Merge tag 'omap-for-v3.12/fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6.git] / mm / vmscan.c
blob8ed1b775bdc9cafe9aaf2ab74e4acf842ffe1a9d
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
52 #include "internal.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
57 struct scan_control {
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
67 unsigned long hibernation_mode;
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
72 int may_writepage;
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
80 int order;
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
89 struct mem_cgroup *target_mem_cgroup;
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
95 nodemask_t *nodemask;
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
109 } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
123 } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
129 * From 0 .. 100. Higher means more swappy.
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
140 return !sc->target_mem_cgroup;
143 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
145 struct mem_cgroup *root = sc->target_mem_cgroup;
146 return !mem_cgroup_disabled() &&
147 mem_cgroup_soft_reclaim_eligible(root, root) != SKIP_TREE;
149 #else
150 static bool global_reclaim(struct scan_control *sc)
152 return true;
155 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
157 return false;
159 #endif
161 unsigned long zone_reclaimable_pages(struct zone *zone)
163 int nr;
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
172 return nr;
175 bool zone_reclaimable(struct zone *zone)
177 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
180 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
182 if (!mem_cgroup_disabled())
183 return mem_cgroup_get_lru_size(lruvec, lru);
185 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
189 * Add a shrinker callback to be called from the vm.
191 int register_shrinker(struct shrinker *shrinker)
193 size_t size = sizeof(*shrinker->nr_deferred);
196 * If we only have one possible node in the system anyway, save
197 * ourselves the trouble and disable NUMA aware behavior. This way we
198 * will save memory and some small loop time later.
200 if (nr_node_ids == 1)
201 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
203 if (shrinker->flags & SHRINKER_NUMA_AWARE)
204 size *= nr_node_ids;
206 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
207 if (!shrinker->nr_deferred)
208 return -ENOMEM;
210 down_write(&shrinker_rwsem);
211 list_add_tail(&shrinker->list, &shrinker_list);
212 up_write(&shrinker_rwsem);
213 return 0;
215 EXPORT_SYMBOL(register_shrinker);
218 * Remove one
220 void unregister_shrinker(struct shrinker *shrinker)
222 down_write(&shrinker_rwsem);
223 list_del(&shrinker->list);
224 up_write(&shrinker_rwsem);
226 EXPORT_SYMBOL(unregister_shrinker);
228 #define SHRINK_BATCH 128
230 static unsigned long
231 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
232 unsigned long nr_pages_scanned, unsigned long lru_pages)
234 unsigned long freed = 0;
235 unsigned long long delta;
236 long total_scan;
237 long max_pass;
238 long nr;
239 long new_nr;
240 int nid = shrinkctl->nid;
241 long batch_size = shrinker->batch ? shrinker->batch
242 : SHRINK_BATCH;
244 max_pass = shrinker->count_objects(shrinker, shrinkctl);
245 if (max_pass == 0)
246 return 0;
249 * copy the current shrinker scan count into a local variable
250 * and zero it so that other concurrent shrinker invocations
251 * don't also do this scanning work.
253 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
255 total_scan = nr;
256 delta = (4 * nr_pages_scanned) / shrinker->seeks;
257 delta *= max_pass;
258 do_div(delta, lru_pages + 1);
259 total_scan += delta;
260 if (total_scan < 0) {
261 printk(KERN_ERR
262 "shrink_slab: %pF negative objects to delete nr=%ld\n",
263 shrinker->scan_objects, total_scan);
264 total_scan = max_pass;
268 * We need to avoid excessive windup on filesystem shrinkers
269 * due to large numbers of GFP_NOFS allocations causing the
270 * shrinkers to return -1 all the time. This results in a large
271 * nr being built up so when a shrink that can do some work
272 * comes along it empties the entire cache due to nr >>>
273 * max_pass. This is bad for sustaining a working set in
274 * memory.
276 * Hence only allow the shrinker to scan the entire cache when
277 * a large delta change is calculated directly.
279 if (delta < max_pass / 4)
280 total_scan = min(total_scan, max_pass / 2);
283 * Avoid risking looping forever due to too large nr value:
284 * never try to free more than twice the estimate number of
285 * freeable entries.
287 if (total_scan > max_pass * 2)
288 total_scan = max_pass * 2;
290 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
291 nr_pages_scanned, lru_pages,
292 max_pass, delta, total_scan);
294 while (total_scan >= batch_size) {
295 unsigned long ret;
297 shrinkctl->nr_to_scan = batch_size;
298 ret = shrinker->scan_objects(shrinker, shrinkctl);
299 if (ret == SHRINK_STOP)
300 break;
301 freed += ret;
303 count_vm_events(SLABS_SCANNED, batch_size);
304 total_scan -= batch_size;
306 cond_resched();
310 * move the unused scan count back into the shrinker in a
311 * manner that handles concurrent updates. If we exhausted the
312 * scan, there is no need to do an update.
314 if (total_scan > 0)
315 new_nr = atomic_long_add_return(total_scan,
316 &shrinker->nr_deferred[nid]);
317 else
318 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
320 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
321 return freed;
325 * Call the shrink functions to age shrinkable caches
327 * Here we assume it costs one seek to replace a lru page and that it also
328 * takes a seek to recreate a cache object. With this in mind we age equal
329 * percentages of the lru and ageable caches. This should balance the seeks
330 * generated by these structures.
332 * If the vm encountered mapped pages on the LRU it increase the pressure on
333 * slab to avoid swapping.
335 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
337 * `lru_pages' represents the number of on-LRU pages in all the zones which
338 * are eligible for the caller's allocation attempt. It is used for balancing
339 * slab reclaim versus page reclaim.
341 * Returns the number of slab objects which we shrunk.
343 unsigned long shrink_slab(struct shrink_control *shrinkctl,
344 unsigned long nr_pages_scanned,
345 unsigned long lru_pages)
347 struct shrinker *shrinker;
348 unsigned long freed = 0;
350 if (nr_pages_scanned == 0)
351 nr_pages_scanned = SWAP_CLUSTER_MAX;
353 if (!down_read_trylock(&shrinker_rwsem)) {
355 * If we would return 0, our callers would understand that we
356 * have nothing else to shrink and give up trying. By returning
357 * 1 we keep it going and assume we'll be able to shrink next
358 * time.
360 freed = 1;
361 goto out;
364 list_for_each_entry(shrinker, &shrinker_list, list) {
365 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
366 if (!node_online(shrinkctl->nid))
367 continue;
369 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
370 (shrinkctl->nid != 0))
371 break;
373 freed += shrink_slab_node(shrinkctl, shrinker,
374 nr_pages_scanned, lru_pages);
378 up_read(&shrinker_rwsem);
379 out:
380 cond_resched();
381 return freed;
384 static inline int is_page_cache_freeable(struct page *page)
387 * A freeable page cache page is referenced only by the caller
388 * that isolated the page, the page cache radix tree and
389 * optional buffer heads at page->private.
391 return page_count(page) - page_has_private(page) == 2;
394 static int may_write_to_queue(struct backing_dev_info *bdi,
395 struct scan_control *sc)
397 if (current->flags & PF_SWAPWRITE)
398 return 1;
399 if (!bdi_write_congested(bdi))
400 return 1;
401 if (bdi == current->backing_dev_info)
402 return 1;
403 return 0;
407 * We detected a synchronous write error writing a page out. Probably
408 * -ENOSPC. We need to propagate that into the address_space for a subsequent
409 * fsync(), msync() or close().
411 * The tricky part is that after writepage we cannot touch the mapping: nothing
412 * prevents it from being freed up. But we have a ref on the page and once
413 * that page is locked, the mapping is pinned.
415 * We're allowed to run sleeping lock_page() here because we know the caller has
416 * __GFP_FS.
418 static void handle_write_error(struct address_space *mapping,
419 struct page *page, int error)
421 lock_page(page);
422 if (page_mapping(page) == mapping)
423 mapping_set_error(mapping, error);
424 unlock_page(page);
427 /* possible outcome of pageout() */
428 typedef enum {
429 /* failed to write page out, page is locked */
430 PAGE_KEEP,
431 /* move page to the active list, page is locked */
432 PAGE_ACTIVATE,
433 /* page has been sent to the disk successfully, page is unlocked */
434 PAGE_SUCCESS,
435 /* page is clean and locked */
436 PAGE_CLEAN,
437 } pageout_t;
440 * pageout is called by shrink_page_list() for each dirty page.
441 * Calls ->writepage().
443 static pageout_t pageout(struct page *page, struct address_space *mapping,
444 struct scan_control *sc)
447 * If the page is dirty, only perform writeback if that write
448 * will be non-blocking. To prevent this allocation from being
449 * stalled by pagecache activity. But note that there may be
450 * stalls if we need to run get_block(). We could test
451 * PagePrivate for that.
453 * If this process is currently in __generic_file_aio_write() against
454 * this page's queue, we can perform writeback even if that
455 * will block.
457 * If the page is swapcache, write it back even if that would
458 * block, for some throttling. This happens by accident, because
459 * swap_backing_dev_info is bust: it doesn't reflect the
460 * congestion state of the swapdevs. Easy to fix, if needed.
462 if (!is_page_cache_freeable(page))
463 return PAGE_KEEP;
464 if (!mapping) {
466 * Some data journaling orphaned pages can have
467 * page->mapping == NULL while being dirty with clean buffers.
469 if (page_has_private(page)) {
470 if (try_to_free_buffers(page)) {
471 ClearPageDirty(page);
472 printk("%s: orphaned page\n", __func__);
473 return PAGE_CLEAN;
476 return PAGE_KEEP;
478 if (mapping->a_ops->writepage == NULL)
479 return PAGE_ACTIVATE;
480 if (!may_write_to_queue(mapping->backing_dev_info, sc))
481 return PAGE_KEEP;
483 if (clear_page_dirty_for_io(page)) {
484 int res;
485 struct writeback_control wbc = {
486 .sync_mode = WB_SYNC_NONE,
487 .nr_to_write = SWAP_CLUSTER_MAX,
488 .range_start = 0,
489 .range_end = LLONG_MAX,
490 .for_reclaim = 1,
493 SetPageReclaim(page);
494 res = mapping->a_ops->writepage(page, &wbc);
495 if (res < 0)
496 handle_write_error(mapping, page, res);
497 if (res == AOP_WRITEPAGE_ACTIVATE) {
498 ClearPageReclaim(page);
499 return PAGE_ACTIVATE;
502 if (!PageWriteback(page)) {
503 /* synchronous write or broken a_ops? */
504 ClearPageReclaim(page);
506 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
507 inc_zone_page_state(page, NR_VMSCAN_WRITE);
508 return PAGE_SUCCESS;
511 return PAGE_CLEAN;
515 * Same as remove_mapping, but if the page is removed from the mapping, it
516 * gets returned with a refcount of 0.
518 static int __remove_mapping(struct address_space *mapping, struct page *page)
520 BUG_ON(!PageLocked(page));
521 BUG_ON(mapping != page_mapping(page));
523 spin_lock_irq(&mapping->tree_lock);
525 * The non racy check for a busy page.
527 * Must be careful with the order of the tests. When someone has
528 * a ref to the page, it may be possible that they dirty it then
529 * drop the reference. So if PageDirty is tested before page_count
530 * here, then the following race may occur:
532 * get_user_pages(&page);
533 * [user mapping goes away]
534 * write_to(page);
535 * !PageDirty(page) [good]
536 * SetPageDirty(page);
537 * put_page(page);
538 * !page_count(page) [good, discard it]
540 * [oops, our write_to data is lost]
542 * Reversing the order of the tests ensures such a situation cannot
543 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
544 * load is not satisfied before that of page->_count.
546 * Note that if SetPageDirty is always performed via set_page_dirty,
547 * and thus under tree_lock, then this ordering is not required.
549 if (!page_freeze_refs(page, 2))
550 goto cannot_free;
551 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
552 if (unlikely(PageDirty(page))) {
553 page_unfreeze_refs(page, 2);
554 goto cannot_free;
557 if (PageSwapCache(page)) {
558 swp_entry_t swap = { .val = page_private(page) };
559 __delete_from_swap_cache(page);
560 spin_unlock_irq(&mapping->tree_lock);
561 swapcache_free(swap, page);
562 } else {
563 void (*freepage)(struct page *);
565 freepage = mapping->a_ops->freepage;
567 __delete_from_page_cache(page);
568 spin_unlock_irq(&mapping->tree_lock);
569 mem_cgroup_uncharge_cache_page(page);
571 if (freepage != NULL)
572 freepage(page);
575 return 1;
577 cannot_free:
578 spin_unlock_irq(&mapping->tree_lock);
579 return 0;
583 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
584 * someone else has a ref on the page, abort and return 0. If it was
585 * successfully detached, return 1. Assumes the caller has a single ref on
586 * this page.
