ARM: dts: imx6qdl-sabresd: enable the SPI NOR
[linux-2.6.git] / fs / jbd2 / journal.c
blob02c7ad9d7a412a6ce9a81c048d832d2238671306
1 /*
2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108 unsigned int line, const char *fmt, ...)
110 struct va_format vaf;
111 va_list args;
113 if (level > jbd2_journal_enable_debug)
114 return;
115 va_start(args, fmt);
116 vaf.fmt = fmt;
117 vaf.va = &args;
118 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 va_end(args);
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
124 /* Checksumming functions */
125 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
128 return 1;
130 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 __u32 csum, old_csum;
137 old_csum = sb->s_checksum;
138 sb->s_checksum = 0;
139 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140 sb->s_checksum = old_csum;
142 return cpu_to_be32(csum);
145 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
148 return 1;
150 return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
156 return;
158 sb->s_checksum = jbd2_superblock_csum(j, sb);
162 * Helper function used to manage commit timeouts
165 static void commit_timeout(unsigned long __data)
167 struct task_struct * p = (struct task_struct *) __data;
169 wake_up_process(p);
173 * kjournald2: The main thread function used to manage a logging device
174 * journal.
176 * This kernel thread is responsible for two things:
178 * 1) COMMIT: Every so often we need to commit the current state of the
179 * filesystem to disk. The journal thread is responsible for writing
180 * all of the metadata buffers to disk.
182 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
183 * of the data in that part of the log has been rewritten elsewhere on
184 * the disk. Flushing these old buffers to reclaim space in the log is
185 * known as checkpointing, and this thread is responsible for that job.
188 static int kjournald2(void *arg)
190 journal_t *journal = arg;
191 transaction_t *transaction;
194 * Set up an interval timer which can be used to trigger a commit wakeup
195 * after the commit interval expires
197 setup_timer(&journal->j_commit_timer, commit_timeout,
198 (unsigned long)current);
200 set_freezable();
202 /* Record that the journal thread is running */
203 journal->j_task = current;
204 wake_up(&journal->j_wait_done_commit);
207 * And now, wait forever for commit wakeup events.
209 write_lock(&journal->j_state_lock);
211 loop:
212 if (journal->j_flags & JBD2_UNMOUNT)
213 goto end_loop;
215 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
216 journal->j_commit_sequence, journal->j_commit_request);
218 if (journal->j_commit_sequence != journal->j_commit_request) {
219 jbd_debug(1, "OK, requests differ\n");
220 write_unlock(&journal->j_state_lock);
221 del_timer_sync(&journal->j_commit_timer);
222 jbd2_journal_commit_transaction(journal);
223 write_lock(&journal->j_state_lock);
224 goto loop;
227 wake_up(&journal->j_wait_done_commit);
228 if (freezing(current)) {
230 * The simpler the better. Flushing journal isn't a
231 * good idea, because that depends on threads that may
232 * be already stopped.
234 jbd_debug(1, "Now suspending kjournald2\n");
235 write_unlock(&journal->j_state_lock);
236 try_to_freeze();
237 write_lock(&journal->j_state_lock);
238 } else {
240 * We assume on resume that commits are already there,
241 * so we don't sleep
243 DEFINE_WAIT(wait);
244 int should_sleep = 1;
246 prepare_to_wait(&journal->j_wait_commit, &wait,
247 TASK_INTERRUPTIBLE);
248 if (journal->j_commit_sequence != journal->j_commit_request)
249 should_sleep = 0;
250 transaction = journal->j_running_transaction;
251 if (transaction && time_after_eq(jiffies,
252 transaction->t_expires))
253 should_sleep = 0;
254 if (journal->j_flags & JBD2_UNMOUNT)
255 should_sleep = 0;
256 if (should_sleep) {
257 write_unlock(&journal->j_state_lock);
258 schedule();
259 write_lock(&journal->j_state_lock);
261 finish_wait(&journal->j_wait_commit, &wait);
264 jbd_debug(1, "kjournald2 wakes\n");
267 * Were we woken up by a commit wakeup event?
269 transaction = journal->j_running_transaction;
270 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
271 journal->j_commit_request = transaction->t_tid;
272 jbd_debug(1, "woke because of timeout\n");
274 goto loop;
276 end_loop:
277 write_unlock(&journal->j_state_lock);
278 del_timer_sync(&journal->j_commit_timer);
279 journal->j_task = NULL;
280 wake_up(&journal->j_wait_done_commit);
281 jbd_debug(1, "Journal thread exiting.\n");
282 return 0;
285 static int jbd2_journal_start_thread(journal_t *journal)
287 struct task_struct *t;
289 t = kthread_run(kjournald2, journal, "jbd2/%s",
290 journal->j_devname);
291 if (IS_ERR(t))
292 return PTR_ERR(t);
294 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
295 return 0;
298 static void journal_kill_thread(journal_t *journal)
300 write_lock(&journal->j_state_lock);
301 journal->j_flags |= JBD2_UNMOUNT;
303 while (journal->j_task) {
304 wake_up(&journal->j_wait_commit);
305 write_unlock(&journal->j_state_lock);
306 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
307 write_lock(&journal->j_state_lock);
309 write_unlock(&journal->j_state_lock);
313 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315 * Writes a metadata buffer to a given disk block. The actual IO is not
316 * performed but a new buffer_head is constructed which labels the data
317 * to be written with the correct destination disk block.
319 * Any magic-number escaping which needs to be done will cause a
320 * copy-out here. If the buffer happens to start with the
321 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
322 * magic number is only written to the log for descripter blocks. In
323 * this case, we copy the data and replace the first word with 0, and we
324 * return a result code which indicates that this buffer needs to be
325 * marked as an escaped buffer in the corresponding log descriptor
326 * block. The missing word can then be restored when the block is read
327 * during recovery.
329 * If the source buffer has already been modified by a new transaction
330 * since we took the last commit snapshot, we use the frozen copy of
331 * that data for IO. If we end up using the existing buffer_head's data
332 * for the write, then we have to make sure nobody modifies it while the
333 * IO is in progress. do_get_write_access() handles this.
335 * The function returns a pointer to the buffer_head to be used for IO.
338 * Return value:
339 * <0: Error
340 * >=0: Finished OK
342 * On success:
343 * Bit 0 set == escape performed on the data
344 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
348 struct journal_head *jh_in,
349 struct buffer_head **bh_out,
350 sector_t blocknr)
352 int need_copy_out = 0;
353 int done_copy_out = 0;
354 int do_escape = 0;
355 char *mapped_data;
356 struct buffer_head *new_bh;
357 struct page *new_page;
358 unsigned int new_offset;
359 struct buffer_head *bh_in = jh2bh(jh_in);
360 journal_t *journal = transaction->t_journal;
363 * The buffer really shouldn't be locked: only the current committing
364 * transaction is allowed to write it, so nobody else is allowed
365 * to do any IO.
367 * akpm: except if we're journalling data, and write() output is
368 * also part of a shared mapping, and another thread has
369 * decided to launch a writepage() against this buffer.
371 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373 retry_alloc:
374 new_bh = alloc_buffer_head(GFP_NOFS);
375 if (!new_bh) {
377 * Failure is not an option, but __GFP_NOFAIL is going
378 * away; so we retry ourselves here.
380 congestion_wait(BLK_RW_ASYNC, HZ/50);
381 goto retry_alloc;
384 /* keep subsequent assertions sane */
385 atomic_set(&new_bh->b_count, 1);
387 jbd_lock_bh_state(bh_in);
388 repeat:
390 * If a new transaction has already done a buffer copy-out, then
391 * we use that version of the data for the commit.
393 if (jh_in->b_frozen_data) {
394 done_copy_out = 1;
395 new_page = virt_to_page(jh_in->b_frozen_data);
396 new_offset = offset_in_page(jh_in->b_frozen_data);
397 } else {
398 new_page = jh2bh(jh_in)->b_page;
399 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
402 mapped_data = kmap_atomic(new_page);
404 * Fire data frozen trigger if data already wasn't frozen. Do this
405 * before checking for escaping, as the trigger may modify the magic
406 * offset. If a copy-out happens afterwards, it will have the correct
407 * data in the buffer.
409 if (!done_copy_out)
410 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
411 jh_in->b_triggers);
414 * Check for escaping
416 if (*((__be32 *)(mapped_data + new_offset)) ==
417 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
418 need_copy_out = 1;
419 do_escape = 1;
421 kunmap_atomic(mapped_data);
424 * Do we need to do a data copy?
426 if (need_copy_out && !done_copy_out) {
427 char *tmp;
429 jbd_unlock_bh_state(bh_in);
430 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
431 if (!tmp) {
432 brelse(new_bh);
433 return -ENOMEM;
435 jbd_lock_bh_state(bh_in);
436 if (jh_in->b_frozen_data) {
437 jbd2_free(tmp, bh_in->b_size);
438 goto repeat;
441 jh_in->b_frozen_data = tmp;
442 mapped_data = kmap_atomic(new_page);
443 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
444 kunmap_atomic(mapped_data);
446 new_page = virt_to_page(tmp);
447 new_offset = offset_in_page(tmp);
448 done_copy_out = 1;
451 * This isn't strictly necessary, as we're using frozen
452 * data for the escaping, but it keeps consistency with
453 * b_frozen_data usage.
