1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
33 * If a non-root user executes a setuid-root binary in
34 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
35 * However if fE is also set, then the intent is for only
36 * the file capabilities to be applied, and the setuid-root
37 * bit is left on either to change the uid (plausible) or
38 * to get full privilege on a kernel without file capabilities
39 * support. So in that case we do not raise capabilities.
41 * Warn if that happens, once per boot.
43 static void warn_setuid_and_fcaps_mixed(const char *fname
)
47 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
48 " effective capabilities. Therefore not raising all"
49 " capabilities.\n", fname
);
54 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
60 * cap_capable - Determine whether a task has a particular effective capability
61 * @cred: The credentials to use
62 * @ns: The user namespace in which we need the capability
63 * @cap: The capability to check for
64 * @audit: Whether to write an audit message or not
66 * Determine whether the nominated task has the specified capability amongst
67 * its effective set, returning 0 if it does, -ve if it does not.
69 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
70 * and has_capability() functions. That is, it has the reverse semantics:
71 * cap_has_capability() returns 0 when a task has a capability, but the
72 * kernel's capable() and has_capability() returns 1 for this case.
74 int cap_capable(const struct cred
*cred
, struct user_namespace
*targ_ns
,
78 /* The creator of the user namespace has all caps. */
79 if (targ_ns
!= &init_user_ns
&& targ_ns
->creator
== cred
->user
)
82 /* Do we have the necessary capabilities? */
83 if (targ_ns
== cred
->user
->user_ns
)
84 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
86 /* Have we tried all of the parent namespaces? */
87 if (targ_ns
== &init_user_ns
)
91 *If you have a capability in a parent user ns, then you have
92 * it over all children user namespaces as well.
94 targ_ns
= targ_ns
->creator
->user_ns
;
97 /* We never get here */
101 * cap_settime - Determine whether the current process may set the system clock
102 * @ts: The time to set
103 * @tz: The timezone to set
105 * Determine whether the current process may set the system clock and timezone
106 * information, returning 0 if permission granted, -ve if denied.
108 int cap_settime(const struct timespec
*ts
, const struct timezone
*tz
)
110 if (!capable(CAP_SYS_TIME
))
116 * cap_ptrace_access_check - Determine whether the current process may access
118 * @child: The process to be accessed
119 * @mode: The mode of attachment.
121 * If we are in the same or an ancestor user_ns and have all the target
122 * task's capabilities, then ptrace access is allowed.
123 * If we have the ptrace capability to the target user_ns, then ptrace
127 * Determine whether a process may access another, returning 0 if permission
128 * granted, -ve if denied.
130 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
133 const struct cred
*cred
, *child_cred
;
136 cred
= current_cred();
137 child_cred
= __task_cred(child
);
138 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
139 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
141 if (ns_capable(child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
150 * cap_ptrace_traceme - Determine whether another process may trace the current
151 * @parent: The task proposed to be the tracer
153 * If parent is in the same or an ancestor user_ns and has all current's
154 * capabilities, then ptrace access is allowed.
155 * If parent has the ptrace capability to current's user_ns, then ptrace
159 * Determine whether the nominated task is permitted to trace the current
160 * process, returning 0 if permission is granted, -ve if denied.
162 int cap_ptrace_traceme(struct task_struct
*parent
)
165 const struct cred
*cred
, *child_cred
;
168 cred
= __task_cred(parent
);
169 child_cred
= current_cred();
170 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
171 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
173 if (has_ns_capability(parent
, child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
182 * cap_capget - Retrieve a task's capability sets
183 * @target: The task from which to retrieve the capability sets
184 * @effective: The place to record the effective set
185 * @inheritable: The place to record the inheritable set
186 * @permitted: The place to record the permitted set
188 * This function retrieves the capabilities of the nominated task and returns
189 * them to the caller.
191 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
192 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
194 const struct cred
*cred
;
196 /* Derived from kernel/capability.c:sys_capget. */
198 cred
= __task_cred(target
);
199 *effective
= cred
->cap_effective
;
200 *inheritable
= cred
->cap_inheritable
;
201 *permitted
= cred
->cap_permitted
;
207 * Determine whether the inheritable capabilities are limited to the old
208 * permitted set. Returns 1 if they are limited, 0 if they are not.
