vfs: split __dentry_open()
[linux-2.6.git] / arch / parisc / mm / init.c
blob3ac462de53a4f5f63882a471d197fe90999882ca
1 /*
2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
34 extern int data_start;
36 #if PT_NLEVELS == 3
37 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
38 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
39 * guarantee that global objects will be laid out in memory in the same order
40 * as the order of declaration, so put these in different sections and use
41 * the linker script to order them. */
42 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
43 #endif
45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
48 #ifdef CONFIG_DISCONTIGMEM
49 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
50 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
51 #endif
53 static struct resource data_resource = {
54 .name = "Kernel data",
55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
58 static struct resource code_resource = {
59 .name = "Kernel code",
60 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
63 static struct resource pdcdata_resource = {
64 .name = "PDC data (Page Zero)",
65 .start = 0,
66 .end = 0x9ff,
67 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
70 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
72 /* The following array is initialized from the firmware specific
73 * information retrieved in kernel/inventory.c.
76 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
77 int npmem_ranges __read_mostly;
79 #ifdef CONFIG_64BIT
80 #define MAX_MEM (~0UL)
81 #else /* !CONFIG_64BIT */
82 #define MAX_MEM (3584U*1024U*1024U)
83 #endif /* !CONFIG_64BIT */
85 static unsigned long mem_limit __read_mostly = MAX_MEM;
87 static void __init mem_limit_func(void)
89 char *cp, *end;
90 unsigned long limit;
92 /* We need this before __setup() functions are called */
94 limit = MAX_MEM;
95 for (cp = boot_command_line; *cp; ) {
96 if (memcmp(cp, "mem=", 4) == 0) {
97 cp += 4;
98 limit = memparse(cp, &end);
99 if (end != cp)
100 break;
101 cp = end;
102 } else {
103 while (*cp != ' ' && *cp)
104 ++cp;
105 while (*cp == ' ')
106 ++cp;
110 if (limit < mem_limit)
111 mem_limit = limit;
114 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
116 static void __init setup_bootmem(void)
118 unsigned long bootmap_size;
119 unsigned long mem_max;
120 unsigned long bootmap_pages;
121 unsigned long bootmap_start_pfn;
122 unsigned long bootmap_pfn;
123 #ifndef CONFIG_DISCONTIGMEM
124 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
125 int npmem_holes;
126 #endif
127 int i, sysram_resource_count;
129 disable_sr_hashing(); /* Turn off space register hashing */
132 * Sort the ranges. Since the number of ranges is typically
133 * small, and performance is not an issue here, just do
134 * a simple insertion sort.
137 for (i = 1; i < npmem_ranges; i++) {
138 int j;
140 for (j = i; j > 0; j--) {
141 unsigned long tmp;
143 if (pmem_ranges[j-1].start_pfn <
144 pmem_ranges[j].start_pfn) {
146 break;
148 tmp = pmem_ranges[j-1].start_pfn;
149 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
150 pmem_ranges[j].start_pfn = tmp;
151 tmp = pmem_ranges[j-1].pages;
152 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
153 pmem_ranges[j].pages = tmp;
157 #ifndef CONFIG_DISCONTIGMEM
159 * Throw out ranges that are too far apart (controlled by
160 * MAX_GAP).
163 for (i = 1; i < npmem_ranges; i++) {
164 if (pmem_ranges[i].start_pfn -
165 (pmem_ranges[i-1].start_pfn +
166 pmem_ranges[i-1].pages) > MAX_GAP) {
167 npmem_ranges = i;
168 printk("Large gap in memory detected (%ld pages). "
169 "Consider turning on CONFIG_DISCONTIGMEM\n",
170 pmem_ranges[i].start_pfn -
171 (pmem_ranges[i-1].start_pfn +
172 pmem_ranges[i-1].pages));
173 break;
176 #endif
178 if (npmem_ranges > 1) {
180 /* Print the memory ranges */
182 printk(KERN_INFO "Memory Ranges:\n");
184 for (i = 0; i < npmem_ranges; i++) {
185 unsigned long start;
186 unsigned long size;
188 size = (pmem_ranges[i].pages << PAGE_SHIFT);
189 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
190 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
191 i,start, start + (size - 1), size >> 20);
195 sysram_resource_count = npmem_ranges;
196 for (i = 0; i < sysram_resource_count; i++) {
197 struct resource *res = &sysram_resources[i];
198 res->name = "System RAM";
199 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
200 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
201 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
202 request_resource(&iomem_resource, res);
206 * For 32 bit kernels we limit the amount of memory we can
207 * support, in order to preserve enough kernel address space
208 * for other purposes. For 64 bit kernels we don't normally
209 * limit the memory, but this mechanism can be used to
210 * artificially limit the amount of memory (and it is written
211 * to work with multiple memory ranges).