455 jh_in->b_frozen_triggers = jh_in->b_triggers;
459 * Did we need to do an escaping? Now we've done all the
460 * copying, we can finally do so.
462 if (do_escape) {
463 mapped_data = kmap_atomic(new_page);
464 *((unsigned int *)(mapped_data + new_offset)) = 0;
465 kunmap_atomic(mapped_data);
468 set_bh_page(new_bh, new_page, new_offset);
469 new_bh->b_size = bh_in->b_size;
470 new_bh->b_bdev = journal->j_dev;
471 new_bh->b_blocknr = blocknr;
472 new_bh->b_private = bh_in;
473 set_buffer_mapped(new_bh);
474 set_buffer_dirty(new_bh);
476 *bh_out = new_bh;
479 * The to-be-written buffer needs to get moved to the io queue,
480 * and the original buffer whose contents we are shadowing or
481 * copying is moved to the transaction's shadow queue.
483 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
484 spin_lock(&journal->j_list_lock);
485 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
486 spin_unlock(&journal->j_list_lock);
487 set_buffer_shadow(bh_in);
488 jbd_unlock_bh_state(bh_in);
490 return do_escape | (done_copy_out << 1);
494 * Allocation code for the journal file. Manage the space left in the
495 * journal, so that we can begin checkpointing when appropriate.
499 * Called with j_state_lock locked for writing.
500 * Returns true if a transaction commit was started.
502 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 /* Return if the txn has already requested to be committed */
505 if (journal->j_commit_request == target)
506 return 0;
509 * The only transaction we can possibly wait upon is the
510 * currently running transaction (if it exists). Otherwise,
511 * the target tid must be an old one.
513 if (journal->j_running_transaction &&
514 journal->j_running_transaction->t_tid == target) {
516 * We want a new commit: OK, mark the request and wakeup the
517 * commit thread. We do _not_ do the commit ourselves.
520 journal->j_commit_request = target;
521 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
522 journal->j_commit_request,
523 journal->j_commit_sequence);
524 journal->j_running_transaction->t_requested = jiffies;
525 wake_up(&journal->j_wait_commit);
526 return 1;
527 } else if (!tid_geq(journal->j_commit_request, target))
528 /* This should never happen, but if it does, preserve
529 the evidence before kjournald goes into a loop and
530 increments j_commit_sequence beyond all recognition. */
531 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
532 journal->j_commit_request,
533 journal->j_commit_sequence,
534 target, journal->j_running_transaction ?
535 journal->j_running_transaction->t_tid : 0);
536 return 0;
539 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 int ret;
543 write_lock(&journal->j_state_lock);
544 ret = __jbd2_log_start_commit(journal, tid);
545 write_unlock(&journal->j_state_lock);
546 return ret;
550 * Force and wait any uncommitted transactions. We can only force the running
551 * transaction if we don't have an active handle, otherwise, we will deadlock.
552 * Returns: <0 in case of error,
553 * 0 if nothing to commit,
554 * 1 if transaction was successfully committed.
556 static int __jbd2_journal_force_commit(journal_t *journal)
558 transaction_t *transaction = NULL;
559 tid_t tid;
560 int need_to_start = 0, ret = 0;
562 read_lock(&journal->j_state_lock);
563 if (journal->j_running_transaction && !current->journal_info) {
564 transaction = journal->j_running_transaction;
565 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
566 need_to_start = 1;
567 } else if (journal->j_committing_transaction)
568 transaction = journal->j_committing_transaction;
570 if (!transaction) {
571 /* Nothing to commit */
572 read_unlock(&journal->j_state_lock);
573 return 0;
575 tid = transaction->t_tid;
576 read_unlock(&journal->j_state_lock);
577 if (need_to_start)
578 jbd2_log_start_commit(journal, tid);
579 ret = jbd2_log_wait_commit(journal, tid);
580 if (!ret)
581 ret = 1;
583 return ret;
587 * Force and wait upon a commit if the calling process is not within
588 * transaction. This is used for forcing out undo-protected data which contains
589 * bitmaps, when the fs is running out of space.
591 * @journal: journal to force
592 * Returns true if progress was made.
594 int jbd2_journal_force_commit_nested(journal_t *journal)
596 int ret;
598 ret = __jbd2_journal_force_commit(journal);
599 return ret > 0;
603 * int journal_force_commit() - force any uncommitted transactions
604 * @journal: journal to force
606 * Caller want unconditional commit. We can only force the running transaction
607 * if we don't have an active handle, otherwise, we will deadlock.
609 int jbd2_journal_force_commit(journal_t *journal)
611 int ret;
613 J_ASSERT(!current->journal_info);
614 ret = __jbd2_journal_force_commit(journal);
615 if (ret > 0)
616 ret = 0;
617 return ret;
621 * Start a commit of the current running transaction (if any). Returns true
622 * if a transaction is going to be committed (or is currently already
623 * committing), and fills its tid in at *ptid
625 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 int ret = 0;
629 write_lock(&journal->j_state_lock);
630 if (journal->j_running_transaction) {
631 tid_t tid = journal->j_running_transaction->t_tid;
633 __jbd2_log_start_commit(journal, tid);
634 /* There's a running transaction and we've just made sure
635 * it's commit has been scheduled. */
636 if (ptid)
637 *ptid = tid;
638 ret = 1;
639 } else if (journal->j_committing_transaction) {
641 * If commit has been started, then we have to wait for
642 * completion of that transaction.
644 if (ptid)
645 *ptid = journal->j_committing_transaction->t_tid;
646 ret = 1;
648 write_unlock(&journal->j_state_lock);
649 return ret;
653 * Return 1 if a given transaction has not yet sent barrier request
654 * connected with a transaction commit. If 0 is returned, transaction
655 * may or may not have sent the barrier. Used to avoid sending barrier
656 * twice in common cases.
658 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 int ret = 0;
661 transaction_t *commit_trans;
663 if (!(journal->j_flags & JBD2_BARRIER))
664 return 0;
665 read_lock(&journal->j_state_lock);
666 /* Transaction already committed? */
667 if (tid_geq(journal->j_commit_sequence, tid))
668 goto out;
669 commit_trans = journal->j_committing_transaction;
670 if (!commit_trans || commit_trans->t_tid != tid) {
671 ret = 1;
672 goto out;
675 * Transaction is being committed and we already proceeded to
676 * submitting a flush to fs partition?
678 if (journal->j_fs_dev != journal->j_dev) {
679 if (!commit_trans->t_need_data_flush ||
680 commit_trans->t_state >= T_COMMIT_DFLUSH)
681 goto out;
682 } else {
683 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
684 goto out;
686 ret = 1;
687 out:
688 read_unlock(&journal->j_state_lock);
689 return ret;
691 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
694 * Wait for a specified commit to complete.
695 * The caller may not hold the journal lock.
697 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 int err = 0;
701 read_lock(&journal->j_state_lock);
702 #ifdef CONFIG_JBD2_DEBUG
703 if (!tid_geq(journal->j_commit_request, tid)) {
704 printk(KERN_EMERG
705 "%s: error: j_commit_request=%d, tid=%d\n",
706 __func__, journal->j_commit_request, tid);
708 #endif
709 while (tid_gt(tid, journal->j_commit_sequence)) {
710 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
711 tid, journal->j_commit_sequence);
712 wake_up(&journal->j_wait_commit);
713 read_unlock(&journal->j_state_lock);
714 wait_event(journal->j_wait_done_commit,
715 !tid_gt(tid, journal->j_commit_sequence));
716 read_lock(&journal->j_state_lock);
718 read_unlock(&journal->j_state_lock);
720 if (unlikely(is_journal_aborted(journal))) {
721 printk(KERN_EMERG "journal commit I/O error\n");
722 err = -EIO;
724 return err;
728 * When this function returns the transaction corresponding to tid
729 * will be completed. If the transaction has currently running, start
730 * committing that transaction before waiting for it to complete. If
731 * the transaction id is stale, it is by definition already completed,
732 * so just return SUCCESS.