210 static inline int cap_inh_is_capped(void)
213 /* they are so limited unless the current task has the CAP_SETPCAP
216 if (cap_capable(current_cred(), current_cred()->user
->user_ns
,
217 CAP_SETPCAP
, SECURITY_CAP_AUDIT
) == 0)
223 * cap_capset - Validate and apply proposed changes to current's capabilities
224 * @new: The proposed new credentials; alterations should be made here
225 * @old: The current task's current credentials
226 * @effective: A pointer to the proposed new effective capabilities set
227 * @inheritable: A pointer to the proposed new inheritable capabilities set
228 * @permitted: A pointer to the proposed new permitted capabilities set
230 * This function validates and applies a proposed mass change to the current
231 * process's capability sets. The changes are made to the proposed new
232 * credentials, and assuming no error, will be committed by the caller of LSM.
234 int cap_capset(struct cred
*new,
235 const struct cred
*old
,
236 const kernel_cap_t
*effective
,
237 const kernel_cap_t
*inheritable
,
238 const kernel_cap_t
*permitted
)
240 if (cap_inh_is_capped() &&
241 !cap_issubset(*inheritable
,
242 cap_combine(old
->cap_inheritable
,
243 old
->cap_permitted
)))
244 /* incapable of using this inheritable set */
247 if (!cap_issubset(*inheritable
,
248 cap_combine(old
->cap_inheritable
,
250 /* no new pI capabilities outside bounding set */
253 /* verify restrictions on target's new Permitted set */
254 if (!cap_issubset(*permitted
, old
->cap_permitted
))
257 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
258 if (!cap_issubset(*effective
, *permitted
))
261 new->cap_effective
= *effective
;
262 new->cap_inheritable
= *inheritable
;
263 new->cap_permitted
= *permitted
;
268 * Clear proposed capability sets for execve().
270 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
272 cap_clear(bprm
->cred
->cap_permitted
);
273 bprm
->cap_effective
= false;
277 * cap_inode_need_killpriv - Determine if inode change affects privileges
278 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
280 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
281 * affects the security markings on that inode, and if it is, should
282 * inode_killpriv() be invoked or the change rejected?
284 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
285 * -ve to deny the change.
287 int cap_inode_need_killpriv(struct dentry
*dentry
)
289 struct inode
*inode
= dentry
->d_inode
;
292 if (!inode
->i_op
->getxattr
)
295 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
302 * cap_inode_killpriv - Erase the security markings on an inode
303 * @dentry: The inode/dentry to alter
305 * Erase the privilege-enhancing security markings on an inode.
307 * Returns 0 if successful, -ve on error.
309 int cap_inode_killpriv(struct dentry
*dentry
)
311 struct inode
*inode
= dentry
->d_inode
;
313 if (!inode
->i_op
->removexattr
)
316 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
320 * Calculate the new process capability sets from the capability sets attached
323 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
324 struct linux_binprm
*bprm
,
328 struct cred
*new = bprm
->cred
;
332 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
335 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
338 CAP_FOR_EACH_U32(i
) {
339 __u32 permitted
= caps
->permitted
.cap
[i
];
340 __u32 inheritable
= caps
->inheritable
.cap
[i
];
343 * pP' = (X & fP) | (pI & fI)
345 new->cap_permitted
.cap
[i
] =
346 (new->cap_bset
.cap
[i
] & permitted
) |
347 (new->cap_inheritable
.cap
[i
] & inheritable
);
349 if (permitted
& ~new->cap_permitted
.cap
[i
])
350 /* insufficient to execute correctly */
355 * For legacy apps, with no internal support for recognizing they
356 * do not have enough capabilities, we return an error if they are
357 * missing some "forced" (aka file-permitted) capabilities.
359 return *effective
? ret
: 0;
363 * Extract the on-exec-apply capability sets for an executable file.
