);
1750 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
1753 * regulator_set_mode - set regulator operating mode
1754 * @regulator: regulator source
1755 * @mode: operating mode - one of the REGULATOR_MODE constants
1757 * Set regulator operating mode to increase regulator efficiency or improve
1758 * regulation performance.
1760 * NOTE: Regulator system constraints must be set for this regulator before
1761 * calling this function otherwise this call will fail.
1763 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
1765 struct regulator_dev
*rdev
= regulator
->rdev
;
1768 mutex_lock(&rdev
->mutex
);
1771 if (!rdev
->desc
->ops
->set_mode
) {
1776 /* constraints check */
1777 ret
= regulator_check_mode(rdev
, mode
);
1781 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1783 mutex_unlock(&rdev
->mutex
);
1786 EXPORT_SYMBOL_GPL(regulator_set_mode
);
1788 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
1792 mutex_lock(&rdev
->mutex
);
1795 if (!rdev
->desc
->ops
->get_mode
) {
1800 ret
= rdev
->desc
->ops
->get_mode(rdev
);
1802 mutex_unlock(&rdev
->mutex
);
1807 * regulator_get_mode - get regulator operating mode
1808 * @regulator: regulator source
1810 * Get the current regulator operating mode.
1812 unsigned int regulator_get_mode(struct regulator
*regulator
)
1814 return _regulator_get_mode(regulator
->rdev
);
1816 EXPORT_SYMBOL_GPL(regulator_get_mode
);
1819 * regulator_set_optimum_mode - set regulator optimum operating mode
1820 * @regulator: regulator source
1821 * @uA_load: load current
1823 * Notifies the regulator core of a new device load. This is then used by
1824 * DRMS (if enabled by constraints) to set the most efficient regulator
1825 * operating mode for the new regulator loading.
1827 * Consumer devices notify their supply regulator of the maximum power
1828 * they will require (can be taken from device datasheet in the power
1829 * consumption tables) when they change operational status and hence power
1830 * state. Examples of operational state changes that can affect power
1831 * consumption are :-
1833 * o Device is opened / closed.
1834 * o Device I/O is about to begin or has just finished.
1835 * o Device is idling in between work.
1837 * This information is also exported via sysfs to userspace.
1839 * DRMS will sum the total requested load on the regulator and change
1840 * to the most efficient operating mode if platform constraints allow.
1842 * Returns the new regulator mode or error.
1844 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
1846 struct regulator_dev
*rdev
= regulator
->rdev
;
1847 struct regulator
*consumer
;
1848 int ret
, output_uV
, input_uV
, total_uA_load
= 0;
1851 mutex_lock(&rdev
->mutex
);
1853 regulator
->uA_load
= uA_load
;
1854 ret
= regulator_check_drms(rdev
);
1860 if (!rdev
->desc
->ops
->get_optimum_mode
)
1863 /* get output voltage */
1864 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
1865 if (output_uV
<= 0) {
1866 printk(KERN_ERR
"%s: invalid output voltage found for %s\n",
1867 __func__
, rdev_get_name(rdev
));
1871 /* get input voltage */
1872 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
1873 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
1875 input_uV
= rdev
->constraints
->input_uV
;
1876 if (input_uV
<= 0) {
1877 printk(KERN_ERR
"%s: invalid input voltage found for %s\n",
1878 __func__
, rdev_get_name(rdev
));
1882 /* calc total requested load for this regulator */
1883 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
1884 total_uA_load
+= consumer
->uA_load
;
1886 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
1887 input_uV
, output_uV
,
1889 ret
= regulator_check_mode(rdev
, mode
);
1891 printk(KERN_ERR
"%s: failed to get optimum mode for %s @"
1892 " %d uA %d -> %d uV\n", __func__
, rdev_get_name(rdev
),
1893 total_uA_load
, input_uV
, output_uV
);
1897 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1899 printk(KERN_ERR
"%s: failed to set optimum mode %x for %s\n",
1900 __func__
, mode
, rdev_get_name(rdev
));
1905 mutex_unlock(&rdev
->mutex
);
1908 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
1911 * regulator_register_notifier - register regulator event notifier
1912 * @regulator: regulator source
1913 * @nb: notifier block
1915 * Register notifier block to receive regulator events.