734 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
736 int need_to_wait = 1;
738 read_lock(&journal->j_state_lock);
739 if (journal->j_running_transaction &&
740 journal->j_running_transaction->t_tid == tid) {
741 if (journal->j_commit_request != tid) {
742 /* transaction not yet started, so request it */
743 read_unlock(&journal->j_state_lock);
744 jbd2_log_start_commit(journal, tid);
745 goto wait_commit;
747 } else if (!(journal->j_committing_transaction &&
748 journal->j_committing_transaction->t_tid == tid))
749 need_to_wait = 0;
750 read_unlock(&journal->j_state_lock);
751 if (!need_to_wait)
752 return 0;
753 wait_commit:
754 return jbd2_log_wait_commit(journal, tid);
756 EXPORT_SYMBOL(jbd2_complete_transaction);
759 * Log buffer allocation routines:
762 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
764 unsigned long blocknr;
766 write_lock(&journal->j_state_lock);
767 J_ASSERT(journal->j_free > 1);
769 blocknr = journal->j_head;
770 journal->j_head++;
771 journal->j_free--;
772 if (journal->j_head == journal->j_last)
773 journal->j_head = journal->j_first;
774 write_unlock(&journal->j_state_lock);
775 return jbd2_journal_bmap(journal, blocknr, retp);
779 * Conversion of logical to physical block numbers for the journal
781 * On external journals the journal blocks are identity-mapped, so
782 * this is a no-op. If needed, we can use j_blk_offset - everything is
783 * ready.
785 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
786 unsigned long long *retp)
788 int err = 0;
789 unsigned long long ret;
791 if (journal->j_inode) {
792 ret = bmap(journal->j_inode, blocknr);
793 if (ret)
794 *retp = ret;
795 else {
796 printk(KERN_ALERT "%s: journal block not found "
797 "at offset %lu on %s\n",
798 __func__, blocknr, journal->j_devname);
799 err = -EIO;
800 __journal_abort_soft(journal, err);
802 } else {
803 *retp = blocknr; /* +journal->j_blk_offset */
805 return err;
809 * We play buffer_head aliasing tricks to write data/metadata blocks to
810 * the journal without copying their contents, but for journal
811 * descriptor blocks we do need to generate bona fide buffers.
813 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
814 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
815 * But we don't bother doing that, so there will be coherency problems with
816 * mmaps of blockdevs which hold live JBD-controlled filesystems.
818 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
820 struct buffer_head *bh;
821 unsigned long long blocknr;
822 int err;
824 err = jbd2_journal_next_log_block(journal, &blocknr);
826 if (err)
827 return NULL;
829 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
830 if (!bh)
831 return NULL;
832 lock_buffer(bh);
833 memset(bh->b_data, 0, journal->j_blocksize);
834 set_buffer_uptodate(bh);
835 unlock_buffer(bh);
836 BUFFER_TRACE(bh, "return this buffer");
837 return bh;
841 * Return tid of the oldest transaction in the journal and block in the journal
842 * where the transaction starts.
844 * If the journal is now empty, return which will be the next transaction ID
845 * we will write and where will that transaction start.
847 * The return value is 0 if journal tail cannot be pushed any further, 1 if
848 * it can.
850 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
851 unsigned long *block)
853 transaction_t *transaction;
854 int ret;
856 read_lock(&journal->j_state_lock);
857 spin_lock(&journal->j_list_lock);
858 transaction = journal->j_checkpoint_transactions;
859 if (transaction) {
860 *tid = transaction->t_tid;
861 *block = transaction->t_log_start;
862 } else if ((transaction = journal->j_committing_transaction) != NULL) {
863 *tid = transaction->t_tid;
864 *block = transaction->t_log_start;
865 } else if ((transaction = journal->j_running_transaction) != NULL) {
866 *tid = transaction->t_tid;
867 *block = journal->j_head;
868 } else {
869 *tid = journal->j_transaction_sequence;
870 *block = journal->j_head;
872 ret = tid_gt(*tid, journal->j_tail_sequence);
873 spin_unlock(&journal->j_list_lock);
874 read_unlock(&journal->j_state_lock);
876 return ret;
880 * Update information in journal structure and in on disk journal superblock
881 * about log tail. This function does not check whether information passed in
882 * really pushes log tail further. It's responsibility of the caller to make
883 * sure provided log tail information is valid (e.g. by holding
884 * j_checkpoint_mutex all the time between computing log tail and calling this
885 * function as is the case with jbd2_cleanup_journal_tail()).
887 * Requires j_checkpoint_mutex
889 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
891 unsigned long freed;
893 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
896 * We cannot afford for write to remain in drive's caches since as
897 * soon as we update j_tail, next transaction can start reusing journal
898 * space and if we lose sb update during power failure we'd replay
899 * old transaction with possibly newly overwritten data.
901 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
902 write_lock(&journal->j_state_lock);
903 freed = block - journal->j_tail;
904 if (block < journal->j_tail)
905 freed += journal->j_last - journal->j_first;
907 trace_jbd2_update_log_tail(journal, tid, block, freed);
908 jbd_debug(1,
909 "Cleaning journal tail from %d to %d (offset %lu), "
910 "freeing %lu\n",
911 journal->j_tail_sequence, tid, block, freed);
913 journal->j_free += freed;
914 journal->j_tail_sequence = tid;
915 journal->j_tail = block;
916 write_unlock(&journal->j_state_lock);
920 * This is a variaon of __jbd2_update_log_tail which checks for validity of
921 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
922 * with other threads updating log tail.
924 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
926 mutex_lock(&journal->j_checkpoint_mutex);
927 if (tid_gt(tid, journal->j_tail_sequence))
928 __jbd2_update_log_tail(journal, tid, block);
929 mutex_unlock(&journal->j_checkpoint_mutex);
932 struct jbd2_stats_proc_session {
933 journal_t *journal;
934 struct transaction_stats_s *stats;
935 int start;
936 int max;
939 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
941 return *pos ? NULL : SEQ_START_TOKEN;
944 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
946 return NULL;
949 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
951 struct jbd2_stats_proc_session *s = seq->private;
953 if (v != SEQ_START_TOKEN)
954 return 0;
955 seq_printf(seq, "%lu transactions (%lu requested), "
956 "each up to %u blocks\n",
957 s->stats->ts_tid, s->stats->ts_requested,
958 s->journal->j_max_transaction_buffers);
959 if (s->stats->ts_tid == 0)
960 return 0;
961 seq_printf(seq, "average: \n %ums waiting for transaction\n",
962 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
963 seq_printf(seq, " %ums request delay\n",
964 (s->stats->ts_requested == 0) ? 0 :
965 jiffies_to_msecs(s->stats->run.rs_request_delay /
966 s->stats->ts_requested));
967 seq_printf(seq, " %ums running transaction\n",
968 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
969 seq_printf(seq, " %ums transaction was being locked\n",
970 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
971 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
972 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
973 seq_printf(seq, " %ums logging transaction\n",
974 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
975 seq_printf(seq, " %lluus average transaction commit time\n",
976 div_u64(s->journal->j_average_commit_time, 1000));
977 seq_printf(seq, " %lu handles per transaction\n",
978 s->stats->run.rs_handle_count / s->stats->ts_tid);
979 seq_printf(seq, " %lu blocks per transaction\n",
980 s->stats->run.rs_blocks / s->stats->ts_tid);
981 seq_printf(seq, " %lu logged blocks per transaction\n",
982 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
983 return 0;
986 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
990 static const struct seq_operations jbd2_seq_info_ops = {
991 .start = jbd2_seq_info_start,
992 .next = jbd2_seq_info_next,
993 .stop = jbd2_seq_info_stop,
994 .show = jbd2_seq_info_show,
997 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
999 journal_t *journal = PDE_DATA(inode);
1000 struct jbd2_stats_proc_session *s;
1001 int rc, size;
1003 s = kmalloc(sizeof(*s), GFP_KERNEL);
1004 if (s == NULL)
1005 return -ENOMEM;
1006 size = sizeof(struct transaction_stats_s);
1007 s->stats = kmalloc(size, GFP_KERNEL);
1008 if (s->stats == NULL) {
1009 kfree(s);
1010 return -ENOMEM;
1012 spin_lock(&journal->j_history_lock);
1013 memcpy(s->stats, &journal->j_stats, size);
1014 s->journal = journal;
1015 spin_unlock(&journal->j_history_lock);
1017 rc = seq_open(file, &jbd2_seq_info_ops);
1018 if (rc == 0) {
1019 struct seq_file *m = file->private_data;
1020 m->private = s;
1021 } else {
1022 kfree(s->stats);
1023 kfree(s);
1025 return rc;
1029 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1031 struct seq_file *seq = file->private_data;
1032 struct jbd2_stats_proc_session *s = seq->private;
1033 kfree(s->stats);
1034 kfree(s);
1035 return seq_release(inode, file);
1038 static const struct file_operations jbd2_seq_info_fops = {
1039 .owner = THIS_MODULE,
1040 .open = jbd2_seq_info_open,
1041 .read = seq_read,
1042 .llseek = seq_lseek,
1043 .release = jbd2_seq_info_release,
1046 static struct proc_dir_entry *proc_jbd2_stats;
1048 static void jbd2_stats_proc_init(journal_t *journal)
1050 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1051 if (journal->j_proc_entry) {
1052 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1053 &jbd2_seq_info_fops, journal);
1057 static void jbd2_stats_proc_exit(journal_t *journal)
1059 remove_proc_entry("info", journal->j_proc_entry);
1060 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1064 * Management for journal control blocks: functions to create and
1065 * destroy journal_t structures, and to initialise and read existing
1066 * journal blocks from disk. */
1068 /* First: create and setup a journal_t object in memory. We initialise
1069 * very few fields yet: that has to wait until we have created the
1070 * journal structures from from scratch, or loaded them from disk. */
1072 static journal_t * journal_init_common (void)
1074 journal_t *journal;
1075 int err;
1077 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1078 if (!journal)
1079 return NULL;
1081 init_waitqueue_head(&journal->j_wait_transaction_locked);
1082 init_waitqueue_head(&journal->j_wait_done_commit);
1083 init_waitqueue_head(&journal->j_wait_commit);
1084 init_waitqueue_head(&journal->j_wait_updates);
1085 init_waitqueue_head(&journal->j_wait_reserved);
1086 mutex_init(&journal->j_barrier);
1087 mutex_init(&journal->j_checkpoint_mutex);
1088 spin_lock_init(&journal->j_revoke_lock);
1089 spin_lock_init(&journal->j_list_lock);
1090 rwlock_init(&journal->j_state_lock);
1092 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1093 journal->j_min_batch_time = 0;
1094 journal->j_max_batch_time = 15000; /* 15ms */
1095 atomic_set(&journal->j_reserved_credits, 0);
1097 /* The journal is marked for error until we succeed with recovery! */
1098 journal->j_flags = JBD2_ABORT;
1100 /* Set up a default-sized revoke table for the new mount. */
1101 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1102 if (err) {
1103 kfree(journal);
1104 return NULL;
1107 spin_lock_init(&journal->j_history_lock);
1109 return journal;
1112 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1114 * Create a journal structure assigned some fixed set of disk blocks to
1115 * the journal. We don't actually touch those disk blocks yet, but we
1116 * need to set up all of the mapping information to tell the journaling
1117 * system where the journal blocks are.