365 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
367 struct inode
*inode
= dentry
->d_inode
;
371 struct vfs_cap_data caps
;
373 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
375 if (!inode
|| !inode
->i_op
->getxattr
)
378 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
380 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
381 /* no data, that's ok */
386 if (size
< sizeof(magic_etc
))
389 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
391 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
392 case VFS_CAP_REVISION_1
:
393 if (size
!= XATTR_CAPS_SZ_1
)
395 tocopy
= VFS_CAP_U32_1
;
397 case VFS_CAP_REVISION_2
:
398 if (size
!= XATTR_CAPS_SZ_2
)
400 tocopy
= VFS_CAP_U32_2
;
406 CAP_FOR_EACH_U32(i
) {
409 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
410 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
417 * Attempt to get the on-exec apply capability sets for an executable file from
418 * its xattrs and, if present, apply them to the proposed credentials being
419 * constructed by execve().
421 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
, bool *has_cap
)
423 struct dentry
*dentry
;
425 struct cpu_vfs_cap_data vcaps
;
427 bprm_clear_caps(bprm
);
429 if (!file_caps_enabled
)
432 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)
435 dentry
= dget(bprm
->file
->f_dentry
);
437 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
440 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
441 __func__
, rc
, bprm
->filename
);
442 else if (rc
== -ENODATA
)
447 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_cap
);
449 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
450 __func__
, rc
, bprm
->filename
);
455 bprm_clear_caps(bprm
);
461 * cap_bprm_set_creds - Set up the proposed credentials for execve().
462 * @bprm: The execution parameters, including the proposed creds
464 * Set up the proposed credentials for a new execution context being
465 * constructed by execve(). The proposed creds in @bprm->cred is altered,
466 * which won't take effect immediately. Returns 0 if successful, -ve on error.
468 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
470 const struct cred
*old
= current_cred();
471 struct cred
*new = bprm
->cred
;
472 bool effective
, has_cap
= false;
476 ret
= get_file_caps(bprm
, &effective
, &has_cap
);
480 if (!issecure(SECURE_NOROOT
)) {
482 * If the legacy file capability is set, then don't set privs
483 * for a setuid root binary run by a non-root user. Do set it
484 * for a root user just to cause least surprise to an admin.
486 if (has_cap
&& new->uid
!= 0 && new->euid
== 0) {
487 warn_setuid_and_fcaps_mixed(bprm
->filename
);
491 * To support inheritance of root-permissions and suid-root
492 * executables under compatibility mode, we override the
493 * capability sets for the file.
495 * If only the real uid is 0, we do not set the effective bit.
497 if (new->euid
== 0 || new->uid
== 0) {
498 /* pP' = (cap_bset & ~0) | (pI & ~0) */
499 new->cap_permitted
= cap_combine(old
->cap_bset
,
500 old
->cap_inheritable
);
507 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
508 * credentials unless they have the appropriate permit
510 if ((new->euid
!= old
->uid
||
511 new->egid
!= old
->gid
||
512 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
513 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
514 /* downgrade; they get no more than they had, and maybe less */
515 if (!capable(CAP_SETUID
)) {
516 new->euid
= new->uid
;
517 new->egid
= new->gid
;
519 new->cap_permitted
= cap_intersect(new->cap_permitted
,
523 new->suid
= new->fsuid
= new->euid
;
524 new->sgid
= new->fsgid
= new->egid
;
527 new->cap_effective
= new->cap_permitted
;
529 cap_clear(new->cap_effective
);
530 bprm
->cap_effective
= effective
;
533 * Audit candidate if current->cap_effective is set
535 * We do not bother to audit if 3 things are true:
536 * 1) cap_effective has all caps
538 * 3) root is supposed to have all caps (SECURE_NOROOT)
539 * Since this is just a normal root execing a process.
541 * Number 1 above might fail if you don't have a full bset, but I think
542 * that is interesting information to audit.
544 if (!cap_isclear(new->cap_effective
)) {
545 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
546 new->euid
!= 0 || new->uid
!= 0 ||
547 issecure(SECURE_NOROOT
)) {
548 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
554 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
559 * cap_bprm_secureexec - Determine whether a secure execution is required
560 * @bprm: The execution parameters
562 * Determine whether a secure execution is required, return 1 if it is, and 0
565 * The credentials have been committed by this point, and so are no longer
566 * available through @bprm->cred.