588 int remove_mapping(struct address_space *mapping, struct page *page)
590 if (__remove_mapping(mapping, page)) {
592 * Unfreezing the refcount with 1 rather than 2 effectively
593 * drops the pagecache ref for us without requiring another
594 * atomic operation.
596 page_unfreeze_refs(page, 1);
597 return 1;
599 return 0;
603 * putback_lru_page - put previously isolated page onto appropriate LRU list
604 * @page: page to be put back to appropriate lru list
606 * Add previously isolated @page to appropriate LRU list.
607 * Page may still be unevictable for other reasons.
609 * lru_lock must not be held, interrupts must be enabled.
611 void putback_lru_page(struct page *page)
613 bool is_unevictable;
614 int was_unevictable = PageUnevictable(page);
616 VM_BUG_ON(PageLRU(page));
618 redo:
619 ClearPageUnevictable(page);
621 if (page_evictable(page)) {
623 * For evictable pages, we can use the cache.
624 * In event of a race, worst case is we end up with an
625 * unevictable page on [in]active list.
626 * We know how to handle that.
628 is_unevictable = false;
629 lru_cache_add(page);
630 } else {
632 * Put unevictable pages directly on zone's unevictable
633 * list.
635 is_unevictable = true;
636 add_page_to_unevictable_list(page);
638 * When racing with an mlock or AS_UNEVICTABLE clearing
639 * (page is unlocked) make sure that if the other thread
640 * does not observe our setting of PG_lru and fails
641 * isolation/check_move_unevictable_pages,
642 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
643 * the page back to the evictable list.
645 * The other side is TestClearPageMlocked() or shmem_lock().
647 smp_mb();
651 * page's status can change while we move it among lru. If an evictable
652 * page is on unevictable list, it never be freed. To avoid that,
653 * check after we added it to the list, again.
655 if (is_unevictable && page_evictable(page)) {
656 if (!isolate_lru_page(page)) {
657 put_page(page);
658 goto redo;
660 /* This means someone else dropped this page from LRU
661 * So, it will be freed or putback to LRU again. There is
662 * nothing to do here.
666 if (was_unevictable && !is_unevictable)
667 count_vm_event(UNEVICTABLE_PGRESCUED);
668 else if (!was_unevictable && is_unevictable)
669 count_vm_event(UNEVICTABLE_PGCULLED);
671 put_page(page); /* drop ref from isolate */
674 enum page_references {
675 PAGEREF_RECLAIM,
676 PAGEREF_RECLAIM_CLEAN,
677 PAGEREF_KEEP,
678 PAGEREF_ACTIVATE,
681 static enum page_references page_check_references(struct page *page,
682 struct scan_control *sc)
684 int referenced_ptes, referenced_page;
685 unsigned long vm_flags;
687 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
688 &vm_flags);
689 referenced_page = TestClearPageReferenced(page);
692 * Mlock lost the isolation race with us. Let try_to_unmap()
693 * move the page to the unevictable list.
695 if (vm_flags & VM_LOCKED)
696 return PAGEREF_RECLAIM;
698 if (referenced_ptes) {
699 if (PageSwapBacked(page))
700 return PAGEREF_ACTIVATE;
702 * All mapped pages start out with page table
703 * references from the instantiating fault, so we need
704 * to look twice if a mapped file page is used more
705 * than once.
707 * Mark it and spare it for another trip around the
708 * inactive list. Another page table reference will
709 * lead to its activation.
711 * Note: the mark is set for activated pages as well
712 * so that recently deactivated but used pages are
713 * quickly recovered.
715 SetPageReferenced(page);
717 if (referenced_page || referenced_ptes > 1)
718 return PAGEREF_ACTIVATE;
721 * Activate file-backed executable pages after first usage.
723 if (vm_flags & VM_EXEC)
724 return PAGEREF_ACTIVATE;
726 return PAGEREF_KEEP;
729 /* Reclaim if clean, defer dirty pages to writeback */
730 if (referenced_page && !PageSwapBacked(page))
731 return PAGEREF_RECLAIM_CLEAN;
733 return PAGEREF_RECLAIM;
736 /* Check if a page is dirty or under writeback */
737 static void page_check_dirty_writeback(struct page *page,
738 bool *dirty, bool *writeback)
740 struct address_space *mapping;
743 * Anonymous pages are not handled by flushers and must be written
744 * from reclaim context. Do not stall reclaim based on them
746 if (!page_is_file_cache(page)) {
747 *dirty = false;
748 *writeback = false;
749 return;
752 /* By default assume that the page flags are accurate */
753 *dirty = PageDirty(page);
754 *writeback = PageWriteback(page);
756 /* Verify dirty/writeback state if the filesystem supports it */
757 if (!page_has_private(page))
758 return;
760 mapping = page_mapping(page);
761 if (mapping && mapping->a_ops->is_dirty_writeback)
762 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
766 * shrink_page_list() returns the number of reclaimed pages
768 static unsigned long shrink_page_list(struct list_head *page_list,
769 struct zone *zone,
770 struct scan_control *sc,
771 enum ttu_flags ttu_flags,
772 unsigned long *ret_nr_dirty,
773 unsigned long *ret_nr_unqueued_dirty,
774 unsigned long *ret_nr_congested,
775 unsigned long *ret_nr_writeback,
776 unsigned long *ret_nr_immediate,
777 bool force_reclaim)
779 LIST_HEAD(ret_pages);
780 LIST_HEAD(free_pages);
781 int pgactivate = 0;
782 unsigned long nr_unqueued_dirty = 0;
783 unsigned long nr_dirty = 0;
784 unsigned long nr_congested = 0;
785 unsigned long nr_reclaimed = 0;
786 unsigned long nr_writeback = 0;
787 unsigned long nr_immediate = 0;
789 cond_resched();
791 mem_cgroup_uncharge_start();
792 while (!list_empty(page_list)) {
793 struct address_space *mapping;
794 struct page *page;
795 int may_enter_fs;
796 enum page_references references = PAGEREF_RECLAIM_CLEAN;
797 bool dirty, writeback;
799 cond_resched();
801 page = lru_to_page(page_list);
802 list_del(&page->lru);
804 if (!trylock_page(page))
805 goto keep;
807 VM_BUG_ON(PageActive(page));
808 VM_BUG_ON(page_zone(page) != zone);
810 sc->nr_scanned++;
812 if (unlikely(!page_evictable(page)))
813 goto cull_mlocked;
815 if (!sc->may_unmap && page_mapped(page))
816 goto keep_locked;
818 /* Double the slab pressure for mapped and swapcache pages */
819 if (page_mapped(page) || PageSwapCache(page))
820 sc->nr_scanned++;
822 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
823 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
826 * The number of dirty pages determines if a zone is marked
827 * reclaim_congested which affects wait_iff_congested. kswapd
828 * will stall and start writing pages if the tail of the LRU
829 * is all dirty unqueued pages.
831 page_check_dirty_writeback(page, &dirty, &writeback);
832 if (dirty || writeback)
833 nr_dirty++;
835 if (dirty && !writeback)
836 nr_unqueued_dirty++;
839 * Treat this page as congested if the underlying BDI is or if
840 * pages are cycling through the LRU so quickly that the
841 * pages marked for immediate reclaim are making it to the
842 * end of the LRU a second time.
844 mapping = page_mapping(page);
845 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
846 (writeback && PageReclaim(page)))
847 nr_congested++;
850 * If a page at the tail of the LRU is under writeback, there
851 * are three cases to consider.
853 * 1) If reclaim is encountering an excessive number of pages
854 * under writeback and this page is both under writeback and
855 * PageReclaim then it indicates that pages are being queued
856 * for IO but are being recycled through the LRU before the
857 * IO can complete. Waiting on the page itself risks an
858 * indefinite stall if it is impossible to writeback the
859 * page due to IO error or disconnected storage so instead
860 * note that the LRU is being scanned too quickly and the
861 * caller can stall after page list has been processed.
863 * 2) Global reclaim encounters a page, memcg encounters a
864 * page that is not marked for immediate reclaim or
865 * the caller does not have __GFP_IO. In this case mark
866 * the page for immediate reclaim and continue scanning.
868 * __GFP_IO is checked because a loop driver thread might
869 * enter reclaim, and deadlock if it waits on a page for
870 * which it is needed to do the write (loop masks off
871 * __GFP_IO|__GFP_FS for this reason); but more thought
872 * would probably show more reasons.
874 * Don't require __GFP_FS, since we're not going into the
875 * FS, just waiting on its writeback completion. Worryingly,
876 * ext4 gfs2 and xfs allocate pages with
877 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
878 * may_enter_fs here is liable to OOM on them.
880 * 3) memcg encounters a page that is not already marked
881 * PageReclaim. memcg does not have any dirty pages
882 * throttling so we could easily OOM just because too many
883 * pages are in writeback and there is nothing else to
884 * reclaim. Wait for the writeback to complete.
886 if (PageWriteback(page)) {
887 /* Case 1 above */
888 if (current_is_kswapd() &&
889 PageReclaim(page) &&
890 zone_is_reclaim_writeback(zone)) {
891 nr_immediate++;
892 goto keep_locked;
894 /* Case 2 above */
895 } else if (global_reclaim(sc) ||
896 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
898 * This is slightly racy - end_page_writeback()
899 * might have just cleared PageReclaim, then
900 * setting PageReclaim here end up interpreted
901 * as PageReadahead - but that does not matter
902 * enough to care. What we do want is for this
903 * page to have PageReclaim set next time memcg
904 * reclaim reaches the tests above, so it will
905 * then wait_on_page_writeback() to avoid OOM;
906 * and it's also appropriate in global reclaim.
908 SetPageReclaim(page);
909 nr_writeback++;
911 goto keep_locked;
913 /* Case 3 above */
914 } else {
915 wait_on_page_writeback(page);
919 if (!force_reclaim)
920 references = page_check_references(page, sc);
922 switch (references) {
923 case PAGEREF_ACTIVATE:
924 goto activate_locked;
925 case PAGEREF_KEEP:
926 goto keep_locked;
927 case PAGEREF_RECLAIM:
928 case PAGEREF_RECLAIM_CLEAN:
929 ; /* try to reclaim the page below */
933 * Anonymous process memory has backing store?
934 * Try to allocate it some swap space here.
936 if (PageAnon(page) && !PageSwapCache(page)) {
937 if (!(sc->gfp_mask & __GFP_IO))
938 goto keep_locked;
939 if (!add_to_swap(page, page_list))
940 goto activate_locked;
941 may_enter_fs = 1;
943 /* Adding to swap updated mapping */
944 mapping = page_mapping(page);
948 * The page is mapped into the page tables of one or more
949 * processes. Try to unmap it here.
951 if (page_mapped(page) && mapping) {
952 switch (try_to_unmap(page, ttu_flags)) {
953 case SWAP_FAIL:
954 goto activate_locked;
955 case SWAP_AGAIN:
956 goto keep_locked;
957 case SWAP_MLOCK:
958 goto cull_mlocked;
959 case SWAP_SUCCESS:
960 ; /* try to free the page below */
964 if (PageDirty(page)) {
966 * Only kswapd can writeback filesystem pages to
967 * avoid risk of stack overflow but only writeback
968 * if many dirty pages have been encountered.
970 if (page_is_file_cache(page) &&
971 (!current_is_kswapd() ||
972 !zone_is_reclaim_dirty(zone))) {
974 * Immediately reclaim when written back.
975 * Similar in principal to deactivate_page()
976 * except we already have the page isolated
977 * and know it's dirty
979 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
980 SetPageReclaim(page);
982 goto keep_locked;
985 if (references == PAGEREF_RECLAIM_CLEAN)
986 goto keep_locked;
987 if (!may_enter_fs)
988 goto keep_locked;
989 if (!sc->may_writepage)
990 goto keep_locked;
992 /* Page is dirty, try to write it out here */
993 switch (pageout(page, mapping, sc)) {
994 case PAGE_KEEP:
995 goto keep_locked;
996 case PAGE_ACTIVATE:
997 goto activate_locked;
998 case PAGE_SUCCESS:
999 if (PageWriteback(page))
1000 goto keep;
1001 if (PageDirty(page))
1002 goto keep;
1005 * A synchronous write - probably a ramdisk. Go
1006 * ahead and try to reclaim the page.
1008 if (!trylock_page(page))
1009 goto keep;
1010 if (PageDirty(page) || PageWriteback(page))
1011 goto keep_locked;
1012 mapping = page_mapping(page);
1013 case PAGE_CLEAN:
1014 ; /* try to free the page below */
1019 * If the page has buffers, try to free the buffer mappings
1020 * associated with this page. If we succeed we try to free
1021 * the page as well.
1023 * We do this even if the page is PageDirty().
1024 * try_to_release_page() does not perform I/O, but it is
1025 * possible for a page to have PageDirty set, but it is actually
1026 * clean (all its buffers are clean). This happens if the
1027 * buffers were written out directly, with submit_bh(). ext3
1028 * will do this, as well as the blockdev mapping.