1122 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1123 * @bdev: Block device on which to create the journal
1124 * @fs_dev: Device which hold journalled filesystem for this journal.
1125 * @start: Block nr Start of journal.
1126 * @len: Length of the journal in blocks.
1127 * @blocksize: blocksize of journalling device
1129 * Returns: a newly created journal_t *
1131 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1132 * range of blocks on an arbitrary block device.
1135 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1136 struct block_device *fs_dev,
1137 unsigned long long start, int len, int blocksize)
1139 journal_t *journal = journal_init_common();
1140 struct buffer_head *bh;
1141 char *p;
1142 int n;
1144 if (!journal)
1145 return NULL;
1147 /* journal descriptor can store up to n blocks -bzzz */
1148 journal->j_blocksize = blocksize;
1149 journal->j_dev = bdev;
1150 journal->j_fs_dev = fs_dev;
1151 journal->j_blk_offset = start;
1152 journal->j_maxlen = len;
1153 bdevname(journal->j_dev, journal->j_devname);
1154 p = journal->j_devname;
1155 while ((p = strchr(p, '/')))
1156 *p = '!';
1157 jbd2_stats_proc_init(journal);
1158 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1159 journal->j_wbufsize = n;
1160 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1161 if (!journal->j_wbuf) {
1162 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1163 __func__);
1164 goto out_err;
1167 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1168 if (!bh) {
1169 printk(KERN_ERR
1170 "%s: Cannot get buffer for journal superblock\n",
1171 __func__);
1172 goto out_err;
1174 journal->j_sb_buffer = bh;
1175 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1177 return journal;
1178 out_err:
1179 kfree(journal->j_wbuf);
1180 jbd2_stats_proc_exit(journal);
1181 kfree(journal);
1182 return NULL;
1186 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1187 * @inode: An inode to create the journal in
1189 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1190 * the journal. The inode must exist already, must support bmap() and
1191 * must have all data blocks preallocated.
1193 journal_t * jbd2_journal_init_inode (struct inode *inode)
1195 struct buffer_head *bh;
1196 journal_t *journal = journal_init_common();
1197 char *p;
1198 int err;
1199 int n;
1200 unsigned long long blocknr;
1202 if (!journal)
1203 return NULL;
1205 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1206 journal->j_inode = inode;
1207 bdevname(journal->j_dev, journal->j_devname);
1208 p = journal->j_devname;
1209 while ((p = strchr(p, '/')))
1210 *p = '!';
1211 p = journal->j_devname + strlen(journal->j_devname);
1212 sprintf(p, "-%lu", journal->j_inode->i_ino);
1213 jbd_debug(1,
1214 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1215 journal, inode->i_sb->s_id, inode->i_ino,
1216 (long long) inode->i_size,
1217 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1219 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1220 journal->j_blocksize = inode->i_sb->s_blocksize;
1221 jbd2_stats_proc_init(journal);
1223 /* journal descriptor can store up to n blocks -bzzz */
1224 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1225 journal->j_wbufsize = n;
1226 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1227 if (!journal->j_wbuf) {
1228 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1229 __func__);
1230 goto out_err;
1233 err = jbd2_journal_bmap(journal, 0, &blocknr);
1234 /* If that failed, give up */
1235 if (err) {
1236 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1237 __func__);
1238 goto out_err;
1241 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1242 if (!bh) {
1243 printk(KERN_ERR
1244 "%s: Cannot get buffer for journal superblock\n",
1245 __func__);
1246 goto out_err;
1248 journal->j_sb_buffer = bh;
1249 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1251 return journal;
1252 out_err:
1253 kfree(journal->j_wbuf);
1254 jbd2_stats_proc_exit(journal);
1255 kfree(journal);
1256 return NULL;
1260 * If the journal init or create aborts, we need to mark the journal
1261 * superblock as being NULL to prevent the journal destroy from writing
1262 * back a bogus superblock.
1264 static void journal_fail_superblock (journal_t *journal)
1266 struct buffer_head *bh = journal->j_sb_buffer;
1267 brelse(bh);
1268 journal->j_sb_buffer = NULL;
1272 * Given a journal_t structure, initialise the various fields for
1273 * startup of a new journaling session. We use this both when creating
1274 * a journal, and after recovering an old journal to reset it for
1275 * subsequent use.
1278 static int journal_reset(journal_t *journal)
1280 journal_superblock_t *sb = journal->j_superblock;
1281 unsigned long long first, last;
1283 first = be32_to_cpu(sb->s_first);
1284 last = be32_to_cpu(sb->s_maxlen);
1285 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1286 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1287 first, last);
1288 journal_fail_superblock(journal);
1289 return -EINVAL;
1292 journal->j_first = first;
1293 journal->j_last = last;
1295 journal->j_head = first;
1296 journal->j_tail = first;
1297 journal->j_free = last - first;
1299 journal->j_tail_sequence = journal->j_transaction_sequence;
1300 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1301 journal->j_commit_request = journal->j_commit_sequence;
1303 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1306 * As a special case, if the on-disk copy is already marked as needing
1307 * no recovery (s_start == 0), then we can safely defer the superblock
1308 * update until the next commit by setting JBD2_FLUSHED. This avoids
1309 * attempting a write to a potential-readonly device.
1311 if (sb->s_start == 0) {
1312 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1313 "(start %ld, seq %d, errno %d)\n",
1314 journal->j_tail, journal->j_tail_sequence,
1315 journal->j_errno);
1316 journal->j_flags |= JBD2_FLUSHED;
1317 } else {
1318 /* Lock here to make assertions happy... */
1319 mutex_lock(&journal->j_checkpoint_mutex);
1321 * Update log tail information. We use WRITE_FUA since new
1322 * transaction will start reusing journal space and so we
1323 * must make sure information about current log tail is on
1324 * disk before that.
1326 jbd2_journal_update_sb_log_tail(journal,
1327 journal->j_tail_sequence,
1328 journal->j_tail,
1329 WRITE_FUA);
1330 mutex_unlock(&journal->j_checkpoint_mutex);
1332 return jbd2_journal_start_thread(journal);
1335 static void jbd2_write_superblock(journal_t *journal, int write_op)
1337 struct buffer_head *bh = journal->j_sb_buffer;
1338 journal_superblock_t *sb = journal->j_superblock;
1339 int ret;
1341 trace_jbd2_write_superblock(journal, write_op);
1342 if (!(journal->j_flags & JBD2_BARRIER))
1343 write_op &= ~(REQ_FUA | REQ_FLUSH);
1344 lock_buffer(bh);
1345 if (buffer_write_io_error(bh)) {
1347 * Oh, dear. A previous attempt to write the journal
1348 * superblock failed. This could happen because the
1349 * USB device was yanked out. Or it could happen to
1350 * be a transient write error and maybe the block will
1351 * be remapped. Nothing we can do but to retry the
1352 * write and hope for the best.