1917 int regulator_register_notifier(struct regulator
*regulator
,
1918 struct notifier_block
*nb
)
1920 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
1923 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
1926 * regulator_unregister_notifier - unregister regulator event notifier
1927 * @regulator: regulator source
1928 * @nb: notifier block
1930 * Unregister regulator event notifier block.
1932 int regulator_unregister_notifier(struct regulator
*regulator
,
1933 struct notifier_block
*nb
)
1935 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
1938 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
1940 /* notify regulator consumers and downstream regulator consumers.
1941 * Note mutex must be held by caller.
1943 static void _notifier_call_chain(struct regulator_dev
*rdev
,
1944 unsigned long event
, void *data
)
1946 struct regulator_dev
*_rdev
;
1948 /* call rdev chain first */
1949 blocking_notifier_call_chain(&rdev
->notifier
, event
, NULL
);
1951 /* now notify regulator we supply */
1952 list_for_each_entry(_rdev
, &rdev
->supply_list
, slist
) {
1953 mutex_lock(&_rdev
->mutex
);
1954 _notifier_call_chain(_rdev
, event
, data
);
1955 mutex_unlock(&_rdev
->mutex
);
1960 * regulator_bulk_get - get multiple regulator consumers
1962 * @dev: Device to supply
1963 * @num_consumers: Number of consumers to register
1964 * @consumers: Configuration of consumers; clients are stored here.
1966 * @return 0 on success, an errno on failure.
1968 * This helper function allows drivers to get several regulator
1969 * consumers in one operation. If any of the regulators cannot be
1970 * acquired then any regulators that were allocated will be freed
1971 * before returning to the caller.
1973 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
1974 struct regulator_bulk_data
*consumers
)
1979 for (i
= 0; i
< num_consumers
; i
++)
1980 consumers
[i
].consumer
= NULL
;
1982 for (i
= 0; i
< num_consumers
; i
++) {
1983 consumers
[i
].consumer
= regulator_get(dev
,
1984 consumers
[i
].supply
);
1985 if (IS_ERR(consumers
[i
].consumer
)) {
1986 ret
= PTR_ERR(consumers
[i
].consumer
);
1987 dev_err(dev
, "Failed to get supply '%s': %d\n",
1988 consumers
[i
].supply
, ret
);
1989 consumers
[i
].consumer
= NULL
;
1997 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
1998 regulator_put(consumers
[i
].consumer
);
2002 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
2005 * regulator_bulk_enable - enable multiple regulator consumers
2007 * @num_consumers: Number of consumers
2008 * @consumers: Consumer data; clients are stored here.
2009 * @return 0 on success, an errno on failure
2011 * This convenience API allows consumers to enable multiple regulator
2012 * clients in a single API call. If any consumers cannot be enabled
2013 * then any others that were enabled will be disabled again prior to
2016 int regulator_bulk_enable(int num_consumers
,
2017 struct regulator_bulk_data
*consumers
)
2022 for (i
= 0; i
< num_consumers
; i
++) {
2023 ret
= regulator_enable(consumers
[i
].consumer
);
2031 printk(KERN_ERR
"Failed to enable %s: %d\n", consumers
[i
].supply
, ret
);
2032 for (--i
; i
>= 0; --i
)
2033 regulator_disable(consumers
[i
].consumer
);
2037 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
2040 * regulator_bulk_disable - disable multiple regulator consumers
2042 * @num_consumers: Number of consumers
2043 * @consumers: Consumer data; clients are stored here.
2044 * @return 0 on success, an errno on failure
2046 * This convenience API allows consumers to disable multiple regulator
2047 * clients in a single API call. If any consumers cannot be enabled
2048 * then any others that were disabled will be disabled again prior to
2051 int regulator_bulk_disable(int num_consumers
,
2052 struct regulator_bulk_data
*consumers
)
2057 for (i
= 0; i
< num_consumers
; i
++) {
2058 ret
= regulator_disable(consumers
[i
].consumer
);
2066 printk(KERN_ERR
"Failed to disable %s: %d\n", consumers
[i
].supply
,
2068 for (--i
; i
>= 0; --i
)
2069 regulator_enable(consumers
[i
].consumer
);
2073 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
2076 * regulator_bulk_free - free multiple regulator consumers
2078 * @num_consumers: Number of consumers
2079 * @consumers: Consumer data; clients are stored here.
