4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/file.h>
31 #include <asm/uaccess.h>
32 #include <linux/security.h>
33 #include <linux/seqlock.h>
34 #include <linux/swap.h>
35 #include <linux/bootmem.h>
37 /* #define DCACHE_DEBUG 1 */
39 int sysctl_vfs_cache_pressure
= 100;
40 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
42 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
43 static seqlock_t rename_lock __cacheline_aligned_in_smp
= SEQLOCK_UNLOCKED
;
45 EXPORT_SYMBOL(dcache_lock
);
47 static kmem_cache_t
*dentry_cache
;
49 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
52 * This is the single most critical data structure when it comes
53 * to the dcache: the hashtable for lookups. Somebody should try
54 * to make this good - I've just made it work.
56 * This hash-function tries to avoid losing too many bits of hash
57 * information, yet avoid using a prime hash-size or similar.
59 #define D_HASHBITS d_hash_shift
60 #define D_HASHMASK d_hash_mask
62 static unsigned int d_hash_mask
;
63 static unsigned int d_hash_shift
;
64 static struct hlist_head
*dentry_hashtable
;
65 static LIST_HEAD(dentry_unused
);
67 /* Statistics gathering. */
68 struct dentry_stat_t dentry_stat
= {
72 static void d_callback(struct rcu_head
*head
)
74 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
76 if (dname_external(dentry
))
77 kfree(dentry
->d_name
.name
);
78 kmem_cache_free(dentry_cache
, dentry
);
82 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
85 static void d_free(struct dentry
*dentry
)
87 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
88 dentry
->d_op
->d_release(dentry
);
89 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
93 * Release the dentry's inode, using the filesystem
94 * d_iput() operation if defined.
95 * Called with dcache_lock and per dentry lock held, drops both.
97 static void dentry_iput(struct dentry
* dentry
)
99 struct inode
*inode
= dentry
->d_inode
;
101 dentry
->d_inode
= NULL
;
102 list_del_init(&dentry
->d_alias
);
103 spin_unlock(&dentry
->d_lock
);
104 spin_unlock(&dcache_lock
);
106 fsnotify_inoderemove(inode
);
107 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
108 dentry
->d_op
->d_iput(dentry
, inode
);
112 spin_unlock(&dentry
->d_lock
);
113 spin_unlock(&dcache_lock
);
120 * This is complicated by the fact that we do not want to put
121 * dentries that are no longer on any hash chain on the unused
122 * list: we'd much rather just get rid of them immediately.
124 * However, that implies that we have to traverse the dentry
125 * tree upwards to the parents which might _also_ now be
126 * scheduled for deletion (it may have been only waiting for
127 * its last child to go away).
129 * This tail recursion is done by hand as we don't want to depend
130 * on the compiler to always get this right (gcc generally doesn't).
131 * Real recursion would eat up our stack space.
135 * dput - release a dentry
136 * @dentry: dentry to release
138 * Release a dentry. This will drop the usage count and if appropriate
139 * call the dentry unlink method as well as removing it from the queues and
140 * releasing its resources. If the parent dentries were scheduled for release
141 * they too may now get deleted.
143 * no dcache lock, please.
146 void dput(struct dentry
*dentry
)
152 if (atomic_read(&dentry
->d_count
) == 1)
154 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
157 spin_lock(&dentry
->d_lock
);
158 if (atomic_read(&dentry
->d_count
)) {
159 spin_unlock(&dentry
->d_lock
);
160 spin_unlock(&dcache_lock
);
165 * AV: ->d_delete() is _NOT_ allowed to block now.
167 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
168 if (dentry
->d_op
->d_delete(dentry
))
171 /* Unreachable? Get rid of it */
172 if (d_unhashed(dentry
))
174 if (list_empty(&dentry
->d_lru
)) {
175 dentry
->d_flags
|= DCACHE_REFERENCED
;
176 list_add(&dentry
->d_lru
, &dentry_unused
);
177 dentry_stat
.nr_unused
++;
179 spin_unlock(&dentry
->d_lock
);
180 spin_unlock(&dcache_lock
);
187 struct dentry
*parent
;
189 /* If dentry was on d_lru list
190 * delete it from there
192 if (!list_empty(&dentry
->d_lru
)) {
193 list_del(&dentry
->d_lru
);
194 dentry_stat
.nr_unused
--;
196 list_del(&dentry
->d_u
.d_child
);
197 dentry_stat
.nr_dentry
--; /* For d_free, below */
198 /*drops the locks, at that point nobody can reach this dentry */
200 parent
= dentry
->d_parent
;
202 if (dentry
== parent
)
210 * d_invalidate - invalidate a dentry
211 * @dentry: dentry to invalidate
213 * Try to invalidate the dentry if it turns out to be
214 * possible. If there are other dentries that can be
215 * reached through this one we can't delete it and we
216 * return -EBUSY. On success we return 0.
221 int d_invalidate(struct dentry
* dentry
)
224 * If it's already been dropped, return OK.
226 spin_lock(&dcache_lock
);
227 if (d_unhashed(dentry
)) {
228 spin_unlock(&dcache_lock
);
232 * Check whether to do a partial shrink_dcache
233 * to get rid of unused child entries.
235 if (!list_empty(&dentry
->d_subdirs
)) {
236 spin_unlock(&dcache_lock
);
237 shrink_dcache_parent(dentry
);
238 spin_lock(&dcache_lock
);
242 * Somebody else still using it?