1354 printk(KERN_ERR "JBD2: previous I/O error detected "
1355 "for journal superblock update for %s.\n",
1356 journal->j_devname);
1357 clear_buffer_write_io_error(bh);
1358 set_buffer_uptodate(bh);
1360 jbd2_superblock_csum_set(journal, sb);
1361 get_bh(bh);
1362 bh->b_end_io = end_buffer_write_sync;
1363 ret = submit_bh(write_op, bh);
1364 wait_on_buffer(bh);
1365 if (buffer_write_io_error(bh)) {
1366 clear_buffer_write_io_error(bh);
1367 set_buffer_uptodate(bh);
1368 ret = -EIO;
1370 if (ret) {
1371 printk(KERN_ERR "JBD2: Error %d detected when updating "
1372 "journal superblock for %s.\n", ret,
1373 journal->j_devname);
1378 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1379 * @journal: The journal to update.
1380 * @tail_tid: TID of the new transaction at the tail of the log
1381 * @tail_block: The first block of the transaction at the tail of the log
1382 * @write_op: With which operation should we write the journal sb
1384 * Update a journal's superblock information about log tail and write it to
1385 * disk, waiting for the IO to complete.
1387 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1388 unsigned long tail_block, int write_op)
1390 journal_superblock_t *sb = journal->j_superblock;
1392 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1393 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1394 tail_block, tail_tid);
1396 sb->s_sequence = cpu_to_be32(tail_tid);
1397 sb->s_start = cpu_to_be32(tail_block);
1399 jbd2_write_superblock(journal, write_op);
1401 /* Log is no longer empty */
1402 write_lock(&journal->j_state_lock);
1403 WARN_ON(!sb->s_sequence);
1404 journal->j_flags &= ~JBD2_FLUSHED;
1405 write_unlock(&journal->j_state_lock);
1409 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1410 * @journal: The journal to update.
1412 * Update a journal's dynamic superblock fields to show that journal is empty.
1413 * Write updated superblock to disk waiting for IO to complete.
1415 static void jbd2_mark_journal_empty(journal_t *journal)
1417 journal_superblock_t *sb = journal->j_superblock;
1419 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1420 read_lock(&journal->j_state_lock);
1421 /* Is it already empty? */
1422 if (sb->s_start == 0) {
1423 read_unlock(&journal->j_state_lock);
1424 return;
1426 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1427 journal->j_tail_sequence);
1429 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1430 sb->s_start = cpu_to_be32(0);
1431 read_unlock(&journal->j_state_lock);
1433 jbd2_write_superblock(journal, WRITE_FUA);
1435 /* Log is no longer empty */
1436 write_lock(&journal->j_state_lock);
1437 journal->j_flags |= JBD2_FLUSHED;
1438 write_unlock(&journal->j_state_lock);
1443 * jbd2_journal_update_sb_errno() - Update error in the journal.
1444 * @journal: The journal to update.
1446 * Update a journal's errno. Write updated superblock to disk waiting for IO
1447 * to complete.
1449 void jbd2_journal_update_sb_errno(journal_t *journal)
1451 journal_superblock_t *sb = journal->j_superblock;
1453 read_lock(&journal->j_state_lock);
1454 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1455 journal->j_errno);
1456 sb->s_errno = cpu_to_be32(journal->j_errno);
1457 read_unlock(&journal->j_state_lock);
1459 jbd2_write_superblock(journal, WRITE_SYNC);
1461 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1464 * Read the superblock for a given journal, performing initial
1465 * validation of the format.
1467 static int journal_get_superblock(journal_t *journal)
1469 struct buffer_head *bh;
1470 journal_superblock_t *sb;
1471 int err = -EIO;
1473 bh = journal->j_sb_buffer;
1475 J_ASSERT(bh != NULL);
1476 if (!buffer_uptodate(bh)) {
1477 ll_rw_block(READ, 1, &bh);
1478 wait_on_buffer(bh);
1479 if (!buffer_uptodate(bh)) {
1480 printk(KERN_ERR
1481 "JBD2: IO error reading journal superblock\n");
1482 goto out;
1486 if (buffer_verified(bh))
1487 return 0;
1489 sb = journal->j_superblock;
1491 err = -EINVAL;
1493 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1494 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1495 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1496 goto out;
1499 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1500 case JBD2_SUPERBLOCK_V1:
1501 journal->j_format_version = 1;
1502 break;
1503 case JBD2_SUPERBLOCK_V2:
1504 journal->j_format_version = 2;
1505 break;
1506 default:
1507 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1508 goto out;
1511 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1512 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1513 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1514 printk(KERN_WARNING "JBD2: journal file too short\n");
1515 goto out;
1518 if (be32_to_cpu(sb->s_first) == 0 ||
1519 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1520 printk(KERN_WARNING
1521 "JBD2: Invalid start block of journal: %u\n",
1522 be32_to_cpu(sb->s_first));
1523 goto out;
1526 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1527 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1528 /* Can't have checksum v1 and v2 on at the same time! */
1529 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1530 "at the same time!\n");
1531 goto out;
1534 if (!jbd2_verify_csum_type(journal, sb)) {
1535 printk(KERN_ERR "JBD: Unknown checksum type\n");
1536 goto out;
1539 /* Load the checksum driver */
1540 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1541 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1542 if (IS_ERR(journal->j_chksum_driver)) {
1543 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1544 err = PTR_ERR(journal->j_chksum_driver);
1545 journal->j_chksum_driver = NULL;
1546 goto out;
1550 /* Check superblock checksum */
1551 if (!jbd2_superblock_csum_verify(journal, sb)) {
1552 printk(KERN_ERR "JBD: journal checksum error\n");
1553 goto out;
1556 /* Precompute checksum seed for all metadata */
1557 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1558 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1559 sizeof(sb->s_uuid));
1561 set_buffer_verified(bh);
1563 return 0;
1565 out:
1566 journal_fail_superblock(journal);
1567 return err;
1571 * Load the on-disk journal superblock and read the key fields into the
1572 * journal_t.
1575 static int load_superblock(journal_t *journal)
1577 int err;
1578 journal_superblock_t *sb;
1580 err = journal_get_superblock(journal);
1581 if (err)
1582 return err;
1584 sb = journal->j_superblock;
1586 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1587 journal->j_tail = be32_to_cpu(sb->s_start);
1588 journal->j_first = be32_to_cpu(sb->s_first);
1589 journal->j_last = be32_to_cpu(sb->s_maxlen);
1590 journal->j_errno = be32_to_cpu(sb->s_errno);
1592 return 0;
1597 * int jbd2_journal_load() - Read journal from disk.
1598 * @journal: Journal to act on.
1600 * Given a journal_t structure which tells us which disk blocks contain
1601 * a journal, read the journal from disk to initialise the in-memory
1602 * structures.
1604 int jbd2_journal_load(journal_t *journal)
1606 int err;
1607 journal_superblock_t *sb;
1609 err = load_superblock(journal);
1610 if (err)
1611 return err;
1613 sb = journal->j_superblock;
1614 /* If this is a V2 superblock, then we have to check the
1615 * features flags on it. */
1617 if (journal->j_format_version >= 2) {
1618 if ((sb->s_feature_ro_compat &
1619 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1620 (sb->s_feature_incompat &
1621 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1622 printk(KERN_WARNING
1623 "JBD2: Unrecognised features on journal\n");
1624 return -EINVAL;
1629 * Create a slab for this blocksize
1631 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1632 if (err)
1633 return err;
1635 /* Let the recovery code check whether it needs to recover any
1636 * data from the journal. */
1637 if (jbd2_journal_recover(journal))
1638 goto recovery_error;
1640 if (journal->j_failed_commit) {
1641 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1642 "is corrupt.\n", journal->j_failed_commit,
1643 journal->j_devname);
1644 return -EIO;
1647 /* OK, we've finished with the dynamic journal bits:
1648 * reinitialise the dynamic contents of the superblock in memory
1649 * and reset them on disk. */
1650 if (journal_reset(journal))
1651 goto recovery_error;
1653 journal->j_flags &= ~JBD2_ABORT;
1654 journal->j_flags |= JBD2_LOADED;
1655 return 0;
1657 recovery_error:
1658 printk(KERN_WARNING "JBD2: recovery failed\n");
1659 return -EIO;
1663 * void jbd2_journal_destroy() - Release a journal_t structure.
1664 * @journal: Journal to act on.
1666 * Release a journal_t structure once it is no longer in use by the
1667 * journaled object.
1668 * Return <0 if we couldn't clean up the journal.