214 mem_limit_func(); /* check for "mem=" argument */
216 mem_max = 0;
217 num_physpages = 0;
218 for (i = 0; i < npmem_ranges; i++) {
219 unsigned long rsize;
221 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
222 if ((mem_max + rsize) > mem_limit) {
223 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
224 if (mem_max == mem_limit)
225 npmem_ranges = i;
226 else {
227 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
228 - (mem_max >> PAGE_SHIFT);
229 npmem_ranges = i + 1;
230 mem_max = mem_limit;
232 num_physpages += pmem_ranges[i].pages;
233 break;
235 num_physpages += pmem_ranges[i].pages;
236 mem_max += rsize;
239 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
241 #ifndef CONFIG_DISCONTIGMEM
242 /* Merge the ranges, keeping track of the holes */
245 unsigned long end_pfn;
246 unsigned long hole_pages;
248 npmem_holes = 0;
249 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
250 for (i = 1; i < npmem_ranges; i++) {
252 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
253 if (hole_pages) {
254 pmem_holes[npmem_holes].start_pfn = end_pfn;
255 pmem_holes[npmem_holes++].pages = hole_pages;
256 end_pfn += hole_pages;
258 end_pfn += pmem_ranges[i].pages;
261 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
262 npmem_ranges = 1;
264 #endif
266 bootmap_pages = 0;
267 for (i = 0; i < npmem_ranges; i++)
268 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
270 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
272 #ifdef CONFIG_DISCONTIGMEM
273 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
274 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
275 NODE_DATA(i)->bdata = &bootmem_node_data[i];
277 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
279 for (i = 0; i < npmem_ranges; i++) {
280 node_set_state(i, N_NORMAL_MEMORY);
281 node_set_online(i);
283 #endif
286 * Initialize and free the full range of memory in each range.
287 * Note that the only writing these routines do are to the bootmap,
288 * and we've made sure to locate the bootmap properly so that they
289 * won't be writing over anything important.
292 bootmap_pfn = bootmap_start_pfn;
293 max_pfn = 0;
294 for (i = 0; i < npmem_ranges; i++) {
295 unsigned long start_pfn;
296 unsigned long npages;
298 start_pfn = pmem_ranges[i].start_pfn;
299 npages = pmem_ranges[i].pages;
301 bootmap_size = init_bootmem_node(NODE_DATA(i),
302 bootmap_pfn,
303 start_pfn,
304 (start_pfn + npages) );
305 free_bootmem_node(NODE_DATA(i),
306 (start_pfn << PAGE_SHIFT),
307 (npages << PAGE_SHIFT) );
308 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309 if ((start_pfn + npages) > max_pfn)
310 max_pfn = start_pfn + npages;
313 /* IOMMU is always used to access "high mem" on those boxes
314 * that can support enough mem that a PCI device couldn't
315 * directly DMA to any physical addresses.
316 * ISA DMA support will need to revisit this.