244 * If it's a directory, we can't drop it
245 * for fear of somebody re-populating it
246 * with children (even though dropping it
247 * would make it unreachable from the root,
248 * we might still populate it if it was a
249 * working directory or similar).
251 spin_lock(&dentry
->d_lock
);
252 if (atomic_read(&dentry
->d_count
) > 1) {
253 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
254 spin_unlock(&dentry
->d_lock
);
255 spin_unlock(&dcache_lock
);
261 spin_unlock(&dentry
->d_lock
);
262 spin_unlock(&dcache_lock
);
266 /* This should be called _only_ with dcache_lock held */
268 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
270 atomic_inc(&dentry
->d_count
);
271 if (!list_empty(&dentry
->d_lru
)) {
272 dentry_stat
.nr_unused
--;
273 list_del_init(&dentry
->d_lru
);
278 struct dentry
* dget_locked(struct dentry
*dentry
)
280 return __dget_locked(dentry
);
284 * d_find_alias - grab a hashed alias of inode
285 * @inode: inode in question
286 * @want_discon: flag, used by d_splice_alias, to request
287 * that only a DISCONNECTED alias be returned.
289 * If inode has a hashed alias, or is a directory and has any alias,
290 * acquire the reference to alias and return it. Otherwise return NULL.
291 * Notice that if inode is a directory there can be only one alias and
292 * it can be unhashed only if it has no children, or if it is the root
295 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
296 * any other hashed alias over that one unless @want_discon is set,
297 * in which case only return a DCACHE_DISCONNECTED alias.
300 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
302 struct list_head
*head
, *next
, *tmp
;
303 struct dentry
*alias
, *discon_alias
=NULL
;
305 head
= &inode
->i_dentry
;
306 next
= inode
->i_dentry
.next
;
307 while (next
!= head
) {
311 alias
= list_entry(tmp
, struct dentry
, d_alias
);
312 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
313 if (alias
->d_flags
& DCACHE_DISCONNECTED
)
314 discon_alias
= alias
;
315 else if (!want_discon
) {
316 __dget_locked(alias
);
322 __dget_locked(discon_alias
);
326 struct dentry
* d_find_alias(struct inode
*inode
)
329 spin_lock(&dcache_lock
);
330 de
= __d_find_alias(inode
, 0);
331 spin_unlock(&dcache_lock
);
336 * Try to kill dentries associated with this inode.
337 * WARNING: you must own a reference to inode.
339 void d_prune_aliases(struct inode
*inode
)
341 struct dentry
*dentry
;
343 spin_lock(&dcache_lock
);
344 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
345 spin_lock(&dentry
->d_lock
);
346 if (!atomic_read(&dentry
->d_count
)) {
347 __dget_locked(dentry
);
349 spin_unlock(&dentry
->d_lock
);
350 spin_unlock(&dcache_lock
);
354 spin_unlock(&dentry
->d_lock
);
356 spin_unlock(&dcache_lock
);
360 * Throw away a dentry - free the inode, dput the parent.
361 * This requires that the LRU list has already been
363 * Called with dcache_lock, drops it and then regains.
365 static inline void prune_one_dentry(struct dentry
* dentry
)
367 struct dentry
* parent
;
370 list_del(&dentry
->d_u
.d_child
);
371 dentry_stat
.nr_dentry
--; /* For d_free, below */
373 parent
= dentry
->d_parent
;
375 if (parent
!= dentry
)
377 spin_lock(&dcache_lock
);
381 * prune_dcache - shrink the dcache
382 * @count: number of entries to try and free
384 * Shrink the dcache. This is done when we need
385 * more memory, or simply when we need to unmount
386 * something (at which point we need to unuse
389 * This function may fail to free any resources if
390 * all the dentries are in use.
393 static void prune_dcache(int count
)
395 spin_lock(&dcache_lock
);
396 for (; count
; count
--) {
397 struct dentry
*dentry
;
398 struct list_head
*tmp
;
400 cond_resched_lock(&dcache_lock
);
402 tmp
= dentry_unused
.prev
;
403 if (tmp
== &dentry_unused
)
406 prefetch(dentry_unused
.prev
);
407 dentry_stat
.nr_unused
--;
408 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
410 spin_lock(&dentry
->d_lock
);
412 * We found an inuse dentry which was not removed from
413 * dentry_unused because of laziness during lookup. Do not free
414 * it - just keep it off the dentry_unused list.
416 if (atomic_read(&dentry
->d_count
)) {
417 spin_unlock(&dentry
->d_lock
);
420 /* If the dentry was recently referenced, don't free it. */
421 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
422 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
423 list_add(&dentry
->d_lru
, &dentry_unused
);
424 dentry_stat
.nr_unused
++;
425 spin_unlock(&dentry
->d_lock
);
428 prune_one_dentry(dentry
);
430 spin_unlock(&dcache_lock
);
434 * Shrink the dcache for the specified super block.
435 * This allows us to unmount a device without disturbing
436 * the dcache for the other devices.
438 * This implementation makes just two traversals of the
439 * unused list. On the first pass we move the selected
440 * dentries to the most recent end, and on the second
441 * pass we free them. The second pass must restart after
442 * each dput(), but since the target dentries are all at
443 * the end, it's really just a single traversal.