1029 * try_to_release_page() will discover that cleanness and will
1030 * drop the buffers and mark the page clean - it can be freed.
1032 * Rarely, pages can have buffers and no ->mapping. These are
1033 * the pages which were not successfully invalidated in
1034 * truncate_complete_page(). We try to drop those buffers here
1035 * and if that worked, and the page is no longer mapped into
1036 * process address space (page_count == 1) it can be freed.
1037 * Otherwise, leave the page on the LRU so it is swappable.
1039 if (page_has_private(page)) {
1040 if (!try_to_release_page(page, sc->gfp_mask))
1041 goto activate_locked;
1042 if (!mapping && page_count(page) == 1) {
1043 unlock_page(page);
1044 if (put_page_testzero(page))
1045 goto free_it;
1046 else {
1048 * rare race with speculative reference.
1049 * the speculative reference will free
1050 * this page shortly, so we may
1051 * increment nr_reclaimed here (and
1052 * leave it off the LRU).
1054 nr_reclaimed++;
1055 continue;
1060 if (!mapping || !__remove_mapping(mapping, page))
1061 goto keep_locked;
1064 * At this point, we have no other references and there is
1065 * no way to pick any more up (removed from LRU, removed
1066 * from pagecache). Can use non-atomic bitops now (and
1067 * we obviously don't have to worry about waking up a process
1068 * waiting on the page lock, because there are no references.
1070 __clear_page_locked(page);
1071 free_it:
1072 nr_reclaimed++;
1075 * Is there need to periodically free_page_list? It would
1076 * appear not as the counts should be low
1078 list_add(&page->lru, &free_pages);
1079 continue;
1081 cull_mlocked:
1082 if (PageSwapCache(page))
1083 try_to_free_swap(page);
1084 unlock_page(page);
1085 putback_lru_page(page);
1086 continue;
1088 activate_locked:
1089 /* Not a candidate for swapping, so reclaim swap space. */
1090 if (PageSwapCache(page) && vm_swap_full())
1091 try_to_free_swap(page);
1092 VM_BUG_ON(PageActive(page));
1093 SetPageActive(page);
1094 pgactivate++;
1095 keep_locked:
1096 unlock_page(page);
1097 keep:
1098 list_add(&page->lru, &ret_pages);
1099 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1102 free_hot_cold_page_list(&free_pages, 1);
1104 list_splice(&ret_pages, page_list);
1105 count_vm_events(PGACTIVATE, pgactivate);
1106 mem_cgroup_uncharge_end();
1107 *ret_nr_dirty += nr_dirty;
1108 *ret_nr_congested += nr_congested;
1109 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1110 *ret_nr_writeback += nr_writeback;
1111 *ret_nr_immediate += nr_immediate;
1112 return nr_reclaimed;
1115 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1116 struct list_head *page_list)
1118 struct scan_control sc = {
1119 .gfp_mask = GFP_KERNEL,
1120 .priority = DEF_PRIORITY,
1121 .may_unmap = 1,
1123 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1124 struct page *page, *next;
1125 LIST_HEAD(clean_pages);
1127 list_for_each_entry_safe(page, next, page_list, lru) {
1128 if (page_is_file_cache(page) && !PageDirty(page)) {
1129 ClearPageActive(page);
1130 list_move(&page->lru, &clean_pages);
1134 ret = shrink_page_list(&clean_pages, zone, &sc,
1135 TTU_UNMAP|TTU_IGNORE_ACCESS,
1136 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1137 list_splice(&clean_pages, page_list);
1138 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1139 return ret;
1143 * Attempt to remove the specified page from its LRU. Only take this page
1144 * if it is of the appropriate PageActive status. Pages which are being
1145 * freed elsewhere are also ignored.
1147 * page: page to consider
1148 * mode: one of the LRU isolation modes defined above
1150 * returns 0 on success, -ve errno on failure.
1152 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1154 int ret = -EINVAL;
1156 /* Only take pages on the LRU. */
1157 if (!PageLRU(page))
1158 return ret;
1160 /* Compaction should not handle unevictable pages but CMA can do so */
1161 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1162 return ret;
1164 ret = -EBUSY;
1167 * To minimise LRU disruption, the caller can indicate that it only
1168 * wants to isolate pages it will be able to operate on without
1169 * blocking - clean pages for the most part.
1171 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1172 * is used by reclaim when it is cannot write to backing storage
1174 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1175 * that it is possible to migrate without blocking
1177 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1178 /* All the caller can do on PageWriteback is block */
1179 if (PageWriteback(page))
1180 return ret;
1182 if (PageDirty(page)) {
1183 struct address_space *mapping;
1185 /* ISOLATE_CLEAN means only clean pages */
1186 if (mode & ISOLATE_CLEAN)
1187 return ret;
1190 * Only pages without mappings or that have a
1191 * ->migratepage callback are possible to migrate
1192 * without blocking
1194 mapping = page_mapping(page);
1195 if (mapping && !mapping->a_ops->migratepage)
1196 return ret;
1200 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1201 return ret;
1203 if (likely(get_page_unless_zero(page))) {
1205 * Be careful not to clear PageLRU until after we're
1206 * sure the page is not being freed elsewhere -- the
1207 * page release code relies on it.
1209 ClearPageLRU(page);
1210 ret = 0;
1213 return ret;
1217 * zone->lru_lock is heavily contended. Some of the functions that
1218 * shrink the lists perform better by taking out a batch of pages
1219 * and working on them outside the LRU lock.
1221 * For pagecache intensive workloads, this function is the hottest
1222 * spot in the kernel (apart from copy_*_user functions).
1224 * Appropriate locks must be held before calling this function.
1226 * @nr_to_scan: The number of pages to look through on the list.
1227 * @lruvec: The LRU vector to pull pages from.
1228 * @dst: The temp list to put pages on to.
1229 * @nr_scanned: The number of pages that were scanned.
1230 * @sc: The scan_control struct for this reclaim session
1231 * @mode: One of the LRU isolation modes
1232 * @lru: LRU list id for isolating
1234 * returns how many pages were moved onto *@dst.
1236 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1237 struct lruvec *lruvec, struct list_head *dst,
1238 unsigned long *nr_scanned, struct scan_control *sc,
1239 isolate_mode_t mode, enum lru_list lru)
1241 struct list_head *src = &lruvec->lists[lru];
1242 unsigned long nr_taken = 0;
1243 unsigned long scan;
1245 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1246 struct page *page;
1247 int nr_pages;
1249 page = lru_to_page(src);
1250 prefetchw_prev_lru_page(page, src, flags);
1252 VM_BUG_ON(!PageLRU(page));
1254 switch (__isolate_lru_page(page, mode)) {
1255 case 0:
1256 nr_pages = hpage_nr_pages(page);
1257 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1258 list_move(&page->lru, dst);
1259 nr_taken += nr_pages;
1260 break;
1262 case -EBUSY:
1263 /* else it is being freed elsewhere */
1264 list_move(&page->lru, src);
1265 continue;
1267 default:
1268 BUG();
1272 *nr_scanned = scan;
1273 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1274 nr_taken, mode, is_file_lru(lru));
1275 return nr_taken;
1279 * isolate_lru_page - tries to isolate a page from its LRU list
1280 * @page: page to isolate from its LRU list
1282 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1283 * vmstat statistic corresponding to whatever LRU list the page was on.
1285 * Returns 0 if the page was removed from an LRU list.
1286 * Returns -EBUSY if the page was not on an LRU list.
1288 * The returned page will have PageLRU() cleared. If it was found on
1289 * the active list, it will have PageActive set. If it was found on
1290 * the unevictable list, it will have the PageUnevictable bit set. That flag
1291 * may need to be cleared by the caller before letting the page go.
1293 * The vmstat statistic corresponding to the list on which the page was
1294 * found will be decremented.
1296 * Restrictions:
1297 * (1) Must be called with an elevated refcount on the page. This is a
1298 * fundamentnal difference from isolate_lru_pages (which is called
1299 * without a stable reference).
1300 * (2) the lru_lock must not be held.
1301 * (3) interrupts must be enabled.
1303 int isolate_lru_page(struct page *page)
1305 int ret = -EBUSY;
1307 VM_BUG_ON(!page_count(page));
1309 if (PageLRU(page)) {
1310 struct zone *zone = page_zone(page);
1311 struct lruvec *lruvec;
1313 spin_lock_irq(&zone->lru_lock);
1314 lruvec = mem_cgroup_page_lruvec(page, zone);
1315 if (PageLRU(page)) {
1316 int lru = page_lru(page);
1317 get_page(page);
1318 ClearPageLRU(page);
1319 del_page_from_lru_list(page, lruvec, lru);
1320 ret = 0;
1322 spin_unlock_irq(&zone->lru_lock);
1324 return ret;
1328 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1329 * then get resheduled. When there are massive number of tasks doing page
1330 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1331 * the LRU list will go small and be scanned faster than necessary, leading to
1332 * unnecessary swapping, thrashing and OOM.
1334 static int too_many_isolated(struct zone *zone, int file,
1335 struct scan_control *sc)
1337 unsigned long inactive, isolated;
1339 if (current_is_kswapd())
1340 return 0;
1342 if (!global_reclaim(sc))
1343 return 0;
1345 if (file) {
1346 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1347 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1348 } else {
1349 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1350 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1354 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1355 * won't get blocked by normal direct-reclaimers, forming a circular
1356 * deadlock.
1358 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1359 inactive >>= 3;
1361 return isolated > inactive;
1364 static noinline_for_stack void
1365 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1367 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1368 struct zone *zone = lruvec_zone(lruvec);
1369 LIST_HEAD(pages_to_free);
1372 * Put back any unfreeable pages.
1374 while (!list_empty(page_list)) {
1375 struct page *page = lru_to_page(page_list);
1376 int lru;
1378 VM_BUG_ON(PageLRU(page));
1379 list_del(&page->lru);
1380 if (unlikely(!page_evictable(page))) {
1381 spin_unlock_irq(&zone->lru_lock);
1382 putback_lru_page(page);
1383 spin_lock_irq(&zone->lru_lock);
1384 continue;
1387 lruvec = mem_cgroup_page_lruvec(page, zone);
1389 SetPageLRU(page);
1390 lru = page_lru(page);
1391 add_page_to_lru_list(page, lruvec, lru);
1393 if (is_active_lru(lru)) {
1394 int file = is_file_lru(lru);
1395 int numpages = hpage_nr_pages(page);
1396 reclaim_stat->recent_rotated[file] += numpages;
1398 if (put_page_testzero(page)) {
1399 __ClearPageLRU(page);
1400 __ClearPageActive(page);
1401 del_page_from_lru_list(page, lruvec, lru);
1403 if (unlikely(PageCompound(page))) {
1404 spin_unlock_irq(&zone->lru_lock);
1405 (*get_compound_page_dtor(page))(page);
1406 spin_lock_irq(&zone->lru_lock);
1407 } else
1408 list_add(&page->lru, &pages_to_free);
1413 * To save our caller's stack, now use input list for pages to free.
1415 list_splice(&pages_to_free, page_list);
1419 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1420 * of reclaimed pages
1422 static noinline_for_stack unsigned long
1423 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1424 struct scan_control *sc, enum lru_list lru)
1426 LIST_HEAD(page_list);
1427 unsigned long nr_scanned;
1428 unsigned long nr_reclaimed = 0;
1429 unsigned long nr_taken;
1430 unsigned long nr_dirty = 0;
1431 unsigned long nr_congested = 0;
1432 unsigned long nr_unqueued_dirty = 0;
1433 unsigned long nr_writeback = 0;
1434 unsigned long nr_immediate = 0;
1435 isolate_mode_t isolate_mode = 0;
1436 int file = is_file_lru(lru);
1437 struct zone *zone = lruvec_zone(lruvec);
1438 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1440 while (unlikely(too_many_isolated(zone, file, sc))) {
1441 congestion_wait(BLK_RW_ASYNC, HZ/10);
1443 /* We are about to die and free our memory. Return now. */
1444 if (fatal_signal_pending(current))
1445 return SWAP_CLUSTER_MAX;
1448 lru_add_drain();
1450 if (!sc->may_unmap)
1451 isolate_mode |= ISOLATE_UNMAPPED;
1452 if (!sc->may_writepage)
1453 isolate_mode |= ISOLATE_CLEAN;
1455 spin_lock_irq(&zone->lru_lock);
1457 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1458 &nr_scanned, sc, isolate_mode, lru);
1460 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1461 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1463 if (global_reclaim(sc)) {
1464 zone->pages_scanned += nr_scanned;
1465 if (current_is_kswapd())
1466 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1467 else
1468 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1470 spin_unlock_irq(&zone->lru_lock);
1472 if (nr_taken == 0)
1473 return 0;
1475 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1476 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1477 &nr_writeback, &nr_immediate,
1478 false);
1480 spin_lock_irq(&zone->lru_lock);
1482 reclaim_stat->recent_scanned[file] += nr_taken;
1484 if (global_reclaim(sc)) {
1485 if (current_is_kswapd())
1486 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1487 nr_reclaimed);
1488 else
1489 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1490 nr_reclaimed);
1493 putback_inactive_pages(lruvec, &page_list);
1495 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1497 spin_unlock_irq(&zone->lru_lock);
1499 free_hot_cold_page_list(&page_list, 1);
1502 * If reclaim is isolating dirty pages under writeback, it implies
1503 * that the long-lived page allocation rate is exceeding the page
1504 * laundering rate. Either the global limits are not being effective
1505 * at throttling processes due to the page distribution throughout
1506 * zones or there is heavy usage of a slow backing device. The
1507 * only option is to throttle from reclaim context which is not ideal
1508 * as there is no guarantee the dirtying process is throttled in the
1509 * same way balance_dirty_pages() manages.