2081 * This convenience API allows consumers to free multiple regulator
2082 * clients in a single API call.
2084 void regulator_bulk_free(int num_consumers
,
2085 struct regulator_bulk_data
*consumers
)
2089 for (i
= 0; i
< num_consumers
; i
++) {
2090 regulator_put(consumers
[i
].consumer
);
2091 consumers
[i
].consumer
= NULL
;
2094 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
2097 * regulator_notifier_call_chain - call regulator event notifier
2098 * @rdev: regulator source
2099 * @event: notifier block
2100 * @data: callback-specific data.
2102 * Called by regulator drivers to notify clients a regulator event has
2103 * occurred. We also notify regulator clients downstream.
2104 * Note lock must be held by caller.
2106 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
2107 unsigned long event
, void *data
)
2109 _notifier_call_chain(rdev
, event
, data
);
2113 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
2116 * regulator_mode_to_status - convert a regulator mode into a status
2118 * @mode: Mode to convert
2120 * Convert a regulator mode into a status.
2122 int regulator_mode_to_status(unsigned int mode
)
2125 case REGULATOR_MODE_FAST
:
2126 return REGULATOR_STATUS_FAST
;
2127 case REGULATOR_MODE_NORMAL
:
2128 return REGULATOR_STATUS_NORMAL
;
2129 case REGULATOR_MODE_IDLE
:
2130 return REGULATOR_STATUS_IDLE
;
2131 case REGULATOR_STATUS_STANDBY
:
2132 return REGULATOR_STATUS_STANDBY
;
2137 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
2140 * To avoid cluttering sysfs (and memory) with useless state, only
2141 * create attributes that can be meaningfully displayed.
2143 static int add_regulator_attributes(struct regulator_dev
*rdev
)
2145 struct device
*dev
= &rdev
->dev
;
2146 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2149 /* some attributes need specific methods to be displayed */
2150 if (ops
->get_voltage
) {
2151 status
= device_create_file(dev
, &dev_attr_microvolts
);
2155 if (ops
->get_current_limit
) {
2156 status
= device_create_file(dev
, &dev_attr_microamps
);
2160 if (ops
->get_mode
) {
2161 status
= device_create_file(dev
, &dev_attr_opmode
);
2165 if (ops
->is_enabled
) {
2166 status
= device_create_file(dev
, &dev_attr_state
);
2170 if (ops
->get_status
) {
2171 status
= device_create_file(dev
, &dev_attr_status
);
2176 /* some attributes are type-specific */
2177 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
2178 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
2183 /* all the other attributes exist to support constraints;
2184 * don't show them if there are no constraints, or if the
2185 * relevant supporting methods are missing.
2187 if (!rdev
->constraints
)
2190 /* constraints need specific supporting methods */
2191 if (ops
->set_voltage
) {
2192 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
2195 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
2199 if (ops
->set_current_limit
) {
2200 status
= device_create_file(dev
, &dev_attr_min_microamps
);
2203 status
= device_create_file(dev
, &dev_attr_max_microamps
);
2208 /* suspend mode constraints need multiple supporting methods */
2209 if (!(ops
->set_suspend_enable
&& ops
->set_suspend_disable
))
2212 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
2215 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
2218 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
2222 if (ops
->set_suspend_voltage
) {
2223 status
= device_create_file(dev
,
2224 &dev_attr_suspend_standby_microvolts
);
2227 status
= device_create_file(dev
,
2228 &dev_attr_suspend_mem_microvolts
);
2231 status
= device_create_file(dev
,
2232 &dev_attr_suspend_disk_microvolts
);
2237 if (ops
->set_suspend_mode
) {
2238 status
= device_create_file(dev
,
2239 &dev_attr_suspend_standby_mode
);
2242 status
= device_create_file(dev
,
2243 &dev_attr_suspend_mem_mode
);
2246 status
= device_create_file(dev
,
2247 &dev_attr_suspend_disk_mode
);
2256 * regulator_register - register regulator
2257 * @regulator_desc: regulator to register
2258 * @dev: struct device for the regulator
2259 * @init_data: platform provided init data, passed through by driver
2260 * @driver_data: private regulator data
2262 * Called by regulator drivers to register a regulator.