447 * shrink_dcache_sb - shrink dcache for a superblock
450 * Shrink the dcache for the specified super block. This
451 * is used to free the dcache before unmounting a file
455 void shrink_dcache_sb(struct super_block
* sb
)
457 struct list_head
*tmp
, *next
;
458 struct dentry
*dentry
;
461 * Pass one ... move the dentries for the specified
462 * superblock to the most recent end of the unused list.
464 spin_lock(&dcache_lock
);
465 list_for_each_safe(tmp
, next
, &dentry_unused
) {
466 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
467 if (dentry
->d_sb
!= sb
)
470 list_add(tmp
, &dentry_unused
);
474 * Pass two ... free the dentries for this superblock.
477 list_for_each_safe(tmp
, next
, &dentry_unused
) {
478 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
479 if (dentry
->d_sb
!= sb
)
481 dentry_stat
.nr_unused
--;
483 spin_lock(&dentry
->d_lock
);
484 if (atomic_read(&dentry
->d_count
)) {
485 spin_unlock(&dentry
->d_lock
);
488 prune_one_dentry(dentry
);
491 spin_unlock(&dcache_lock
);
495 * Search for at least 1 mount point in the dentry's subdirs.
496 * We descend to the next level whenever the d_subdirs
497 * list is non-empty and continue searching.
501 * have_submounts - check for mounts over a dentry
502 * @parent: dentry to check.
504 * Return true if the parent or its subdirectories contain
508 int have_submounts(struct dentry
*parent
)
510 struct dentry
*this_parent
= parent
;
511 struct list_head
*next
;
513 spin_lock(&dcache_lock
);
514 if (d_mountpoint(parent
))
517 next
= this_parent
->d_subdirs
.next
;
519 while (next
!= &this_parent
->d_subdirs
) {
520 struct list_head
*tmp
= next
;
521 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
523 /* Have we found a mount point ? */
524 if (d_mountpoint(dentry
))
526 if (!list_empty(&dentry
->d_subdirs
)) {
527 this_parent
= dentry
;
532 * All done at this level ... ascend and resume the search.
534 if (this_parent
!= parent
) {
535 next
= this_parent
->d_u
.d_child
.next
;
536 this_parent
= this_parent
->d_parent
;
539 spin_unlock(&dcache_lock
);
540 return 0; /* No mount points found in tree */
542 spin_unlock(&dcache_lock
);
547 * Search the dentry child list for the specified parent,
548 * and move any unused dentries to the end of the unused
549 * list for prune_dcache(). We descend to the next level
550 * whenever the d_subdirs list is non-empty and continue
553 * It returns zero iff there are no unused children,
554 * otherwise it returns the number of children moved to
555 * the end of the unused list. This may not be the total
556 * number of unused children, because select_parent can
557 * drop the lock and return early due to latency
560 static int select_parent(struct dentry
* parent
)
562 struct dentry
*this_parent
= parent
;
563 struct list_head
*next
;
566 spin_lock(&dcache_lock
);
568 next
= this_parent
->d_subdirs
.next
;
570 while (next
!= &this_parent
->d_subdirs
) {
571 struct list_head
*tmp
= next
;
572 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
575 if (!list_empty(&dentry
->d_lru
)) {
576 dentry_stat
.nr_unused
--;
577 list_del_init(&dentry
->d_lru
);
580 * move only zero ref count dentries to the end
581 * of the unused list for prune_dcache
583 if (!atomic_read(&dentry
->d_count
)) {
584 list_add(&dentry
->d_lru
, dentry_unused
.prev
);
585 dentry_stat
.nr_unused
++;
590 * We can return to the caller if we have found some (this
591 * ensures forward progress). We'll be coming back to find
594 if (found
&& need_resched())
598 * Descend a level if the d_subdirs list is non-empty.
600 if (!list_empty(&dentry
->d_subdirs
)) {
601 this_parent
= dentry
;
603 printk(KERN_DEBUG
"select_parent: descending to %s/%s, found=%d\n",
604 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
, found
);
610 * All done at this level ... ascend and resume the search.
612 if (this_parent
!= parent
) {
613 next
= this_parent
->d_u
.d_child
.next
;
614 this_parent
= this_parent
->d_parent
;
616 printk(KERN_DEBUG
"select_parent: ascending to %s/%s, found=%d\n",
617 this_parent
->d_parent
->d_name
.name
, this_parent
->d_name
.name
, found
);
622 spin_unlock(&dcache_lock
);
627 * shrink_dcache_parent - prune dcache
628 * @parent: parent of entries to prune
630 * Prune the dcache to remove unused children of the parent dentry.
633 void shrink_dcache_parent(struct dentry
* parent
)
637 while ((found
= select_parent(parent
)) != 0)
642 * shrink_dcache_anon - further prune the cache
643 * @head: head of d_hash list of dentries to prune
645 * Prune the dentries that are anonymous
647 * parsing d_hash list does not hlist_for_each_entry_rcu() as it
648 * done under dcache_lock.
651 void shrink_dcache_anon(struct hlist_head
*head
)
653 struct hlist_node
*lp
;
657 spin_lock(&dcache_lock
);
658 hlist_for_each(lp
, head
) {
659 struct dentry
*this = hlist_entry(lp
, struct dentry
, d_hash
);
660 if (!list_empty(&this->d_lru
)) {
661 dentry_stat
.nr_unused
--;
662 list_del_init(&this->d_lru
);
666 * move only zero ref count dentries to the end
667 * of the unused list for prune_dcache
669 if (!atomic_read(&this->d_count
)) {
670 list_add_tail(&this->d_lru
, &dentry_unused
);
671 dentry_stat
.nr_unused
++;
675 spin_unlock(&dcache_lock
);
681 * Scan `nr' dentries and return the number which remain.