1511 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1512 * of pages under pages flagged for immediate reclaim and stall if any
1513 * are encountered in the nr_immediate check below.
1515 if (nr_writeback && nr_writeback == nr_taken)
1516 zone_set_flag(zone, ZONE_WRITEBACK);
1519 * memcg will stall in page writeback so only consider forcibly
1520 * stalling for global reclaim
1522 if (global_reclaim(sc)) {
1524 * Tag a zone as congested if all the dirty pages scanned were
1525 * backed by a congested BDI and wait_iff_congested will stall.
1527 if (nr_dirty && nr_dirty == nr_congested)
1528 zone_set_flag(zone, ZONE_CONGESTED);
1531 * If dirty pages are scanned that are not queued for IO, it
1532 * implies that flushers are not keeping up. In this case, flag
1533 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1534 * pages from reclaim context. It will forcibly stall in the
1535 * next check.
1537 if (nr_unqueued_dirty == nr_taken)
1538 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1541 * In addition, if kswapd scans pages marked marked for
1542 * immediate reclaim and under writeback (nr_immediate), it
1543 * implies that pages are cycling through the LRU faster than
1544 * they are written so also forcibly stall.
1546 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1547 congestion_wait(BLK_RW_ASYNC, HZ/10);
1551 * Stall direct reclaim for IO completions if underlying BDIs or zone
1552 * is congested. Allow kswapd to continue until it starts encountering
1553 * unqueued dirty pages or cycling through the LRU too quickly.
1555 if (!sc->hibernation_mode && !current_is_kswapd())
1556 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1558 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1559 zone_idx(zone),
1560 nr_scanned, nr_reclaimed,
1561 sc->priority,
1562 trace_shrink_flags(file));
1563 return nr_reclaimed;
1567 * This moves pages from the active list to the inactive list.
1569 * We move them the other way if the page is referenced by one or more
1570 * processes, from rmap.
1572 * If the pages are mostly unmapped, the processing is fast and it is
1573 * appropriate to hold zone->lru_lock across the whole operation. But if
1574 * the pages are mapped, the processing is slow (page_referenced()) so we
1575 * should drop zone->lru_lock around each page. It's impossible to balance
1576 * this, so instead we remove the pages from the LRU while processing them.
1577 * It is safe to rely on PG_active against the non-LRU pages in here because
1578 * nobody will play with that bit on a non-LRU page.
1580 * The downside is that we have to touch page->_count against each page.
1581 * But we had to alter page->flags anyway.
1584 static void move_active_pages_to_lru(struct lruvec *lruvec,
1585 struct list_head *list,
1586 struct list_head *pages_to_free,
1587 enum lru_list lru)
1589 struct zone *zone = lruvec_zone(lruvec);
1590 unsigned long pgmoved = 0;
1591 struct page *page;
1592 int nr_pages;
1594 while (!list_empty(list)) {
1595 page = lru_to_page(list);
1596 lruvec = mem_cgroup_page_lruvec(page, zone);
1598 VM_BUG_ON(PageLRU(page));
1599 SetPageLRU(page);
1601 nr_pages = hpage_nr_pages(page);
1602 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1603 list_move(&page->lru, &lruvec->lists[lru]);
1604 pgmoved += nr_pages;
1606 if (put_page_testzero(page)) {
1607 __ClearPageLRU(page);
1608 __ClearPageActive(page);
1609 del_page_from_lru_list(page, lruvec, lru);
1611 if (unlikely(PageCompound(page))) {
1612 spin_unlock_irq(&zone->lru_lock);
1613 (*get_compound_page_dtor(page))(page);
1614 spin_lock_irq(&zone->lru_lock);
1615 } else
1616 list_add(&page->lru, pages_to_free);
1619 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1620 if (!is_active_lru(lru))
1621 __count_vm_events(PGDEACTIVATE, pgmoved);
1624 static void shrink_active_list(unsigned long nr_to_scan,
1625 struct lruvec *lruvec,
1626 struct scan_control *sc,
1627 enum lru_list lru)
1629 unsigned long nr_taken;
1630 unsigned long nr_scanned;
1631 unsigned long vm_flags;
1632 LIST_HEAD(l_hold); /* The pages which were snipped off */
1633 LIST_HEAD(l_active);
1634 LIST_HEAD(l_inactive);
1635 struct page *page;
1636 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1637 unsigned long nr_rotated = 0;
1638 isolate_mode_t isolate_mode = 0;
1639 int file = is_file_lru(lru);
1640 struct zone *zone = lruvec_zone(lruvec);
1642 lru_add_drain();
1644 if (!sc->may_unmap)
1645 isolate_mode |= ISOLATE_UNMAPPED;
1646 if (!sc->may_writepage)
1647 isolate_mode |= ISOLATE_CLEAN;
1649 spin_lock_irq(&zone->lru_lock);
1651 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1652 &nr_scanned, sc, isolate_mode, lru);
1653 if (global_reclaim(sc))
1654 zone->pages_scanned += nr_scanned;
1656 reclaim_stat->recent_scanned[file] += nr_taken;
1658 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1659 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1660 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1661 spin_unlock_irq(&zone->lru_lock);
1663 while (!list_empty(&l_hold)) {
1664 cond_resched();
1665 page = lru_to_page(&l_hold);
1666 list_del(&page->lru);
1668 if (unlikely(!page_evictable(page))) {
1669 putback_lru_page(page);
1670 continue;
1673 if (unlikely(buffer_heads_over_limit)) {
1674 if (page_has_private(page) && trylock_page(page)) {
1675 if (page_has_private(page))
1676 try_to_release_page(page, 0);
1677 unlock_page(page);
1681 if (page_referenced(page, 0, sc->target_mem_cgroup,
1682 &vm_flags)) {
1683 nr_rotated += hpage_nr_pages(page);
1685 * Identify referenced, file-backed active pages and
1686 * give them one more trip around the active list. So
1687 * that executable code get better chances to stay in
1688 * memory under moderate memory pressure. Anon pages
1689 * are not likely to be evicted by use-once streaming
1690 * IO, plus JVM can create lots of anon VM_EXEC pages,
1691 * so we ignore them here.
1693 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1694 list_add(&page->lru, &l_active);
1695 continue;
1699 ClearPageActive(page); /* we are de-activating */
1700 list_add(&page->lru, &l_inactive);
1704 * Move pages back to the lru list.
1706 spin_lock_irq(&zone->lru_lock);
1708 * Count referenced pages from currently used mappings as rotated,
1709 * even though only some of them are actually re-activated. This
1710 * helps balance scan pressure between file and anonymous pages in
1711 * get_scan_ratio.
1713 reclaim_stat->recent_rotated[file] += nr_rotated;
1715 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1716 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1717 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1718 spin_unlock_irq(&zone->lru_lock);
1720 free_hot_cold_page_list(&l_hold, 1);
1723 #ifdef CONFIG_SWAP
1724 static int inactive_anon_is_low_global(struct zone *zone)
1726 unsigned long active, inactive;
1728 active = zone_page_state(zone, NR_ACTIVE_ANON);
1729 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1731 if (inactive * zone->inactive_ratio < active)
1732 return 1;
1734 return 0;
1738 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1739 * @lruvec: LRU vector to check
1741 * Returns true if the zone does not have enough inactive anon pages,
1742 * meaning some active anon pages need to be deactivated.
1744 static int inactive_anon_is_low(struct lruvec *lruvec)
1747 * If we don't have swap space, anonymous page deactivation
1748 * is pointless.
1750 if (!total_swap_pages)
1751 return 0;
1753 if (!mem_cgroup_disabled())
1754 return mem_cgroup_inactive_anon_is_low(lruvec);
1756 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1758 #else
1759 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1761 return 0;
1763 #endif
1766 * inactive_file_is_low - check if file pages need to be deactivated
1767 * @lruvec: LRU vector to check
1769 * When the system is doing streaming IO, memory pressure here
1770 * ensures that active file pages get deactivated, until more
1771 * than half of the file pages are on the inactive list.
1773 * Once we get to that situation, protect the system's working
1774 * set from being evicted by disabling active file page aging.
1776 * This uses a different ratio than the anonymous pages, because
1777 * the page cache uses a use-once replacement algorithm.
1779 static int inactive_file_is_low(struct lruvec *lruvec)
1781 unsigned long inactive;
1782 unsigned long active;
1784 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1785 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1787 return active > inactive;
1790 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1792 if (is_file_lru(lru))
1793 return inactive_file_is_low(lruvec);
1794 else
1795 return inactive_anon_is_low(lruvec);
1798 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1799 struct lruvec *lruvec, struct scan_control *sc)
1801 if (is_active_lru(lru)) {
1802 if (inactive_list_is_low(lruvec, lru))
1803 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1804 return 0;
1807 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1810 static int vmscan_swappiness(struct scan_control *sc)
1812 if (global_reclaim(sc))
1813 return vm_swappiness;
1814 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1817 enum scan_balance {
1818 SCAN_EQUAL,
1819 SCAN_FRACT,
1820 SCAN_ANON,
1821 SCAN_FILE,
1825 * Determine how aggressively the anon and file LRU lists should be
1826 * scanned. The relative value of each set of LRU lists is determined
1827 * by looking at the fraction of the pages scanned we did rotate back
1828 * onto the active list instead of evict.
1830 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1831 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1833 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1834 unsigned long *nr)
1836 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1837 u64 fraction[2];
1838 u64 denominator = 0; /* gcc */
1839 struct zone *zone = lruvec_zone(lruvec);
1840 unsigned long anon_prio, file_prio;
1841 enum scan_balance scan_balance;
1842 unsigned long anon, file, free;
1843 bool force_scan = false;
1844 unsigned long ap, fp;
1845 enum lru_list lru;
1848 * If the zone or memcg is small, nr[l] can be 0. This
1849 * results in no scanning on this priority and a potential
1850 * priority drop. Global direct reclaim can go to the next
1851 * zone and tends to have no problems. Global kswapd is for
1852 * zone balancing and it needs to scan a minimum amount. When
1853 * reclaiming for a memcg, a priority drop can cause high
1854 * latencies, so it's better to scan a minimum amount there as
1855 * well.
1857 if (current_is_kswapd() && !zone_reclaimable(zone))
1858 force_scan = true;
1859 if (!global_reclaim(sc))
1860 force_scan = true;
1862 /* If we have no swap space, do not bother scanning anon pages. */
1863 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1864 scan_balance = SCAN_FILE;
1865 goto out;
1869 * Global reclaim will swap to prevent OOM even with no
1870 * swappiness, but memcg users want to use this knob to
1871 * disable swapping for individual groups completely when
1872 * using the memory controller's swap limit feature would be
1873 * too expensive.
1875 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1876 scan_balance = SCAN_FILE;
1877 goto out;
1881 * Do not apply any pressure balancing cleverness when the
1882 * system is close to OOM, scan both anon and file equally
1883 * (unless the swappiness setting disagrees with swapping).
1885 if (!sc->priority && vmscan_swappiness(sc)) {
1886 scan_balance = SCAN_EQUAL;
1887 goto out;
1890 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1891 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1892 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1893 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1896 * If it's foreseeable that reclaiming the file cache won't be
1897 * enough to get the zone back into a desirable shape, we have
1898 * to swap. Better start now and leave the - probably heavily
1899 * thrashing - remaining file pages alone.
1901 if (global_reclaim(sc)) {
1902 free = zone_page_state(zone, NR_FREE_PAGES);
1903 if (unlikely(file + free <= high_wmark_pages(zone))) {
1904 scan_balance = SCAN_ANON;
1905 goto out;
1910 * There is enough inactive page cache, do not reclaim
1911 * anything from the anonymous working set right now.
1913 if (!inactive_file_is_low(lruvec)) {
1914 scan_balance = SCAN_FILE;
1915 goto out;
1918 scan_balance = SCAN_FRACT;
1921 * With swappiness at 100, anonymous and file have the same priority.
1922 * This scanning priority is essentially the inverse of IO cost.
1924 anon_prio = vmscan_swappiness(sc);
1925 file_prio = 200 - anon_prio;
1928 * OK, so we have swap space and a fair amount of page cache
1929 * pages. We use the recently rotated / recently scanned
1930 * ratios to determine how valuable each cache is.
