target: Add workaround for zero-length control CDB handling
[linux-2.6.git] / drivers / target / target_core_transport.c
blob50d6911d412099f05b7cf1b431a06960de2542f1
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
57 static int sub_api_initialized;
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
83 int init_se_kmem_caches(void)
85 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87 0, NULL);
88 if (!se_tmr_req_cache) {
89 pr_err("kmem_cache_create() for struct se_tmr_req"
90 " failed\n");
91 goto out;
93 se_sess_cache = kmem_cache_create("se_sess_cache",
94 sizeof(struct se_session), __alignof__(struct se_session),
95 0, NULL);
96 if (!se_sess_cache) {
97 pr_err("kmem_cache_create() for struct se_session"
98 " failed\n");
99 goto out_free_tmr_req_cache;
101 se_ua_cache = kmem_cache_create("se_ua_cache",
102 sizeof(struct se_ua), __alignof__(struct se_ua),
103 0, NULL);
104 if (!se_ua_cache) {
105 pr_err("kmem_cache_create() for struct se_ua failed\n");
106 goto out_free_sess_cache;
108 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109 sizeof(struct t10_pr_registration),
110 __alignof__(struct t10_pr_registration), 0, NULL);
111 if (!t10_pr_reg_cache) {
112 pr_err("kmem_cache_create() for struct t10_pr_registration"
113 " failed\n");
114 goto out_free_ua_cache;
116 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118 0, NULL);
119 if (!t10_alua_lu_gp_cache) {
120 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121 " failed\n");
122 goto out_free_pr_reg_cache;
124 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125 sizeof(struct t10_alua_lu_gp_member),
126 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127 if (!t10_alua_lu_gp_mem_cache) {
128 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129 "cache failed\n");
130 goto out_free_lu_gp_cache;
132 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133 sizeof(struct t10_alua_tg_pt_gp),
134 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135 if (!t10_alua_tg_pt_gp_cache) {
136 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 "cache failed\n");
138 goto out_free_lu_gp_mem_cache;
140 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141 "t10_alua_tg_pt_gp_mem_cache",
142 sizeof(struct t10_alua_tg_pt_gp_member),
143 __alignof__(struct t10_alua_tg_pt_gp_member),
144 0, NULL);
145 if (!t10_alua_tg_pt_gp_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147 "mem_t failed\n");
148 goto out_free_tg_pt_gp_cache;
151 target_completion_wq = alloc_workqueue("target_completion",
152 WQ_MEM_RECLAIM, 0);
153 if (!target_completion_wq)
154 goto out_free_tg_pt_gp_mem_cache;
156 return 0;
158 out_free_tg_pt_gp_mem_cache:
159 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165 kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167 kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169 kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171 kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173 kmem_cache_destroy(se_tmr_req_cache);
174 out:
175 return -ENOMEM;
178 void release_se_kmem_caches(void)
180 destroy_workqueue(target_completion_wq);
181 kmem_cache_destroy(se_tmr_req_cache);
182 kmem_cache_destroy(se_sess_cache);
183 kmem_cache_destroy(se_ua_cache);
184 kmem_cache_destroy(t10_pr_reg_cache);
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
196 * Allocate a new row index for the entry type specified
198 u32 scsi_get_new_index(scsi_index_t type)
200 u32 new_index;
202 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
204 spin_lock(&scsi_mib_index_lock);
205 new_index = ++scsi_mib_index[type];
206 spin_unlock(&scsi_mib_index_lock);
208 return new_index;
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
213 atomic_set(&qobj->queue_cnt, 0);
214 INIT_LIST_HEAD(&qobj->qobj_list);
215 init_waitqueue_head(&qobj->thread_wq);
216 spin_lock_init(&qobj->cmd_queue_lock);
219 void transport_subsystem_check_init(void)
221 int ret;
223 if (sub_api_initialized)
224 return;
226 ret = request_module("target_core_iblock");
227 if (ret != 0)
228 pr_err("Unable to load target_core_iblock\n");
230 ret = request_module("target_core_file");
231 if (ret != 0)
232 pr_err("Unable to load target_core_file\n");
234 ret = request_module("target_core_pscsi");
235 if (ret != 0)
236 pr_err("Unable to load target_core_pscsi\n");
238 ret = request_module("target_core_stgt");
239 if (ret != 0)
240 pr_err("Unable to load target_core_stgt\n");
242 sub_api_initialized = 1;
243 return;
246 struct se_session *transport_init_session(void)
248 struct se_session *se_sess;
250 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251 if (!se_sess) {
252 pr_err("Unable to allocate struct se_session from"
253 " se_sess_cache\n");
254 return ERR_PTR(-ENOMEM);
256 INIT_LIST_HEAD(&se_sess->sess_list);
257 INIT_LIST_HEAD(&se_sess->sess_acl_list);
258 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259 INIT_LIST_HEAD(&se_sess->sess_wait_list);
260 spin_lock_init(&se_sess->sess_cmd_lock);
262 return se_sess;
264 EXPORT_SYMBOL(transport_init_session);
267 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
269 void __transport_register_session(
270 struct se_portal_group *se_tpg,
271 struct se_node_acl *se_nacl,
272 struct se_session *se_sess,
273 void *fabric_sess_ptr)
275 unsigned char buf[PR_REG_ISID_LEN];
277 se_sess->se_tpg = se_tpg;
278 se_sess->fabric_sess_ptr = fabric_sess_ptr;
280 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
282 * Only set for struct se_session's that will actually be moving I/O.
283 * eg: *NOT* discovery sessions.
285 if (se_nacl) {
287 * If the fabric module supports an ISID based TransportID,
288 * save this value in binary from the fabric I_T Nexus now.
290 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291 memset(&buf[0], 0, PR_REG_ISID_LEN);
292 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293 &buf[0], PR_REG_ISID_LEN);
294 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
296 spin_lock_irq(&se_nacl->nacl_sess_lock);
298 * The se_nacl->nacl_sess pointer will be set to the
299 * last active I_T Nexus for each struct se_node_acl.
301 se_nacl->nacl_sess = se_sess;
303 list_add_tail(&se_sess->sess_acl_list,
304 &se_nacl->acl_sess_list);
305 spin_unlock_irq(&se_nacl->nacl_sess_lock);
307 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
309 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
312 EXPORT_SYMBOL(__transport_register_session);
314 void transport_register_session(
315 struct se_portal_group *se_tpg,
316 struct se_node_acl *se_nacl,
317 struct se_session *se_sess,
318 void *fabric_sess_ptr)
320 spin_lock_bh(&se_tpg->session_lock);
321 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322 spin_unlock_bh(&se_tpg->session_lock);
324 EXPORT_SYMBOL(transport_register_session);
326 void transport_deregister_session_configfs(struct se_session *se_sess)
328 struct se_node_acl *se_nacl;
329 unsigned long flags;
331 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
333 se_nacl = se_sess->se_node_acl;
334 if (se_nacl) {
335 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336 list_del(&se_sess->sess_acl_list);
338 * If the session list is empty, then clear the pointer.
339 * Otherwise, set the struct se_session pointer from the tail
340 * element of the per struct se_node_acl active session list.
342 if (list_empty(&se_nacl->acl_sess_list))
343 se_nacl->nacl_sess = NULL;
344 else {
345 se_nacl->nacl_sess = container_of(
346 se_nacl->acl_sess_list.prev,
347 struct se_session, sess_acl_list);
349 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
354 void transport_free_session(struct se_session *se_sess)
356 kmem_cache_free(se_sess_cache, se_sess);
358 EXPORT_SYMBOL(transport_free_session);
360 void transport_deregister_session(struct se_session *se_sess)
362 struct se_portal_group *se_tpg = se_sess->se_tpg;
363 struct se_node_acl *se_nacl;
364 unsigned long flags;
366 if (!se_tpg) {
367 transport_free_session(se_sess);
368 return;
371 spin_lock_irqsave(&se_tpg->session_lock, flags);
372 list_del(&se_sess->sess_list);
373 se_sess->se_tpg = NULL;
374 se_sess->fabric_sess_ptr = NULL;
375 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
378 * Determine if we need to do extra work for this initiator node's
379 * struct se_node_acl if it had been previously dynamically generated.
381 se_nacl = se_sess->se_node_acl;
382 if (se_nacl) {
383 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384 if (se_nacl->dynamic_node_acl) {
385 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386 se_tpg)) {
387 list_del(&se_nacl->acl_list);
388 se_tpg->num_node_acls--;
389 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
391 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392 core_free_device_list_for_node(se_nacl, se_tpg);
393 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394 se_nacl);
395 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
398 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
401 transport_free_session(se_sess);
403 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404 se_tpg->se_tpg_tfo->get_fabric_name());
406 EXPORT_SYMBOL(transport_deregister_session);
409 * Called with cmd->t_state_lock held.
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
413 struct se_device *dev = cmd->se_dev;
414 struct se_task *task;
415 unsigned long flags;
417 if (!dev)
418 return;
420 list_for_each_entry(task, &cmd->t_task_list, t_list) {
421 if (task->task_flags & TF_ACTIVE)
422 continue;
424 spin_lock_irqsave(&dev->execute_task_lock, flags);
425 if (task->t_state_active) {
426 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427 cmd->se_tfo->get_task_tag(cmd), dev, task);
429 list_del(&task->t_state_list);
430 atomic_dec(&cmd->t_task_cdbs_ex_left);
431 task->t_state_active = false;
433 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
438 /* transport_cmd_check_stop():
440 * 'transport_off = 1' determines if t_transport_active should be cleared.
441 * 'transport_off = 2' determines if task_dev_state should be removed.
443 * A non-zero u8 t_state sets cmd->t_state.
444 * Returns 1 when command is stopped, else 0.
446 static int transport_cmd_check_stop(
447 struct se_cmd *cmd,
448 int transport_off,
449 u8 t_state)
451 unsigned long flags;
453 spin_lock_irqsave(&cmd->t_state_lock, flags);
455 * Determine if IOCTL context caller in requesting the stopping of this
456 * command for LUN shutdown purposes.
458 if (atomic_read(&cmd->transport_lun_stop)) {
459 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461 cmd->se_tfo->get_task_tag(cmd));
463 atomic_set(&cmd->t_transport_active, 0);
464 if (transport_off == 2)
465 transport_all_task_dev_remove_state(cmd);
466 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
468 complete(&cmd->transport_lun_stop_comp);
469 return 1;
472 * Determine if frontend context caller is requesting the stopping of
473 * this command for frontend exceptions.
475 if (atomic_read(&cmd->t_transport_stop)) {
476 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478 cmd->se_tfo->get_task_tag(cmd));
480 if (transport_off == 2)
481 transport_all_task_dev_remove_state(cmd);
484 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485 * to FE.
487 if (transport_off == 2)
488 cmd->se_lun = NULL;
489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
491 complete(&cmd->t_transport_stop_comp);
492 return 1;
494 if (transport_off) {
495 atomic_set(&cmd->t_transport_active, 0);
496 if (transport_off == 2) {
497 transport_all_task_dev_remove_state(cmd);
499 * Clear struct se_cmd->se_lun before the transport_off == 2
500 * handoff to fabric module.
502 cmd->se_lun = NULL;
504 * Some fabric modules like tcm_loop can release
505 * their internally allocated I/O reference now and
506 * struct se_cmd now.
508 * Fabric modules are expected to return '1' here if the
509 * se_cmd being passed is released at this point,
510 * or zero if not being released.
512 if (cmd->se_tfo->check_stop_free != NULL) {
513 spin_unlock_irqrestore(
514 &cmd->t_state_lock, flags);
516 return cmd->se_tfo->check_stop_free(cmd);
519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
521 return 0;
522 } else if (t_state)
523 cmd->t_state = t_state;
524 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
526 return 0;
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
531 return transport_cmd_check_stop(cmd, 2, 0);
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
536 struct se_lun *lun = cmd->se_lun;
537 unsigned long flags;
539 if (!lun)
540 return;
542 spin_lock_irqsave(&cmd->t_state_lock, flags);
543 if (!atomic_read(&cmd->transport_dev_active)) {
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545 goto check_lun;
547 atomic_set(&cmd->transport_dev_active, 0);
548 transport_all_task_dev_remove_state(cmd);
549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552 check_lun:
553 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554 if (atomic_read(&cmd->transport_lun_active)) {
555 list_del(&cmd->se_lun_node);
556 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
562 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
567 if (!cmd->se_tmr_req)
568 transport_lun_remove_cmd(cmd);
570 if (transport_cmd_check_stop_to_fabric(cmd))
571 return;
572 if (remove) {
573 transport_remove_cmd_from_queue(cmd);
574 transport_put_cmd(cmd);
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579 bool at_head)
581 struct se_device *dev = cmd->se_dev;
582 struct se_queue_obj *qobj = &dev->dev_queue_obj;
583 unsigned long flags;
585 if (t_state) {
586 spin_lock_irqsave(&cmd->t_state_lock, flags);
587 cmd->t_state = t_state;
588 atomic_set(&cmd->t_transport_active, 1);
589 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
592 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
594 /* If the cmd is already on the list, remove it before we add it */
595 if (!list_empty(&cmd->se_queue_node))
596 list_del(&cmd->se_queue_node);
597 else
598 atomic_inc(&qobj->queue_cnt);
600 if (at_head)
601 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602 else
603 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604 atomic_set(&cmd->t_transport_queue_active, 1);
605 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
607 wake_up_interruptible(&qobj->thread_wq);
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
613 struct se_cmd *cmd;
614 unsigned long flags;
616 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617 if (list_empty(&qobj->qobj_list)) {
618 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619 return NULL;
621 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
623 atomic_set(&cmd->t_transport_queue_active, 0);
625 list_del_init(&cmd->se_queue_node);
626 atomic_dec(&qobj->queue_cnt);
627 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
629 return cmd;
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
634 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635 unsigned long flags;
637 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638 if (!atomic_read(&cmd->t_transport_queue_active)) {
639 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640 return;
642 atomic_set(&cmd->t_transport_queue_active, 0);
643 atomic_dec(&qobj->queue_cnt);
644 list_del_init(&cmd->se_queue_node);
645 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
647 if (atomic_read(&cmd->t_transport_queue_active)) {
648 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649 cmd->se_tfo->get_task_tag(cmd),
650 atomic_read(&cmd->t_transport_queue_active));
655 * Completion function used by TCM subsystem plugins (such as FILEIO)
656 * for queueing up response from struct se_subsystem_api->do_task()
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
660 struct se_task *task = list_entry(cmd->t_task_list.next,
661 struct se_task, t_list);
663 if (good) {
664 cmd->scsi_status = SAM_STAT_GOOD;
665 task->task_scsi_status = GOOD;
666 } else {
667 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668 task->task_se_cmd->scsi_sense_reason =
669 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
673 transport_complete_task(task, good);
675 EXPORT_SYMBOL(transport_complete_sync_cache);
677 static void target_complete_failure_work(struct work_struct *work)
679 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
681 transport_generic_request_failure(cmd);
684 /* transport_complete_task():
686 * Called from interrupt and non interrupt context depending
687 * on the transport plugin.
689 void transport_complete_task(struct se_task *task, int success)
691 struct se_cmd *cmd = task->task_se_cmd;
692 struct se_device *dev = cmd->se_dev;
693 unsigned long flags;
695 spin_lock_irqsave(&cmd->t_state_lock, flags);
696 task->task_flags &= ~TF_ACTIVE;
699 * See if any sense data exists, if so set the TASK_SENSE flag.
700 * Also check for any other post completion work that needs to be
701 * done by the plugins.