683 * We need to avoid reentering the filesystem if the caller is performing a
684 * GFP_NOFS allocation attempt. One example deadlock is:
686 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
687 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
688 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
690 * In this case we return -1 to tell the caller that we baled.
692 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
695 if (!(gfp_mask
& __GFP_FS
))
699 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
703 * d_alloc - allocate a dcache entry
704 * @parent: parent of entry to allocate
705 * @name: qstr of the name
707 * Allocates a dentry. It returns %NULL if there is insufficient memory
708 * available. On a success the dentry is returned. The name passed in is
709 * copied and the copy passed in may be reused after this call.
712 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
714 struct dentry
*dentry
;
717 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
721 if (name
->len
> DNAME_INLINE_LEN
-1) {
722 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
724 kmem_cache_free(dentry_cache
, dentry
);
728 dname
= dentry
->d_iname
;
730 dentry
->d_name
.name
= dname
;
732 dentry
->d_name
.len
= name
->len
;
733 dentry
->d_name
.hash
= name
->hash
;
734 memcpy(dname
, name
->name
, name
->len
);
735 dname
[name
->len
] = 0;
737 atomic_set(&dentry
->d_count
, 1);
738 dentry
->d_flags
= DCACHE_UNHASHED
;
739 spin_lock_init(&dentry
->d_lock
);
740 dentry
->d_inode
= NULL
;
741 dentry
->d_parent
= NULL
;
744 dentry
->d_fsdata
= NULL
;
745 dentry
->d_mounted
= 0;
746 #ifdef CONFIG_PROFILING
747 dentry
->d_cookie
= NULL
;
749 INIT_HLIST_NODE(&dentry
->d_hash
);
750 INIT_LIST_HEAD(&dentry
->d_lru
);
751 INIT_LIST_HEAD(&dentry
->d_subdirs
);
752 INIT_LIST_HEAD(&dentry
->d_alias
);
755 dentry
->d_parent
= dget(parent
);
756 dentry
->d_sb
= parent
->d_sb
;
758 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
761 spin_lock(&dcache_lock
);
763 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
764 dentry_stat
.nr_dentry
++;
765 spin_unlock(&dcache_lock
);
770 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
775 q
.len
= strlen(name
);
776 q
.hash
= full_name_hash(q
.name
, q
.len
);
777 return d_alloc(parent
, &q
);
781 * d_instantiate - fill in inode information for a dentry
782 * @entry: dentry to complete
783 * @inode: inode to attach to this dentry
785 * Fill in inode information in the entry.
787 * This turns negative dentries into productive full members
790 * NOTE! This assumes that the inode count has been incremented
791 * (or otherwise set) by the caller to indicate that it is now
792 * in use by the dcache.
795 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
797 if (!list_empty(&entry
->d_alias
)) BUG();
798 spin_lock(&dcache_lock
);
800 list_add(&entry
->d_alias
, &inode
->i_dentry
);
801 entry
->d_inode
= inode
;
802 spin_unlock(&dcache_lock
);
803 security_d_instantiate(entry
, inode
);
807 * d_instantiate_unique - instantiate a non-aliased dentry
808 * @entry: dentry to instantiate
809 * @inode: inode to attach to this dentry
811 * Fill in inode information in the entry. On success, it returns NULL.
812 * If an unhashed alias of "entry" already exists, then we return the
813 * aliased dentry instead and drop one reference to inode.
815 * Note that in order to avoid conflicts with rename() etc, the caller
816 * had better be holding the parent directory semaphore.
818 * This also assumes that the inode count has been incremented
819 * (or otherwise set) by the caller to indicate that it is now
820 * in use by the dcache.
822 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
824 struct dentry
*alias
;
825 int len
= entry
->d_name
.len
;
826 const char *name
= entry
->d_name
.name
;
827 unsigned int hash
= entry
->d_name
.hash
;
829 BUG_ON(!list_empty(&entry
->d_alias
));
830 spin_lock(&dcache_lock
);
833 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
834 struct qstr
*qstr
= &alias
->d_name
;
836 if (qstr
->hash
!= hash
)
838 if (alias
->d_parent
!= entry
->d_parent
)
840 if (qstr
->len
!= len
)
842 if (memcmp(qstr
->name
, name
, len
))
845 spin_unlock(&dcache_lock
);
846 BUG_ON(!d_unhashed(alias
));
850 list_add(&entry
->d_alias
, &inode
->i_dentry
);
852 entry
->d_inode
= inode
;
853 spin_unlock(&dcache_lock
);
854 security_d_instantiate(entry
, inode
);
857 EXPORT_SYMBOL(d_instantiate_unique
);
860 * d_alloc_root - allocate root dentry
861 * @root_inode: inode to allocate the root for
863 * Allocate a root ("/") dentry for the inode given. The inode is
864 * instantiated and returned. %NULL is returned if there is insufficient
865 * memory or the inode passed is %NULL.