1932 * Because workloads change over time (and to avoid overflow)
1933 * we keep these statistics as a floating average, which ends
1934 * up weighing recent references more than old ones.
1936 * anon in [0], file in [1]
1938 spin_lock_irq(&zone->lru_lock);
1939 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1940 reclaim_stat->recent_scanned[0] /= 2;
1941 reclaim_stat->recent_rotated[0] /= 2;
1944 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1945 reclaim_stat->recent_scanned[1] /= 2;
1946 reclaim_stat->recent_rotated[1] /= 2;
1950 * The amount of pressure on anon vs file pages is inversely
1951 * proportional to the fraction of recently scanned pages on
1952 * each list that were recently referenced and in active use.
1954 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1955 ap /= reclaim_stat->recent_rotated[0] + 1;
1957 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1958 fp /= reclaim_stat->recent_rotated[1] + 1;
1959 spin_unlock_irq(&zone->lru_lock);
1961 fraction[0] = ap;
1962 fraction[1] = fp;
1963 denominator = ap + fp + 1;
1964 out:
1965 for_each_evictable_lru(lru) {
1966 int file = is_file_lru(lru);
1967 unsigned long size;
1968 unsigned long scan;
1970 size = get_lru_size(lruvec, lru);
1971 scan = size >> sc->priority;
1973 if (!scan && force_scan)
1974 scan = min(size, SWAP_CLUSTER_MAX);
1976 switch (scan_balance) {
1977 case SCAN_EQUAL:
1978 /* Scan lists relative to size */
1979 break;
1980 case SCAN_FRACT:
1982 * Scan types proportional to swappiness and
1983 * their relative recent reclaim efficiency.
1985 scan = div64_u64(scan * fraction[file], denominator);
1986 break;
1987 case SCAN_FILE:
1988 case SCAN_ANON:
1989 /* Scan one type exclusively */
1990 if ((scan_balance == SCAN_FILE) != file)
1991 scan = 0;
1992 break;
1993 default:
1994 /* Look ma, no brain */
1995 BUG();
1997 nr[lru] = scan;
2002 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2004 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2006 unsigned long nr[NR_LRU_LISTS];
2007 unsigned long targets[NR_LRU_LISTS];
2008 unsigned long nr_to_scan;
2009 enum lru_list lru;
2010 unsigned long nr_reclaimed = 0;
2011 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2012 struct blk_plug plug;
2013 bool scan_adjusted = false;
2015 get_scan_count(lruvec, sc, nr);
2017 /* Record the original scan target for proportional adjustments later */
2018 memcpy(targets, nr, sizeof(nr));
2020 blk_start_plug(&plug);
2021 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2022 nr[LRU_INACTIVE_FILE]) {
2023 unsigned long nr_anon, nr_file, percentage;
2024 unsigned long nr_scanned;
2026 for_each_evictable_lru(lru) {
2027 if (nr[lru]) {
2028 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2029 nr[lru] -= nr_to_scan;
2031 nr_reclaimed += shrink_list(lru, nr_to_scan,
2032 lruvec, sc);
2036 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2037 continue;
2040 * For global direct reclaim, reclaim only the number of pages
2041 * requested. Less care is taken to scan proportionally as it
2042 * is more important to minimise direct reclaim stall latency
2043 * than it is to properly age the LRU lists.
2045 if (global_reclaim(sc) && !current_is_kswapd())
2046 break;
2049 * For kswapd and memcg, reclaim at least the number of pages
2050 * requested. Ensure that the anon and file LRUs shrink
2051 * proportionally what was requested by get_scan_count(). We
2052 * stop reclaiming one LRU and reduce the amount scanning
2053 * proportional to the original scan target.
2055 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2056 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2058 if (nr_file > nr_anon) {
2059 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2060 targets[LRU_ACTIVE_ANON] + 1;
2061 lru = LRU_BASE;
2062 percentage = nr_anon * 100 / scan_target;
2063 } else {
2064 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2065 targets[LRU_ACTIVE_FILE] + 1;
2066 lru = LRU_FILE;
2067 percentage = nr_file * 100 / scan_target;
2070 /* Stop scanning the smaller of the LRU */
2071 nr[lru] = 0;
2072 nr[lru + LRU_ACTIVE] = 0;
2075 * Recalculate the other LRU scan count based on its original
2076 * scan target and the percentage scanning already complete
2078 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2079 nr_scanned = targets[lru] - nr[lru];
2080 nr[lru] = targets[lru] * (100 - percentage) / 100;
2081 nr[lru] -= min(nr[lru], nr_scanned);
2083 lru += LRU_ACTIVE;
2084 nr_scanned = targets[lru] - nr[lru];
2085 nr[lru] = targets[lru] * (100 - percentage) / 100;
2086 nr[lru] -= min(nr[lru], nr_scanned);
2088 scan_adjusted = true;
2090 blk_finish_plug(&plug);
2091 sc->nr_reclaimed += nr_reclaimed;
2094 * Even if we did not try to evict anon pages at all, we want to
2095 * rebalance the anon lru active/inactive ratio.
2097 if (inactive_anon_is_low(lruvec))
2098 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2099 sc, LRU_ACTIVE_ANON);
2101 throttle_vm_writeout(sc->gfp_mask);
2104 /* Use reclaim/compaction for costly allocs or under memory pressure */
2105 static bool in_reclaim_compaction(struct scan_control *sc)
2107 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2108 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2109 sc->priority < DEF_PRIORITY - 2))
2110 return true;
2112 return false;
2116 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2117 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2118 * true if more pages should be reclaimed such that when the page allocator
2119 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2120 * It will give up earlier than that if there is difficulty reclaiming pages.
2122 static inline bool should_continue_reclaim(struct zone *zone,
2123 unsigned long nr_reclaimed,
2124 unsigned long nr_scanned,
2125 struct scan_control *sc)
2127 unsigned long pages_for_compaction;
2128 unsigned long inactive_lru_pages;
2130 /* If not in reclaim/compaction mode, stop */
2131 if (!in_reclaim_compaction(sc))
2132 return false;
2134 /* Consider stopping depending on scan and reclaim activity */
2135 if (sc->gfp_mask & __GFP_REPEAT) {
2137 * For __GFP_REPEAT allocations, stop reclaiming if the
2138 * full LRU list has been scanned and we are still failing
2139 * to reclaim pages. This full LRU scan is potentially
2140 * expensive but a __GFP_REPEAT caller really wants to succeed
2142 if (!nr_reclaimed && !nr_scanned)
2143 return false;
2144 } else {
2146 * For non-__GFP_REPEAT allocations which can presumably
2147 * fail without consequence, stop if we failed to reclaim
2148 * any pages from the last SWAP_CLUSTER_MAX number of
2149 * pages that were scanned. This will return to the
2150 * caller faster at the risk reclaim/compaction and
2151 * the resulting allocation attempt fails
2153 if (!nr_reclaimed)
2154 return false;
2158 * If we have not reclaimed enough pages for compaction and the
2159 * inactive lists are large enough, continue reclaiming
2161 pages_for_compaction = (2UL << sc->order);
2162 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2163 if (get_nr_swap_pages() > 0)
2164 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2165 if (sc->nr_reclaimed < pages_for_compaction &&
2166 inactive_lru_pages > pages_for_compaction)
2167 return true;
2169 /* If compaction would go ahead or the allocation would succeed, stop */
2170 switch (compaction_suitable(zone, sc->order)) {
2171 case COMPACT_PARTIAL:
2172 case COMPACT_CONTINUE:
2173 return false;
2174 default:
2175 return true;
2179 static int
2180 __shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
2182 unsigned long nr_reclaimed, nr_scanned;
2183 int groups_scanned = 0;
2185 do {
2186 struct mem_cgroup *root = sc->target_mem_cgroup;
2187 struct mem_cgroup_reclaim_cookie reclaim = {
2188 .zone = zone,
2189 .priority = sc->priority,
2191 struct mem_cgroup *memcg = NULL;
2192 mem_cgroup_iter_filter filter = (soft_reclaim) ?
2193 mem_cgroup_soft_reclaim_eligible : NULL;
2195 nr_reclaimed = sc->nr_reclaimed;
2196 nr_scanned = sc->nr_scanned;
2198 while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) {
2199 struct lruvec *lruvec;
2201 groups_scanned++;
2202 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2204 shrink_lruvec(lruvec, sc);
2207 * Direct reclaim and kswapd have to scan all memory
2208 * cgroups to fulfill the overall scan target for the
2209 * zone.
2211 * Limit reclaim, on the other hand, only cares about
2212 * nr_to_reclaim pages to be reclaimed and it will
2213 * retry with decreasing priority if one round over the
2214 * whole hierarchy is not sufficient.
2216 if (!global_reclaim(sc) &&
2217 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2218 mem_cgroup_iter_break(root, memcg);
2219 break;
2223 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2224 sc->nr_scanned - nr_scanned,
2225 sc->nr_reclaimed - nr_reclaimed);
2227 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2228 sc->nr_scanned - nr_scanned, sc));
2230 return groups_scanned;
2234 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2236 bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
2237 unsigned long nr_scanned = sc->nr_scanned;
2238 int scanned_groups;
2240 scanned_groups = __shrink_zone(zone, sc, do_soft_reclaim);
2242 * memcg iterator might race with other reclaimer or start from
2243 * a incomplete tree walk so the tree walk in __shrink_zone
2244 * might have missed groups that are above the soft limit. Try
2245 * another loop to catch up with others. Do it just once to
2246 * prevent from reclaim latencies when other reclaimers always
2247 * preempt this one.
2249 if (do_soft_reclaim && !scanned_groups)
2250 __shrink_zone(zone, sc, do_soft_reclaim);
2253 * No group is over the soft limit or those that are do not have
2254 * pages in the zone we are reclaiming so we have to reclaim everybody
2256 if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
2257 __shrink_zone(zone, sc, false);
2258 return;
2262 /* Returns true if compaction should go ahead for a high-order request */
2263 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2265 unsigned long balance_gap, watermark;
2266 bool watermark_ok;
2268 /* Do not consider compaction for orders reclaim is meant to satisfy */
2269 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2270 return false;
2273 * Compaction takes time to run and there are potentially other
2274 * callers using the pages just freed. Continue reclaiming until
2275 * there is a buffer of free pages available to give compaction
2276 * a reasonable chance of completing and allocating the page
2278 balance_gap = min(low_wmark_pages(zone),
2279 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2280 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2281 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2282 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2285 * If compaction is deferred, reclaim up to a point where
2286 * compaction will have a chance of success when re-enabled
2288 if (compaction_deferred(zone, sc->order))
2289 return watermark_ok;
2291 /* If compaction is not ready to start, keep reclaiming */
2292 if (!compaction_suitable(zone, sc->order))
2293 return false;
2295 return watermark_ok;
2299 * This is the direct reclaim path, for page-allocating processes. We only
2300 * try to reclaim pages from zones which will satisfy the caller's allocation
2301 * request.
2303 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2304 * Because:
2305 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2306 * allocation or
2307 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2308 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2309 * zone defense algorithm.
2311 * If a zone is deemed to be full of pinned pages then just give it a light
2312 * scan then give up on it.
2314 * This function returns true if a zone is being reclaimed for a costly
2315 * high-order allocation and compaction is ready to begin. This indicates to
2316 * the caller that it should consider retrying the allocation instead of
2317 * further reclaim.
2319 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2321 struct zoneref *z;
2322 struct zone *zone;
2323 bool aborted_reclaim = false;
2326 * If the number of buffer_heads in the machine exceeds the maximum
2327 * allowed level, force direct reclaim to scan the highmem zone as
2328 * highmem pages could be pinning lowmem pages storing buffer_heads
2330 if (buffer_heads_over_limit)
2331 sc->gfp_mask |= __GFP_HIGHMEM;
2333 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2334 gfp_zone(sc->gfp_mask), sc->nodemask) {
2335 if (!populated_zone(zone))
2336 continue;
2338 * Take care memory controller reclaiming has small influence
2339 * to global LRU.
2341 if (global_reclaim(sc)) {
2342 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2343 continue;
2344 if (sc->priority != DEF_PRIORITY &&
2345 !zone_reclaimable(zone))
2346 continue; /* Let kswapd poll it */
2347 if (IS_ENABLED(CONFIG_COMPACTION)) {
2349 * If we already have plenty of memory free for
2350 * compaction in this zone, don't free any more.
2351 * Even though compaction is invoked for any
2352 * non-zero order, only frequent costly order
2353 * reclamation is disruptive enough to become a
2354 * noticeable problem, like transparent huge
2355 * page allocations.