703 if (dev && dev->transport->transport_complete) {
704 if (dev->transport->transport_complete(task) != 0) {
705 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
706 task->task_flags |= TF_HAS_SENSE;
707 success = 1;
712 * See if we are waiting for outstanding struct se_task
713 * to complete for an exception condition
715 if (task->task_flags & TF_REQUEST_STOP) {
716 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717 complete(&task->task_stop_comp);
718 return;
721 if (!success)
722 cmd->t_tasks_failed = 1;
725 * Decrement the outstanding t_task_cdbs_left count. The last
726 * struct se_task from struct se_cmd will complete itself into the
727 * device queue depending upon int success.
729 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
730 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
731 return;
734 if (cmd->t_tasks_failed) {
735 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
736 INIT_WORK(&cmd->work, target_complete_failure_work);
737 } else {
738 atomic_set(&cmd->t_transport_complete, 1);
739 INIT_WORK(&cmd->work, target_complete_ok_work);
742 cmd->t_state = TRANSPORT_COMPLETE;
743 atomic_set(&cmd->t_transport_active, 1);
744 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
746 queue_work(target_completion_wq, &cmd->work);
748 EXPORT_SYMBOL(transport_complete_task);
751 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
752 * struct se_task list are ready to be added to the active execution list
753 * struct se_device
755 * Called with se_dev_t->execute_task_lock called.
757 static inline int transport_add_task_check_sam_attr(
758 struct se_task *task,
759 struct se_task *task_prev,
760 struct se_device *dev)
763 * No SAM Task attribute emulation enabled, add to tail of
764 * execution queue
766 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
767 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
768 return 0;
771 * HEAD_OF_QUEUE attribute for received CDB, which means
772 * the first task that is associated with a struct se_cmd goes to
773 * head of the struct se_device->execute_task_list, and task_prev
774 * after that for each subsequent task
776 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
777 list_add(&task->t_execute_list,
778 (task_prev != NULL) ?
779 &task_prev->t_execute_list :
780 &dev->execute_task_list);
782 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
783 " in execution queue\n",
784 task->task_se_cmd->t_task_cdb[0]);
785 return 1;
788 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
789 * transitioned from Dermant -> Active state, and are added to the end
790 * of the struct se_device->execute_task_list
792 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793 return 0;
796 /* __transport_add_task_to_execute_queue():
798 * Called with se_dev_t->execute_task_lock called.
800 static void __transport_add_task_to_execute_queue(
801 struct se_task *task,
802 struct se_task *task_prev,
803 struct se_device *dev)
805 int head_of_queue;
807 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
808 atomic_inc(&dev->execute_tasks);
810 if (task->t_state_active)
811 return;
813 * Determine if this task needs to go to HEAD_OF_QUEUE for the
814 * state list as well. Running with SAM Task Attribute emulation
815 * will always return head_of_queue == 0 here
817 if (head_of_queue)
818 list_add(&task->t_state_list, (task_prev) ?
819 &task_prev->t_state_list :
820 &dev->state_task_list);
821 else
822 list_add_tail(&task->t_state_list, &dev->state_task_list);
824 task->t_state_active = true;
826 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
827 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
828 task, dev);
831 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
833 struct se_device *dev = cmd->se_dev;
834 struct se_task *task;
835 unsigned long flags;
837 spin_lock_irqsave(&cmd->t_state_lock, flags);
838 list_for_each_entry(task, &cmd->t_task_list, t_list) {
839 spin_lock(&dev->execute_task_lock);
840 if (!task->t_state_active) {
841 list_add_tail(&task->t_state_list,
842 &dev->state_task_list);
843 task->t_state_active = true;
845 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
846 task->task_se_cmd->se_tfo->get_task_tag(
847 task->task_se_cmd), task, dev);
849 spin_unlock(&dev->execute_task_lock);
851 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
854 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
856 struct se_device *dev = cmd->se_dev;
857 struct se_task *task, *task_prev = NULL;
859 list_for_each_entry(task, &cmd->t_task_list, t_list) {
860 if (!list_empty(&task->t_execute_list))
861 continue;
863 * __transport_add_task_to_execute_queue() handles the
864 * SAM Task Attribute emulation if enabled
866 __transport_add_task_to_execute_queue(task, task_prev, dev);
867 task_prev = task;
871 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
873 unsigned long flags;
874 struct se_device *dev = cmd->se_dev;
876 spin_lock_irqsave(&dev->execute_task_lock, flags);
877 __transport_add_tasks_from_cmd(cmd);
878 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
881 void __transport_remove_task_from_execute_queue(struct se_task *task,
882 struct se_device *dev)
884 list_del_init(&task->t_execute_list);
885 atomic_dec(&dev->execute_tasks);
888 static void transport_remove_task_from_execute_queue(
889 struct se_task *task,
890 struct se_device *dev)
892 unsigned long flags;
894 if (WARN_ON(list_empty(&task->t_execute_list)))
895 return;
897 spin_lock_irqsave(&dev->execute_task_lock, flags);
898 __transport_remove_task_from_execute_queue(task, dev);
899 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
903 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
906 static void target_qf_do_work(struct work_struct *work)
908 struct se_device *dev = container_of(work, struct se_device,
909 qf_work_queue);
910 LIST_HEAD(qf_cmd_list);
911 struct se_cmd *cmd, *cmd_tmp;
913 spin_lock_irq(&dev->qf_cmd_lock);
914 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
915 spin_unlock_irq(&dev->qf_cmd_lock);
917 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
918 list_del(&cmd->se_qf_node);
919 atomic_dec(&dev->dev_qf_count);
920 smp_mb__after_atomic_dec();
922 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
923 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
924 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
925 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
926 : "UNKNOWN");
928 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
932 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
934 switch (cmd->data_direction) {
935 case DMA_NONE:
936 return "NONE";
937 case DMA_FROM_DEVICE:
938 return "READ";
939 case DMA_TO_DEVICE:
940 return "WRITE";
941 case DMA_BIDIRECTIONAL:
942 return "BIDI";
943 default:
944 break;
947 return "UNKNOWN";
950 void transport_dump_dev_state(
951 struct se_device *dev,
952 char *b,
953 int *bl)
955 *bl += sprintf(b + *bl, "Status: ");
956 switch (dev->dev_status) {
957 case TRANSPORT_DEVICE_ACTIVATED:
958 *bl += sprintf(b + *bl, "ACTIVATED");
959 break;
960 case TRANSPORT_DEVICE_DEACTIVATED:
961 *bl += sprintf(b + *bl, "DEACTIVATED");
962 break;
963 case TRANSPORT_DEVICE_SHUTDOWN:
964 *bl += sprintf(b + *bl, "SHUTDOWN");
965 break;
966 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
967 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
968 *bl += sprintf(b + *bl, "OFFLINE");
969 break;
970 default:
971 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
972 break;
975 *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d",
976 atomic_read(&dev->execute_tasks), dev->queue_depth);
977 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
978 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979 *bl += sprintf(b + *bl, " ");
982 void transport_dump_vpd_proto_id(
983 struct t10_vpd *vpd,
984 unsigned char *p_buf,
985 int p_buf_len)
987 unsigned char buf[VPD_TMP_BUF_SIZE];
988 int len;
990 memset(buf, 0, VPD_TMP_BUF_SIZE);
991 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
993 switch (vpd->protocol_identifier) {
994 case 0x00:
995 sprintf(buf+len, "Fibre Channel\n");
996 break;
997 case 0x10:
998 sprintf(buf+len, "Parallel SCSI\n");
999 break;
1000 case 0x20:
1001 sprintf(buf+len, "SSA\n");
1002 break;
1003 case 0x30:
1004 sprintf(buf+len, "IEEE 1394\n");
1005 break;
1006 case 0x40:
1007 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008 " Protocol\n");
1009 break;
1010 case 0x50:
1011 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012 break;
1013 case 0x60:
1014 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015 break;
1016 case 0x70:
1017 sprintf(buf+len, "Automation/Drive Interface Transport"
1018 " Protocol\n");
1019 break;
1020 case 0x80:
1021 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022 break;
1023 default:
1024 sprintf(buf+len, "Unknown 0x%02x\n",
1025 vpd->protocol_identifier);
1026 break;
1029 if (p_buf)
1030 strncpy(p_buf, buf, p_buf_len);
1031 else
1032 pr_debug("%s", buf);
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1039 * Check if the Protocol Identifier Valid (PIV) bit is set..
1041 * from spc3r23.pdf section 7.5.1
1043 if (page_83[1] & 0x80) {
1044 vpd->protocol_identifier = (page_83[0] & 0xf0);
1045 vpd->protocol_identifier_set = 1;
1046 transport_dump_vpd_proto_id(vpd, NULL, 0);
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1051 int transport_dump_vpd_assoc(
1052 struct t10_vpd *vpd,
1053 unsigned char *p_buf,
1054 int p_buf_len)
1056 unsigned char buf[VPD_TMP_BUF_SIZE];
1057 int ret = 0;
1058 int len;
1060 memset(buf, 0, VPD_TMP_BUF_SIZE);
1061 len = sprintf(buf, "T10 VPD Identifier Association: ");
1063 switch (vpd->association) {
1064 case 0x00:
1065 sprintf(buf+len, "addressed logical unit\n");
1066 break;
1067 case 0x10:
1068 sprintf(buf+len, "target port\n");
1069 break;
1070 case 0x20:
1071 sprintf(buf+len, "SCSI target device\n");
1072 break;
1073 default:
1074 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075 ret = -EINVAL;
1076 break;
1079 if (p_buf)
1080 strncpy(p_buf, buf, p_buf_len);
1081 else
1082 pr_debug("%s", buf);
1084 return ret;
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1090 * The VPD identification association..
1092 * from spc3r23.pdf Section 7.6.3.1 Table 297
1094 vpd->association = (page_83[1] & 0x30);
1095 return transport_dump_vpd_assoc(vpd, NULL, 0);
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1099 int transport_dump_vpd_ident_type(
1100 struct t10_vpd *vpd,
1101 unsigned char *p_buf,
1102 int p_buf_len)
1104 unsigned char buf[VPD_TMP_BUF_SIZE];
1105 int ret = 0;
1106 int len;
1108 memset(buf, 0, VPD_TMP_BUF_SIZE);
1109 len = sprintf(buf, "T10 VPD Identifier Type: ");
1111 switch (vpd->device_identifier_type) {
1112 case 0x00:
1113 sprintf(buf+len, "Vendor specific\n");
1114 break;
1115 case 0x01:
1116 sprintf(buf+len, "T10 Vendor ID based\n");
1117 break;
1118 case 0x02:
1119 sprintf(buf+len, "EUI-64 based\n");
1120 break;
1121 case 0x03:
1122 sprintf(buf+len, "NAA\n");
1123 break;
1124 case 0x04:
1125 sprintf(buf+len, "Relative target port identifier\n");
1126 break;
1127 case 0x08:
1128 sprintf(buf+len, "SCSI name string\n");
1129 break;
1130 default:
1131 sprintf(buf+len, "Unsupported: 0x%02x\n",
1132 vpd->device_identifier_type);
1133 ret = -EINVAL;
1134 break;
1137 if (p_buf) {
1138 if (p_buf_len < strlen(buf)+1)
1139 return -EINVAL;
1140 strncpy(p_buf, buf, p_buf_len);
1141 } else {
1142 pr_debug("%s", buf);
1145 return ret;
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1151 * The VPD identifier type..
1153 * from spc3r23.pdf Section 7.6.3.1 Table 298
1155 vpd->device_identifier_type = (page_83[1] & 0x0f);
1156 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1160 int transport_dump_vpd_ident(
1161 struct t10_vpd *vpd,
1162 unsigned char *p_buf,
1163 int p_buf_len)
1165 unsigned char buf[VPD_TMP_BUF_SIZE];
1166 int ret = 0;
1168 memset(buf, 0, VPD_TMP_BUF_SIZE);
1170 switch (vpd->device_identifier_code_set) {
1171 case 0x01: /* Binary */
1172 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173 &vpd->device_identifier[0]);
1174 break;
1175 case 0x02: /* ASCII */
1176 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177 &vpd->device_identifier[0]);
1178 break;
1179 case 0x03: /* UTF-8 */
1180 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181 &vpd->device_identifier[0]);
1182 break;
1183 default:
1184 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185 " 0x%02x", vpd->device_identifier_code_set);
1186 ret = -EINVAL;
1187 break;
1190 if (p_buf)
1191 strncpy(p_buf, buf, p_buf_len);
1192 else
1193 pr_debug("%s", buf);
1195 return ret;
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1201 static const char hex_str[] = "0123456789abcdef";
1202 int j = 0, i = 4; /* offset to start of the identifer */
1205 * The VPD Code Set (encoding)
1207 * from spc3r23.pdf Section 7.6.3.1 Table 296
1209 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210 switch (vpd->device_identifier_code_set) {
1211 case 0x01: /* Binary */
1212 vpd->device_identifier[j++] =
1213 hex_str[vpd->device_identifier_type];
1214 while (i < (4 + page_83[3])) {
1215 vpd->device_identifier[j++] =
1216 hex_str[(page_83[i] & 0xf0) >> 4];
1217 vpd->device_identifier[j++] =
1218 hex_str[page_83[i] & 0x0f];
1219 i++;
1221 break;
1222 case 0x02: /* ASCII */
1223 case 0x03: /* UTF-8 */
1224 while (i < (4 + page_83[3]))
1225 vpd->device_identifier[j++] = page_83[i++];
1226 break;
1227 default:
1228 break;
1231 return transport_dump_vpd_ident(vpd, NULL, 0);
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1238 * If this device is from Target_Core_Mod/pSCSI, disable the
1239 * SAM Task Attribute emulation.
1241 * This is currently not available in upsream Linux/SCSI Target
1242 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1244 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246 return;
1249 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251 " device\n", dev->transport->name,
1252 dev->transport->get_device_rev(dev));
1255 static void scsi_dump_inquiry(struct se_device *dev)
1257 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258 int i, device_type;
1260 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1262 pr_debug(" Vendor: ");
1263 for (i = 0; i < 8; i++)
1264 if (wwn->vendor[i] >= 0x20)
1265 pr_debug("%c", wwn->vendor[i]);
1266 else
1267 pr_debug(" ");
1269 pr_debug(" Model: ");
1270 for (i = 0; i < 16; i++)
1271 if (wwn->model[i] >= 0x20)
1272 pr_debug("%c", wwn->model[i]);
1273 else
1274 pr_debug(" ");
1276 pr_debug(" Revision: ");
1277 for (i = 0; i < 4; i++)
1278 if (wwn->revision[i] >= 0x20)
1279 pr_debug("%c", wwn->revision[i]);
1280 else
1281 pr_debug(" ");
1283 pr_debug("\n");
1285 device_type = dev->transport->get_device_type(dev);
1286 pr_debug(" Type: %s ", scsi_device_type(device_type));
1287 pr_debug(" ANSI SCSI revision: %02x\n",
1288 dev->transport->get_device_rev(dev));
1291 struct se_device *transport_add_device_to_core_hba(
1292 struct se_hba *hba,
1293 struct se_subsystem_api *transport,
1294 struct se_subsystem_dev *se_dev,
1295 u32 device_flags,
1296 void *transport_dev,
1297 struct se_dev_limits *dev_limits,
1298 const char *inquiry_prod,
1299 const char *inquiry_rev)
1301 int force_pt;
1302 struct se_device *dev;
1304 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1305 if (!dev) {
1306 pr_err("Unable to allocate memory for se_dev_t\n");
1307 return NULL;
1310 transport_init_queue_obj(&dev->dev_queue_obj);
1311 dev->dev_flags = device_flags;
1312 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1313 dev->dev_ptr = transport_dev;
1314 dev->se_hba = hba;
1315 dev->se_sub_dev = se_dev;
1316 dev->transport = transport;
1317 INIT_LIST_HEAD(&dev->dev_list);
1318 INIT_LIST_HEAD(&dev->dev_sep_list);
1319 INIT_LIST_HEAD(&dev->dev_tmr_list);
1320 INIT_LIST_HEAD(&dev->execute_task_list);
1321 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1322 INIT_LIST_HEAD(&dev->state_task_list);
1323 INIT_LIST_HEAD(&dev->qf_cmd_list);
1324 spin_lock_init(&dev->execute_task_lock);
1325 spin_lock_init(&dev->delayed_cmd_lock);
1326 spin_lock_init(&dev->dev_reservation_lock);
1327 spin_lock_init(&dev->dev_status_lock);
1328 spin_lock_init(&dev->se_port_lock);
1329 spin_lock_init(&dev->se_tmr_lock);
1330 spin_lock_init(&dev->qf_cmd_lock);
1331 atomic_set(&dev->dev_ordered_id, 0);
1333 se_dev_set_default_attribs(dev, dev_limits);
1335 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1336 dev->creation_time = get_jiffies_64();
1337 spin_lock_init(&dev->stats_lock);
1339 spin_lock(&hba->device_lock);
1340 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1341 hba->dev_count++;
1342 spin_unlock(&hba->device_lock);
1344 * Setup the SAM Task Attribute emulation for struct se_device
1346 core_setup_task_attr_emulation(dev);
1348 * Force PR and ALUA passthrough emulation with internal object use.