868 struct dentry
* d_alloc_root(struct inode
* root_inode
)
870 struct dentry
*res
= NULL
;
873 static const struct qstr name
= { .name
= "/", .len
= 1 };
875 res
= d_alloc(NULL
, &name
);
877 res
->d_sb
= root_inode
->i_sb
;
879 d_instantiate(res
, root_inode
);
885 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
888 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
889 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
890 return dentry_hashtable
+ (hash
& D_HASHMASK
);
894 * d_alloc_anon - allocate an anonymous dentry
895 * @inode: inode to allocate the dentry for
897 * This is similar to d_alloc_root. It is used by filesystems when
898 * creating a dentry for a given inode, often in the process of
899 * mapping a filehandle to a dentry. The returned dentry may be
900 * anonymous, or may have a full name (if the inode was already
901 * in the cache). The file system may need to make further
902 * efforts to connect this dentry into the dcache properly.
904 * When called on a directory inode, we must ensure that
905 * the inode only ever has one dentry. If a dentry is
906 * found, that is returned instead of allocating a new one.
908 * On successful return, the reference to the inode has been transferred
909 * to the dentry. If %NULL is returned (indicating kmalloc failure),
910 * the reference on the inode has not been released.
913 struct dentry
* d_alloc_anon(struct inode
*inode
)
915 static const struct qstr anonstring
= { .name
= "" };
919 if ((res
= d_find_alias(inode
))) {
924 tmp
= d_alloc(NULL
, &anonstring
);
928 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
930 spin_lock(&dcache_lock
);
931 res
= __d_find_alias(inode
, 0);
933 /* attach a disconnected dentry */
936 spin_lock(&res
->d_lock
);
937 res
->d_sb
= inode
->i_sb
;
939 res
->d_inode
= inode
;
940 res
->d_flags
|= DCACHE_DISCONNECTED
;
941 res
->d_flags
&= ~DCACHE_UNHASHED
;
942 list_add(&res
->d_alias
, &inode
->i_dentry
);
943 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
944 spin_unlock(&res
->d_lock
);
946 inode
= NULL
; /* don't drop reference */
948 spin_unlock(&dcache_lock
);
959 * d_splice_alias - splice a disconnected dentry into the tree if one exists
960 * @inode: the inode which may have a disconnected dentry
961 * @dentry: a negative dentry which we want to point to the inode.
963 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
964 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
965 * and return it, else simply d_add the inode to the dentry and return NULL.
967 * This is needed in the lookup routine of any filesystem that is exportable
968 * (via knfsd) so that we can build dcache paths to directories effectively.
970 * If a dentry was found and moved, then it is returned. Otherwise NULL
971 * is returned. This matches the expected return value of ->lookup.
974 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
976 struct dentry
*new = NULL
;
979 spin_lock(&dcache_lock
);
980 new = __d_find_alias(inode
, 1);
982 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
983 spin_unlock(&dcache_lock
);
984 security_d_instantiate(new, inode
);
989 /* d_instantiate takes dcache_lock, so we do it by hand */
990 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
991 dentry
->d_inode
= inode
;
992 spin_unlock(&dcache_lock
);
993 security_d_instantiate(dentry
, inode
);
997 d_add(dentry
, inode
);
1003 * d_lookup - search for a dentry
1004 * @parent: parent dentry
1005 * @name: qstr of name we wish to find
1007 * Searches the children of the parent dentry for the name in question. If
1008 * the dentry is found its reference count is incremented and the dentry
1009 * is returned. The caller must use d_put to free the entry when it has
1010 * finished using it. %NULL is returned on failure.
1012 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1013 * Memory barriers are used while updating and doing lockless traversal.
1014 * To avoid races with d_move while rename is happening, d_lock is used.
1016 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1017 * and name pointer in one structure pointed by d_qstr.
1019 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1020 * lookup is going on.
1022 * dentry_unused list is not updated even if lookup finds the required dentry
1023 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1024 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1027 * d_lookup() is protected against the concurrent renames in some unrelated
1028 * directory using the seqlockt_t rename_lock.
1031 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1033 struct dentry
* dentry
= NULL
;
1037 seq
= read_seqbegin(&rename_lock
);
1038 dentry
= __d_lookup(parent
, name
);
1041 } while (read_seqretry(&rename_lock
, seq
));
1045 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1047 unsigned int len
= name
->len
;
1048 unsigned int hash
= name
->hash
;
1049 const unsigned char *str
= name
->name
;
1050 struct hlist_head
*head
= d_hash(parent
,hash
);
1051 struct dentry
*found
= NULL
;
1052 struct hlist_node
*node
;
1053 struct dentry
*dentry
;
1057 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1060 if (dentry
->d_name
.hash
!= hash
)
1062 if (dentry
->d_parent
!= parent
)
1065 spin_lock(&dentry
->d_lock
);
1068 * Recheck the dentry after taking the lock - d_move may have
1069 * changed things. Don't bother checking the hash because we're
1070 * about to compare the whole name anyway.
1072 if (dentry
->d_parent
!= parent
)
1076 * It is safe to compare names since d_move() cannot
1077 * change the qstr (protected by d_lock).
1079 qstr
= &dentry
->d_name
;
1080 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1081 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1084 if (qstr
->len
!= len
)
1086 if (memcmp(qstr
->name
, str
, len
))
1090 if (!d_unhashed(dentry
)) {
1091 atomic_inc(&dentry
->d_count
);
1094 spin_unlock(&dentry
->d_lock
);
1097 spin_unlock(&dentry
->d_lock
);
1105 * d_validate - verify dentry provided from insecure source
1106 * @dentry: The dentry alleged to be valid child of @dparent
1107 * @dparent: The parent dentry (known to be valid)
1108 * @hash: Hash of the dentry
1109 * @len: Length of the name
1111 * An insecure source has sent us a dentry, here we verify it and dget() it.