2357 if (compaction_ready(zone, sc)) {
2358 aborted_reclaim = true;
2359 continue;
2362 /* need some check for avoid more shrink_zone() */
2365 shrink_zone(zone, sc);
2368 return aborted_reclaim;
2371 /* All zones in zonelist are unreclaimable? */
2372 static bool all_unreclaimable(struct zonelist *zonelist,
2373 struct scan_control *sc)
2375 struct zoneref *z;
2376 struct zone *zone;
2378 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2379 gfp_zone(sc->gfp_mask), sc->nodemask) {
2380 if (!populated_zone(zone))
2381 continue;
2382 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2383 continue;
2384 if (zone_reclaimable(zone))
2385 return false;
2388 return true;
2392 * This is the main entry point to direct page reclaim.
2394 * If a full scan of the inactive list fails to free enough memory then we
2395 * are "out of memory" and something needs to be killed.
2397 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2398 * high - the zone may be full of dirty or under-writeback pages, which this
2399 * caller can't do much about. We kick the writeback threads and take explicit
2400 * naps in the hope that some of these pages can be written. But if the
2401 * allocating task holds filesystem locks which prevent writeout this might not
2402 * work, and the allocation attempt will fail.
2404 * returns: 0, if no pages reclaimed
2405 * else, the number of pages reclaimed
2407 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2408 struct scan_control *sc,
2409 struct shrink_control *shrink)
2411 unsigned long total_scanned = 0;
2412 struct reclaim_state *reclaim_state = current->reclaim_state;
2413 struct zoneref *z;
2414 struct zone *zone;
2415 unsigned long writeback_threshold;
2416 bool aborted_reclaim;
2418 delayacct_freepages_start();
2420 if (global_reclaim(sc))
2421 count_vm_event(ALLOCSTALL);
2423 do {
2424 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2425 sc->priority);
2426 sc->nr_scanned = 0;
2427 aborted_reclaim = shrink_zones(zonelist, sc);
2430 * Don't shrink slabs when reclaiming memory from over limit
2431 * cgroups but do shrink slab at least once when aborting
2432 * reclaim for compaction to avoid unevenly scanning file/anon
2433 * LRU pages over slab pages.
2435 if (global_reclaim(sc)) {
2436 unsigned long lru_pages = 0;
2438 nodes_clear(shrink->nodes_to_scan);
2439 for_each_zone_zonelist(zone, z, zonelist,
2440 gfp_zone(sc->gfp_mask)) {
2441 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2442 continue;
2444 lru_pages += zone_reclaimable_pages(zone);
2445 node_set(zone_to_nid(zone),
2446 shrink->nodes_to_scan);
2449 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2450 if (reclaim_state) {
2451 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2452 reclaim_state->reclaimed_slab = 0;
2455 total_scanned += sc->nr_scanned;
2456 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2457 goto out;
2460 * If we're getting trouble reclaiming, start doing
2461 * writepage even in laptop mode.
2463 if (sc->priority < DEF_PRIORITY - 2)
2464 sc->may_writepage = 1;
2467 * Try to write back as many pages as we just scanned. This
2468 * tends to cause slow streaming writers to write data to the
2469 * disk smoothly, at the dirtying rate, which is nice. But
2470 * that's undesirable in laptop mode, where we *want* lumpy
2471 * writeout. So in laptop mode, write out the whole world.
2473 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2474 if (total_scanned > writeback_threshold) {
2475 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2476 WB_REASON_TRY_TO_FREE_PAGES);
2477 sc->may_writepage = 1;
2479 } while (--sc->priority >= 0 && !aborted_reclaim);
2481 out:
2482 delayacct_freepages_end();
2484 if (sc->nr_reclaimed)
2485 return sc->nr_reclaimed;
2488 * As hibernation is going on, kswapd is freezed so that it can't mark
2489 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2490 * check.
2492 if (oom_killer_disabled)
2493 return 0;
2495 /* Aborted reclaim to try compaction? don't OOM, then */
2496 if (aborted_reclaim)
2497 return 1;
2499 /* top priority shrink_zones still had more to do? don't OOM, then */
2500 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2501 return 1;
2503 return 0;
2506 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2508 struct zone *zone;
2509 unsigned long pfmemalloc_reserve = 0;
2510 unsigned long free_pages = 0;
2511 int i;
2512 bool wmark_ok;
2514 for (i = 0; i <= ZONE_NORMAL; i++) {
2515 zone = &pgdat->node_zones[i];
2516 pfmemalloc_reserve += min_wmark_pages(zone);
2517 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2520 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2522 /* kswapd must be awake if processes are being throttled */
2523 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2524 pgdat->classzone_idx = min(pgdat->classzone_idx,
2525 (enum zone_type)ZONE_NORMAL);
2526 wake_up_interruptible(&pgdat->kswapd_wait);
2529 return wmark_ok;
2533 * Throttle direct reclaimers if backing storage is backed by the network
2534 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2535 * depleted. kswapd will continue to make progress and wake the processes
2536 * when the low watermark is reached.
2538 * Returns true if a fatal signal was delivered during throttling. If this
2539 * happens, the page allocator should not consider triggering the OOM killer.
2541 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2542 nodemask_t *nodemask)
2544 struct zone *zone;
2545 int high_zoneidx = gfp_zone(gfp_mask);
2546 pg_data_t *pgdat;
2549 * Kernel threads should not be throttled as they may be indirectly
2550 * responsible for cleaning pages necessary for reclaim to make forward
2551 * progress. kjournald for example may enter direct reclaim while
2552 * committing a transaction where throttling it could forcing other
2553 * processes to block on log_wait_commit().
2555 if (current->flags & PF_KTHREAD)
2556 goto out;
2559 * If a fatal signal is pending, this process should not throttle.
2560 * It should return quickly so it can exit and free its memory
2562 if (fatal_signal_pending(current))
2563 goto out;
2565 /* Check if the pfmemalloc reserves are ok */
2566 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2567 pgdat = zone->zone_pgdat;
2568 if (pfmemalloc_watermark_ok(pgdat))
2569 goto out;
2571 /* Account for the throttling */
2572 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2575 * If the caller cannot enter the filesystem, it's possible that it
2576 * is due to the caller holding an FS lock or performing a journal
2577 * transaction in the case of a filesystem like ext[3|4]. In this case,
2578 * it is not safe to block on pfmemalloc_wait as kswapd could be
2579 * blocked waiting on the same lock. Instead, throttle for up to a
2580 * second before continuing.
2582 if (!(gfp_mask & __GFP_FS)) {
2583 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2584 pfmemalloc_watermark_ok(pgdat), HZ);
2586 goto check_pending;
2589 /* Throttle until kswapd wakes the process */
2590 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2591 pfmemalloc_watermark_ok(pgdat));
2593 check_pending:
2594 if (fatal_signal_pending(current))
2595 return true;
2597 out:
2598 return false;
2601 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2602 gfp_t gfp_mask, nodemask_t *nodemask)
2604 unsigned long nr_reclaimed;
2605 struct scan_control sc = {
2606 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2607 .may_writepage = !laptop_mode,
2608 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2609 .may_unmap = 1,
2610 .may_swap = 1,
2611 .order = order,
2612 .priority = DEF_PRIORITY,
2613 .target_mem_cgroup = NULL,
2614 .nodemask = nodemask,
2616 struct shrink_control shrink = {
2617 .gfp_mask = sc.gfp_mask,
2621 * Do not enter reclaim if fatal signal was delivered while throttled.
2622 * 1 is returned so that the page allocator does not OOM kill at this
2623 * point.
2625 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2626 return 1;
2628 trace_mm_vmscan_direct_reclaim_begin(order,
2629 sc.may_writepage,
2630 gfp_mask);
2632 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2634 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2636 return nr_reclaimed;
2639 #ifdef CONFIG_MEMCG
2641 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2642 gfp_t gfp_mask, bool noswap,
2643 struct zone *zone,
2644 unsigned long *nr_scanned)
2646 struct scan_control sc = {
2647 .nr_scanned = 0,
2648 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2649 .may_writepage = !laptop_mode,
2650 .may_unmap = 1,
2651 .may_swap = !noswap,
2652 .order = 0,
2653 .priority = 0,
2654 .target_mem_cgroup = memcg,
2656 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2658 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2659 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2661 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2662 sc.may_writepage,
2663 sc.gfp_mask);
2666 * NOTE: Although we can get the priority field, using it
2667 * here is not a good idea, since it limits the pages we can scan.
2668 * if we don't reclaim here, the shrink_zone from balance_pgdat
2669 * will pick up pages from other mem cgroup's as well. We hack
2670 * the priority and make it zero.
2672 shrink_lruvec(lruvec, &sc);
2674 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2676 *nr_scanned = sc.nr_scanned;
2677 return sc.nr_reclaimed;
2680 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2681 gfp_t gfp_mask,
2682 bool noswap)
2684 struct zonelist *zonelist;
2685 unsigned long nr_reclaimed;
2686 int nid;
2687 struct scan_control sc = {
2688 .may_writepage = !laptop_mode,
2689 .may_unmap = 1,
2690 .may_swap = !noswap,
2691 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2692 .order = 0,
2693 .priority = DEF_PRIORITY,
2694 .target_mem_cgroup = memcg,
2695 .nodemask = NULL, /* we don't care the placement */
2696 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2697 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2699 struct shrink_control shrink = {
2700 .gfp_mask = sc.gfp_mask,
2704 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2705 * take care of from where we get pages. So the node where we start the
2706 * scan does not need to be the current node.
2708 nid = mem_cgroup_select_victim_node(memcg);
2710 zonelist = NODE_DATA(nid)->node_zonelists;
2712 trace_mm_vmscan_memcg_reclaim_begin(0,
2713 sc.may_writepage,
2714 sc.gfp_mask);
2716 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2718 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2720 return nr_reclaimed;
2722 #endif
2724 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2726 struct mem_cgroup *memcg;
2728 if (!total_swap_pages)
2729 return;
2731 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2732 do {
2733 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2735 if (inactive_anon_is_low(lruvec))
2736 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2737 sc, LRU_ACTIVE_ANON);
2739 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2740 } while (memcg);
2743 static bool zone_balanced(struct zone *zone, int order,
2744 unsigned long balance_gap, int classzone_idx)
2746 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2747 balance_gap, classzone_idx, 0))
2748 return false;
2750 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2751 !compaction_suitable(zone, order))
2752 return false;
2754 return true;
2758 * pgdat_balanced() is used when checking if a node is balanced.
2760 * For order-0, all zones must be balanced!
2762 * For high-order allocations only zones that meet watermarks and are in a
2763 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2764 * total of balanced pages must be at least 25% of the zones allowed by
2765 * classzone_idx for the node to be considered balanced. Forcing all zones to
2766 * be balanced for high orders can cause excessive reclaim when there are
2767 * imbalanced zones.
2768 * The choice of 25% is due to
2769 * o a 16M DMA zone that is balanced will not balance a zone on any
2770 * reasonable sized machine
2771 * o On all other machines, the top zone must be at least a reasonable
2772 * percentage of the middle zones. For example, on 32-bit x86, highmem
2773 * would need to be at least 256M for it to be balance a whole node.
2774 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2775 * to balance a node on its own. These seemed like reasonable ratios.
2777 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2779 unsigned long managed_pages = 0;
2780 unsigned long balanced_pages = 0;
2781 int i;
2783 /* Check the watermark levels */
2784 for (i = 0; i <= classzone_idx; i++) {
2785 struct zone *zone = pgdat->node_zones + i;
2787 if (!populated_zone(zone))
2788 continue;
2790 managed_pages += zone->managed_pages;
2793 * A special case here:
2795 * balance_pgdat() skips over all_unreclaimable after
2796 * DEF_PRIORITY. Effectively, it considers them balanced so
2797 * they must be considered balanced here as well!
2799 if (!zone_reclaimable(zone)) {
2800 balanced_pages += zone->managed_pages;
2801 continue;
2804 if (zone_balanced(zone, order, 0, i))
2805 balanced_pages += zone->managed_pages;
2806 else if (!order)
2807 return false;
2810 if (order)
2811 return balanced_pages >= (managed_pages >> 2);
2812 else
2813 return true;
2817 * Prepare kswapd for sleeping. This verifies that there are no processes
2818 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2820 * Returns true if kswapd is ready to sleep
2822 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2823 int classzone_idx)
2825 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2826 if (remaining)
2827 return false;
2830 * There is a potential race between when kswapd checks its watermarks
2831 * and a process gets throttled. There is also a potential race if
2832 * processes get throttled, kswapd wakes, a large process exits therby
2833 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2834 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2835 * so wake them now if necessary. If necessary, processes will wake
2836 * kswapd and get throttled again
2838 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2839 wake_up(&pgdat->pfmemalloc_wait);
2840 return false;
2843 return pgdat_balanced(pgdat, order, classzone_idx);
2847 * kswapd shrinks the zone by the number of pages required to reach
2848 * the high watermark.
2850 * Returns true if kswapd scanned at least the requested number of pages to
2851 * reclaim or if the lack of progress was due to pages under writeback.