2263 * Returns 0 on success.
2265 struct regulator_dev
*regulator_register(struct regulator_desc
*regulator_desc
,
2266 struct device
*dev
, struct regulator_init_data
*init_data
,
2269 static atomic_t regulator_no
= ATOMIC_INIT(0);
2270 struct regulator_dev
*rdev
;
2273 if (regulator_desc
== NULL
)
2274 return ERR_PTR(-EINVAL
);
2276 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
2277 return ERR_PTR(-EINVAL
);
2279 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
2280 regulator_desc
->type
!= REGULATOR_CURRENT
)
2281 return ERR_PTR(-EINVAL
);
2284 return ERR_PTR(-EINVAL
);
2286 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
2288 return ERR_PTR(-ENOMEM
);
2290 mutex_lock(®ulator_list_mutex
);
2292 mutex_init(&rdev
->mutex
);
2293 rdev
->reg_data
= driver_data
;
2294 rdev
->owner
= regulator_desc
->owner
;
2295 rdev
->desc
= regulator_desc
;
2296 INIT_LIST_HEAD(&rdev
->consumer_list
);
2297 INIT_LIST_HEAD(&rdev
->supply_list
);
2298 INIT_LIST_HEAD(&rdev
->list
);
2299 INIT_LIST_HEAD(&rdev
->slist
);
2300 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
2302 /* preform any regulator specific init */
2303 if (init_data
->regulator_init
) {
2304 ret
= init_data
->regulator_init(rdev
->reg_data
);
2309 /* register with sysfs */
2310 rdev
->dev
.class = ®ulator_class
;
2311 rdev
->dev
.parent
= dev
;
2312 dev_set_name(&rdev
->dev
, "regulator.%d",
2313 atomic_inc_return(®ulator_no
) - 1);
2314 ret
= device_register(&rdev
->dev
);
2318 dev_set_drvdata(&rdev
->dev
, rdev
);
2320 /* set regulator constraints */
2321 ret
= set_machine_constraints(rdev
, &init_data
->constraints
);
2325 /* add attributes supported by this regulator */
2326 ret
= add_regulator_attributes(rdev
);
2330 /* set supply regulator if it exists */
2331 if (init_data
->supply_regulator_dev
) {
2332 ret
= set_supply(rdev
,
2333 dev_get_drvdata(init_data
->supply_regulator_dev
));
2338 /* add consumers devices */
2339 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
2340 ret
= set_consumer_device_supply(rdev
,
2341 init_data
->consumer_supplies
[i
].dev
,
2342 init_data
->consumer_supplies
[i
].dev_name
,
2343 init_data
->consumer_supplies
[i
].supply
);
2345 for (--i
; i
>= 0; i
--)
2346 unset_consumer_device_supply(rdev
,
2347 init_data
->consumer_supplies
[i
].dev_name
,
2348 init_data
->consumer_supplies
[i
].dev
);
2353 list_add(&rdev
->list
, ®ulator_list
);
2355 mutex_unlock(®ulator_list_mutex
);
2359 device_unregister(&rdev
->dev
);
2360 /* device core frees rdev */
2361 rdev
= ERR_PTR(ret
);
2366 rdev
= ERR_PTR(ret
);
2369 EXPORT_SYMBOL_GPL(regulator_register
);
2372 * regulator_unregister - unregister regulator
2373 * @rdev: regulator to unregister
2375 * Called by regulator drivers to unregister a regulator.
2377 void regulator_unregister(struct regulator_dev
*rdev
)
2382 mutex_lock(®ulator_list_mutex
);
2383 WARN_ON(rdev
->open_count
);
2384 unset_regulator_supplies(rdev
);
2385 list_del(&rdev
->list
);
2387 sysfs_remove_link(&rdev
->dev
.kobj
, "supply");
2388 device_unregister(&rdev
->dev
);
2389 mutex_unlock(®ulator_list_mutex
);
2391 EXPORT_SYMBOL_GPL(regulator_unregister
);
2394 * regulator_suspend_prepare - prepare regulators for system wide suspend
2395 * @state: system suspend state
2397 * Configure each regulator with it's suspend operating parameters for state.