1112 * This is used by ncpfs in its readdir implementation.
1113 * Zero is returned in the dentry is invalid.
1116 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1118 struct hlist_head
*base
;
1119 struct hlist_node
*lhp
;
1121 /* Check whether the ptr might be valid at all.. */
1122 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1125 if (dentry
->d_parent
!= dparent
)
1128 spin_lock(&dcache_lock
);
1129 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1130 hlist_for_each(lhp
,base
) {
1131 /* hlist_for_each_entry_rcu() not required for d_hash list
1132 * as it is parsed under dcache_lock
1134 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1135 __dget_locked(dentry
);
1136 spin_unlock(&dcache_lock
);
1140 spin_unlock(&dcache_lock
);
1146 * When a file is deleted, we have two options:
1147 * - turn this dentry into a negative dentry
1148 * - unhash this dentry and free it.
1150 * Usually, we want to just turn this into
1151 * a negative dentry, but if anybody else is
1152 * currently using the dentry or the inode
1153 * we can't do that and we fall back on removing
1154 * it from the hash queues and waiting for
1155 * it to be deleted later when it has no users
1159 * d_delete - delete a dentry
1160 * @dentry: The dentry to delete
1162 * Turn the dentry into a negative dentry if possible, otherwise
1163 * remove it from the hash queues so it can be deleted later
1166 void d_delete(struct dentry
* dentry
)
1170 * Are we the only user?
1172 spin_lock(&dcache_lock
);
1173 spin_lock(&dentry
->d_lock
);
1174 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1175 if (atomic_read(&dentry
->d_count
) == 1) {
1176 dentry_iput(dentry
);
1177 fsnotify_nameremove(dentry
, isdir
);
1181 if (!d_unhashed(dentry
))
1184 spin_unlock(&dentry
->d_lock
);
1185 spin_unlock(&dcache_lock
);
1187 fsnotify_nameremove(dentry
, isdir
);
1190 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1193 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1194 hlist_add_head_rcu(&entry
->d_hash
, list
);
1198 * d_rehash - add an entry back to the hash
1199 * @entry: dentry to add to the hash
1201 * Adds a dentry to the hash according to its name.
1204 void d_rehash(struct dentry
* entry
)
1206 struct hlist_head
*list
= d_hash(entry
->d_parent
, entry
->d_name
.hash
);
1208 spin_lock(&dcache_lock
);
1209 spin_lock(&entry
->d_lock
);
1210 __d_rehash(entry
, list
);
1211 spin_unlock(&entry
->d_lock
);
1212 spin_unlock(&dcache_lock
);
1215 #define do_switch(x,y) do { \
1216 __typeof__ (x) __tmp = x; \
1217 x = y; y = __tmp; } while (0)
1220 * When switching names, the actual string doesn't strictly have to
1221 * be preserved in the target - because we're dropping the target
1222 * anyway. As such, we can just do a simple memcpy() to copy over
1223 * the new name before we switch.
1225 * Note that we have to be a lot more careful about getting the hash
1226 * switched - we have to switch the hash value properly even if it
1227 * then no longer matches the actual (corrupted) string of the target.
1228 * The hash value has to match the hash queue that the dentry is on..
1230 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1232 if (dname_external(target
)) {
1233 if (dname_external(dentry
)) {
1235 * Both external: swap the pointers
1237 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1240 * dentry:internal, target:external. Steal target's
1241 * storage and make target internal.
1243 dentry
->d_name
.name
= target
->d_name
.name
;
1244 target
->d_name
.name
= target
->d_iname
;
1247 if (dname_external(dentry
)) {
1249 * dentry:external, target:internal. Give dentry's
1250 * storage to target and make dentry internal
1252 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1253 target
->d_name
.len
+ 1);
1254 target
->d_name
.name
= dentry
->d_name
.name
;
1255 dentry
->d_name
.name
= dentry
->d_iname
;
1258 * Both are internal. Just copy target to dentry
1260 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1261 target
->d_name
.len
+ 1);
1267 * We cannibalize "target" when moving dentry on top of it,
1268 * because it's going to be thrown away anyway. We could be more
1269 * polite about it, though.
1271 * This forceful removal will result in ugly /proc output if
1272 * somebody holds a file open that got deleted due to a rename.
1273 * We could be nicer about the deleted file, and let it show
1274 * up under the name it got deleted rather than the name that
1279 * d_move - move a dentry
1280 * @dentry: entry to move
1281 * @target: new dentry
1283 * Update the dcache to reflect the move of a file name. Negative
1284 * dcache entries should not be moved in this way.
1287 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1289 struct hlist_head
*list
;
1291 if (!dentry
->d_inode
)
1292 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1294 spin_lock(&dcache_lock
);
1295 write_seqlock(&rename_lock
);
1297 * XXXX: do we really need to take target->d_lock?