2852 * This is used to determine if the scanning priority needs to be raised.
2854 static bool kswapd_shrink_zone(struct zone *zone,
2855 int classzone_idx,
2856 struct scan_control *sc,
2857 unsigned long lru_pages,
2858 unsigned long *nr_attempted)
2860 int testorder = sc->order;
2861 unsigned long balance_gap;
2862 struct reclaim_state *reclaim_state = current->reclaim_state;
2863 struct shrink_control shrink = {
2864 .gfp_mask = sc->gfp_mask,
2866 bool lowmem_pressure;
2868 /* Reclaim above the high watermark. */
2869 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2872 * Kswapd reclaims only single pages with compaction enabled. Trying
2873 * too hard to reclaim until contiguous free pages have become
2874 * available can hurt performance by evicting too much useful data
2875 * from memory. Do not reclaim more than needed for compaction.
2877 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2878 compaction_suitable(zone, sc->order) !=
2879 COMPACT_SKIPPED)
2880 testorder = 0;
2883 * We put equal pressure on every zone, unless one zone has way too
2884 * many pages free already. The "too many pages" is defined as the
2885 * high wmark plus a "gap" where the gap is either the low
2886 * watermark or 1% of the zone, whichever is smaller.
2888 balance_gap = min(low_wmark_pages(zone),
2889 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2890 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2893 * If there is no low memory pressure or the zone is balanced then no
2894 * reclaim is necessary
2896 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2897 if (!lowmem_pressure && zone_balanced(zone, testorder,
2898 balance_gap, classzone_idx))
2899 return true;
2901 shrink_zone(zone, sc);
2902 nodes_clear(shrink.nodes_to_scan);
2903 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2905 reclaim_state->reclaimed_slab = 0;
2906 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2907 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2909 /* Account for the number of pages attempted to reclaim */
2910 *nr_attempted += sc->nr_to_reclaim;
2912 zone_clear_flag(zone, ZONE_WRITEBACK);
2915 * If a zone reaches its high watermark, consider it to be no longer
2916 * congested. It's possible there are dirty pages backed by congested
2917 * BDIs but as pressure is relieved, speculatively avoid congestion
2918 * waits.
2920 if (zone_reclaimable(zone) &&
2921 zone_balanced(zone, testorder, 0, classzone_idx)) {
2922 zone_clear_flag(zone, ZONE_CONGESTED);
2923 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2926 return sc->nr_scanned >= sc->nr_to_reclaim;
2930 * For kswapd, balance_pgdat() will work across all this node's zones until
2931 * they are all at high_wmark_pages(zone).
2933 * Returns the final order kswapd was reclaiming at
2935 * There is special handling here for zones which are full of pinned pages.
2936 * This can happen if the pages are all mlocked, or if they are all used by
2937 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2938 * What we do is to detect the case where all pages in the zone have been
2939 * scanned twice and there has been zero successful reclaim. Mark the zone as
2940 * dead and from now on, only perform a short scan. Basically we're polling
2941 * the zone for when the problem goes away.
2943 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2944 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2945 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2946 * lower zones regardless of the number of free pages in the lower zones. This
2947 * interoperates with the page allocator fallback scheme to ensure that aging
2948 * of pages is balanced across the zones.
2950 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2951 int *classzone_idx)
2953 int i;
2954 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2955 struct scan_control sc = {
2956 .gfp_mask = GFP_KERNEL,
2957 .priority = DEF_PRIORITY,
2958 .may_unmap = 1,
2959 .may_swap = 1,
2960 .may_writepage = !laptop_mode,
2961 .order = order,
2962 .target_mem_cgroup = NULL,
2964 count_vm_event(PAGEOUTRUN);
2966 do {
2967 unsigned long lru_pages = 0;
2968 unsigned long nr_attempted = 0;
2969 bool raise_priority = true;
2970 bool pgdat_needs_compaction = (order > 0);
2972 sc.nr_reclaimed = 0;
2975 * Scan in the highmem->dma direction for the highest
2976 * zone which needs scanning
2978 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2979 struct zone *zone = pgdat->node_zones + i;
2981 if (!populated_zone(zone))
2982 continue;
2984 if (sc.priority != DEF_PRIORITY &&
2985 !zone_reclaimable(zone))
2986 continue;
2989 * Do some background aging of the anon list, to give
2990 * pages a chance to be referenced before reclaiming.
2992 age_active_anon(zone, &sc);
2995 * If the number of buffer_heads in the machine
2996 * exceeds the maximum allowed level and this node
2997 * has a highmem zone, force kswapd to reclaim from
2998 * it to relieve lowmem pressure.
3000 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3001 end_zone = i;
3002 break;
3005 if (!zone_balanced(zone, order, 0, 0)) {
3006 end_zone = i;
3007 break;
3008 } else {
3010 * If balanced, clear the dirty and congested
3011 * flags
3013 zone_clear_flag(zone, ZONE_CONGESTED);
3014 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3018 if (i < 0)
3019 goto out;
3021 for (i = 0; i <= end_zone; i++) {
3022 struct zone *zone = pgdat->node_zones + i;
3024 if (!populated_zone(zone))
3025 continue;
3027 lru_pages += zone_reclaimable_pages(zone);
3030 * If any zone is currently balanced then kswapd will
3031 * not call compaction as it is expected that the
3032 * necessary pages are already available.
3034 if (pgdat_needs_compaction &&
3035 zone_watermark_ok(zone, order,
3036 low_wmark_pages(zone),
3037 *classzone_idx, 0))
3038 pgdat_needs_compaction = false;
3042 * If we're getting trouble reclaiming, start doing writepage
3043 * even in laptop mode.
3045 if (sc.priority < DEF_PRIORITY - 2)
3046 sc.may_writepage = 1;
3049 * Now scan the zone in the dma->highmem direction, stopping
3050 * at the last zone which needs scanning.
3052 * We do this because the page allocator works in the opposite
3053 * direction. This prevents the page allocator from allocating
3054 * pages behind kswapd's direction of progress, which would
3055 * cause too much scanning of the lower zones.
3057 for (i = 0; i <= end_zone; i++) {
3058 struct zone *zone = pgdat->node_zones + i;
3060 if (!populated_zone(zone))
3061 continue;
3063 if (sc.priority != DEF_PRIORITY &&
3064 !zone_reclaimable(zone))
3065 continue;
3067 sc.nr_scanned = 0;
3070 * There should be no need to raise the scanning
3071 * priority if enough pages are already being scanned
3072 * that that high watermark would be met at 100%
3073 * efficiency.
3075 if (kswapd_shrink_zone(zone, end_zone, &sc,
3076 lru_pages, &nr_attempted))
3077 raise_priority = false;
3081 * If the low watermark is met there is no need for processes
3082 * to be throttled on pfmemalloc_wait as they should not be
3083 * able to safely make forward progress. Wake them
3085 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3086 pfmemalloc_watermark_ok(pgdat))
3087 wake_up(&pgdat->pfmemalloc_wait);
3090 * Fragmentation may mean that the system cannot be rebalanced
3091 * for high-order allocations in all zones. If twice the
3092 * allocation size has been reclaimed and the zones are still
3093 * not balanced then recheck the watermarks at order-0 to
3094 * prevent kswapd reclaiming excessively. Assume that a
3095 * process requested a high-order can direct reclaim/compact.
3097 if (order && sc.nr_reclaimed >= 2UL << order)
3098 order = sc.order = 0;
3100 /* Check if kswapd should be suspending */
3101 if (try_to_freeze() || kthread_should_stop())
3102 break;
3105 * Compact if necessary and kswapd is reclaiming at least the
3106 * high watermark number of pages as requsted
3108 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3109 compact_pgdat(pgdat, order);
3112 * Raise priority if scanning rate is too low or there was no
3113 * progress in reclaiming pages
3115 if (raise_priority || !sc.nr_reclaimed)
3116 sc.priority--;
3117 } while (sc.priority >= 1 &&
3118 !pgdat_balanced(pgdat, order, *classzone_idx));
3120 out:
3122 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3123 * makes a decision on the order we were last reclaiming at. However,
3124 * if another caller entered the allocator slow path while kswapd
3125 * was awake, order will remain at the higher level
3127 *classzone_idx = end_zone;
3128 return order;
3131 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3133 long remaining = 0;
3134 DEFINE_WAIT(wait);
3136 if (freezing(current) || kthread_should_stop())
3137 return;
3139 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3141 /* Try to sleep for a short interval */
3142 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3143 remaining = schedule_timeout(HZ/10);
3144 finish_wait(&pgdat->kswapd_wait, &wait);
3145 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3149 * After a short sleep, check if it was a premature sleep. If not, then
3150 * go fully to sleep until explicitly woken up.
3152 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3153 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3156 * vmstat counters are not perfectly accurate and the estimated
3157 * value for counters such as NR_FREE_PAGES can deviate from the
3158 * true value by nr_online_cpus * threshold. To avoid the zone
3159 * watermarks being breached while under pressure, we reduce the
3160 * per-cpu vmstat threshold while kswapd is awake and restore
3161 * them before going back to sleep.
3163 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3166 * Compaction records what page blocks it recently failed to
3167 * isolate pages from and skips them in the future scanning.
3168 * When kswapd is going to sleep, it is reasonable to assume
3169 * that pages and compaction may succeed so reset the cache.
3171 reset_isolation_suitable(pgdat);
3173 if (!kthread_should_stop())
3174 schedule();
3176 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3177 } else {
3178 if (remaining)
3179 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3180 else
3181 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3183 finish_wait(&pgdat->kswapd_wait, &wait);
3187 * The background pageout daemon, started as a kernel thread
3188 * from the init process.
3190 * This basically trickles out pages so that we have _some_
3191 * free memory available even if there is no other activity
3192 * that frees anything up. This is needed for things like routing
3193 * etc, where we otherwise might have all activity going on in
3194 * asynchronous contexts that cannot page things out.
3196 * If there are applications that are active memory-allocators
3197 * (most normal use), this basically shouldn't matter.
3199 static int kswapd(void *p)
3201 unsigned long order, new_order;
3202 unsigned balanced_order;
3203 int classzone_idx, new_classzone_idx;
3204 int balanced_classzone_idx;
3205 pg_data_t *pgdat = (pg_data_t*)p;
3206 struct task_struct *tsk = current;
3208 struct reclaim_state reclaim_state = {
3209 .reclaimed_slab = 0,
3211 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3213 lockdep_set_current_reclaim_state(GFP_KERNEL);
3215 if (!cpumask_empty(cpumask))
3216 set_cpus_allowed_ptr(tsk, cpumask);
3217 current->reclaim_state = &reclaim_state;
3220 * Tell the memory management that we're a "memory allocator",
3221 * and that if we need more memory we should get access to it
3222 * regardless (see "__alloc_pages()"). "kswapd" should
3223 * never get caught in the normal page freeing logic.
3225 * (Kswapd normally doesn't need memory anyway, but sometimes
3226 * you need a small amount of memory in order to be able to
3227 * page out something else, and this flag essentially protects
3228 * us from recursively trying to free more memory as we're
3229 * trying to free the first piece of memory in the first place).
3231 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3232 set_freezable();
3234 order = new_order = 0;
3235 balanced_order = 0;
3236 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3237 balanced_classzone_idx = classzone_idx;
3238 for ( ; ; ) {
3239 bool ret;
3242 * If the last balance_pgdat was unsuccessful it's unlikely a
3243 * new request of a similar or harder type will succeed soon
3244 * so consider going to sleep on the basis we reclaimed at
3246 if (balanced_classzone_idx >= new_classzone_idx &&
3247 balanced_order == new_order) {
3248 new_order = pgdat->kswapd_max_order;
3249 new_classzone_idx = pgdat->classzone_idx;
3250 pgdat->kswapd_max_order = 0;
3251 pgdat->classzone_idx = pgdat->nr_zones - 1;
3254 if (order < new_order || classzone_idx > new_classzone_idx) {
3256 * Don't sleep if someone wants a larger 'order'
3257 * allocation or has tigher zone constraints
3259 order = new_order;
3260 classzone_idx = new_classzone_idx;
3261 } else {
3262 kswapd_try_to_sleep(pgdat, balanced_order,
3263 balanced_classzone_idx);
3264 order = pgdat->kswapd_max_order;
3265 classzone_idx = pgdat->classzone_idx;
3266 new_order = order;
3267 new_classzone_idx = classzone_idx;
3268 pgdat->kswapd_max_order = 0;
3269 pgdat->classzone_idx = pgdat->nr_zones - 1;
3272 ret = try_to_freeze();
3273 if (kthread_should_stop())
3274 break;
3277 * We can speed up thawing tasks if we don't call balance_pgdat
3278 * after returning from the refrigerator
3280 if (!ret) {
3281 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3282 balanced_classzone_idx = classzone_idx;
3283 balanced_order = balance_pgdat(pgdat, order,
3284 &balanced_classzone_idx);
3288 current->reclaim_state = NULL;
3289 return 0;
3293 * A zone is low on free memory, so wake its kswapd task to service it.