1350 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1352 * Setup the Reservations infrastructure for struct se_device
1354 core_setup_reservations(dev, force_pt);
1356 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1358 if (core_setup_alua(dev, force_pt) < 0)
1359 goto out;
1362 * Startup the struct se_device processing thread
1364 dev->process_thread = kthread_run(transport_processing_thread, dev,
1365 "LIO_%s", dev->transport->name);
1366 if (IS_ERR(dev->process_thread)) {
1367 pr_err("Unable to create kthread: LIO_%s\n",
1368 dev->transport->name);
1369 goto out;
1372 * Setup work_queue for QUEUE_FULL
1374 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1376 * Preload the initial INQUIRY const values if we are doing
1377 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1378 * passthrough because this is being provided by the backend LLD.
1379 * This is required so that transport_get_inquiry() copies these
1380 * originals once back into DEV_T10_WWN(dev) for the virtual device
1381 * setup.
1383 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1384 if (!inquiry_prod || !inquiry_rev) {
1385 pr_err("All non TCM/pSCSI plugins require"
1386 " INQUIRY consts\n");
1387 goto out;
1390 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1391 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1392 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1394 scsi_dump_inquiry(dev);
1396 return dev;
1397 out:
1398 kthread_stop(dev->process_thread);
1400 spin_lock(&hba->device_lock);
1401 list_del(&dev->dev_list);
1402 hba->dev_count--;
1403 spin_unlock(&hba->device_lock);
1405 se_release_vpd_for_dev(dev);
1407 kfree(dev);
1409 return NULL;
1411 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1413 /* transport_generic_prepare_cdb():
1415 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1416 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1417 * The point of this is since we are mapping iSCSI LUNs to
1418 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1419 * devices and HBAs for a loop.
1421 static inline void transport_generic_prepare_cdb(
1422 unsigned char *cdb)
1424 switch (cdb[0]) {
1425 case READ_10: /* SBC - RDProtect */
1426 case READ_12: /* SBC - RDProtect */
1427 case READ_16: /* SBC - RDProtect */
1428 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1429 case VERIFY: /* SBC - VRProtect */
1430 case VERIFY_16: /* SBC - VRProtect */
1431 case WRITE_VERIFY: /* SBC - VRProtect */
1432 case WRITE_VERIFY_12: /* SBC - VRProtect */
1433 break;
1434 default:
1435 cdb[1] &= 0x1f; /* clear logical unit number */
1436 break;
1440 static struct se_task *
1441 transport_generic_get_task(struct se_cmd *cmd,
1442 enum dma_data_direction data_direction)
1444 struct se_task *task;
1445 struct se_device *dev = cmd->se_dev;
1447 task = dev->transport->alloc_task(cmd->t_task_cdb);
1448 if (!task) {
1449 pr_err("Unable to allocate struct se_task\n");
1450 return NULL;
1453 INIT_LIST_HEAD(&task->t_list);
1454 INIT_LIST_HEAD(&task->t_execute_list);
1455 INIT_LIST_HEAD(&task->t_state_list);
1456 init_completion(&task->task_stop_comp);
1457 task->task_se_cmd = cmd;
1458 task->task_data_direction = data_direction;
1460 return task;
1463 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1466 * Used by fabric modules containing a local struct se_cmd within their
1467 * fabric dependent per I/O descriptor.
1469 void transport_init_se_cmd(
1470 struct se_cmd *cmd,
1471 struct target_core_fabric_ops *tfo,
1472 struct se_session *se_sess,
1473 u32 data_length,
1474 int data_direction,
1475 int task_attr,
1476 unsigned char *sense_buffer)
1478 INIT_LIST_HEAD(&cmd->se_lun_node);
1479 INIT_LIST_HEAD(&cmd->se_delayed_node);
1480 INIT_LIST_HEAD(&cmd->se_qf_node);
1481 INIT_LIST_HEAD(&cmd->se_queue_node);
1482 INIT_LIST_HEAD(&cmd->se_cmd_list);
1483 INIT_LIST_HEAD(&cmd->t_task_list);
1484 init_completion(&cmd->transport_lun_fe_stop_comp);
1485 init_completion(&cmd->transport_lun_stop_comp);
1486 init_completion(&cmd->t_transport_stop_comp);
1487 init_completion(&cmd->cmd_wait_comp);
1488 spin_lock_init(&cmd->t_state_lock);
1489 atomic_set(&cmd->transport_dev_active, 1);
1491 cmd->se_tfo = tfo;
1492 cmd->se_sess = se_sess;
1493 cmd->data_length = data_length;
1494 cmd->data_direction = data_direction;
1495 cmd->sam_task_attr = task_attr;
1496 cmd->sense_buffer = sense_buffer;
1498 EXPORT_SYMBOL(transport_init_se_cmd);
1500 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1503 * Check if SAM Task Attribute emulation is enabled for this
1504 * struct se_device storage object
1506 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1507 return 0;
1509 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1510 pr_debug("SAM Task Attribute ACA"
1511 " emulation is not supported\n");
1512 return -EINVAL;
1515 * Used to determine when ORDERED commands should go from
1516 * Dormant to Active status.
1518 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1519 smp_mb__after_atomic_inc();
1520 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1521 cmd->se_ordered_id, cmd->sam_task_attr,
1522 cmd->se_dev->transport->name);
1523 return 0;
1526 /* transport_generic_allocate_tasks():
1528 * Called from fabric RX Thread.
1530 int transport_generic_allocate_tasks(
1531 struct se_cmd *cmd,
1532 unsigned char *cdb)
1534 int ret;
1536 transport_generic_prepare_cdb(cdb);
1538 * Ensure that the received CDB is less than the max (252 + 8) bytes
1539 * for VARIABLE_LENGTH_CMD
1541 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1542 pr_err("Received SCSI CDB with command_size: %d that"
1543 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1544 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1545 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1546 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1547 return -EINVAL;
1550 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1551 * allocate the additional extended CDB buffer now.. Otherwise
1552 * setup the pointer from __t_task_cdb to t_task_cdb.
1554 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1555 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1556 GFP_KERNEL);
1557 if (!cmd->t_task_cdb) {
1558 pr_err("Unable to allocate cmd->t_task_cdb"
1559 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1560 scsi_command_size(cdb),
1561 (unsigned long)sizeof(cmd->__t_task_cdb));
1562 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1563 cmd->scsi_sense_reason =
1564 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1565 return -ENOMEM;
1567 } else
1568 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1570 * Copy the original CDB into cmd->
1572 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1574 * Setup the received CDB based on SCSI defined opcodes and
1575 * perform unit attention, persistent reservations and ALUA
1576 * checks for virtual device backends. The cmd->t_task_cdb
1577 * pointer is expected to be setup before we reach this point.
1579 ret = transport_generic_cmd_sequencer(cmd, cdb);
1580 if (ret < 0)
1581 return ret;
1583 * Check for SAM Task Attribute Emulation
1585 if (transport_check_alloc_task_attr(cmd) < 0) {
1586 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1587 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1588 return -EINVAL;
1590 spin_lock(&cmd->se_lun->lun_sep_lock);
1591 if (cmd->se_lun->lun_sep)
1592 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1593 spin_unlock(&cmd->se_lun->lun_sep_lock);
1594 return 0;
1596 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1599 * Used by fabric module frontends to queue tasks directly.
1600 * Many only be used from process context only
1602 int transport_handle_cdb_direct(
1603 struct se_cmd *cmd)
1605 int ret;
1607 if (!cmd->se_lun) {
1608 dump_stack();
1609 pr_err("cmd->se_lun is NULL\n");
1610 return -EINVAL;
1612 if (in_interrupt()) {
1613 dump_stack();
1614 pr_err("transport_generic_handle_cdb cannot be called"
1615 " from interrupt context\n");
1616 return -EINVAL;
1619 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1620 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1621 * in existing usage to ensure that outstanding descriptors are handled
1622 * correctly during shutdown via transport_wait_for_tasks()
1624 * Also, we don't take cmd->t_state_lock here as we only expect
1625 * this to be called for initial descriptor submission.
1627 cmd->t_state = TRANSPORT_NEW_CMD;
1628 atomic_set(&cmd->t_transport_active, 1);
1630 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1631 * so follow TRANSPORT_NEW_CMD processing thread context usage
1632 * and call transport_generic_request_failure() if necessary..
1634 ret = transport_generic_new_cmd(cmd);
1635 if (ret < 0)
1636 transport_generic_request_failure(cmd);
1638 return 0;
1640 EXPORT_SYMBOL(transport_handle_cdb_direct);
1643 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1645 * @se_cmd: command descriptor to submit
1646 * @se_sess: associated se_sess for endpoint
1647 * @cdb: pointer to SCSI CDB
1648 * @sense: pointer to SCSI sense buffer
1649 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1650 * @data_length: fabric expected data transfer length
1651 * @task_addr: SAM task attribute
1652 * @data_dir: DMA data direction
1653 * @flags: flags for command submission from target_sc_flags_tables
1655 * This may only be called from process context, and also currently
1656 * assumes internal allocation of fabric payload buffer by target-core.
1658 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1659 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1660 u32 data_length, int task_attr, int data_dir, int flags)
1662 struct se_portal_group *se_tpg;
1663 int rc;
1665 se_tpg = se_sess->se_tpg;
1666 BUG_ON(!se_tpg);
1667 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1668 BUG_ON(in_interrupt());
1670 * Initialize se_cmd for target operation. From this point
1671 * exceptions are handled by sending exception status via
1672 * target_core_fabric_ops->queue_status() callback
1674 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1675 data_length, data_dir, task_attr, sense);
1677 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1678 * se_sess->sess_cmd_list. A second kref_get here is necessary
1679 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1680 * kref_put() to happen during fabric packet acknowledgement.
1682 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1684 * Signal bidirectional data payloads to target-core
1686 if (flags & TARGET_SCF_BIDI_OP)
1687 se_cmd->se_cmd_flags |= SCF_BIDI;
1689 * Locate se_lun pointer and attach it to struct se_cmd
1691 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0)
1692 goto out_check_cond;
1694 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1695 * allocate the necessary tasks to complete the received CDB+data
1697 rc = transport_generic_allocate_tasks(se_cmd, cdb);
1698 if (rc != 0)
1699 goto out_check_cond;
1701 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1702 * for immediate execution of READs, otherwise wait for
1703 * transport_generic_handle_data() to be called for WRITEs
1704 * when fabric has filled the incoming buffer.
1706 transport_handle_cdb_direct(se_cmd);
1707 return 0;
1709 out_check_cond:
1710 transport_send_check_condition_and_sense(se_cmd,
1711 se_cmd->scsi_sense_reason, 0);
1712 return 0;
1714 EXPORT_SYMBOL(target_submit_cmd);
1717 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1718 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1719 * complete setup in TCM process context w/ TFO->new_cmd_map().
1721 int transport_generic_handle_cdb_map(
1722 struct se_cmd *cmd)
1724 if (!cmd->se_lun) {
1725 dump_stack();
1726 pr_err("cmd->se_lun is NULL\n");
1727 return -EINVAL;
1730 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1731 return 0;
1733 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1735 /* transport_generic_handle_data():
1739 int transport_generic_handle_data(
1740 struct se_cmd *cmd)
1743 * For the software fabric case, then we assume the nexus is being
1744 * failed/shutdown when signals are pending from the kthread context
1745 * caller, so we return a failure. For the HW target mode case running
1746 * in interrupt code, the signal_pending() check is skipped.
1748 if (!in_interrupt() && signal_pending(current))
1749 return -EPERM;
1751 * If the received CDB has aleady been ABORTED by the generic
1752 * target engine, we now call transport_check_aborted_status()
1753 * to queue any delated TASK_ABORTED status for the received CDB to the
1754 * fabric module as we are expecting no further incoming DATA OUT
1755 * sequences at this point.
1757 if (transport_check_aborted_status(cmd, 1) != 0)
1758 return 0;
1760 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1761 return 0;
1763 EXPORT_SYMBOL(transport_generic_handle_data);
1765 /* transport_generic_handle_tmr():
1769 int transport_generic_handle_tmr(
1770 struct se_cmd *cmd)
1772 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1773 return 0;
1775 EXPORT_SYMBOL(transport_generic_handle_tmr);
1778 * If the task is active, request it to be stopped and sleep until it
1779 * has completed.
1781 bool target_stop_task(struct se_task *task, unsigned long *flags)
1783 struct se_cmd *cmd = task->task_se_cmd;
1784 bool was_active = false;
1786 if (task->task_flags & TF_ACTIVE) {
1787 task->task_flags |= TF_REQUEST_STOP;
1788 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1790 pr_debug("Task %p waiting to complete\n", task);
1791 wait_for_completion(&task->task_stop_comp);
1792 pr_debug("Task %p stopped successfully\n", task);
1794 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1795 atomic_dec(&cmd->t_task_cdbs_left);
1796 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1797 was_active = true;
1800 return was_active;
1803 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1805 struct se_task *task, *task_tmp;
1806 unsigned long flags;
1807 int ret = 0;
1809 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1810 cmd->se_tfo->get_task_tag(cmd));
1813 * No tasks remain in the execution queue
1815 spin_lock_irqsave(&cmd->t_state_lock, flags);
1816 list_for_each_entry_safe(task, task_tmp,
1817 &cmd->t_task_list, t_list) {
1818 pr_debug("Processing task %p\n", task);
1820 * If the struct se_task has not been sent and is not active,
1821 * remove the struct se_task from the execution queue.
1823 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1824 spin_unlock_irqrestore(&cmd->t_state_lock,
1825 flags);
1826 transport_remove_task_from_execute_queue(task,
1827 cmd->se_dev);
1829 pr_debug("Task %p removed from execute queue\n", task);
1830 spin_lock_irqsave(&cmd->t_state_lock, flags);
1831 continue;
1834 if (!target_stop_task(task, &flags)) {
1835 pr_debug("Task %p - did nothing\n", task);
1836 ret++;
1839 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1841 return ret;
1845 * Handle SAM-esque emulation for generic transport request failures.