318 max_low_pfn = max_pfn;
320 /* bootmap sizing messed up? */
321 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
323 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
325 #define PDC_CONSOLE_IO_IODC_SIZE 32768
327 reserve_bootmem_node(NODE_DATA(0), 0UL,
328 (unsigned long)(PAGE0->mem_free +
329 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
330 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
331 (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
332 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
333 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
334 BOOTMEM_DEFAULT);
336 #ifndef CONFIG_DISCONTIGMEM
338 /* reserve the holes */
340 for (i = 0; i < npmem_holes; i++) {
341 reserve_bootmem_node(NODE_DATA(0),
342 (pmem_holes[i].start_pfn << PAGE_SHIFT),
343 (pmem_holes[i].pages << PAGE_SHIFT),
344 BOOTMEM_DEFAULT);
346 #endif
348 #ifdef CONFIG_BLK_DEV_INITRD
349 if (initrd_start) {
350 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
351 if (__pa(initrd_start) < mem_max) {
352 unsigned long initrd_reserve;
354 if (__pa(initrd_end) > mem_max) {
355 initrd_reserve = mem_max - __pa(initrd_start);
356 } else {
357 initrd_reserve = initrd_end - initrd_start;
359 initrd_below_start_ok = 1;
360 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
362 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
363 initrd_reserve, BOOTMEM_DEFAULT);
366 #endif
368 data_resource.start = virt_to_phys(&data_start);
369 data_resource.end = virt_to_phys(_end) - 1;
370 code_resource.start = virt_to_phys(_text);
371 code_resource.end = virt_to_phys(&data_start)-1;
373 /* We don't know which region the kernel will be in, so try
374 * all of them.
376 for (i = 0; i < sysram_resource_count; i++) {
377 struct resource *res = &sysram_resources[i];
378 request_resource(res, &code_resource);
379 request_resource(res, &data_resource);
381 request_resource(&sysram_resources[0], &pdcdata_resource);
384 static void __init map_pages(unsigned long start_vaddr,
385 unsigned long start_paddr, unsigned long size,
386 pgprot_t pgprot, int force)
388 pgd_t *pg_dir;
389 pmd_t *pmd;
390 pte_t *pg_table;
391 unsigned long end_paddr;
392 unsigned long start_pmd;
393 unsigned long start_pte;
394 unsigned long tmp1;
395 unsigned long tmp2;
396 unsigned long address;
397 unsigned long vaddr;
398 unsigned long ro_start;
399 unsigned long ro_end;
400 unsigned long fv_addr;
401 unsigned long gw_addr;
402 extern const unsigned long fault_vector_20;
403 extern void * const linux_gateway_page;
405 ro_start = __pa((unsigned long)_text);
406 ro_end = __pa((unsigned long)&data_start);
407 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
408 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
410 end_paddr = start_paddr + size;
412 pg_dir = pgd_offset_k(start_vaddr);
414 #if PTRS_PER_PMD == 1
415 start_pmd = 0;
416 #else
417 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
418 #endif
419 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
421 address = start_paddr;
422 vaddr = start_vaddr;
423 while (address < end_paddr) {
424 #if PTRS_PER_PMD == 1
425 pmd = (pmd_t *)__pa(pg_dir);
426 #else
427 pmd = (pmd_t *)pgd_address(*pg_dir);
430 * pmd is physical at this point
433 if (!pmd) {
434 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
435 pmd = (pmd_t *) __pa(pmd);
438 pgd_populate(NULL, pg_dir, __va(pmd));
439 #endif
440 pg_dir++;
442 /* now change pmd to kernel virtual addresses */
444 pmd = (pmd_t *)__va(pmd) + start_pmd;
445 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
448 * pg_table is physical at this point
451 pg_table = (pte_t *)pmd_address(*pmd);
452 if (!pg_table) {
453 pg_table = (pte_t *)
454 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
455 pg_table = (pte_t *) __pa(pg_table);
458 pmd_populate_kernel(NULL, pmd, __va(pg_table));
460 /* now change pg_table to kernel virtual addresses */
462 pg_table = (pte_t *) __va(pg_table) + start_pte;
463 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
464 pte_t pte;
467 * Map the fault vector writable so we can
468 * write the HPMC checksum.