1670 int jbd2_journal_destroy(journal_t *journal)
1672 int err = 0;
1674 /* Wait for the commit thread to wake up and die. */
1675 journal_kill_thread(journal);
1677 /* Force a final log commit */
1678 if (journal->j_running_transaction)
1679 jbd2_journal_commit_transaction(journal);
1681 /* Force any old transactions to disk */
1683 /* Totally anal locking here... */
1684 spin_lock(&journal->j_list_lock);
1685 while (journal->j_checkpoint_transactions != NULL) {
1686 spin_unlock(&journal->j_list_lock);
1687 mutex_lock(&journal->j_checkpoint_mutex);
1688 jbd2_log_do_checkpoint(journal);
1689 mutex_unlock(&journal->j_checkpoint_mutex);
1690 spin_lock(&journal->j_list_lock);
1693 J_ASSERT(journal->j_running_transaction == NULL);
1694 J_ASSERT(journal->j_committing_transaction == NULL);
1695 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1696 spin_unlock(&journal->j_list_lock);
1698 if (journal->j_sb_buffer) {
1699 if (!is_journal_aborted(journal)) {
1700 mutex_lock(&journal->j_checkpoint_mutex);
1701 jbd2_mark_journal_empty(journal);
1702 mutex_unlock(&journal->j_checkpoint_mutex);
1703 } else
1704 err = -EIO;
1705 brelse(journal->j_sb_buffer);
1708 if (journal->j_proc_entry)
1709 jbd2_stats_proc_exit(journal);
1710 if (journal->j_inode)
1711 iput(journal->j_inode);
1712 if (journal->j_revoke)
1713 jbd2_journal_destroy_revoke(journal);
1714 if (journal->j_chksum_driver)
1715 crypto_free_shash(journal->j_chksum_driver);
1716 kfree(journal->j_wbuf);
1717 kfree(journal);
1719 return err;
1724 *int jbd2_journal_check_used_features () - Check if features specified are used.
1725 * @journal: Journal to check.
1726 * @compat: bitmask of compatible features
1727 * @ro: bitmask of features that force read-only mount
1728 * @incompat: bitmask of incompatible features
1730 * Check whether the journal uses all of a given set of
1731 * features. Return true (non-zero) if it does.
1734 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1735 unsigned long ro, unsigned long incompat)
1737 journal_superblock_t *sb;
1739 if (!compat && !ro && !incompat)
1740 return 1;
1741 /* Load journal superblock if it is not loaded yet. */
1742 if (journal->j_format_version == 0 &&
1743 journal_get_superblock(journal) != 0)
1744 return 0;
1745 if (journal->j_format_version == 1)
1746 return 0;
1748 sb = journal->j_superblock;
1750 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1751 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1752 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1753 return 1;
1755 return 0;
1759 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1760 * @journal: Journal to check.
1761 * @compat: bitmask of compatible features
1762 * @ro: bitmask of features that force read-only mount
1763 * @incompat: bitmask of incompatible features
1765 * Check whether the journaling code supports the use of
1766 * all of a given set of features on this journal. Return true
1767 * (non-zero) if it can. */
1769 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1770 unsigned long ro, unsigned long incompat)
1772 if (!compat && !ro && !incompat)
1773 return 1;
1775 /* We can support any known requested features iff the
1776 * superblock is in version 2. Otherwise we fail to support any
1777 * extended sb features. */
1779 if (journal->j_format_version != 2)
1780 return 0;
1782 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1783 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1784 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1785 return 1;
1787 return 0;
1791 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1792 * @journal: Journal to act on.
1793 * @compat: bitmask of compatible features
1794 * @ro: bitmask of features that force read-only mount
1795 * @incompat: bitmask of incompatible features
1797 * Mark a given journal feature as present on the
1798 * superblock. Returns true if the requested features could be set.
1802 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1803 unsigned long ro, unsigned long incompat)
1805 #define INCOMPAT_FEATURE_ON(f) \
1806 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1807 #define COMPAT_FEATURE_ON(f) \
1808 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1809 journal_superblock_t *sb;
1811 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1812 return 1;
1814 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1815 return 0;
1817 /* Asking for checksumming v2 and v1? Only give them v2. */
1818 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1819 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1820 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1822 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1823 compat, ro, incompat);
1825 sb = journal->j_superblock;
1827 /* If enabling v2 checksums, update superblock */
1828 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1829 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1830 sb->s_feature_compat &=
1831 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1833 /* Load the checksum driver */
1834 if (journal->j_chksum_driver == NULL) {
1835 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1836 0, 0);
1837 if (IS_ERR(journal->j_chksum_driver)) {
1838 printk(KERN_ERR "JBD: Cannot load crc32c "
1839 "driver.\n");
1840 journal->j_chksum_driver = NULL;
1841 return 0;
1845 /* Precompute checksum seed for all metadata */
1846 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1847 JBD2_FEATURE_INCOMPAT_CSUM_V2))
1848 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1849 sb->s_uuid,
1850 sizeof(sb->s_uuid));
1853 /* If enabling v1 checksums, downgrade superblock */
1854 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1855 sb->s_feature_incompat &=
1856 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1858 sb->s_feature_compat |= cpu_to_be32(compat);
1859 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1860 sb->s_feature_incompat |= cpu_to_be32(incompat);
1862 return 1;
1863 #undef COMPAT_FEATURE_ON
1864 #undef INCOMPAT_FEATURE_ON
1868 * jbd2_journal_clear_features () - Clear a given journal feature in the
1869 * superblock
1870 * @journal: Journal to act on.
1871 * @compat: bitmask of compatible features
1872 * @ro: bitmask of features that force read-only mount
1873 * @incompat: bitmask of incompatible features
1875 * Clear a given journal feature as present on the
1876 * superblock.
1878 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1879 unsigned long ro, unsigned long incompat)
1881 journal_superblock_t *sb;
1883 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1884 compat, ro, incompat);
1886 sb = journal->j_superblock;
1888 sb->s_feature_compat &= ~cpu_to_be32(compat);
1889 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1890 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1892 EXPORT_SYMBOL(jbd2_journal_clear_features);
1895 * int jbd2_journal_flush () - Flush journal
1896 * @journal: Journal to act on.
1898 * Flush all data for a given journal to disk and empty the journal.
1899 * Filesystems can use this when remounting readonly to ensure that
1900 * recovery does not need to happen on remount.
1903 int jbd2_journal_flush(journal_t *journal)
1905 int err = 0;
1906 transaction_t *transaction = NULL;
1908 write_lock(&journal->j_state_lock);
1910 /* Force everything buffered to the log... */
1911 if (journal->j_running_transaction) {
1912 transaction = journal->j_running_transaction;
1913 __jbd2_log_start_commit(journal, transaction->t_tid);
1914 } else if (journal->j_committing_transaction)
1915 transaction = journal->j_committing_transaction;
1917 /* Wait for the log commit to complete... */
1918 if (transaction) {
1919 tid_t tid = transaction->t_tid;
1921 write_unlock(&journal->j_state_lock);
1922 jbd2_log_wait_commit(journal, tid);
1923 } else {
1924 write_unlock(&journal->j_state_lock);
1927 /* ...and flush everything in the log out to disk. */
1928 spin_lock(&journal->j_list_lock);
1929 while (!err && journal->j_checkpoint_transactions != NULL) {
1930 spin_unlock(&journal->j_list_lock);
1931 mutex_lock(&journal->j_checkpoint_mutex);
1932 err = jbd2_log_do_checkpoint(journal);
1933 mutex_unlock(&journal->j_checkpoint_mutex);
1934 spin_lock(&journal->j_list_lock);
1936 spin_unlock(&journal->j_list_lock);
1938 if (is_journal_aborted(journal))
1939 return -EIO;
1941 mutex_lock(&journal->j_checkpoint_mutex);
1942 jbd2_cleanup_journal_tail(journal);
1944 /* Finally, mark the journal as really needing no recovery.
1945 * This sets s_start==0 in the underlying superblock, which is
1946 * the magic code for a fully-recovered superblock. Any future
1947 * commits of data to the journal will restore the current
1948 * s_start value. */
1949 jbd2_mark_journal_empty(journal);
1950 mutex_unlock(&journal->j_checkpoint_mutex);
1951 write_lock(&journal->j_state_lock);
1952 J_ASSERT(!journal->j_running_transaction);
1953 J_ASSERT(!journal->j_committing_transaction);
1954 J_ASSERT(!journal->j_checkpoint_transactions);
1955 J_ASSERT(journal->j_head == journal->j_tail);
1956 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1957 write_unlock(&journal->j_state_lock);
1958 return 0;
1962 * int jbd2_journal_wipe() - Wipe journal contents
1963 * @journal: Journal to act on.
1964 * @write: flag (see below)
1966 * Wipe out all of the contents of a journal, safely. This will produce
1967 * a warning if the journal contains any valid recovery information.
1968 * Must be called between journal_init_*() and jbd2_journal_load().
1970 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1971 * we merely suppress recovery.
1974 int jbd2_journal_wipe(journal_t *journal, int write)
1976 int err = 0;
1978 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1980 err = load_superblock(journal);
1981 if (err)
1982 return err;
1984 if (!journal->j_tail)
1985 goto no_recovery;
1987 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1988 write ? "Clearing" : "Ignoring");
1990 err = jbd2_journal_skip_recovery(journal);
1991 if (write) {
1992 /* Lock to make assertions happy... */
1993 mutex_lock(&journal->j_checkpoint_mutex);
1994 jbd2_mark_journal_empty(journal);
1995 mutex_unlock(&journal->j_checkpoint_mutex);
1998 no_recovery:
1999 return err;
2003 * Journal abort has very specific semantics, which we describe
2004 * for journal abort.