1847 static void transport_generic_request_failure(struct se_cmd *cmd)
1849 int ret = 0;
1851 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1852 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1853 cmd->t_task_cdb[0]);
1854 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1855 cmd->se_tfo->get_cmd_state(cmd),
1856 cmd->t_state, cmd->scsi_sense_reason);
1857 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1858 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1859 " t_transport_active: %d t_transport_stop: %d"
1860 " t_transport_sent: %d\n", cmd->t_task_list_num,
1861 atomic_read(&cmd->t_task_cdbs_left),
1862 atomic_read(&cmd->t_task_cdbs_sent),
1863 atomic_read(&cmd->t_task_cdbs_ex_left),
1864 atomic_read(&cmd->t_transport_active),
1865 atomic_read(&cmd->t_transport_stop),
1866 atomic_read(&cmd->t_transport_sent));
1869 * For SAM Task Attribute emulation for failed struct se_cmd
1871 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1872 transport_complete_task_attr(cmd);
1874 switch (cmd->scsi_sense_reason) {
1875 case TCM_NON_EXISTENT_LUN:
1876 case TCM_UNSUPPORTED_SCSI_OPCODE:
1877 case TCM_INVALID_CDB_FIELD:
1878 case TCM_INVALID_PARAMETER_LIST:
1879 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1880 case TCM_UNKNOWN_MODE_PAGE:
1881 case TCM_WRITE_PROTECTED:
1882 case TCM_CHECK_CONDITION_ABORT_CMD:
1883 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1884 case TCM_CHECK_CONDITION_NOT_READY:
1885 break;
1886 case TCM_RESERVATION_CONFLICT:
1888 * No SENSE Data payload for this case, set SCSI Status
1889 * and queue the response to $FABRIC_MOD.
1891 * Uses linux/include/scsi/scsi.h SAM status codes defs
1893 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1895 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1896 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1897 * CONFLICT STATUS.
1899 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1901 if (cmd->se_sess &&
1902 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1903 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1904 cmd->orig_fe_lun, 0x2C,
1905 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1907 ret = cmd->se_tfo->queue_status(cmd);
1908 if (ret == -EAGAIN || ret == -ENOMEM)
1909 goto queue_full;
1910 goto check_stop;
1911 default:
1912 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1913 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1914 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1915 break;
1918 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1919 * make the call to transport_send_check_condition_and_sense()
1920 * directly. Otherwise expect the fabric to make the call to
1921 * transport_send_check_condition_and_sense() after handling
1922 * possible unsoliticied write data payloads.
1924 ret = transport_send_check_condition_and_sense(cmd,
1925 cmd->scsi_sense_reason, 0);
1926 if (ret == -EAGAIN || ret == -ENOMEM)
1927 goto queue_full;
1929 check_stop:
1930 transport_lun_remove_cmd(cmd);
1931 if (!transport_cmd_check_stop_to_fabric(cmd))
1933 return;
1935 queue_full:
1936 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1937 transport_handle_queue_full(cmd, cmd->se_dev);
1940 static inline u32 transport_lba_21(unsigned char *cdb)
1942 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1945 static inline u32 transport_lba_32(unsigned char *cdb)
1947 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1950 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1952 unsigned int __v1, __v2;
1954 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1955 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1957 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1961 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1963 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1965 unsigned int __v1, __v2;
1967 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1968 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1970 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1973 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1975 unsigned long flags;
1977 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1978 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1979 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1983 * Called from Fabric Module context from transport_execute_tasks()
1985 * The return of this function determins if the tasks from struct se_cmd
1986 * get added to the execution queue in transport_execute_tasks(),
1987 * or are added to the delayed or ordered lists here.
1989 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1991 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1992 return 1;
1994 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1995 * to allow the passed struct se_cmd list of tasks to the front of the list.
1997 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1998 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1999 " 0x%02x, se_ordered_id: %u\n",
2000 cmd->t_task_cdb[0],
2001 cmd->se_ordered_id);
2002 return 1;
2003 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2004 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2005 smp_mb__after_atomic_inc();
2007 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2008 " list, se_ordered_id: %u\n",
2009 cmd->t_task_cdb[0],
2010 cmd->se_ordered_id);
2012 * Add ORDERED command to tail of execution queue if
2013 * no other older commands exist that need to be
2014 * completed first.
2016 if (!atomic_read(&cmd->se_dev->simple_cmds))
2017 return 1;
2018 } else {
2020 * For SIMPLE and UNTAGGED Task Attribute commands
2022 atomic_inc(&cmd->se_dev->simple_cmds);
2023 smp_mb__after_atomic_inc();
2026 * Otherwise if one or more outstanding ORDERED task attribute exist,
2027 * add the dormant task(s) built for the passed struct se_cmd to the
2028 * execution queue and become in Active state for this struct se_device.
2030 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2032 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2033 * will be drained upon completion of HEAD_OF_QUEUE task.
2035 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2036 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2037 list_add_tail(&cmd->se_delayed_node,
2038 &cmd->se_dev->delayed_cmd_list);
2039 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2041 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2042 " delayed CMD list, se_ordered_id: %u\n",
2043 cmd->t_task_cdb[0], cmd->sam_task_attr,
2044 cmd->se_ordered_id);
2046 * Return zero to let transport_execute_tasks() know
2047 * not to add the delayed tasks to the execution list.
2049 return 0;
2052 * Otherwise, no ORDERED task attributes exist..
2054 return 1;
2058 * Called from fabric module context in transport_generic_new_cmd() and
2059 * transport_generic_process_write()
2061 static int transport_execute_tasks(struct se_cmd *cmd)
2063 int add_tasks;
2064 struct se_device *se_dev = cmd->se_dev;
2066 * Call transport_cmd_check_stop() to see if a fabric exception
2067 * has occurred that prevents execution.
2069 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2071 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2072 * attribute for the tasks of the received struct se_cmd CDB
2074 add_tasks = transport_execute_task_attr(cmd);
2075 if (!add_tasks)
2076 goto execute_tasks;
2078 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2079 * adds associated se_tasks while holding dev->execute_task_lock
2080 * before I/O dispath to avoid a double spinlock access.
2082 __transport_execute_tasks(se_dev, cmd);
2083 return 0;
2086 execute_tasks:
2087 __transport_execute_tasks(se_dev, NULL);
2088 return 0;
2092 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2093 * from struct se_device->execute_task_list and
2095 * Called from transport_processing_thread()
2097 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2099 int error;
2100 struct se_cmd *cmd = NULL;
2101 struct se_task *task = NULL;
2102 unsigned long flags;
2104 check_depth:
2105 spin_lock_irq(&dev->execute_task_lock);
2106 if (new_cmd != NULL)
2107 __transport_add_tasks_from_cmd(new_cmd);
2109 if (list_empty(&dev->execute_task_list)) {
2110 spin_unlock_irq(&dev->execute_task_lock);
2111 return 0;
2113 task = list_first_entry(&dev->execute_task_list,
2114 struct se_task, t_execute_list);
2115 __transport_remove_task_from_execute_queue(task, dev);
2116 spin_unlock_irq(&dev->execute_task_lock);
2118 cmd = task->task_se_cmd;
2119 spin_lock_irqsave(&cmd->t_state_lock, flags);
2120 task->task_flags |= (TF_ACTIVE | TF_SENT);
2121 atomic_inc(&cmd->t_task_cdbs_sent);
2123 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2124 cmd->t_task_list_num)
2125 atomic_set(&cmd->t_transport_sent, 1);
2127 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2129 if (cmd->execute_task)
2130 error = cmd->execute_task(task);
2131 else
2132 error = dev->transport->do_task(task);
2133 if (error != 0) {
2134 spin_lock_irqsave(&cmd->t_state_lock, flags);
2135 task->task_flags &= ~TF_ACTIVE;
2136 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2137 atomic_set(&cmd->t_transport_sent, 0);
2138 transport_stop_tasks_for_cmd(cmd);
2139 transport_generic_request_failure(cmd);
2142 new_cmd = NULL;
2143 goto check_depth;
2145 return 0;
2148 static inline u32 transport_get_sectors_6(
2149 unsigned char *cdb,
2150 struct se_cmd *cmd,
2151 int *ret)
2153 struct se_device *dev = cmd->se_dev;
2156 * Assume TYPE_DISK for non struct se_device objects.
2157 * Use 8-bit sector value.
2159 if (!dev)
2160 goto type_disk;
2163 * Use 24-bit allocation length for TYPE_TAPE.
2165 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2166 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2169 * Everything else assume TYPE_DISK Sector CDB location.
2170 * Use 8-bit sector value. SBC-3 says:
2172 * A TRANSFER LENGTH field set to zero specifies that 256
2173 * logical blocks shall be written. Any other value
2174 * specifies the number of logical blocks that shall be
2175 * written.
2177 type_disk:
2178 return cdb[4] ? : 256;
2181 static inline u32 transport_get_sectors_10(
2182 unsigned char *cdb,
2183 struct se_cmd *cmd,
2184 int *ret)
2186 struct se_device *dev = cmd->se_dev;
2189 * Assume TYPE_DISK for non struct se_device objects.
2190 * Use 16-bit sector value.
2192 if (!dev)
2193 goto type_disk;
2196 * XXX_10 is not defined in SSC, throw an exception
2198 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2199 *ret = -EINVAL;
2200 return 0;
2204 * Everything else assume TYPE_DISK Sector CDB location.
2205 * Use 16-bit sector value.
2207 type_disk:
2208 return (u32)(cdb[7] << 8) + cdb[8];
2211 static inline u32 transport_get_sectors_12(
2212 unsigned char *cdb,
2213 struct se_cmd *cmd,
2214 int *ret)
2216 struct se_device *dev = cmd->se_dev;
2219 * Assume TYPE_DISK for non struct se_device objects.
2220 * Use 32-bit sector value.
2222 if (!dev)
2223 goto type_disk;
2226 * XXX_12 is not defined in SSC, throw an exception
2228 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2229 *ret = -EINVAL;
2230 return 0;
2234 * Everything else assume TYPE_DISK Sector CDB location.
2235 * Use 32-bit sector value.
2237 type_disk:
2238 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2241 static inline u32 transport_get_sectors_16(
2242 unsigned char *cdb,
2243 struct se_cmd *cmd,
2244 int *ret)
2246 struct se_device *dev = cmd->se_dev;
2249 * Assume TYPE_DISK for non struct se_device objects.
2250 * Use 32-bit sector value.
2252 if (!dev)
2253 goto type_disk;
2256 * Use 24-bit allocation length for TYPE_TAPE.
2258 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2259 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2261 type_disk:
2262 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2263 (cdb[12] << 8) + cdb[13];
2267 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2269 static inline u32 transport_get_sectors_32(
2270 unsigned char *cdb,
2271 struct se_cmd *cmd,
2272 int *ret)
2275 * Assume TYPE_DISK for non struct se_device objects.
2276 * Use 32-bit sector value.
2278 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2279 (cdb[30] << 8) + cdb[31];
2283 static inline u32 transport_get_size(
2284 u32 sectors,
2285 unsigned char *cdb,
2286 struct se_cmd *cmd)
2288 struct se_device *dev = cmd->se_dev;
2290 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2291 if (cdb[1] & 1) { /* sectors */
2292 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2293 } else /* bytes */
2294 return sectors;
2296 #if 0
2297 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2298 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2299 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2300 dev->transport->name);
2301 #endif
2302 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2305 static void transport_xor_callback(struct se_cmd *cmd)
2307 unsigned char *buf, *addr;
2308 struct scatterlist *sg;
2309 unsigned int offset;
2310 int i;
2311 int count;
2313 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2315 * 1) read the specified logical block(s);
2316 * 2) transfer logical blocks from the data-out buffer;
2317 * 3) XOR the logical blocks transferred from the data-out buffer with
2318 * the logical blocks read, storing the resulting XOR data in a buffer;
2319 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2320 * blocks transferred from the data-out buffer; and
2321 * 5) transfer the resulting XOR data to the data-in buffer.
2323 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2324 if (!buf) {
2325 pr_err("Unable to allocate xor_callback buf\n");
2326 return;
2329 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2330 * into the locally allocated *buf
2332 sg_copy_to_buffer(cmd->t_data_sg,
2333 cmd->t_data_nents,
2334 buf,
2335 cmd->data_length);
2338 * Now perform the XOR against the BIDI read memory located at
2339 * cmd->t_mem_bidi_list
2342 offset = 0;
2343 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2344 addr = kmap_atomic(sg_page(sg), KM_USER0);
2345 if (!addr)
2346 goto out;
2348 for (i = 0; i < sg->length; i++)
2349 *(addr + sg->offset + i) ^= *(buf + offset + i);
2351 offset += sg->length;
2352 kunmap_atomic(addr, KM_USER0);
2355 out:
2356 kfree(buf);
2360 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2362 static int transport_get_sense_data(struct se_cmd *cmd)
2364 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2365 struct se_device *dev = cmd->se_dev;
2366 struct se_task *task = NULL, *task_tmp;
2367 unsigned long flags;
2368 u32 offset = 0;
2370 WARN_ON(!cmd->se_lun);
2372 if (!dev)
2373 return 0;
2375 spin_lock_irqsave(&cmd->t_state_lock, flags);
2376 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2377 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2378 return 0;
2381 list_for_each_entry_safe(task, task_tmp,
2382 &cmd->t_task_list, t_list) {
2383 if (!(task->task_flags & TF_HAS_SENSE))
2384 continue;
2386 if (!dev->transport->get_sense_buffer) {
2387 pr_err("dev->transport->get_sense_buffer"
2388 " is NULL\n");
2389 continue;
2392 sense_buffer = dev->transport->get_sense_buffer(task);
2393 if (!sense_buffer) {
2394 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2395 " sense buffer for task with sense\n",
2396 cmd->se_tfo->get_task_tag(cmd), task);
2397 continue;
2399 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2401 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2402 TRANSPORT_SENSE_BUFFER);
2404 memcpy(&buffer[offset], sense_buffer,
2405 TRANSPORT_SENSE_BUFFER);
2406 cmd->scsi_status = task->task_scsi_status;
2407 /* Automatically padded */
2408 cmd->scsi_sense_length =
2409 (TRANSPORT_SENSE_BUFFER + offset);
2411 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2412 " and sense\n",
2413 dev->se_hba->hba_id, dev->transport->name,
2414 cmd->scsi_status);
2415 return 0;
2417 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2419 return -1;
2422 static inline long long transport_dev_end_lba(struct se_device *dev)
2424 return dev->transport->get_blocks(dev) + 1;
2427 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2429 struct se_device *dev = cmd->se_dev;
2430 u32 sectors;
2432 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2433 return 0;
2435 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2437 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2438 pr_err("LBA: %llu Sectors: %u exceeds"
2439 " transport_dev_end_lba(): %llu\n",
2440 cmd->t_task_lba, sectors,
2441 transport_dev_end_lba(dev));
2442 return -EINVAL;
2445 return 0;
2448 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2451 * Determine if the received WRITE_SAME is used to for direct
2452 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2453 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2454 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2456 int passthrough = (dev->transport->transport_type ==
2457 TRANSPORT_PLUGIN_PHBA_PDEV);
2459 if (!passthrough) {
2460 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2461 pr_err("WRITE_SAME PBDATA and LBDATA"
2462 " bits not supported for Block Discard"
2463 " Emulation\n");
2464 return -ENOSYS;
2467 * Currently for the emulated case we only accept
2468 * tpws with the UNMAP=1 bit set.
2470 if (!(flags[0] & 0x08)) {
2471 pr_err("WRITE_SAME w/o UNMAP bit not"
2472 " supported for Block Discard Emulation\n");
2473 return -ENOSYS;
2477 return 0;
2480 /* transport_generic_cmd_sequencer():
2482 * Generic Command Sequencer that should work for most DAS transport
2483 * drivers.
2485 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2486 * RX Thread.