470 if (force)
471 pte = __mk_pte(address, pgprot);
472 else if (core_kernel_text(vaddr) &&
473 address != fv_addr)
474 pte = __mk_pte(address, PAGE_KERNEL_EXEC);
475 else
476 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
477 if (address >= ro_start && address < ro_end
478 && address != fv_addr
479 && address != gw_addr)
480 pte = __mk_pte(address, PAGE_KERNEL_RO);
481 else
482 #endif
483 pte = __mk_pte(address, pgprot);
485 if (address >= end_paddr) {
486 if (force)
487 break;
488 else
489 pte_val(pte) = 0;
492 set_pte(pg_table, pte);
494 address += PAGE_SIZE;
495 vaddr += PAGE_SIZE;
497 start_pte = 0;
499 if (address >= end_paddr)
500 break;
502 start_pmd = 0;
506 void free_initmem(void)
508 unsigned long addr;
509 unsigned long init_begin = (unsigned long)__init_begin;
510 unsigned long init_end = (unsigned long)__init_end;
512 /* The init text pages are marked R-X. We have to
513 * flush the icache and mark them RW-
515 * This is tricky, because map_pages is in the init section.
516 * Do a dummy remap of the data section first (the data
517 * section is already PAGE_KERNEL) to pull in the TLB entries
518 * for map_kernel */
519 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
520 PAGE_KERNEL_RWX, 1);
521 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
522 * map_pages */
523 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
524 PAGE_KERNEL, 1);
526 /* force the kernel to see the new TLB entries */
527 __flush_tlb_range(0, init_begin, init_end);
528 /* Attempt to catch anyone trying to execute code here
529 * by filling the page with BRK insns.
531 memset((void *)init_begin, 0x00, init_end - init_begin);
532 /* finally dump all the instructions which were cached, since the
533 * pages are no-longer executable */
534 flush_icache_range(init_begin, init_end);
536 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
537 ClearPageReserved(virt_to_page(addr));
538 init_page_count(virt_to_page(addr));
539 free_page(addr);
540 num_physpages++;
541 totalram_pages++;
544 /* set up a new led state on systems shipped LED State panel */
545 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
547 printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
548 (init_end - init_begin) >> 10);
552 #ifdef CONFIG_DEBUG_RODATA
553 void mark_rodata_ro(void)
555 /* rodata memory was already mapped with KERNEL_RO access rights by
556 pagetable_init() and map_pages(). No need to do additional stuff here */
557 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
558 (unsigned long)(__end_rodata - __start_rodata) >> 10);
560 #endif
564 * Just an arbitrary offset to serve as a "hole" between mapping areas
565 * (between top of physical memory and a potential pcxl dma mapping
566 * area, and below the vmalloc mapping area).
568 * The current 32K value just means that there will be a 32K "hole"
569 * between mapping areas. That means that any out-of-bounds memory
570 * accesses will hopefully be caught. The vmalloc() routines leaves
571 * a hole of 4kB between each vmalloced area for the same reason.
574 /* Leave room for gateway page expansion */
575 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
576 #error KERNEL_MAP_START is in gateway reserved region
577 #endif
578 #define MAP_START (KERNEL_MAP_START)
580 #define VM_MAP_OFFSET (32*1024)
581 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
582 & ~(VM_MAP_OFFSET-1)))
584 void *parisc_vmalloc_start __read_mostly;
585 EXPORT_SYMBOL(parisc_vmalloc_start);
587 #ifdef CONFIG_PA11
588 unsigned long pcxl_dma_start __read_mostly;
589 #endif
591 void __init mem_init(void)
593 int codesize, reservedpages, datasize, initsize;
595 /* Do sanity checks on page table constants */
596 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
597 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
598 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
599 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
600 > BITS_PER_LONG);
602 high_memory = __va((max_pfn << PAGE_SHIFT));
604 #ifndef CONFIG_DISCONTIGMEM