2006 * Two internal functions, which provide abort to the jbd layer
2007 * itself are here.
2011 * Quick version for internal journal use (doesn't lock the journal).
2012 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2013 * and don't attempt to make any other journal updates.
2015 void __jbd2_journal_abort_hard(journal_t *journal)
2017 transaction_t *transaction;
2019 if (journal->j_flags & JBD2_ABORT)
2020 return;
2022 printk(KERN_ERR "Aborting journal on device %s.\n",
2023 journal->j_devname);
2025 write_lock(&journal->j_state_lock);
2026 journal->j_flags |= JBD2_ABORT;
2027 transaction = journal->j_running_transaction;
2028 if (transaction)
2029 __jbd2_log_start_commit(journal, transaction->t_tid);
2030 write_unlock(&journal->j_state_lock);
2033 /* Soft abort: record the abort error status in the journal superblock,
2034 * but don't do any other IO. */
2035 static void __journal_abort_soft (journal_t *journal, int errno)
2037 if (journal->j_flags & JBD2_ABORT)
2038 return;
2040 if (!journal->j_errno)
2041 journal->j_errno = errno;
2043 __jbd2_journal_abort_hard(journal);
2045 if (errno)
2046 jbd2_journal_update_sb_errno(journal);
2050 * void jbd2_journal_abort () - Shutdown the journal immediately.
2051 * @journal: the journal to shutdown.
2052 * @errno: an error number to record in the journal indicating
2053 * the reason for the shutdown.
2055 * Perform a complete, immediate shutdown of the ENTIRE
2056 * journal (not of a single transaction). This operation cannot be
2057 * undone without closing and reopening the journal.
2059 * The jbd2_journal_abort function is intended to support higher level error
2060 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2061 * mode.
2063 * Journal abort has very specific semantics. Any existing dirty,
2064 * unjournaled buffers in the main filesystem will still be written to
2065 * disk by bdflush, but the journaling mechanism will be suspended
2066 * immediately and no further transaction commits will be honoured.
2068 * Any dirty, journaled buffers will be written back to disk without
2069 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2070 * filesystem, but we _do_ attempt to leave as much data as possible
2071 * behind for fsck to use for cleanup.
2073 * Any attempt to get a new transaction handle on a journal which is in
2074 * ABORT state will just result in an -EROFS error return. A
2075 * jbd2_journal_stop on an existing handle will return -EIO if we have
2076 * entered abort state during the update.
2078 * Recursive transactions are not disturbed by journal abort until the
2079 * final jbd2_journal_stop, which will receive the -EIO error.
2081 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2082 * which will be recorded (if possible) in the journal superblock. This
2083 * allows a client to record failure conditions in the middle of a
2084 * transaction without having to complete the transaction to record the
2085 * failure to disk. ext3_error, for example, now uses this
2086 * functionality.
2088 * Errors which originate from within the journaling layer will NOT
2089 * supply an errno; a null errno implies that absolutely no further
2090 * writes are done to the journal (unless there are any already in
2091 * progress).
2095 void jbd2_journal_abort(journal_t *journal, int errno)
2097 __journal_abort_soft(journal, errno);
2101 * int jbd2_journal_errno () - returns the journal's error state.
2102 * @journal: journal to examine.
2104 * This is the errno number set with jbd2_journal_abort(), the last
2105 * time the journal was mounted - if the journal was stopped
2106 * without calling abort this will be 0.
2108 * If the journal has been aborted on this mount time -EROFS will
2109 * be returned.
2111 int jbd2_journal_errno(journal_t *journal)
2113 int err;
2115 read_lock(&journal->j_state_lock);
2116 if (journal->j_flags & JBD2_ABORT)
2117 err = -EROFS;
2118 else
2119 err = journal->j_errno;
2120 read_unlock(&journal->j_state_lock);
2121 return err;
2125 * int jbd2_journal_clear_err () - clears the journal's error state
2126 * @journal: journal to act on.
2128 * An error must be cleared or acked to take a FS out of readonly
2129 * mode.
2131 int jbd2_journal_clear_err(journal_t *journal)
2133 int err = 0;
2135 write_lock(&journal->j_state_lock);
2136 if (journal->j_flags & JBD2_ABORT)
2137 err = -EROFS;
2138 else
2139 journal->j_errno = 0;
2140 write_unlock(&journal->j_state_lock);
2141 return err;
2145 * void jbd2_journal_ack_err() - Ack journal err.
2146 * @journal: journal to act on.
2148 * An error must be cleared or acked to take a FS out of readonly
2149 * mode.
2151 void jbd2_journal_ack_err(journal_t *journal)
2153 write_lock(&journal->j_state_lock);
2154 if (journal->j_errno)
2155 journal->j_flags |= JBD2_ACK_ERR;
2156 write_unlock(&journal->j_state_lock);
2159 int jbd2_journal_blocks_per_page(struct inode *inode)
2161 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2165 * helper functions to deal with 32 or 64bit block numbers.
2167 size_t journal_tag_bytes(journal_t *journal)
2169 journal_block_tag_t tag;
2170 size_t x = 0;
2172 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2173 x += sizeof(tag.t_checksum);
2175 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2176 return x + JBD2_TAG_SIZE64;
2177 else
2178 return x + JBD2_TAG_SIZE32;
2182 * JBD memory management
2184 * These functions are used to allocate block-sized chunks of memory
2185 * used for making copies of buffer_head data. Very often it will be
2186 * page-sized chunks of data, but sometimes it will be in
2187 * sub-page-size chunks. (For example, 16k pages on Power systems
2188 * with a 4k block file system.) For blocks smaller than a page, we
2189 * use a SLAB allocator. There are slab caches for each block size,
2190 * which are allocated at mount time, if necessary, and we only free
2191 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2192 * this reason we don't need to a mutex to protect access to
2193 * jbd2_slab[] allocating or releasing memory; only in
2194 * jbd2_journal_create_slab().
2196 #define JBD2_MAX_SLABS 8
2197 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2199 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2200 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2201 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2205 static void jbd2_journal_destroy_slabs(void)
2207 int i;
2209 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2210 if (jbd2_slab[i])
2211 kmem_cache_destroy(jbd2_slab[i]);
2212 jbd2_slab[i] = NULL;
2216 static int jbd2_journal_create_slab(size_t size)
2218 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2219 int i = order_base_2(size) - 10;
2220 size_t slab_size;
2222 if (size == PAGE_SIZE)
2223 return 0;
2225 if (i >= JBD2_MAX_SLABS)
2226 return -EINVAL;
2228 if (unlikely(i < 0))
2229 i = 0;
2230 mutex_lock(&jbd2_slab_create_mutex);
2231 if (jbd2_slab[i]) {
2232 mutex_unlock(&jbd2_slab_create_mutex);
2233 return 0; /* Already created */
2236 slab_size = 1 << (i+10);
2237 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2238 slab_size, 0, NULL);
2239 mutex_unlock(&jbd2_slab_create_mutex);
2240 if (!jbd2_slab[i]) {
2241 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2242 return -ENOMEM;
2244 return 0;
2247 static struct kmem_cache *get_slab(size_t size)
2249 int i = order_base_2(size) - 10;
2251 BUG_ON(i >= JBD2_MAX_SLABS);
2252 if (unlikely(i < 0))
2253 i = 0;
2254 BUG_ON(jbd2_slab[i] == NULL);
2255 return jbd2_slab[i];
2258 void *jbd2_alloc(size_t size, gfp_t flags)
2260 void *ptr;
2262 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2264 flags |= __GFP_REPEAT;
2265 if (size == PAGE_SIZE)
2266 ptr = (void *)__get_free_pages(flags, 0);
2267 else if (size > PAGE_SIZE) {
2268 int order = get_order(size);
2270 if (order < 3)
2271 ptr = (void *)__get_free_pages(flags, order);
2272 else
2273 ptr = vmalloc(size);
2274 } else
2275 ptr = kmem_cache_alloc(get_slab(size), flags);
2277 /* Check alignment; SLUB has gotten this wrong in the past,
2278 * and this can lead to user data corruption! */
2279 BUG_ON(((unsigned long) ptr) & (size-1));
2281 return ptr;
2284 void jbd2_free(void *ptr, size_t size)
2286 if (size == PAGE_SIZE) {
2287 free_pages((unsigned long)ptr, 0);
2288 return;
2290 if (size > PAGE_SIZE) {
2291 int order = get_order(size);
2293 if (order < 3)
2294 free_pages((unsigned long)ptr, order);
2295 else
2296 vfree(ptr);
2297 return;
2299 kmem_cache_free(get_slab(size), ptr);
2303 * Journal_head storage management
2305 static struct kmem_cache *jbd2_journal_head_cache;
2306 #ifdef CONFIG_JBD2_DEBUG
2307 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2308 #endif
2310 static int jbd2_journal_init_journal_head_cache(void)
2312 int retval;
2314 J_ASSERT(jbd2_journal_head_cache == NULL);
2315 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2316 sizeof(struct journal_head),
2317 0, /* offset */
2318 SLAB_TEMPORARY, /* flags */
2319 NULL); /* ctor */
2320 retval = 0;
2321 if (!jbd2_journal_head_cache) {
2322 retval = -ENOMEM;
2323 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2325 return retval;
2328 static void jbd2_journal_destroy_journal_head_cache(void)
2330 if (jbd2_journal_head_cache) {
2331 kmem_cache_destroy(jbd2_journal_head_cache);
2332 jbd2_journal_head_cache = NULL;
2337 * journal_head splicing and dicing
2339 static struct journal_head *journal_alloc_journal_head(void)
2341 struct journal_head *ret;
2343 #ifdef CONFIG_JBD2_DEBUG
2344 atomic_inc(&nr_journal_heads);
2345 #endif
2346 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2347 if (!ret) {
2348 jbd_debug(1, "out of memory for journal_head\n");
2349 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2350 while (!ret) {
2351 yield();
2352 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2355 return ret;
2358 static void journal_free_journal_head(struct journal_head *jh)
2360 #ifdef CONFIG_JBD2_DEBUG
2361 atomic_dec(&nr_journal_heads);
2362 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2363 #endif
2364 kmem_cache_free(jbd2_journal_head_cache, jh);
2368 * A journal_head is attached to a buffer_head whenever JBD has an
2369 * interest in the buffer.