2398 * This will usually be called by machine suspend code prior to supending.
2400 int regulator_suspend_prepare(suspend_state_t state
)
2402 struct regulator_dev
*rdev
;
2405 /* ON is handled by regulator active state */
2406 if (state
== PM_SUSPEND_ON
)
2409 mutex_lock(®ulator_list_mutex
);
2410 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2412 mutex_lock(&rdev
->mutex
);
2413 ret
= suspend_prepare(rdev
, state
);
2414 mutex_unlock(&rdev
->mutex
);
2417 printk(KERN_ERR
"%s: failed to prepare %s\n",
2418 __func__
, rdev_get_name(rdev
));
2423 mutex_unlock(®ulator_list_mutex
);
2426 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
2429 * regulator_has_full_constraints - the system has fully specified constraints
2431 * Calling this function will cause the regulator API to disable all
2432 * regulators which have a zero use count and don't have an always_on
2433 * constraint in a late_initcall.
2435 * The intention is that this will become the default behaviour in a
2436 * future kernel release so users are encouraged to use this facility
2439 void regulator_has_full_constraints(void)
2441 has_full_constraints
= 1;
2443 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
2446 * rdev_get_drvdata - get rdev regulator driver data
2449 * Get rdev regulator driver private data. This call can be used in the
2450 * regulator driver context.
2452 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
2454 return rdev
->reg_data
;
2456 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
2459 * regulator_get_drvdata - get regulator driver data
2460 * @regulator: regulator
2462 * Get regulator driver private data. This call can be used in the consumer
2463 * driver context when non API regulator specific functions need to be called.
2465 void *regulator_get_drvdata(struct regulator
*regulator
)
2467 return regulator
->rdev
->reg_data
;
2469 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
2472 * regulator_set_drvdata - set regulator driver data
2473 * @regulator: regulator
2476 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
2478 regulator
->rdev
->reg_data
= data
;
2480 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
2483 * regulator_get_id - get regulator ID
2486 int rdev_get_id(struct regulator_dev
*rdev
)
2488 return rdev
->desc
->id
;
2490 EXPORT_SYMBOL_GPL(rdev_get_id
);
2492 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
2496 EXPORT_SYMBOL_GPL(rdev_get_dev
);
2498 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
2500 return reg_init_data
->driver_data
;
2502 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
2504 static int __init
regulator_init(void)
2508 printk(KERN_INFO
"regulator: core version %s\n", REGULATOR_VERSION
);
2510 ret
= class_register(®ulator_class
);
2512 regulator_dummy_init();
2517 /* init early to allow our consumers to complete system booting */
2518 core_initcall(regulator_init
);
2520 static int __init
regulator_init_complete(void)
2522 struct regulator_dev
*rdev
;
2523 struct regulator_ops
*ops
;
2524 struct regulation_constraints
*c
;
2528 mutex_lock(®ulator_list_mutex
);
2530 /* If we have a full configuration then disable any regulators
2531 * which are not in use or always_on. This will become the
2532 * default behaviour in the future.
2534 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2535 ops
= rdev
->desc
->ops
;
2536 c
= rdev
->constraints
;
2538 name
= rdev_get_name(rdev
);
2540 if (!ops
->disable
|| (c
&& c
->always_on
))
2543 mutex_lock(&rdev
->mutex
);
2545 if (rdev
->use_count
)
2548 /* If we can't read the status assume it's on. */
2549 if (ops
->is_enabled
)
2550 enabled
= ops
->is_enabled(rdev
);
2557 if (has_full_constraints
) {
2558 /* We log since this may kill the system if it
2560 printk(KERN_INFO
"%s: disabling %s\n",
2562 ret
= ops
->disable(rdev
);
2565 "%s: couldn't disable %s: %d\n",
2566 __func__
, name
, ret
);
2569 /* The intention is that in future we will
2570 * assume that full constraints are provided
2571 * so warn even if we aren't going to do
2575 "%s: incomplete constraints, leaving %s on\n",
2580 mutex_unlock(&rdev
->mutex
);
2583 mutex_unlock(®ulator_list_mutex
);
2587 late_initcall(regulator_init_complete
);