605 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
606 totalram_pages += free_all_bootmem();
607 #else
609 int i;
611 for (i = 0; i < npmem_ranges; i++)
612 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
614 #endif
616 codesize = (unsigned long)_etext - (unsigned long)_text;
617 datasize = (unsigned long)_edata - (unsigned long)_etext;
618 initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
620 reservedpages = 0;
622 unsigned long pfn;
623 #ifdef CONFIG_DISCONTIGMEM
624 int i;
626 for (i = 0; i < npmem_ranges; i++) {
627 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
628 if (PageReserved(pfn_to_page(pfn)))
629 reservedpages++;
632 #else /* !CONFIG_DISCONTIGMEM */
633 for (pfn = 0; pfn < max_pfn; pfn++) {
635 * Only count reserved RAM pages
637 if (PageReserved(pfn_to_page(pfn)))
638 reservedpages++;
640 #endif
643 #ifdef CONFIG_PA11
644 if (hppa_dma_ops == &pcxl_dma_ops) {
645 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
646 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
647 + PCXL_DMA_MAP_SIZE);
648 } else {
649 pcxl_dma_start = 0;
650 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
652 #else
653 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
654 #endif
656 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
657 nr_free_pages() << (PAGE_SHIFT-10),
658 num_physpages << (PAGE_SHIFT-10),
659 codesize >> 10,
660 reservedpages << (PAGE_SHIFT-10),
661 datasize >> 10,
662 initsize >> 10
665 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
666 printk("virtual kernel memory layout:\n"
667 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
668 " memory : 0x%p - 0x%p (%4ld MB)\n"
669 " .init : 0x%p - 0x%p (%4ld kB)\n"
670 " .data : 0x%p - 0x%p (%4ld kB)\n"
671 " .text : 0x%p - 0x%p (%4ld kB)\n",
673 (void*)VMALLOC_START, (void*)VMALLOC_END,
674 (VMALLOC_END - VMALLOC_START) >> 20,
676 __va(0), high_memory,
677 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
679 __init_begin, __init_end,
680 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
682 _etext, _edata,
683 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
685 _text, _etext,
686 ((unsigned long)_etext - (unsigned long)_text) >> 10);
687 #endif
690 unsigned long *empty_zero_page __read_mostly;
691 EXPORT_SYMBOL(empty_zero_page);
693 void show_mem(unsigned int filter)
695 int i,free = 0,total = 0,reserved = 0;
696 int shared = 0, cached = 0;
698 printk(KERN_INFO "Mem-info:\n");
699 show_free_areas(filter);
700 #ifndef CONFIG_DISCONTIGMEM
701 i = max_mapnr;
702 while (i-- > 0) {
703 total++;
704 if (PageReserved(mem_map+i))
705 reserved++;
706 else if (PageSwapCache(mem_map+i))
707 cached++;
708 else if (!page_count(&mem_map[i]))
709 free++;
710 else
711 shared += page_count(&mem_map[i]) - 1;
713 #else
714 for (i = 0; i < npmem_ranges; i++) {
715 int j;
717 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
718 struct page *p;
719 unsigned long flags;
721 pgdat_resize_lock(NODE_DATA(i), &flags);
722 p = nid_page_nr(i, j) - node_start_pfn(i);
724 total++;
725 if (PageReserved(p))
726 reserved++;
727 else if (PageSwapCache(p))
728 cached++;
729 else if (!page_count(p))
730 free++;
731 else
732 shared += page_count(p) - 1;
733 pgdat_resize_unlock(NODE_DATA(i), &flags);
736 #endif
737 printk(KERN_INFO "%d pages of RAM\n", total);
738 printk(KERN_INFO "%d reserved pages\n", reserved);
739 printk(KERN_INFO "%d pages shared\n", shared);
740 printk(KERN_INFO "%d pages swap cached\n", cached);
743 #ifdef CONFIG_DISCONTIGMEM
745 struct zonelist *zl;
746 int i, j;
748 for (i = 0; i < npmem_ranges; i++) {
749 zl = node_zonelist(i, 0);
750 for (j = 0; j < MAX_NR_ZONES; j++) {
751 struct zoneref *z;
752 struct zone *zone;
754 printk("Zone list for zone %d on node %d: ", j, i);
755 for_each_zone_zonelist(zone, z, zl, j)
756 printk("[%d/%s] ", zone_to_nid(zone),
757 zone->name);
758 printk("\n");
762 #endif
766 * pagetable_init() sets up the page tables
768 * Note that gateway_init() places the Linux gateway page at page 0.