2371 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2372 * is set. This bit is tested in core kernel code where we need to take
2373 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2374 * there.
2376 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2378 * When a buffer has its BH_JBD bit set it is immune from being released by
2379 * core kernel code, mainly via ->b_count.
2381 * A journal_head is detached from its buffer_head when the journal_head's
2382 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2383 * transaction (b_cp_transaction) hold their references to b_jcount.
2385 * Various places in the kernel want to attach a journal_head to a buffer_head
2386 * _before_ attaching the journal_head to a transaction. To protect the
2387 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2388 * journal_head's b_jcount refcount by one. The caller must call
2389 * jbd2_journal_put_journal_head() to undo this.
2391 * So the typical usage would be:
2393 * (Attach a journal_head if needed. Increments b_jcount)
2394 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2395 * ...
2396 * (Get another reference for transaction)
2397 * jbd2_journal_grab_journal_head(bh);
2398 * jh->b_transaction = xxx;
2399 * (Put original reference)
2400 * jbd2_journal_put_journal_head(jh);
2404 * Give a buffer_head a journal_head.
2406 * May sleep.
2408 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2410 struct journal_head *jh;
2411 struct journal_head *new_jh = NULL;
2413 repeat:
2414 if (!buffer_jbd(bh))
2415 new_jh = journal_alloc_journal_head();
2417 jbd_lock_bh_journal_head(bh);
2418 if (buffer_jbd(bh)) {
2419 jh = bh2jh(bh);
2420 } else {
2421 J_ASSERT_BH(bh,
2422 (atomic_read(&bh->b_count) > 0) ||
2423 (bh->b_page && bh->b_page->mapping));
2425 if (!new_jh) {
2426 jbd_unlock_bh_journal_head(bh);
2427 goto repeat;
2430 jh = new_jh;
2431 new_jh = NULL; /* We consumed it */
2432 set_buffer_jbd(bh);
2433 bh->b_private = jh;
2434 jh->b_bh = bh;
2435 get_bh(bh);
2436 BUFFER_TRACE(bh, "added journal_head");
2438 jh->b_jcount++;
2439 jbd_unlock_bh_journal_head(bh);
2440 if (new_jh)
2441 journal_free_journal_head(new_jh);
2442 return bh->b_private;
2446 * Grab a ref against this buffer_head's journal_head. If it ended up not
2447 * having a journal_head, return NULL
2449 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2451 struct journal_head *jh = NULL;
2453 jbd_lock_bh_journal_head(bh);
2454 if (buffer_jbd(bh)) {
2455 jh = bh2jh(bh);
2456 jh->b_jcount++;
2458 jbd_unlock_bh_journal_head(bh);
2459 return jh;
2462 static void __journal_remove_journal_head(struct buffer_head *bh)
2464 struct journal_head *jh = bh2jh(bh);
2466 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2467 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2468 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2469 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2470 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2471 J_ASSERT_BH(bh, buffer_jbd(bh));
2472 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2473 BUFFER_TRACE(bh, "remove journal_head");
2474 if (jh->b_frozen_data) {
2475 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2476 jbd2_free(jh->b_frozen_data, bh->b_size);
2478 if (jh->b_committed_data) {
2479 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2480 jbd2_free(jh->b_committed_data, bh->b_size);
2482 bh->b_private = NULL;
2483 jh->b_bh = NULL; /* debug, really */
2484 clear_buffer_jbd(bh);
2485 journal_free_journal_head(jh);
2489 * Drop a reference on the passed journal_head. If it fell to zero then
2490 * release the journal_head from the buffer_head.
2492 void jbd2_journal_put_journal_head(struct journal_head *jh)
2494 struct buffer_head *bh = jh2bh(jh);
2496 jbd_lock_bh_journal_head(bh);
2497 J_ASSERT_JH(jh, jh->b_jcount > 0);
2498 --jh->b_jcount;
2499 if (!jh->b_jcount) {
2500 __journal_remove_journal_head(bh);
2501 jbd_unlock_bh_journal_head(bh);
2502 __brelse(bh);
2503 } else
2504 jbd_unlock_bh_journal_head(bh);
2508 * Initialize jbd inode head
2510 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2512 jinode->i_transaction = NULL;
2513 jinode->i_next_transaction = NULL;
2514 jinode->i_vfs_inode = inode;
2515 jinode->i_flags = 0;
2516 INIT_LIST_HEAD(&jinode->i_list);
2520 * Function to be called before we start removing inode from memory (i.e.,
2521 * clear_inode() is a fine place to be called from). It removes inode from
2522 * transaction's lists.
2524 void jbd2_journal_release_jbd_inode(journal_t *journal,
2525 struct jbd2_inode *jinode)
2527 if (!journal)
2528 return;
2529 restart:
2530 spin_lock(&journal->j_list_lock);
2531 /* Is commit writing out inode - we have to wait */
2532 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2533 wait_queue_head_t *wq;
2534 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2535 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2536 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2537 spin_unlock(&journal->j_list_lock);
2538 schedule();
2539 finish_wait(wq, &wait.wait);
2540 goto restart;
2543 if (jinode->i_transaction) {
2544 list_del(&jinode->i_list);
2545 jinode->i_transaction = NULL;
2547 spin_unlock(&journal->j_list_lock);
2551 #ifdef CONFIG_PROC_FS
2553 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2555 static void __init jbd2_create_jbd_stats_proc_entry(void)
2557 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2560 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2562 if (proc_jbd2_stats)
2563 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2566 #else
2568 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2569 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2571 #endif
2573 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2575 static int __init jbd2_journal_init_handle_cache(void)
2577 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2578 if (jbd2_handle_cache == NULL) {
2579 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2580 return -ENOMEM;
2582 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2583 if (jbd2_inode_cache == NULL) {
2584 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2585 kmem_cache_destroy(jbd2_handle_cache);
2586 return -ENOMEM;
2588 return 0;
2591 static void jbd2_journal_destroy_handle_cache(void)
2593 if (jbd2_handle_cache)
2594 kmem_cache_destroy(jbd2_handle_cache);
2595 if (jbd2_inode_cache)
2596 kmem_cache_destroy(jbd2_inode_cache);
2601 * Module startup and shutdown
2604 static int __init journal_init_caches(void)
2606 int ret;
2608 ret = jbd2_journal_init_revoke_caches();
2609 if (ret == 0)
2610 ret = jbd2_journal_init_journal_head_cache();
2611 if (ret == 0)
2612 ret = jbd2_journal_init_handle_cache();
2613 if (ret == 0)
2614 ret = jbd2_journal_init_transaction_cache();
2615 return ret;
2618 static void jbd2_journal_destroy_caches(void)
2620 jbd2_journal_destroy_revoke_caches();
2621 jbd2_journal_destroy_journal_head_cache();
2622 jbd2_journal_destroy_handle_cache();
2623 jbd2_journal_destroy_transaction_cache();
2624 jbd2_journal_destroy_slabs();
2627 static int __init journal_init(void)
2629 int ret;
2631 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2633 ret = journal_init_caches();
2634 if (ret == 0) {
2635 jbd2_create_jbd_stats_proc_entry();
2636 } else {
2637 jbd2_journal_destroy_caches();
2639 return ret;
2642 static void __exit journal_exit(void)
2644 #ifdef CONFIG_JBD2_DEBUG
2645 int n = atomic_read(&nr_journal_heads);
2646 if (n)
2647 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2648 #endif
2649 jbd2_remove_jbd_stats_proc_entry();
2650 jbd2_journal_destroy_caches();
2653 MODULE_LICENSE("GPL");
2654 module_init(journal_init);
2655 module_exit(journal_exit);