1299 if (target
< dentry
) {
1300 spin_lock(&target
->d_lock
);
1301 spin_lock(&dentry
->d_lock
);
1303 spin_lock(&dentry
->d_lock
);
1304 spin_lock(&target
->d_lock
);
1307 /* Move the dentry to the target hash queue, if on different bucket */
1308 if (dentry
->d_flags
& DCACHE_UNHASHED
)
1309 goto already_unhashed
;
1311 hlist_del_rcu(&dentry
->d_hash
);
1314 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1315 __d_rehash(dentry
, list
);
1317 /* Unhash the target: dput() will then get rid of it */
1320 list_del(&dentry
->d_u
.d_child
);
1321 list_del(&target
->d_u
.d_child
);
1323 /* Switch the names.. */
1324 switch_names(dentry
, target
);
1325 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1326 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1328 /* ... and switch the parents */
1329 if (IS_ROOT(dentry
)) {
1330 dentry
->d_parent
= target
->d_parent
;
1331 target
->d_parent
= target
;
1332 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1334 do_switch(dentry
->d_parent
, target
->d_parent
);
1336 /* And add them back to the (new) parent lists */
1337 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1340 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1341 spin_unlock(&target
->d_lock
);
1342 spin_unlock(&dentry
->d_lock
);
1343 write_sequnlock(&rename_lock
);
1344 spin_unlock(&dcache_lock
);
1348 * d_path - return the path of a dentry
1349 * @dentry: dentry to report
1350 * @vfsmnt: vfsmnt to which the dentry belongs
1351 * @root: root dentry
1352 * @rootmnt: vfsmnt to which the root dentry belongs
1353 * @buffer: buffer to return value in
1354 * @buflen: buffer length
1356 * Convert a dentry into an ASCII path name. If the entry has been deleted
1357 * the string " (deleted)" is appended. Note that this is ambiguous.
1359 * Returns the buffer or an error code if the path was too long.
1361 * "buflen" should be positive. Caller holds the dcache_lock.
1363 static char * __d_path( struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1364 struct dentry
*root
, struct vfsmount
*rootmnt
,
1365 char *buffer
, int buflen
)
1367 char * end
= buffer
+buflen
;
1373 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1378 memcpy(end
, " (deleted)", 10);
1388 struct dentry
* parent
;
1390 if (dentry
== root
&& vfsmnt
== rootmnt
)
1392 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1394 spin_lock(&vfsmount_lock
);
1395 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1396 spin_unlock(&vfsmount_lock
);
1399 dentry
= vfsmnt
->mnt_mountpoint
;
1400 vfsmnt
= vfsmnt
->mnt_parent
;
1401 spin_unlock(&vfsmount_lock
);
1404 parent
= dentry
->d_parent
;
1406 namelen
= dentry
->d_name
.len
;
1407 buflen
-= namelen
+ 1;
1411 memcpy(end
, dentry
->d_name
.name
, namelen
);
1420 namelen
= dentry
->d_name
.len
;
1424 retval
-= namelen
-1; /* hit the slash */
1425 memcpy(retval
, dentry
->d_name
.name
, namelen
);
1428 return ERR_PTR(-ENAMETOOLONG
);
1431 /* write full pathname into buffer and return start of pathname */
1432 char * d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1433 char *buf
, int buflen
)
1436 struct vfsmount
*rootmnt
;
1437 struct dentry
*root
;
1439 read_lock(¤t
->fs
->lock
);
1440 rootmnt
= mntget(current
->fs
->rootmnt
);
1441 root
= dget(current
->fs
->root
);
1442 read_unlock(¤t
->fs
->lock
);
1443 spin_lock(&dcache_lock
);
1444 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
);
1445 spin_unlock(&dcache_lock
);
1452 * NOTE! The user-level library version returns a
1453 * character pointer. The kernel system call just
1454 * returns the length of the buffer filled (which
1455 * includes the ending '\0' character), or a negative
1456 * error value. So libc would do something like
1458 * char *getcwd(char * buf, size_t size)
1462 * retval = sys_getcwd(buf, size);
1469 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1472 struct vfsmount
*pwdmnt
, *rootmnt
;
1473 struct dentry
*pwd
, *root
;
1474 char *page
= (char *) __get_free_page(GFP_USER
);
1479 read_lock(¤t
->fs
->lock
);
1480 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1481 pwd
= dget(current
->fs
->pwd
);
1482 rootmnt
= mntget(current
->fs
->rootmnt
);
1483 root
= dget(current
->fs
->root
);
1484 read_unlock(¤t
->fs
->lock
);
1487 /* Has the current directory has been unlinked? */
1488 spin_lock(&dcache_lock
);
1489 if (pwd
->d_parent
== pwd
|| !d_unhashed(pwd
)) {
1493 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
);
1494 spin_unlock(&dcache_lock
);
1496 error
= PTR_ERR(cwd
);
1501 len
= PAGE_SIZE
+ page
- cwd
;
1504 if (copy_to_user(buf
, cwd
, len
))
1508 spin_unlock(&dcache_lock
);
1515 free_page((unsigned long) page
);
1520 * Test whether new_dentry is a subdirectory of old_dentry.
1522 * Trivially implemented using the dcache structure
1526 * is_subdir - is new dentry a subdirectory of old_dentry
1527 * @new_dentry: new dentry
1528 * @old_dentry: old dentry
1530 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1531 * Returns 0 otherwise.