3295 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3297 pg_data_t *pgdat;
3299 if (!populated_zone(zone))
3300 return;
3302 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3303 return;
3304 pgdat = zone->zone_pgdat;
3305 if (pgdat->kswapd_max_order < order) {
3306 pgdat->kswapd_max_order = order;
3307 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3309 if (!waitqueue_active(&pgdat->kswapd_wait))
3310 return;
3311 if (zone_balanced(zone, order, 0, 0))
3312 return;
3314 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3315 wake_up_interruptible(&pgdat->kswapd_wait);
3319 * The reclaimable count would be mostly accurate.
3320 * The less reclaimable pages may be
3321 * - mlocked pages, which will be moved to unevictable list when encountered
3322 * - mapped pages, which may require several travels to be reclaimed
3323 * - dirty pages, which is not "instantly" reclaimable
3325 unsigned long global_reclaimable_pages(void)
3327 int nr;
3329 nr = global_page_state(NR_ACTIVE_FILE) +
3330 global_page_state(NR_INACTIVE_FILE);
3332 if (get_nr_swap_pages() > 0)
3333 nr += global_page_state(NR_ACTIVE_ANON) +
3334 global_page_state(NR_INACTIVE_ANON);
3336 return nr;
3339 #ifdef CONFIG_HIBERNATION
3341 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3342 * freed pages.
3344 * Rather than trying to age LRUs the aim is to preserve the overall
3345 * LRU order by reclaiming preferentially
3346 * inactive > active > active referenced > active mapped
3348 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3350 struct reclaim_state reclaim_state;
3351 struct scan_control sc = {
3352 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3353 .may_swap = 1,
3354 .may_unmap = 1,
3355 .may_writepage = 1,
3356 .nr_to_reclaim = nr_to_reclaim,
3357 .hibernation_mode = 1,
3358 .order = 0,
3359 .priority = DEF_PRIORITY,
3361 struct shrink_control shrink = {
3362 .gfp_mask = sc.gfp_mask,
3364 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3365 struct task_struct *p = current;
3366 unsigned long nr_reclaimed;
3368 p->flags |= PF_MEMALLOC;
3369 lockdep_set_current_reclaim_state(sc.gfp_mask);
3370 reclaim_state.reclaimed_slab = 0;
3371 p->reclaim_state = &reclaim_state;
3373 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3375 p->reclaim_state = NULL;
3376 lockdep_clear_current_reclaim_state();
3377 p->flags &= ~PF_MEMALLOC;
3379 return nr_reclaimed;
3381 #endif /* CONFIG_HIBERNATION */
3383 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3384 not required for correctness. So if the last cpu in a node goes
3385 away, we get changed to run anywhere: as the first one comes back,
3386 restore their cpu bindings. */
3387 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3388 void *hcpu)
3390 int nid;
3392 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3393 for_each_node_state(nid, N_MEMORY) {
3394 pg_data_t *pgdat = NODE_DATA(nid);
3395 const struct cpumask *mask;
3397 mask = cpumask_of_node(pgdat->node_id);
3399 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3400 /* One of our CPUs online: restore mask */
3401 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3404 return NOTIFY_OK;
3408 * This kswapd start function will be called by init and node-hot-add.
3409 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3411 int kswapd_run(int nid)
3413 pg_data_t *pgdat = NODE_DATA(nid);
3414 int ret = 0;
3416 if (pgdat->kswapd)
3417 return 0;
3419 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3420 if (IS_ERR(pgdat->kswapd)) {
3421 /* failure at boot is fatal */
3422 BUG_ON(system_state == SYSTEM_BOOTING);
3423 pr_err("Failed to start kswapd on node %d\n", nid);
3424 ret = PTR_ERR(pgdat->kswapd);
3425 pgdat->kswapd = NULL;
3427 return ret;
3431 * Called by memory hotplug when all memory in a node is offlined. Caller must
3432 * hold lock_memory_hotplug().
3434 void kswapd_stop(int nid)
3436 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3438 if (kswapd) {
3439 kthread_stop(kswapd);
3440 NODE_DATA(nid)->kswapd = NULL;
3444 static int __init kswapd_init(void)
3446 int nid;
3448 swap_setup();
3449 for_each_node_state(nid, N_MEMORY)
3450 kswapd_run(nid);
3451 hotcpu_notifier(cpu_callback, 0);
3452 return 0;
3455 module_init(kswapd_init)
3457 #ifdef CONFIG_NUMA
3459 * Zone reclaim mode
3461 * If non-zero call zone_reclaim when the number of free pages falls below
3462 * the watermarks.
3464 int zone_reclaim_mode __read_mostly;
3466 #define RECLAIM_OFF 0
3467 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3468 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3469 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3472 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3473 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3474 * a zone.
3476 #define ZONE_RECLAIM_PRIORITY 4
3479 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3480 * occur.
3482 int sysctl_min_unmapped_ratio = 1;
3485 * If the number of slab pages in a zone grows beyond this percentage then
3486 * slab reclaim needs to occur.
3488 int sysctl_min_slab_ratio = 5;
3490 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3492 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3493 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3494 zone_page_state(zone, NR_ACTIVE_FILE);
3497 * It's possible for there to be more file mapped pages than
3498 * accounted for by the pages on the file LRU lists because
3499 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3501 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3504 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3505 static long zone_pagecache_reclaimable(struct zone *zone)
3507 long nr_pagecache_reclaimable;
3508 long delta = 0;
3511 * If RECLAIM_SWAP is set, then all file pages are considered
3512 * potentially reclaimable. Otherwise, we have to worry about
3513 * pages like swapcache and zone_unmapped_file_pages() provides
3514 * a better estimate
3516 if (zone_reclaim_mode & RECLAIM_SWAP)
3517 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3518 else
3519 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3521 /* If we can't clean pages, remove dirty pages from consideration */
3522 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3523 delta += zone_page_state(zone, NR_FILE_DIRTY);
3525 /* Watch for any possible underflows due to delta */
3526 if (unlikely(delta > nr_pagecache_reclaimable))
3527 delta = nr_pagecache_reclaimable;
3529 return nr_pagecache_reclaimable - delta;
3533 * Try to free up some pages from this zone through reclaim.
3535 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3537 /* Minimum pages needed in order to stay on node */
3538 const unsigned long nr_pages = 1 << order;
3539 struct task_struct *p = current;
3540 struct reclaim_state reclaim_state;
3541 struct scan_control sc = {
3542 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3543 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3544 .may_swap = 1,
3545 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3546 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3547 .order = order,
3548 .priority = ZONE_RECLAIM_PRIORITY,
3550 struct shrink_control shrink = {
3551 .gfp_mask = sc.gfp_mask,
3553 unsigned long nr_slab_pages0, nr_slab_pages1;
3555 cond_resched();
3557 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3558 * and we also need to be able to write out pages for RECLAIM_WRITE
3559 * and RECLAIM_SWAP.
3561 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3562 lockdep_set_current_reclaim_state(gfp_mask);
3563 reclaim_state.reclaimed_slab = 0;
3564 p->reclaim_state = &reclaim_state;
3566 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3568 * Free memory by calling shrink zone with increasing
3569 * priorities until we have enough memory freed.
3571 do {
3572 shrink_zone(zone, &sc);
3573 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3576 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3577 if (nr_slab_pages0 > zone->min_slab_pages) {
3579 * shrink_slab() does not currently allow us to determine how
3580 * many pages were freed in this zone. So we take the current
3581 * number of slab pages and shake the slab until it is reduced
3582 * by the same nr_pages that we used for reclaiming unmapped
3583 * pages.
3585 nodes_clear(shrink.nodes_to_scan);
3586 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3587 for (;;) {
3588 unsigned long lru_pages = zone_reclaimable_pages(zone);
3590 /* No reclaimable slab or very low memory pressure */
3591 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3592 break;
3594 /* Freed enough memory */
3595 nr_slab_pages1 = zone_page_state(zone,
3596 NR_SLAB_RECLAIMABLE);
3597 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3598 break;
3602 * Update nr_reclaimed by the number of slab pages we
3603 * reclaimed from this zone.
3605 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3606 if (nr_slab_pages1 < nr_slab_pages0)
3607 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3610 p->reclaim_state = NULL;
3611 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3612 lockdep_clear_current_reclaim_state();
3613 return sc.nr_reclaimed >= nr_pages;
3616 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3618 int node_id;
3619 int ret;
3622 * Zone reclaim reclaims unmapped file backed pages and
3623 * slab pages if we are over the defined limits.
3625 * A small portion of unmapped file backed pages is needed for
3626 * file I/O otherwise pages read by file I/O will be immediately
3627 * thrown out if the zone is overallocated. So we do not reclaim
3628 * if less than a specified percentage of the zone is used by
3629 * unmapped file backed pages.
3631 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3632 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3633 return ZONE_RECLAIM_FULL;
3635 if (!zone_reclaimable(zone))
3636 return ZONE_RECLAIM_FULL;
3639 * Do not scan if the allocation should not be delayed.
3641 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3642 return ZONE_RECLAIM_NOSCAN;
3645 * Only run zone reclaim on the local zone or on zones that do not
3646 * have associated processors. This will favor the local processor
3647 * over remote processors and spread off node memory allocations
3648 * as wide as possible.
3650 node_id = zone_to_nid(zone);
3651 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3652 return ZONE_RECLAIM_NOSCAN;
3654 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3655 return ZONE_RECLAIM_NOSCAN;
3657 ret = __zone_reclaim(zone, gfp_mask, order);
3658 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3660 if (!ret)
3661 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3663 return ret;
3665 #endif
3668 * page_evictable - test whether a page is evictable
3669 * @page: the page to test
3671 * Test whether page is evictable--i.e., should be placed on active/inactive
3672 * lists vs unevictable list.
3674 * Reasons page might not be evictable:
3675 * (1) page's mapping marked unevictable
3676 * (2) page is part of an mlocked VMA
3679 int page_evictable(struct page *page)
3681 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3684 #ifdef CONFIG_SHMEM
3686 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3687 * @pages: array of pages to check
3688 * @nr_pages: number of pages to check
3690 * Checks pages for evictability and moves them to the appropriate lru list.
3692 * This function is only used for SysV IPC SHM_UNLOCK.
3694 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3696 struct lruvec *lruvec;
3697 struct zone *zone = NULL;
3698 int pgscanned = 0;
3699 int pgrescued = 0;
3700 int i;
3702 for (i = 0; i < nr_pages; i++) {
3703 struct page *page = pages[i];
3704 struct zone *pagezone;
3706 pgscanned++;
3707 pagezone = page_zone(page);
3708 if (pagezone != zone) {
3709 if (zone)
3710 spin_unlock_irq(&zone->lru_lock);
3711 zone = pagezone;
3712 spin_lock_irq(&zone->lru_lock);
3714 lruvec = mem_cgroup_page_lruvec(page, zone);
3716 if (!PageLRU(page) || !PageUnevictable(page))
3717 continue;
3719 if (page_evictable(page)) {
3720 enum lru_list lru = page_lru_base_type(page);
3722 VM_BUG_ON(PageActive(page));
3723 ClearPageUnevictable(page);
3724 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3725 add_page_to_lru_list(page, lruvec, lru);
3726 pgrescued++;
3730 if (zone) {
3731 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3732 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3733 spin_unlock_irq(&zone->lru_lock);
3736 #endif /* CONFIG_SHMEM */
3738 static void warn_scan_unevictable_pages(void)
3740 printk_once(KERN_WARNING
3741 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3742 "disabled for lack of a legitimate use case. If you have "
3743 "one, please send an email to linux-mm@kvack.org.\n",
3744 current->comm);
3748 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3749 * all nodes' unevictable lists for evictable pages
3751 unsigned long scan_unevictable_pages;
3753 int scan_unevictable_handler(struct ctl_table *table, int write,
3754 void __user *buffer,
3755 size_t *length, loff_t *ppos)
3757 warn_scan_unevictable_pages();
3758 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3759 scan_unevictable_pages = 0;
3760 return 0;
3763 #ifdef CONFIG_NUMA
3765 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3766 * a specified node's per zone unevictable lists for evictable pages.
3769 static ssize_t read_scan_unevictable_node(struct device *dev,
3770 struct device_attribute *attr,
3771 char *buf)
3773 warn_scan_unevictable_pages();
3774 return sprintf(buf, "0\n"); /* always zero; should fit... */
3777 static ssize_t write_scan_unevictable_node(struct device *dev,
3778 struct device_attribute *attr,
3779 const char *buf, size_t count)
3781 warn_scan_unevictable_pages();
3782 return 1;
3786 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3787 read_scan_unevictable_node,
3788 write_scan_unevictable_node);
3790 int scan_unevictable_register_node(struct node *node)
3792 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3795 void scan_unevictable_unregister_node(struct node *node)
3797 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3799 #endif