2488 * FIXME: Need to support other SCSI OPCODES where as well.
2490 static int transport_generic_cmd_sequencer(
2491 struct se_cmd *cmd,
2492 unsigned char *cdb)
2494 struct se_device *dev = cmd->se_dev;
2495 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2496 int ret = 0, sector_ret = 0, passthrough;
2497 u32 sectors = 0, size = 0, pr_reg_type = 0;
2498 u16 service_action;
2499 u8 alua_ascq = 0;
2501 * Check for an existing UNIT ATTENTION condition
2503 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2504 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2505 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2506 return -EINVAL;
2509 * Check status of Asymmetric Logical Unit Assignment port
2511 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2512 if (ret != 0) {
2514 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2515 * The ALUA additional sense code qualifier (ASCQ) is determined
2516 * by the ALUA primary or secondary access state..
2518 if (ret > 0) {
2519 #if 0
2520 pr_debug("[%s]: ALUA TG Port not available,"
2521 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2522 cmd->se_tfo->get_fabric_name(), alua_ascq);
2523 #endif
2524 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2525 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2526 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2527 return -EINVAL;
2529 goto out_invalid_cdb_field;
2532 * Check status for SPC-3 Persistent Reservations
2534 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2535 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2536 cmd, cdb, pr_reg_type) != 0) {
2537 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2538 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2539 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2540 return -EBUSY;
2543 * This means the CDB is allowed for the SCSI Initiator port
2544 * when said port is *NOT* holding the legacy SPC-2 or
2545 * SPC-3 Persistent Reservation.
2550 * If we operate in passthrough mode we skip most CDB emulation and
2551 * instead hand the commands down to the physical SCSI device.
2553 passthrough =
2554 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2556 switch (cdb[0]) {
2557 case READ_6:
2558 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2559 if (sector_ret)
2560 goto out_unsupported_cdb;
2561 size = transport_get_size(sectors, cdb, cmd);
2562 cmd->t_task_lba = transport_lba_21(cdb);
2563 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2564 break;
2565 case READ_10:
2566 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2567 if (sector_ret)
2568 goto out_unsupported_cdb;
2569 size = transport_get_size(sectors, cdb, cmd);
2570 cmd->t_task_lba = transport_lba_32(cdb);
2571 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2572 break;
2573 case READ_12:
2574 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2575 if (sector_ret)
2576 goto out_unsupported_cdb;
2577 size = transport_get_size(sectors, cdb, cmd);
2578 cmd->t_task_lba = transport_lba_32(cdb);
2579 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2580 break;
2581 case READ_16:
2582 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2583 if (sector_ret)
2584 goto out_unsupported_cdb;
2585 size = transport_get_size(sectors, cdb, cmd);
2586 cmd->t_task_lba = transport_lba_64(cdb);
2587 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2588 break;
2589 case WRITE_6:
2590 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2591 if (sector_ret)
2592 goto out_unsupported_cdb;
2593 size = transport_get_size(sectors, cdb, cmd);
2594 cmd->t_task_lba = transport_lba_21(cdb);
2595 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2596 break;
2597 case WRITE_10:
2598 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2599 if (sector_ret)
2600 goto out_unsupported_cdb;
2601 size = transport_get_size(sectors, cdb, cmd);
2602 cmd->t_task_lba = transport_lba_32(cdb);
2603 if (cdb[1] & 0x8)
2604 cmd->se_cmd_flags |= SCF_FUA;
2605 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2606 break;
2607 case WRITE_12:
2608 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2609 if (sector_ret)
2610 goto out_unsupported_cdb;
2611 size = transport_get_size(sectors, cdb, cmd);
2612 cmd->t_task_lba = transport_lba_32(cdb);
2613 if (cdb[1] & 0x8)
2614 cmd->se_cmd_flags |= SCF_FUA;
2615 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2616 break;
2617 case WRITE_16:
2618 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2619 if (sector_ret)
2620 goto out_unsupported_cdb;
2621 size = transport_get_size(sectors, cdb, cmd);
2622 cmd->t_task_lba = transport_lba_64(cdb);
2623 if (cdb[1] & 0x8)
2624 cmd->se_cmd_flags |= SCF_FUA;
2625 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2626 break;
2627 case XDWRITEREAD_10:
2628 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2629 !(cmd->se_cmd_flags & SCF_BIDI))
2630 goto out_invalid_cdb_field;
2631 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2632 if (sector_ret)
2633 goto out_unsupported_cdb;
2634 size = transport_get_size(sectors, cdb, cmd);
2635 cmd->t_task_lba = transport_lba_32(cdb);
2636 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2639 * Do now allow BIDI commands for passthrough mode.
2641 if (passthrough)
2642 goto out_unsupported_cdb;
2645 * Setup BIDI XOR callback to be run after I/O completion.
2647 cmd->transport_complete_callback = &transport_xor_callback;
2648 if (cdb[1] & 0x8)
2649 cmd->se_cmd_flags |= SCF_FUA;
2650 break;
2651 case VARIABLE_LENGTH_CMD:
2652 service_action = get_unaligned_be16(&cdb[8]);
2653 switch (service_action) {
2654 case XDWRITEREAD_32:
2655 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2656 if (sector_ret)
2657 goto out_unsupported_cdb;
2658 size = transport_get_size(sectors, cdb, cmd);
2660 * Use WRITE_32 and READ_32 opcodes for the emulated
2661 * XDWRITE_READ_32 logic.
2663 cmd->t_task_lba = transport_lba_64_ext(cdb);
2664 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2667 * Do now allow BIDI commands for passthrough mode.
2669 if (passthrough)
2670 goto out_unsupported_cdb;
2673 * Setup BIDI XOR callback to be run during after I/O
2674 * completion.
2676 cmd->transport_complete_callback = &transport_xor_callback;
2677 if (cdb[1] & 0x8)
2678 cmd->se_cmd_flags |= SCF_FUA;
2679 break;
2680 case WRITE_SAME_32:
2681 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2682 if (sector_ret)
2683 goto out_unsupported_cdb;
2685 if (sectors)
2686 size = transport_get_size(1, cdb, cmd);
2687 else {
2688 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2689 " supported\n");
2690 goto out_invalid_cdb_field;
2693 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2694 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2696 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2697 goto out_invalid_cdb_field;
2698 if (!passthrough)
2699 cmd->execute_task = target_emulate_write_same;
2700 break;
2701 default:
2702 pr_err("VARIABLE_LENGTH_CMD service action"
2703 " 0x%04x not supported\n", service_action);
2704 goto out_unsupported_cdb;
2706 break;
2707 case MAINTENANCE_IN:
2708 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2709 /* MAINTENANCE_IN from SCC-2 */
2711 * Check for emulated MI_REPORT_TARGET_PGS.
2713 if (cdb[1] == MI_REPORT_TARGET_PGS &&
2714 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2715 cmd->execute_task =
2716 target_emulate_report_target_port_groups;
2718 size = (cdb[6] << 24) | (cdb[7] << 16) |
2719 (cdb[8] << 8) | cdb[9];
2720 } else {
2721 /* GPCMD_SEND_KEY from multi media commands */
2722 size = (cdb[8] << 8) + cdb[9];
2724 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2725 break;
2726 case MODE_SELECT:
2727 size = cdb[4];
2728 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2729 break;
2730 case MODE_SELECT_10:
2731 size = (cdb[7] << 8) + cdb[8];
2732 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2733 break;
2734 case MODE_SENSE:
2735 size = cdb[4];
2736 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2737 if (!passthrough)
2738 cmd->execute_task = target_emulate_modesense;
2739 break;
2740 case MODE_SENSE_10:
2741 size = (cdb[7] << 8) + cdb[8];
2742 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2743 if (!passthrough)
2744 cmd->execute_task = target_emulate_modesense;
2745 break;
2746 case GPCMD_READ_BUFFER_CAPACITY:
2747 case GPCMD_SEND_OPC:
2748 case LOG_SELECT:
2749 case LOG_SENSE:
2750 size = (cdb[7] << 8) + cdb[8];
2751 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2752 break;
2753 case READ_BLOCK_LIMITS:
2754 size = READ_BLOCK_LEN;
2755 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2756 break;
2757 case GPCMD_GET_CONFIGURATION:
2758 case GPCMD_READ_FORMAT_CAPACITIES:
2759 case GPCMD_READ_DISC_INFO:
2760 case GPCMD_READ_TRACK_RZONE_INFO:
2761 size = (cdb[7] << 8) + cdb[8];
2762 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2763 break;
2764 case PERSISTENT_RESERVE_IN:
2765 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2766 cmd->execute_task = target_scsi3_emulate_pr_in;
2767 size = (cdb[7] << 8) + cdb[8];
2768 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2769 break;
2770 case PERSISTENT_RESERVE_OUT:
2771 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2772 cmd->execute_task = target_scsi3_emulate_pr_out;
2773 size = (cdb[7] << 8) + cdb[8];
2774 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2775 break;
2776 case GPCMD_MECHANISM_STATUS:
2777 case GPCMD_READ_DVD_STRUCTURE:
2778 size = (cdb[8] << 8) + cdb[9];
2779 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2780 break;
2781 case READ_POSITION:
2782 size = READ_POSITION_LEN;
2783 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2784 break;
2785 case MAINTENANCE_OUT:
2786 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2787 /* MAINTENANCE_OUT from SCC-2
2789 * Check for emulated MO_SET_TARGET_PGS.
2791 if (cdb[1] == MO_SET_TARGET_PGS &&
2792 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2793 cmd->execute_task =
2794 target_emulate_set_target_port_groups;
2797 size = (cdb[6] << 24) | (cdb[7] << 16) |
2798 (cdb[8] << 8) | cdb[9];
2799 } else {
2800 /* GPCMD_REPORT_KEY from multi media commands */
2801 size = (cdb[8] << 8) + cdb[9];
2803 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2804 break;
2805 case INQUIRY:
2806 size = (cdb[3] << 8) + cdb[4];
2808 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2809 * See spc4r17 section 5.3
2811 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2812 cmd->sam_task_attr = MSG_HEAD_TAG;
2813 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2814 if (!passthrough)
2815 cmd->execute_task = target_emulate_inquiry;
2816 break;
2817 case READ_BUFFER:
2818 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2819 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2820 break;
2821 case READ_CAPACITY:
2822 size = READ_CAP_LEN;
2823 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2824 if (!passthrough)
2825 cmd->execute_task = target_emulate_readcapacity;
2826 break;
2827 case READ_MEDIA_SERIAL_NUMBER:
2828 case SECURITY_PROTOCOL_IN:
2829 case SECURITY_PROTOCOL_OUT:
2830 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2831 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2832 break;
2833 case SERVICE_ACTION_IN:
2834 switch (cmd->t_task_cdb[1] & 0x1f) {
2835 case SAI_READ_CAPACITY_16:
2836 if (!passthrough)
2837 cmd->execute_task =
2838 target_emulate_readcapacity_16;
2839 break;
2840 default:
2841 if (passthrough)
2842 break;
2844 pr_err("Unsupported SA: 0x%02x\n",
2845 cmd->t_task_cdb[1] & 0x1f);
2846 goto out_unsupported_cdb;
2848 /*FALLTHROUGH*/
2849 case ACCESS_CONTROL_IN:
2850 case ACCESS_CONTROL_OUT:
2851 case EXTENDED_COPY:
2852 case READ_ATTRIBUTE:
2853 case RECEIVE_COPY_RESULTS:
2854 case WRITE_ATTRIBUTE:
2855 size = (cdb[10] << 24) | (cdb[11] << 16) |
2856 (cdb[12] << 8) | cdb[13];
2857 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2858 break;
2859 case RECEIVE_DIAGNOSTIC:
2860 case SEND_DIAGNOSTIC:
2861 size = (cdb[3] << 8) | cdb[4];
2862 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2863 break;
2864 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2865 #if 0
2866 case GPCMD_READ_CD:
2867 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2868 size = (2336 * sectors);
2869 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2870 break;
2871 #endif
2872 case READ_TOC:
2873 size = cdb[8];
2874 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2875 break;
2876 case REQUEST_SENSE:
2877 size = cdb[4];
2878 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2879 if (!passthrough)
2880 cmd->execute_task = target_emulate_request_sense;
2881 break;
2882 case READ_ELEMENT_STATUS:
2883 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2884 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2885 break;
2886 case WRITE_BUFFER:
2887 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2888 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2889 break;
2890 case RESERVE:
2891 case RESERVE_10:
2893 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2894 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2896 if (cdb[0] == RESERVE_10)
2897 size = (cdb[7] << 8) | cdb[8];
2898 else
2899 size = cmd->data_length;
2902 * Setup the legacy emulated handler for SPC-2 and
2903 * >= SPC-3 compatible reservation handling (CRH=1)
2904 * Otherwise, we assume the underlying SCSI logic is
2905 * is running in SPC_PASSTHROUGH, and wants reservations
2906 * emulation disabled.
2908 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2909 cmd->execute_task = target_scsi2_reservation_reserve;
2910 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2911 break;
2912 case RELEASE:
2913 case RELEASE_10:
2915 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2916 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2918 if (cdb[0] == RELEASE_10)
2919 size = (cdb[7] << 8) | cdb[8];
2920 else
2921 size = cmd->data_length;
2923 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2924 cmd->execute_task = target_scsi2_reservation_release;
2925 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2926 break;
2927 case SYNCHRONIZE_CACHE:
2928 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2930 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2932 if (cdb[0] == SYNCHRONIZE_CACHE) {
2933 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2934 cmd->t_task_lba = transport_lba_32(cdb);
2935 } else {
2936 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2937 cmd->t_task_lba = transport_lba_64(cdb);
2939 if (sector_ret)
2940 goto out_unsupported_cdb;
2942 size = transport_get_size(sectors, cdb, cmd);
2943 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2945 if (passthrough)
2946 break;
2949 * Check to ensure that LBA + Range does not exceed past end of
2950 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2952 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2953 if (transport_cmd_get_valid_sectors(cmd) < 0)
2954 goto out_invalid_cdb_field;
2956 cmd->execute_task = target_emulate_synchronize_cache;
2957 break;
2958 case UNMAP:
2959 size = get_unaligned_be16(&cdb[7]);
2960 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2961 if (!passthrough)
2962 cmd->execute_task = target_emulate_unmap;
2963 break;
2964 case WRITE_SAME_16:
2965 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2966 if (sector_ret)
2967 goto out_unsupported_cdb;
2969 if (sectors)
2970 size = transport_get_size(1, cdb, cmd);
2971 else {
2972 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2973 goto out_invalid_cdb_field;
2976 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2977 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2979 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2980 goto out_invalid_cdb_field;
2981 if (!passthrough)
2982 cmd->execute_task = target_emulate_write_same;
2983 break;
2984 case WRITE_SAME:
2985 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2986 if (sector_ret)
2987 goto out_unsupported_cdb;
2989 if (sectors)
2990 size = transport_get_size(1, cdb, cmd);
2991 else {
2992 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2993 goto out_invalid_cdb_field;
2996 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2997 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2999 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3000 * of byte 1 bit 3 UNMAP instead of original reserved field
3002 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3003 goto out_invalid_cdb_field;
3004 if (!passthrough)
3005 cmd->execute_task = target_emulate_write_same;
3006 break;
3007 case ALLOW_MEDIUM_REMOVAL:
3008 case ERASE:
3009 case REZERO_UNIT:
3010 case SEEK_10:
3011 case SPACE:
3012 case START_STOP:
3013 case TEST_UNIT_READY:
3014 case VERIFY:
3015 case WRITE_FILEMARKS:
3016 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3017 if (!passthrough)
3018 cmd->execute_task = target_emulate_noop;
3019 break;
3020 case GPCMD_CLOSE_TRACK:
3021 case INITIALIZE_ELEMENT_STATUS:
3022 case GPCMD_LOAD_UNLOAD:
3023 case GPCMD_SET_SPEED:
3024 case MOVE_MEDIUM:
3025 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3026 break;
3027 case REPORT_LUNS:
3028 cmd->execute_task = target_report_luns;
3029 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3031 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3032 * See spc4r17 section 5.3
3034 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3035 cmd->sam_task_attr = MSG_HEAD_TAG;
3036 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3037 break;
3038 default:
3039 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3040 " 0x%02x, sending CHECK_CONDITION.\n",
3041 cmd->se_tfo->get_fabric_name(), cdb[0]);
3042 goto out_unsupported_cdb;
3045 if (size != cmd->data_length) {
3046 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3047 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3048 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3049 cmd->data_length, size, cdb[0]);
3051 cmd->cmd_spdtl = size;
3053 if (cmd->data_direction == DMA_TO_DEVICE) {
3054 pr_err("Rejecting underflow/overflow"
3055 " WRITE data\n");
3056 goto out_invalid_cdb_field;
3059 * Reject READ_* or WRITE_* with overflow/underflow for
3060 * type SCF_SCSI_DATA_SG_IO_CDB.