1532 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1535 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1538 struct dentry
* saved
= new_dentry
;
1541 /* need rcu_readlock to protect against the d_parent trashing due to
1546 /* for restarting inner loop in case of seq retry */
1549 seq
= read_seqbegin(&rename_lock
);
1551 if (new_dentry
!= old_dentry
) {
1552 struct dentry
* parent
= new_dentry
->d_parent
;
1553 if (parent
== new_dentry
)
1555 new_dentry
= parent
;
1561 } while (read_seqretry(&rename_lock
, seq
));
1567 void d_genocide(struct dentry
*root
)
1569 struct dentry
*this_parent
= root
;
1570 struct list_head
*next
;
1572 spin_lock(&dcache_lock
);
1574 next
= this_parent
->d_subdirs
.next
;
1576 while (next
!= &this_parent
->d_subdirs
) {
1577 struct list_head
*tmp
= next
;
1578 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1580 if (d_unhashed(dentry
)||!dentry
->d_inode
)
1582 if (!list_empty(&dentry
->d_subdirs
)) {
1583 this_parent
= dentry
;
1586 atomic_dec(&dentry
->d_count
);
1588 if (this_parent
!= root
) {
1589 next
= this_parent
->d_u
.d_child
.next
;
1590 atomic_dec(&this_parent
->d_count
);
1591 this_parent
= this_parent
->d_parent
;
1594 spin_unlock(&dcache_lock
);
1598 * find_inode_number - check for dentry with name
1599 * @dir: directory to check
1600 * @name: Name to find.
1602 * Check whether a dentry already exists for the given name,
1603 * and return the inode number if it has an inode. Otherwise
1606 * This routine is used to post-process directory listings for
1607 * filesystems using synthetic inode numbers, and is necessary
1608 * to keep getcwd() working.
1611 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
1613 struct dentry
* dentry
;
1617 * Check for a fs-specific hash function. Note that we must
1618 * calculate the standard hash first, as the d_op->d_hash()
1619 * routine may choose to leave the hash value unchanged.
1621 name
->hash
= full_name_hash(name
->name
, name
->len
);
1622 if (dir
->d_op
&& dir
->d_op
->d_hash
)
1624 if (dir
->d_op
->d_hash(dir
, name
) != 0)
1628 dentry
= d_lookup(dir
, name
);
1631 if (dentry
->d_inode
)
1632 ino
= dentry
->d_inode
->i_ino
;
1639 static __initdata
unsigned long dhash_entries
;
1640 static int __init
set_dhash_entries(char *str
)
1644 dhash_entries
= simple_strtoul(str
, &str
, 0);
1647 __setup("dhash_entries=", set_dhash_entries
);
1649 static void __init
dcache_init_early(void)
1653 /* If hashes are distributed across NUMA nodes, defer
1654 * hash allocation until vmalloc space is available.
1660 alloc_large_system_hash("Dentry cache",
1661 sizeof(struct hlist_head
),
1669 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1670 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1673 static void __init
dcache_init(unsigned long mempages
)
1678 * A constructor could be added for stable state like the lists,
1679 * but it is probably not worth it because of the cache nature
1682 dentry_cache
= kmem_cache_create("dentry_cache",
1683 sizeof(struct dentry
),
1685 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
,
1688 set_shrinker(DEFAULT_SEEKS
, shrink_dcache_memory
);
1690 /* Hash may have been set up in dcache_init_early */
1695 alloc_large_system_hash("Dentry cache",
1696 sizeof(struct hlist_head
),
1704 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1705 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1708 /* SLAB cache for __getname() consumers */
1709 kmem_cache_t
*names_cachep
;
1711 /* SLAB cache for file structures */
1712 kmem_cache_t
*filp_cachep
;
1714 EXPORT_SYMBOL(d_genocide
);
1716 extern void bdev_cache_init(void);
1717 extern void chrdev_init(void);
1719 void __init
vfs_caches_init_early(void)
1721 dcache_init_early();
1725 void __init
vfs_caches_init(unsigned long mempages
)
1727 unsigned long reserve
;
1729 /* Base hash sizes on available memory, with a reserve equal to
1730 150% of current kernel size */
1732 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
1733 mempages
-= reserve
;
1735 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
1736 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1738 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
1739 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, filp_ctor
, filp_dtor
);
1741 dcache_init(mempages
);
1742 inode_init(mempages
);
1743 files_init(mempages
);
1749 EXPORT_SYMBOL(d_alloc
);
1750 EXPORT_SYMBOL(d_alloc_anon
);
1751 EXPORT_SYMBOL(d_alloc_root
);
1752 EXPORT_SYMBOL(d_delete
);
1753 EXPORT_SYMBOL(d_find_alias
);
1754 EXPORT_SYMBOL(d_instantiate
);
1755 EXPORT_SYMBOL(d_invalidate
);
1756 EXPORT_SYMBOL(d_lookup
);
1757 EXPORT_SYMBOL(d_move
);
1758 EXPORT_SYMBOL(d_path
);
1759 EXPORT_SYMBOL(d_prune_aliases
);
1760 EXPORT_SYMBOL(d_rehash
);
1761 EXPORT_SYMBOL(d_splice_alias
);
1762 EXPORT_SYMBOL(d_validate
);
1763 EXPORT_SYMBOL(dget_locked
);
1764 EXPORT_SYMBOL(dput
);
1765 EXPORT_SYMBOL(find_inode_number
);
1766 EXPORT_SYMBOL(have_submounts
);
1767 EXPORT_SYMBOL(names_cachep
);
1768 EXPORT_SYMBOL(shrink_dcache_parent
);
1769 EXPORT_SYMBOL(shrink_dcache_sb
);