769 * Since gateway pages cannot be dereferenced this has the desirable
770 * side effect of trapping those pesky NULL-reference errors in the
771 * kernel.
773 static void __init pagetable_init(void)
775 int range;
777 /* Map each physical memory range to its kernel vaddr */
779 for (range = 0; range < npmem_ranges; range++) {
780 unsigned long start_paddr;
781 unsigned long end_paddr;
782 unsigned long size;
784 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
785 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
786 size = pmem_ranges[range].pages << PAGE_SHIFT;
788 map_pages((unsigned long)__va(start_paddr), start_paddr,
789 size, PAGE_KERNEL, 0);
792 #ifdef CONFIG_BLK_DEV_INITRD
793 if (initrd_end && initrd_end > mem_limit) {
794 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
795 map_pages(initrd_start, __pa(initrd_start),
796 initrd_end - initrd_start, PAGE_KERNEL, 0);
798 #endif
800 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
801 memset(empty_zero_page, 0, PAGE_SIZE);
804 static void __init gateway_init(void)
806 unsigned long linux_gateway_page_addr;
807 /* FIXME: This is 'const' in order to trick the compiler
808 into not treating it as DP-relative data. */
809 extern void * const linux_gateway_page;
811 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
814 * Setup Linux Gateway page.
816 * The Linux gateway page will reside in kernel space (on virtual
817 * page 0), so it doesn't need to be aliased into user space.
820 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
821 PAGE_SIZE, PAGE_GATEWAY, 1);
824 #ifdef CONFIG_HPUX
825 void
826 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
828 pgd_t *pg_dir;
829 pmd_t *pmd;
830 pte_t *pg_table;
831 unsigned long start_pmd;
832 unsigned long start_pte;
833 unsigned long address;
834 unsigned long hpux_gw_page_addr;
835 /* FIXME: This is 'const' in order to trick the compiler
836 into not treating it as DP-relative data. */
837 extern void * const hpux_gateway_page;
839 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
842 * Setup HP-UX Gateway page.
844 * The HP-UX gateway page resides in the user address space,
845 * so it needs to be aliased into each process.
848 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
850 #if PTRS_PER_PMD == 1
851 start_pmd = 0;
852 #else
853 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
854 #endif
855 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
857 address = __pa(&hpux_gateway_page);
858 #if PTRS_PER_PMD == 1
859 pmd = (pmd_t *)__pa(pg_dir);
860 #else
861 pmd = (pmd_t *) pgd_address(*pg_dir);
864 * pmd is physical at this point
867 if (!pmd) {
868 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
869 pmd = (pmd_t *) __pa(pmd);
872 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
873 #endif
874 /* now change pmd to kernel virtual addresses */
876 pmd = (pmd_t *)__va(pmd) + start_pmd;
879 * pg_table is physical at this point
882 pg_table = (pte_t *) pmd_address(*pmd);
883 if (!pg_table)
884 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
886 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
888 /* now change pg_table to kernel virtual addresses */
890 pg_table = (pte_t *) __va(pg_table) + start_pte;
891 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
893 EXPORT_SYMBOL(map_hpux_gateway_page);
894 #endif
896 void __init paging_init(void)
898 int i;
900 setup_bootmem();
901 pagetable_init();
902 gateway_init();
903 flush_cache_all_local(); /* start with known state */
904 flush_tlb_all_local(NULL);
906 for (i = 0; i < npmem_ranges; i++) {
907 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
909 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
911 #ifdef CONFIG_DISCONTIGMEM
912 /* Need to initialize the pfnnid_map before we can initialize
913 the zone */
915 int j;
916 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
917 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
918 j++) {
919 pfnnid_map[j] = i;
922 #endif
924 free_area_init_node(i, zones_size,
925 pmem_ranges[i].start_pfn, NULL);
929 #ifdef CONFIG_PA20
932 * Currently, all PA20 chips have 18 bit protection IDs, which is the
933 * limiting factor (space ids are 32 bits).
936 #define NR_SPACE_IDS 262144
938 #else
941 * Currently we have a one-to-one relationship between space IDs and
942 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
943 * support 15 bit protection IDs, so that is the limiting factor.