3062 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3063 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3064 " CDB on non 512-byte sector setup subsystem"
3065 " plugin: %s\n", dev->transport->name);
3066 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3067 goto out_invalid_cdb_field;
3070 if (size > cmd->data_length) {
3071 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3072 cmd->residual_count = (size - cmd->data_length);
3073 } else {
3074 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3075 cmd->residual_count = (cmd->data_length - size);
3077 cmd->data_length = size;
3080 /* reject any command that we don't have a handler for */
3081 if (!(passthrough || cmd->execute_task ||
3082 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3083 goto out_unsupported_cdb;
3085 /* Let's limit control cdbs to a page, for simplicity's sake. */
3086 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3087 size > PAGE_SIZE)
3088 goto out_invalid_cdb_field;
3090 transport_set_supported_SAM_opcode(cmd);
3091 return ret;
3093 out_unsupported_cdb:
3094 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3095 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3096 return -EINVAL;
3097 out_invalid_cdb_field:
3098 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3099 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3100 return -EINVAL;
3104 * Called from I/O completion to determine which dormant/delayed
3105 * and ordered cmds need to have their tasks added to the execution queue.
3107 static void transport_complete_task_attr(struct se_cmd *cmd)
3109 struct se_device *dev = cmd->se_dev;
3110 struct se_cmd *cmd_p, *cmd_tmp;
3111 int new_active_tasks = 0;
3113 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3114 atomic_dec(&dev->simple_cmds);
3115 smp_mb__after_atomic_dec();
3116 dev->dev_cur_ordered_id++;
3117 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3118 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3119 cmd->se_ordered_id);
3120 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3121 dev->dev_cur_ordered_id++;
3122 pr_debug("Incremented dev_cur_ordered_id: %u for"
3123 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3124 cmd->se_ordered_id);
3125 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3126 atomic_dec(&dev->dev_ordered_sync);
3127 smp_mb__after_atomic_dec();
3129 dev->dev_cur_ordered_id++;
3130 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3131 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3134 * Process all commands up to the last received
3135 * ORDERED task attribute which requires another blocking
3136 * boundary
3138 spin_lock(&dev->delayed_cmd_lock);
3139 list_for_each_entry_safe(cmd_p, cmd_tmp,
3140 &dev->delayed_cmd_list, se_delayed_node) {
3142 list_del(&cmd_p->se_delayed_node);
3143 spin_unlock(&dev->delayed_cmd_lock);
3145 pr_debug("Calling add_tasks() for"
3146 " cmd_p: 0x%02x Task Attr: 0x%02x"
3147 " Dormant -> Active, se_ordered_id: %u\n",
3148 cmd_p->t_task_cdb[0],
3149 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3151 transport_add_tasks_from_cmd(cmd_p);
3152 new_active_tasks++;
3154 spin_lock(&dev->delayed_cmd_lock);
3155 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3156 break;
3158 spin_unlock(&dev->delayed_cmd_lock);
3160 * If new tasks have become active, wake up the transport thread
3161 * to do the processing of the Active tasks.
3163 if (new_active_tasks != 0)
3164 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3167 static void transport_complete_qf(struct se_cmd *cmd)
3169 int ret = 0;
3171 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3172 transport_complete_task_attr(cmd);
3174 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3175 ret = cmd->se_tfo->queue_status(cmd);
3176 if (ret)
3177 goto out;
3180 switch (cmd->data_direction) {
3181 case DMA_FROM_DEVICE:
3182 ret = cmd->se_tfo->queue_data_in(cmd);
3183 break;
3184 case DMA_TO_DEVICE:
3185 if (cmd->t_bidi_data_sg) {
3186 ret = cmd->se_tfo->queue_data_in(cmd);
3187 if (ret < 0)
3188 break;
3190 /* Fall through for DMA_TO_DEVICE */
3191 case DMA_NONE:
3192 ret = cmd->se_tfo->queue_status(cmd);
3193 break;
3194 default:
3195 break;
3198 out:
3199 if (ret < 0) {
3200 transport_handle_queue_full(cmd, cmd->se_dev);
3201 return;
3203 transport_lun_remove_cmd(cmd);
3204 transport_cmd_check_stop_to_fabric(cmd);
3207 static void transport_handle_queue_full(
3208 struct se_cmd *cmd,
3209 struct se_device *dev)
3211 spin_lock_irq(&dev->qf_cmd_lock);
3212 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3213 atomic_inc(&dev->dev_qf_count);
3214 smp_mb__after_atomic_inc();
3215 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3217 schedule_work(&cmd->se_dev->qf_work_queue);
3220 static void target_complete_ok_work(struct work_struct *work)
3222 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3223 int reason = 0, ret;
3226 * Check if we need to move delayed/dormant tasks from cmds on the
3227 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3228 * Attribute.
3230 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3231 transport_complete_task_attr(cmd);
3233 * Check to schedule QUEUE_FULL work, or execute an existing
3234 * cmd->transport_qf_callback()
3236 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3237 schedule_work(&cmd->se_dev->qf_work_queue);
3240 * Check if we need to retrieve a sense buffer from
3241 * the struct se_cmd in question.
3243 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3244 if (transport_get_sense_data(cmd) < 0)
3245 reason = TCM_NON_EXISTENT_LUN;
3248 * Only set when an struct se_task->task_scsi_status returned
3249 * a non GOOD status.
3251 if (cmd->scsi_status) {
3252 ret = transport_send_check_condition_and_sense(
3253 cmd, reason, 1);
3254 if (ret == -EAGAIN || ret == -ENOMEM)
3255 goto queue_full;
3257 transport_lun_remove_cmd(cmd);
3258 transport_cmd_check_stop_to_fabric(cmd);
3259 return;
3263 * Check for a callback, used by amongst other things
3264 * XDWRITE_READ_10 emulation.
3266 if (cmd->transport_complete_callback)
3267 cmd->transport_complete_callback(cmd);
3269 switch (cmd->data_direction) {
3270 case DMA_FROM_DEVICE:
3271 spin_lock(&cmd->se_lun->lun_sep_lock);
3272 if (cmd->se_lun->lun_sep) {
3273 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3274 cmd->data_length;
3276 spin_unlock(&cmd->se_lun->lun_sep_lock);
3278 ret = cmd->se_tfo->queue_data_in(cmd);
3279 if (ret == -EAGAIN || ret == -ENOMEM)
3280 goto queue_full;
3281 break;
3282 case DMA_TO_DEVICE:
3283 spin_lock(&cmd->se_lun->lun_sep_lock);
3284 if (cmd->se_lun->lun_sep) {
3285 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3286 cmd->data_length;
3288 spin_unlock(&cmd->se_lun->lun_sep_lock);
3290 * Check if we need to send READ payload for BIDI-COMMAND
3292 if (cmd->t_bidi_data_sg) {
3293 spin_lock(&cmd->se_lun->lun_sep_lock);
3294 if (cmd->se_lun->lun_sep) {
3295 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3296 cmd->data_length;
3298 spin_unlock(&cmd->se_lun->lun_sep_lock);
3299 ret = cmd->se_tfo->queue_data_in(cmd);
3300 if (ret == -EAGAIN || ret == -ENOMEM)
3301 goto queue_full;
3302 break;
3304 /* Fall through for DMA_TO_DEVICE */
3305 case DMA_NONE:
3306 ret = cmd->se_tfo->queue_status(cmd);
3307 if (ret == -EAGAIN || ret == -ENOMEM)
3308 goto queue_full;
3309 break;
3310 default:
3311 break;
3314 transport_lun_remove_cmd(cmd);
3315 transport_cmd_check_stop_to_fabric(cmd);
3316 return;
3318 queue_full:
3319 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3320 " data_direction: %d\n", cmd, cmd->data_direction);
3321 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3322 transport_handle_queue_full(cmd, cmd->se_dev);
3325 static void transport_free_dev_tasks(struct se_cmd *cmd)
3327 struct se_task *task, *task_tmp;
3328 unsigned long flags;
3329 LIST_HEAD(dispose_list);
3331 spin_lock_irqsave(&cmd->t_state_lock, flags);
3332 list_for_each_entry_safe(task, task_tmp,
3333 &cmd->t_task_list, t_list) {
3334 if (!(task->task_flags & TF_ACTIVE))
3335 list_move_tail(&task->t_list, &dispose_list);
3337 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3339 while (!list_empty(&dispose_list)) {
3340 task = list_first_entry(&dispose_list, struct se_task, t_list);
3342 if (task->task_sg != cmd->t_data_sg &&
3343 task->task_sg != cmd->t_bidi_data_sg)
3344 kfree(task->task_sg);
3346 list_del(&task->t_list);
3348 cmd->se_dev->transport->free_task(task);
3352 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3354 struct scatterlist *sg;
3355 int count;
3357 for_each_sg(sgl, sg, nents, count)
3358 __free_page(sg_page(sg));
3360 kfree(sgl);
3363 static inline void transport_free_pages(struct se_cmd *cmd)
3365 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3366 return;
3368 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3369 cmd->t_data_sg = NULL;
3370 cmd->t_data_nents = 0;
3372 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3373 cmd->t_bidi_data_sg = NULL;
3374 cmd->t_bidi_data_nents = 0;
3378 * transport_release_cmd - free a command
3379 * @cmd: command to free
3381 * This routine unconditionally frees a command, and reference counting
3382 * or list removal must be done in the caller.
3384 static void transport_release_cmd(struct se_cmd *cmd)
3386 BUG_ON(!cmd->se_tfo);
3388 if (cmd->se_tmr_req)
3389 core_tmr_release_req(cmd->se_tmr_req);
3390 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3391 kfree(cmd->t_task_cdb);
3393 * If this cmd has been setup with target_get_sess_cmd(), drop
3394 * the kref and call ->release_cmd() in kref callback.
3396 if (cmd->check_release != 0) {
3397 target_put_sess_cmd(cmd->se_sess, cmd);
3398 return;
3400 cmd->se_tfo->release_cmd(cmd);
3404 * transport_put_cmd - release a reference to a command
3405 * @cmd: command to release
3407 * This routine releases our reference to the command and frees it if possible.
3409 static void transport_put_cmd(struct se_cmd *cmd)
3411 unsigned long flags;
3412 int free_tasks = 0;
3414 spin_lock_irqsave(&cmd->t_state_lock, flags);
3415 if (atomic_read(&cmd->t_fe_count)) {
3416 if (!atomic_dec_and_test(&cmd->t_fe_count))
3417 goto out_busy;
3420 if (atomic_read(&cmd->t_se_count)) {
3421 if (!atomic_dec_and_test(&cmd->t_se_count))
3422 goto out_busy;
3425 if (atomic_read(&cmd->transport_dev_active)) {
3426 atomic_set(&cmd->transport_dev_active, 0);
3427 transport_all_task_dev_remove_state(cmd);
3428 free_tasks = 1;
3430 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3432 if (free_tasks != 0)
3433 transport_free_dev_tasks(cmd);
3435 transport_free_pages(cmd);
3436 transport_release_cmd(cmd);
3437 return;
3438 out_busy:
3439 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3443 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3444 * allocating in the core.
3445 * @cmd: Associated se_cmd descriptor
3446 * @mem: SGL style memory for TCM WRITE / READ
3447 * @sg_mem_num: Number of SGL elements
3448 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3449 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3451 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3452 * of parameters.
3454 int transport_generic_map_mem_to_cmd(
3455 struct se_cmd *cmd,
3456 struct scatterlist *sgl,
3457 u32 sgl_count,
3458 struct scatterlist *sgl_bidi,
3459 u32 sgl_bidi_count)
3461 if (!sgl || !sgl_count)
3462 return 0;
3464 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3465 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3467 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3468 * scatterlists already have been set to follow what the fabric
3469 * passes for the original expected data transfer length.
3471 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3472 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3473 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3474 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3475 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3476 return -EINVAL;
3479 cmd->t_data_sg = sgl;
3480 cmd->t_data_nents = sgl_count;
3482 if (sgl_bidi && sgl_bidi_count) {
3483 cmd->t_bidi_data_sg = sgl_bidi;
3484 cmd->t_bidi_data_nents = sgl_bidi_count;
3486 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3489 return 0;
3491 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3493 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3495 struct scatterlist *sg = cmd->t_data_sg;
3497 BUG_ON(!sg);
3499 * We need to take into account a possible offset here for fabrics like
3500 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3501 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3503 return kmap(sg_page(sg)) + sg->offset;
3505 EXPORT_SYMBOL(transport_kmap_first_data_page);
3507 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3509 kunmap(sg_page(cmd->t_data_sg));
3511 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3513 static int
3514 transport_generic_get_mem(struct se_cmd *cmd)
3516 u32 length = cmd->data_length;
3517 unsigned int nents;
3518 struct page *page;
3519 gfp_t zero_flag;
3520 int i = 0;
3522 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3523 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3524 if (!cmd->t_data_sg)
3525 return -ENOMEM;
3527 cmd->t_data_nents = nents;
3528 sg_init_table(cmd->t_data_sg, nents);
3530 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3532 while (length) {
3533 u32 page_len = min_t(u32, length, PAGE_SIZE);
3534 page = alloc_page(GFP_KERNEL | zero_flag);
3535 if (!page)
3536 goto out;
3538 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3539 length -= page_len;
3540 i++;
3542 return 0;
3544 out:
3545 while (i >= 0) {
3546 __free_page(sg_page(&cmd->t_data_sg[i]));
3547 i--;
3549 kfree(cmd->t_data_sg);
3550 cmd->t_data_sg = NULL;
3551 return -ENOMEM;
3554 /* Reduce sectors if they are too long for the device */
3555 static inline sector_t transport_limit_task_sectors(
3556 struct se_device *dev,
3557 unsigned long long lba,
3558 sector_t sectors)
3560 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3562 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3563 if ((lba + sectors) > transport_dev_end_lba(dev))
3564 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3566 return sectors;
3571 * This function can be used by HW target mode drivers to create a linked
3572 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3573 * This is intended to be called during the completion path by TCM Core
3574 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3576 void transport_do_task_sg_chain(struct se_cmd *cmd)
3578 struct scatterlist *sg_first = NULL;
3579 struct scatterlist *sg_prev = NULL;
3580 int sg_prev_nents = 0;
3581 struct scatterlist *sg;
3582 struct se_task *task;
3583 u32 chained_nents = 0;
3584 int i;
3586 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3589 * Walk the struct se_task list and setup scatterlist chains
3590 * for each contiguously allocated struct se_task->task_sg[].
3592 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3593 if (!task->task_sg)
3594 continue;
3596 if (!sg_first) {
3597 sg_first = task->task_sg;
3598 chained_nents = task->task_sg_nents;
3599 } else {
3600 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3601 chained_nents += task->task_sg_nents;
3604 * For the padded tasks, use the extra SGL vector allocated
3605 * in transport_allocate_data_tasks() for the sg_prev_nents
3606 * offset into sg_chain() above.
3608 * We do not need the padding for the last task (or a single
3609 * task), but in that case we will never use the sg_prev_nents
3610 * value below which would be incorrect.
3612 sg_prev_nents = (task->task_sg_nents + 1);
3613 sg_prev = task->task_sg;
3616 * Setup the starting pointer and total t_tasks_sg_linked_no including
3617 * padding SGs for linking and to mark the end.
3619 cmd->t_tasks_sg_chained = sg_first;
3620 cmd->t_tasks_sg_chained_no = chained_nents;
3622 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3623 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3624 cmd->t_tasks_sg_chained_no);
3626 for_each_sg(cmd->t_tasks_sg_chained, sg,
3627 cmd->t_tasks_sg_chained_no, i) {
3629 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3630 i, sg, sg_page(sg), sg->length, sg->offset);
3631 if (sg_is_chain(sg))
3632 pr_debug("SG: %p sg_is_chain=1\n", sg);
3633 if (sg_is_last(sg))
3634 pr_debug("SG: %p sg_is_last=1\n", sg);
3637 EXPORT_SYMBOL(transport_do_task_sg_chain);
3640 * Break up cmd into chunks transport can handle
3642 static int
3643 transport_allocate_data_tasks(struct se_cmd *cmd,
3644 enum dma_data_direction data_direction,
3645 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3647 struct se_device *dev = cmd->se_dev;
3648 int task_count, i;
3649 unsigned long long lba;
3650 sector_t sectors, dev_max_sectors;
3651 u32 sector_size;
3653 if (transport_cmd_get_valid_sectors(cmd) < 0)
3654 return -EINVAL;
3656 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3657 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3659 WARN_ON(cmd->data_length % sector_size);
3661 lba = cmd->t_task_lba;
3662 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3663 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3666 * If we need just a single task reuse the SG list in the command
3667 * and avoid a lot of work.
3669 if (task_count == 1) {
3670 struct se_task *task;
3671 unsigned long flags;
3673 task = transport_generic_get_task(cmd, data_direction);
3674 if (!task)
3675 return -ENOMEM;
3677 task->task_sg = cmd_sg;
3678 task->task_sg_nents = sgl_nents;
3680 task->task_lba = lba;
3681 task->task_sectors = sectors;
3682 task->task_size = task->task_sectors * sector_size;
3684 spin_lock_irqsave(&cmd->t_state_lock, flags);
3685 list_add_tail(&task->t_list, &cmd->t_task_list);
3686 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3688 return task_count;
3691 for (i = 0; i < task_count; i++) {
3692 struct se_task *task;
3693 unsigned int task_size, task_sg_nents_padded;
3694 struct scatterlist *sg;
3695 unsigned long flags;
3696 int count;
3698 task = transport_generic_get_task(cmd, data_direction);
3699 if (!task)
3700 return -ENOMEM;
3702 task->task_lba = lba;
3703 task->task_sectors = min(sectors, dev_max_sectors);
3704 task->task_size = task->task_sectors * sector_size;
3707 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3708 * in order to calculate the number per task SGL entries
3710 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3712 * Check if the fabric module driver is requesting that all
3713 * struct se_task->task_sg[] be chained together.. If so,
3714 * then allocate an extra padding SG entry for linking and
3715 * marking the end of the chained SGL for every task except
3716 * the last one for (task_count > 1) operation, or skipping
3717 * the extra padding for the (task_count == 1) case.
3719 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3720 task_sg_nents_padded = (task->task_sg_nents + 1);
3721 } else
3722 task_sg_nents_padded = task->task_sg_nents;
3724 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3725 task_sg_nents_padded, GFP_KERNEL);
3726 if (!task->task_sg) {
3727 cmd->se_dev->transport->free_task(task);
3728 return -ENOMEM;
3731 sg_init_table(task->task_sg, task_sg_nents_padded);
3733 task_size = task->task_size;
3735 /* Build new sgl, only up to task_size */
3736 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3737 if (cmd_sg->length > task_size)
3738 break;
3740 *sg = *cmd_sg;
3741 task_size -= cmd_sg->length;
3742 cmd_sg = sg_next(cmd_sg);
3745 lba += task->task_sectors;
3746 sectors -= task->task_sectors;
3748 spin_lock_irqsave(&cmd->t_state_lock, flags);
3749 list_add_tail(&task->t_list, &cmd->t_task_list);
3750 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3753 return task_count;
3756 static int
3757 transport_allocate_control_task(struct se_cmd *cmd)
3759 struct se_task *task;
3760 unsigned long flags;
3762 /* Workaround for handling zero-length control CDBs */
3763 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3764 !cmd->data_length)
3765 return 0;
3767 task = transport_generic_get_task(cmd, cmd->data_direction);
3768 if (!task)
3769 return -ENOMEM;
3771 task->task_sg = cmd->t_data_sg;
3772 task->task_size = cmd->data_length;
3773 task->task_sg_nents = cmd->t_data_nents;
3775 spin_lock_irqsave(&cmd->t_state_lock, flags);
3776 list_add_tail(&task->t_list, &cmd->t_task_list);
3777 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3779 /* Success! Return number of tasks allocated */
3780 return 1;
3784 * Allocate any required ressources to execute the command, and either place
3785 * it on the execution queue if possible. For writes we might not have the
3786 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3788 int transport_generic_new_cmd(struct se_cmd *cmd)
3790 struct se_device *dev = cmd->se_dev;
3791 int task_cdbs, task_cdbs_bidi = 0;
3792 int set_counts = 1;
3793 int ret = 0;
3796 * Determine is the TCM fabric module has already allocated physical
3797 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3798 * beforehand.
3800 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3801 cmd->data_length) {
3802 ret = transport_generic_get_mem(cmd);
3803 if (ret < 0)
3804 goto out_fail;
3808 * For BIDI command set up the read tasks first.
3810 if (cmd->t_bidi_data_sg &&
3811 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3812 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3814 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3815 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3816 cmd->t_bidi_data_nents);
3817 if (task_cdbs_bidi <= 0)
3818 goto out_fail;
3820 atomic_inc(&cmd->t_fe_count);
3821 atomic_inc(&cmd->t_se_count);
3822 set_counts = 0;
3825 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3826 task_cdbs = transport_allocate_data_tasks(cmd,
3827 cmd->data_direction, cmd->t_data_sg,
3828 cmd->t_data_nents);
3829 } else {
3830 task_cdbs = transport_allocate_control_task(cmd);
3833 if (task_cdbs < 0)
3834 goto out_fail;
3835 else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3836 cmd->t_state = TRANSPORT_COMPLETE;
3837 atomic_set(&cmd->t_transport_active, 1);
3839 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3840 u8 ua_asc = 0, ua_ascq = 0;
3842 core_scsi3_ua_clear_for_request_sense(cmd,
3843 &ua_asc, &ua_ascq);
3846 INIT_WORK(&cmd->work, target_complete_ok_work);
3847 queue_work(target_completion_wq, &cmd->work);
3848 return 0;
3851 if (set_counts) {
3852 atomic_inc(&cmd->t_fe_count);
3853 atomic_inc(&cmd->t_se_count);
3856 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3857 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3858 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3861 * For WRITEs, let the fabric know its buffer is ready..
3862 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3863 * will be added to the struct se_device execution queue after its WRITE
3864 * data has arrived. (ie: It gets handled by the transport processing
3865 * thread a second time)
3867 if (cmd->data_direction == DMA_TO_DEVICE) {
3868 transport_add_tasks_to_state_queue(cmd);
3869 return transport_generic_write_pending(cmd);
3872 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3873 * to the execution queue.
3875 transport_execute_tasks(cmd);
3876 return 0;
3878 out_fail:
3879 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3880 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3881 return -EINVAL;
3883 EXPORT_SYMBOL(transport_generic_new_cmd);
3885 /* transport_generic_process_write():
3889 void transport_generic_process_write(struct se_cmd *cmd)
3891 transport_execute_tasks(cmd);
3893 EXPORT_SYMBOL(transport_generic_process_write);
3895 static void transport_write_pending_qf(struct se_cmd *cmd)
3897 int ret;
3899 ret = cmd->se_tfo->write_pending(cmd);
3900 if (ret == -EAGAIN || ret == -ENOMEM) {
3901 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3902 cmd);
3903 transport_handle_queue_full(cmd, cmd->se_dev);
3907 static int transport_generic_write_pending(struct se_cmd *cmd)
3909 unsigned long flags;
3910 int ret;
3912 spin_lock_irqsave(&cmd->t_state_lock, flags);
3913 cmd->t_state = TRANSPORT_WRITE_PENDING;
3914 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3917 * Clear the se_cmd for WRITE_PENDING status in order to set
3918 * cmd->t_transport_active=0 so that transport_generic_handle_data
3919 * can be called from HW target mode interrupt code. This is safe
3920 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3921 * because the se_cmd->se_lun pointer is not being cleared.
3923 transport_cmd_check_stop(cmd, 1, 0);
3926 * Call the fabric write_pending function here to let the
3927 * frontend know that WRITE buffers are ready.
3929 ret = cmd->se_tfo->write_pending(cmd);
3930 if (ret == -EAGAIN || ret == -ENOMEM)
3931 goto queue_full;
3932 else if (ret < 0)
3933 return ret;
3935 return 1;
3937 queue_full:
3938 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3939 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3940 transport_handle_queue_full(cmd, cmd->se_dev);
3941 return 0;
3944 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3946 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3947 if (wait_for_tasks && cmd->se_tmr_req)
3948 transport_wait_for_tasks(cmd);
3950 transport_release_cmd(cmd);
3951 } else {
3952 if (wait_for_tasks)
3953 transport_wait_for_tasks(cmd);
3955 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3957 if (cmd->se_lun)
3958 transport_lun_remove_cmd(cmd);
3960 transport_free_dev_tasks(cmd);
3962 transport_put_cmd(cmd);
3965 EXPORT_SYMBOL(transport_generic_free_cmd);
3967 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3968 * @se_sess: session to reference
3969 * @se_cmd: command descriptor to add
3970 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
3972 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3973 bool ack_kref)
3975 unsigned long flags;
3977 kref_init(&se_cmd->cmd_kref);
3979 * Add a second kref if the fabric caller is expecting to handle
3980 * fabric acknowledgement that requires two target_put_sess_cmd()
3981 * invocations before se_cmd descriptor release.
3983 if (ack_kref == true)
3984 kref_get(&se_cmd->cmd_kref);
3986 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3987 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3988 se_cmd->check_release = 1;
3989 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3991 EXPORT_SYMBOL(target_get_sess_cmd);
3993 static void target_release_cmd_kref(struct kref *kref)
3995 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3996 struct se_session *se_sess = se_cmd->se_sess;
3997 unsigned long flags;
3999 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4000 if (list_empty(&se_cmd->se_cmd_list)) {
4001 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4002 WARN_ON(1);
4003 return;
4005 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4006 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4007 complete(&se_cmd->cmd_wait_comp);
4008 return;
4010 list_del(&se_cmd->se_cmd_list);
4011 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4013 se_cmd->se_tfo->release_cmd(se_cmd);
4016 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4017 * @se_sess: session to reference
4018 * @se_cmd: command descriptor to drop
4020 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4022 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4024 EXPORT_SYMBOL(target_put_sess_cmd);
4026 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4027 * @se_sess: session to split
4029 void target_splice_sess_cmd_list(struct se_session *se_sess)
4031 struct se_cmd *se_cmd;
4032 unsigned long flags;
4034 WARN_ON(!list_empty(&se_sess->sess_wait_list));
4035 INIT_LIST_HEAD(&se_sess->sess_wait_list);
4037 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4038 se_sess->sess_tearing_down = 1;
4040 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4042 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4043 se_cmd->cmd_wait_set = 1;
4045 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4047 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4049 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4050 * @se_sess: session to wait for active I/O
4051 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4053 void target_wait_for_sess_cmds(
4054 struct se_session *se_sess,
4055 int wait_for_tasks)
4057 struct se_cmd *se_cmd, *tmp_cmd;
4058 bool rc = false;
4060 list_for_each_entry_safe(se_cmd, tmp_cmd,
4061 &se_sess->sess_wait_list, se_cmd_list) {
4062 list_del(&se_cmd->se_cmd_list);
4064 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4065 " %d\n", se_cmd, se_cmd->t_state,
4066 se_cmd->se_tfo->get_cmd_state(se_cmd));
4068 if (wait_for_tasks) {
4069 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4070 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4071 se_cmd->se_tfo->get_cmd_state(se_cmd));
4073 rc = transport_wait_for_tasks(se_cmd);
4075 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4076 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4077 se_cmd->se_tfo->get_cmd_state(se_cmd));
4080 if (!rc) {
4081 wait_for_completion(&se_cmd->cmd_wait_comp);
4082 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4083 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4084 se_cmd->se_tfo->get_cmd_state(se_cmd));
4087 se_cmd->se_tfo->release_cmd(se_cmd);
4090 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4092 /* transport_lun_wait_for_tasks():
4094 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4095 * an struct se_lun to be successfully shutdown.
4097 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4099 unsigned long flags;
4100 int ret;
4102 * If the frontend has already requested this struct se_cmd to
4103 * be stopped, we can safely ignore this struct se_cmd.
4105 spin_lock_irqsave(&cmd->t_state_lock, flags);
4106 if (atomic_read(&cmd->t_transport_stop)) {
4107 atomic_set(&cmd->transport_lun_stop, 0);
4108 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4109 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4110 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4111 transport_cmd_check_stop(cmd, 1, 0);
4112 return -EPERM;
4114 atomic_set(&cmd->transport_lun_fe_stop, 1);
4115 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4117 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4119 ret = transport_stop_tasks_for_cmd(cmd);
4121 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4122 " %d\n", cmd, cmd->t_task_list_num, ret);
4123 if (!ret) {
4124 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4125 cmd->se_tfo->get_task_tag(cmd));
4126 wait_for_completion(&cmd->transport_lun_stop_comp);
4127 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4128 cmd->se_tfo->get_task_tag(cmd));
4130 transport_remove_cmd_from_queue(cmd);
4132 return 0;
4135 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4137 struct se_cmd *cmd = NULL;
4138 unsigned long lun_flags, cmd_flags;
4140 * Do exception processing and return CHECK_CONDITION status to the
4141 * Initiator Port.
4143 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4144 while (!list_empty(&lun->lun_cmd_list)) {
4145 cmd = list_first_entry(&lun->lun_cmd_list,
4146 struct se_cmd, se_lun_node);
4147 list_del(&cmd->se_lun_node);
4149 atomic_set(&cmd->transport_lun_active, 0);
4151 * This will notify iscsi_target_transport.c:
4152 * transport_cmd_check_stop() that a LUN shutdown is in
4153 * progress for the iscsi_cmd_t.
4155 spin_lock(&cmd->t_state_lock);
4156 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4157 "_lun_stop for ITT: 0x%08x\n",
4158 cmd->se_lun->unpacked_lun,
4159 cmd->se_tfo->get_task_tag(cmd));
4160 atomic_set(&cmd->transport_lun_stop, 1);
4161 spin_unlock(&cmd->t_state_lock);
4163 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4165 if (!cmd->se_lun) {
4166 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4167 cmd->se_tfo->get_task_tag(cmd),
4168 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4169 BUG();
4172 * If the Storage engine still owns the iscsi_cmd_t, determine
4173 * and/or stop its context.