944 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
945 * probably not worth the effort for a special case here.
948 #define NR_SPACE_IDS 32768
950 #endif /* !CONFIG_PA20 */
952 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
953 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
955 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
956 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
957 static unsigned long space_id_index;
958 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
959 static unsigned long dirty_space_ids = 0;
961 static DEFINE_SPINLOCK(sid_lock);
963 unsigned long alloc_sid(void)
965 unsigned long index;
967 spin_lock(&sid_lock);
969 if (free_space_ids == 0) {
970 if (dirty_space_ids != 0) {
971 spin_unlock(&sid_lock);
972 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
973 spin_lock(&sid_lock);
975 BUG_ON(free_space_ids == 0);
978 free_space_ids--;
980 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
981 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
982 space_id_index = index;
984 spin_unlock(&sid_lock);
986 return index << SPACEID_SHIFT;
989 void free_sid(unsigned long spaceid)
991 unsigned long index = spaceid >> SPACEID_SHIFT;
992 unsigned long *dirty_space_offset;
994 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
995 index &= (BITS_PER_LONG - 1);
997 spin_lock(&sid_lock);
999 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
1001 *dirty_space_offset |= (1L << index);
1002 dirty_space_ids++;
1004 spin_unlock(&sid_lock);
1008 #ifdef CONFIG_SMP
1009 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
1011 int i;
1013 /* NOTE: sid_lock must be held upon entry */
1015 *ndirtyptr = dirty_space_ids;
1016 if (dirty_space_ids != 0) {
1017 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1018 dirty_array[i] = dirty_space_id[i];
1019 dirty_space_id[i] = 0;
1021 dirty_space_ids = 0;
1024 return;
1027 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1029 int i;
1031 /* NOTE: sid_lock must be held upon entry */
1033 if (ndirty != 0) {
1034 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1035 space_id[i] ^= dirty_array[i];
1038 free_space_ids += ndirty;
1039 space_id_index = 0;
1043 #else /* CONFIG_SMP */
1045 static void recycle_sids(void)
1047 int i;
1049 /* NOTE: sid_lock must be held upon entry */
1051 if (dirty_space_ids != 0) {
1052 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1053 space_id[i] ^= dirty_space_id[i];
1054 dirty_space_id[i] = 0;
1057 free_space_ids += dirty_space_ids;
1058 dirty_space_ids = 0;
1059 space_id_index = 0;
1062 #endif
1065 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1066 * purged, we can safely reuse the space ids that were released but
1067 * not flushed from the tlb.
1070 #ifdef CONFIG_SMP
1072 static unsigned long recycle_ndirty;
1073 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1074 static unsigned int recycle_inuse;
1076 void flush_tlb_all(void)
1078 int do_recycle;
1080 do_recycle = 0;
1081 spin_lock(&sid_lock);
1082 if (dirty_space_ids > RECYCLE_THRESHOLD) {
1083 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1084 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1085 recycle_inuse++;
1086 do_recycle++;
1088 spin_unlock(&sid_lock);
1089 on_each_cpu(flush_tlb_all_local, NULL, 1);
1090 if (do_recycle) {
1091 spin_lock(&sid_lock);
1092 recycle_sids(recycle_ndirty,recycle_dirty_array);
1093 recycle_inuse = 0;
1094 spin_unlock(&sid_lock);
1097 #else
1098 void flush_tlb_all(void)
1100 spin_lock(&sid_lock);
1101 flush_tlb_all_local(NULL);
1102 recycle_sids();
1103 spin_unlock(&sid_lock);
1105 #endif
1107 #ifdef CONFIG_BLK_DEV_INITRD
1108 void free_initrd_mem(unsigned long start, unsigned long end)
1110 if (start >= end)
1111 return;
1112 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1113 for (; start < end; start += PAGE_SIZE) {
1114 ClearPageReserved(virt_to_page(start));
1115 init_page_count(virt_to_page(start));
1116 free_page(start);
1117 num_physpages++;
1118 totalram_pages++;
1121 #endif