4175 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4176 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4177 cmd->se_tfo->get_task_tag(cmd));
4179 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4180 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4181 continue;
4184 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4185 "_wait_for_tasks(): SUCCESS\n",
4186 cmd->se_lun->unpacked_lun,
4187 cmd->se_tfo->get_task_tag(cmd));
4189 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4190 if (!atomic_read(&cmd->transport_dev_active)) {
4191 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4192 goto check_cond;
4194 atomic_set(&cmd->transport_dev_active, 0);
4195 transport_all_task_dev_remove_state(cmd);
4196 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4198 transport_free_dev_tasks(cmd);
4200 * The Storage engine stopped this struct se_cmd before it was
4201 * send to the fabric frontend for delivery back to the
4202 * Initiator Node. Return this SCSI CDB back with an
4203 * CHECK_CONDITION status.
4205 check_cond:
4206 transport_send_check_condition_and_sense(cmd,
4207 TCM_NON_EXISTENT_LUN, 0);
4209 * If the fabric frontend is waiting for this iscsi_cmd_t to
4210 * be released, notify the waiting thread now that LU has
4211 * finished accessing it.
4213 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4214 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4215 pr_debug("SE_LUN[%d] - Detected FE stop for"
4216 " struct se_cmd: %p ITT: 0x%08x\n",
4217 lun->unpacked_lun,
4218 cmd, cmd->se_tfo->get_task_tag(cmd));
4220 spin_unlock_irqrestore(&cmd->t_state_lock,
4221 cmd_flags);
4222 transport_cmd_check_stop(cmd, 1, 0);
4223 complete(&cmd->transport_lun_fe_stop_comp);
4224 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4225 continue;
4227 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4228 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4230 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4231 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4233 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4236 static int transport_clear_lun_thread(void *p)
4238 struct se_lun *lun = p;
4240 __transport_clear_lun_from_sessions(lun);
4241 complete(&lun->lun_shutdown_comp);
4243 return 0;
4246 int transport_clear_lun_from_sessions(struct se_lun *lun)
4248 struct task_struct *kt;
4250 kt = kthread_run(transport_clear_lun_thread, lun,
4251 "tcm_cl_%u", lun->unpacked_lun);
4252 if (IS_ERR(kt)) {
4253 pr_err("Unable to start clear_lun thread\n");
4254 return PTR_ERR(kt);
4256 wait_for_completion(&lun->lun_shutdown_comp);
4258 return 0;
4262 * transport_wait_for_tasks - wait for completion to occur
4263 * @cmd: command to wait
4265 * Called from frontend fabric context to wait for storage engine
4266 * to pause and/or release frontend generated struct se_cmd.
4268 bool transport_wait_for_tasks(struct se_cmd *cmd)
4270 unsigned long flags;
4272 spin_lock_irqsave(&cmd->t_state_lock, flags);
4273 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4274 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4275 return false;
4278 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4279 * has been set in transport_set_supported_SAM_opcode().
4281 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4282 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4283 return false;
4286 * If we are already stopped due to an external event (ie: LUN shutdown)
4287 * sleep until the connection can have the passed struct se_cmd back.
4288 * The cmd->transport_lun_stopped_sem will be upped by
4289 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4290 * has completed its operation on the struct se_cmd.
4292 if (atomic_read(&cmd->transport_lun_stop)) {
4294 pr_debug("wait_for_tasks: Stopping"
4295 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4296 "_stop_comp); for ITT: 0x%08x\n",
4297 cmd->se_tfo->get_task_tag(cmd));
4299 * There is a special case for WRITES where a FE exception +
4300 * LUN shutdown means ConfigFS context is still sleeping on
4301 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4302 * We go ahead and up transport_lun_stop_comp just to be sure
4303 * here.
4305 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4306 complete(&cmd->transport_lun_stop_comp);
4307 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4308 spin_lock_irqsave(&cmd->t_state_lock, flags);
4310 transport_all_task_dev_remove_state(cmd);
4312 * At this point, the frontend who was the originator of this
4313 * struct se_cmd, now owns the structure and can be released through
4314 * normal means below.
4316 pr_debug("wait_for_tasks: Stopped"
4317 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4318 "stop_comp); for ITT: 0x%08x\n",
4319 cmd->se_tfo->get_task_tag(cmd));
4321 atomic_set(&cmd->transport_lun_stop, 0);
4323 if (!atomic_read(&cmd->t_transport_active) ||
4324 atomic_read(&cmd->t_transport_aborted)) {
4325 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4326 return false;
4329 atomic_set(&cmd->t_transport_stop, 1);
4331 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4332 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4333 cmd, cmd->se_tfo->get_task_tag(cmd),
4334 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4336 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4338 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4340 wait_for_completion(&cmd->t_transport_stop_comp);
4342 spin_lock_irqsave(&cmd->t_state_lock, flags);
4343 atomic_set(&cmd->t_transport_active, 0);
4344 atomic_set(&cmd->t_transport_stop, 0);
4346 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4347 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4348 cmd->se_tfo->get_task_tag(cmd));
4350 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4352 return true;
4354 EXPORT_SYMBOL(transport_wait_for_tasks);
4356 static int transport_get_sense_codes(
4357 struct se_cmd *cmd,
4358 u8 *asc,
4359 u8 *ascq)
4361 *asc = cmd->scsi_asc;
4362 *ascq = cmd->scsi_ascq;
4364 return 0;
4367 static int transport_set_sense_codes(
4368 struct se_cmd *cmd,
4369 u8 asc,
4370 u8 ascq)
4372 cmd->scsi_asc = asc;
4373 cmd->scsi_ascq = ascq;
4375 return 0;
4378 int transport_send_check_condition_and_sense(
4379 struct se_cmd *cmd,
4380 u8 reason,
4381 int from_transport)
4383 unsigned char *buffer = cmd->sense_buffer;
4384 unsigned long flags;
4385 int offset;
4386 u8 asc = 0, ascq = 0;
4388 spin_lock_irqsave(&cmd->t_state_lock, flags);
4389 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4390 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4391 return 0;
4393 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4394 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4396 if (!reason && from_transport)
4397 goto after_reason;
4399 if (!from_transport)
4400 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4402 * Data Segment and SenseLength of the fabric response PDU.
4404 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4405 * from include/scsi/scsi_cmnd.h
4407 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4408 TRANSPORT_SENSE_BUFFER);
4410 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4411 * SENSE KEY values from include/scsi/scsi.h
4413 switch (reason) {
4414 case TCM_NON_EXISTENT_LUN:
4415 /* CURRENT ERROR */
4416 buffer[offset] = 0x70;
4417 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4418 /* ILLEGAL REQUEST */
4419 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4420 /* LOGICAL UNIT NOT SUPPORTED */
4421 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4422 break;
4423 case TCM_UNSUPPORTED_SCSI_OPCODE:
4424 case TCM_SECTOR_COUNT_TOO_MANY:
4425 /* CURRENT ERROR */
4426 buffer[offset] = 0x70;
4427 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4428 /* ILLEGAL REQUEST */
4429 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4430 /* INVALID COMMAND OPERATION CODE */
4431 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4432 break;
4433 case TCM_UNKNOWN_MODE_PAGE:
4434 /* CURRENT ERROR */
4435 buffer[offset] = 0x70;
4436 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4437 /* ILLEGAL REQUEST */
4438 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4439 /* INVALID FIELD IN CDB */
4440 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4441 break;
4442 case TCM_CHECK_CONDITION_ABORT_CMD:
4443 /* CURRENT ERROR */
4444 buffer[offset] = 0x70;
4445 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4446 /* ABORTED COMMAND */
4447 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4448 /* BUS DEVICE RESET FUNCTION OCCURRED */
4449 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4450 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4451 break;
4452 case TCM_INCORRECT_AMOUNT_OF_DATA:
4453 /* CURRENT ERROR */
4454 buffer[offset] = 0x70;
4455 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4456 /* ABORTED COMMAND */
4457 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4458 /* WRITE ERROR */
4459 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4460 /* NOT ENOUGH UNSOLICITED DATA */
4461 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4462 break;
4463 case TCM_INVALID_CDB_FIELD:
4464 /* CURRENT ERROR */
4465 buffer[offset] = 0x70;
4466 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4467 /* ILLEGAL REQUEST */
4468 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4469 /* INVALID FIELD IN CDB */
4470 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4471 break;
4472 case TCM_INVALID_PARAMETER_LIST:
4473 /* CURRENT ERROR */
4474 buffer[offset] = 0x70;
4475 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4476 /* ILLEGAL REQUEST */
4477 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4478 /* INVALID FIELD IN PARAMETER LIST */
4479 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4480 break;
4481 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4482 /* CURRENT ERROR */
4483 buffer[offset] = 0x70;
4484 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4485 /* ABORTED COMMAND */
4486 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4487 /* WRITE ERROR */
4488 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4489 /* UNEXPECTED_UNSOLICITED_DATA */
4490 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4491 break;
4492 case TCM_SERVICE_CRC_ERROR:
4493 /* CURRENT ERROR */
4494 buffer[offset] = 0x70;
4495 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4496 /* ABORTED COMMAND */
4497 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4498 /* PROTOCOL SERVICE CRC ERROR */
4499 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4500 /* N/A */
4501 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4502 break;
4503 case TCM_SNACK_REJECTED:
4504 /* CURRENT ERROR */
4505 buffer[offset] = 0x70;
4506 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4507 /* ABORTED COMMAND */
4508 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4509 /* READ ERROR */
4510 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4511 /* FAILED RETRANSMISSION REQUEST */
4512 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4513 break;
4514 case TCM_WRITE_PROTECTED:
4515 /* CURRENT ERROR */
4516 buffer[offset] = 0x70;
4517 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4518 /* DATA PROTECT */
4519 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4520 /* WRITE PROTECTED */
4521 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4522 break;
4523 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4524 /* CURRENT ERROR */
4525 buffer[offset] = 0x70;
4526 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4527 /* UNIT ATTENTION */
4528 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4529 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4530 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4531 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4532 break;
4533 case TCM_CHECK_CONDITION_NOT_READY:
4534 /* CURRENT ERROR */
4535 buffer[offset] = 0x70;
4536 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4537 /* Not Ready */
4538 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4539 transport_get_sense_codes(cmd, &asc, &ascq);
4540 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4541 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4542 break;
4543 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4544 default:
4545 /* CURRENT ERROR */
4546 buffer[offset] = 0x70;
4547 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4548 /* ILLEGAL REQUEST */
4549 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4550 /* LOGICAL UNIT COMMUNICATION FAILURE */
4551 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4552 break;
4555 * This code uses linux/include/scsi/scsi.h SAM status codes!
4557 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4559 * Automatically padded, this value is encoded in the fabric's
4560 * data_length response PDU containing the SCSI defined sense data.
4562 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4564 after_reason:
4565 return cmd->se_tfo->queue_status(cmd);
4567 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4569 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4571 int ret = 0;
4573 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4574 if (!send_status ||
4575 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4576 return 1;
4577 #if 0
4578 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4579 " status for CDB: 0x%02x ITT: 0x%08x\n",
4580 cmd->t_task_cdb[0],
4581 cmd->se_tfo->get_task_tag(cmd));
4582 #endif
4583 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4584 cmd->se_tfo->queue_status(cmd);
4585 ret = 1;
4587 return ret;
4589 EXPORT_SYMBOL(transport_check_aborted_status);
4591 void transport_send_task_abort(struct se_cmd *cmd)
4593 unsigned long flags;
4595 spin_lock_irqsave(&cmd->t_state_lock, flags);
4596 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4597 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4598 return;
4600 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4603 * If there are still expected incoming fabric WRITEs, we wait
4604 * until until they have completed before sending a TASK_ABORTED
4605 * response. This response with TASK_ABORTED status will be
4606 * queued back to fabric module by transport_check_aborted_status().
4608 if (cmd->data_direction == DMA_TO_DEVICE) {
4609 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4610 atomic_inc(&cmd->t_transport_aborted);
4611 smp_mb__after_atomic_inc();
4614 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4615 #if 0
4616 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4617 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4618 cmd->se_tfo->get_task_tag(cmd));
4619 #endif
4620 cmd->se_tfo->queue_status(cmd);
4623 static int transport_generic_do_tmr(struct se_cmd *cmd)
4625 struct se_device *dev = cmd->se_dev;
4626 struct se_tmr_req *tmr = cmd->se_tmr_req;
4627 int ret;
4629 switch (tmr->function) {
4630 case TMR_ABORT_TASK:
4631 tmr->response = TMR_FUNCTION_REJECTED;
4632 break;
4633 case TMR_ABORT_TASK_SET:
4634 case TMR_CLEAR_ACA:
4635 case TMR_CLEAR_TASK_SET:
4636 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4637 break;
4638 case TMR_LUN_RESET:
4639 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4640 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4641 TMR_FUNCTION_REJECTED;
4642 break;
4643 case TMR_TARGET_WARM_RESET:
4644 tmr->response = TMR_FUNCTION_REJECTED;
4645 break;
4646 case TMR_TARGET_COLD_RESET:
4647 tmr->response = TMR_FUNCTION_REJECTED;
4648 break;
4649 default:
4650 pr_err("Uknown TMR function: 0x%02x.\n",
4651 tmr->function);
4652 tmr->response = TMR_FUNCTION_REJECTED;
4653 break;
4656 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4657 cmd->se_tfo->queue_tm_rsp(cmd);
4659 transport_cmd_check_stop_to_fabric(cmd);
4660 return 0;
4663 /* transport_processing_thread():
4667 static int transport_processing_thread(void *param)
4669 int ret;
4670 struct se_cmd *cmd;
4671 struct se_device *dev = param;
4673 while (!kthread_should_stop()) {
4674 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4675 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4676 kthread_should_stop());
4677 if (ret < 0)
4678 goto out;
4680 get_cmd:
4681 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4682 if (!cmd)
4683 continue;
4685 switch (cmd->t_state) {
4686 case TRANSPORT_NEW_CMD:
4687 BUG();
4688 break;
4689 case TRANSPORT_NEW_CMD_MAP:
4690 if (!cmd->se_tfo->new_cmd_map) {
4691 pr_err("cmd->se_tfo->new_cmd_map is"
4692 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4693 BUG();
4695 ret = cmd->se_tfo->new_cmd_map(cmd);
4696 if (ret < 0) {
4697 transport_generic_request_failure(cmd);
4698 break;
4700 ret = transport_generic_new_cmd(cmd);
4701 if (ret < 0) {
4702 transport_generic_request_failure(cmd);
4703 break;
4705 break;
4706 case TRANSPORT_PROCESS_WRITE:
4707 transport_generic_process_write(cmd);
4708 break;
4709 case TRANSPORT_PROCESS_TMR:
4710 transport_generic_do_tmr(cmd);
4711 break;
4712 case TRANSPORT_COMPLETE_QF_WP:
4713 transport_write_pending_qf(cmd);
4714 break;
4715 case TRANSPORT_COMPLETE_QF_OK:
4716 transport_complete_qf(cmd);
4717 break;
4718 default:
4719 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4720 "i_state: %d on SE LUN: %u\n",
4721 cmd->t_state,
4722 cmd->se_tfo->get_task_tag(cmd),
4723 cmd->se_tfo->get_cmd_state(cmd),
4724 cmd->se_lun->unpacked_lun);
4725 BUG();
4728 goto get_cmd;
4731 out:
4732 WARN_ON(!list_empty(&dev->state_task_list));
4733 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4734 dev->process_thread = NULL;
4735 return 0;