568 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
570 const struct cred
*cred
= current_cred();
572 if (cred
->uid
!= 0) {
573 if (bprm
->cap_effective
)
575 if (!cap_isclear(cred
->cap_permitted
))
579 return (cred
->euid
!= cred
->uid
||
580 cred
->egid
!= cred
->gid
);
584 * cap_inode_setxattr - Determine whether an xattr may be altered
585 * @dentry: The inode/dentry being altered
586 * @name: The name of the xattr to be changed
587 * @value: The value that the xattr will be changed to
588 * @size: The size of value
589 * @flags: The replacement flag
591 * Determine whether an xattr may be altered or set on an inode, returning 0 if
592 * permission is granted, -ve if denied.
594 * This is used to make sure security xattrs don't get updated or set by those
595 * who aren't privileged to do so.
597 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
598 const void *value
, size_t size
, int flags
)
600 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
601 if (!capable(CAP_SETFCAP
))
606 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
607 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
608 !capable(CAP_SYS_ADMIN
))
614 * cap_inode_removexattr - Determine whether an xattr may be removed
615 * @dentry: The inode/dentry being altered
616 * @name: The name of the xattr to be changed
618 * Determine whether an xattr may be removed from an inode, returning 0 if
619 * permission is granted, -ve if denied.
621 * This is used to make sure security xattrs don't get removed by those who
622 * aren't privileged to remove them.
624 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
626 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
627 if (!capable(CAP_SETFCAP
))
632 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
633 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
634 !capable(CAP_SYS_ADMIN
))
640 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
641 * a process after a call to setuid, setreuid, or setresuid.
643 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
644 * {r,e,s}uid != 0, the permitted and effective capabilities are
647 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
648 * capabilities of the process are cleared.
650 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
651 * capabilities are set to the permitted capabilities.
653 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
658 * cevans - New behaviour, Oct '99
659 * A process may, via prctl(), elect to keep its capabilities when it
660 * calls setuid() and switches away from uid==0. Both permitted and
661 * effective sets will be retained.
662 * Without this change, it was impossible for a daemon to drop only some
663 * of its privilege. The call to setuid(!=0) would drop all privileges!
664 * Keeping uid 0 is not an option because uid 0 owns too many vital
666 * Thanks to Olaf Kirch and Peter Benie for spotting this.
668 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
670 if ((old
->uid
== 0 || old
->euid
== 0 || old
->suid
== 0) &&
671 (new->uid
!= 0 && new->euid
!= 0 && new->suid
!= 0) &&
672 !issecure(SECURE_KEEP_CAPS
)) {
673 cap_clear(new->cap_permitted
);
674 cap_clear(new->cap_effective
);
676 if (old
->euid
== 0 && new->euid
!= 0)
677 cap_clear(new->cap_effective
);
678 if (old
->euid
!= 0 && new->euid
== 0)
679 new->cap_effective
= new->cap_permitted
;
683 * cap_task_fix_setuid - Fix up the results of setuid() call
684 * @new: The proposed credentials
685 * @old: The current task's current credentials
686 * @flags: Indications of what has changed
688 * Fix up the results of setuid() call before the credential changes are
689 * actually applied, returning 0 to grant the changes, -ve to deny them.
691 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
697 /* juggle the capabilities to follow [RES]UID changes unless
698 * otherwise suppressed */
699 if (!issecure(SECURE_NO_SETUID_FIXUP
))
700 cap_emulate_setxuid(new, old
);
704 /* juggle the capabilties to follow FSUID changes, unless
705 * otherwise suppressed
707 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
708 * if not, we might be a bit too harsh here.
710 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
711 if (old
->fsuid
== 0 && new->fsuid
!= 0)
713 cap_drop_fs_set(new->cap_effective
);
715 if (old
->fsuid
!= 0 && new->fsuid
== 0)
717 cap_raise_fs_set(new->cap_effective
,
730 * Rationale: code calling task_setscheduler, task_setioprio, and
731 * task_setnice, assumes that
732 * . if capable(cap_sys_nice), then those actions should be allowed
733 * . if not capable(cap_sys_nice), but acting on your own processes,
734 * then those actions should be allowed
735 * This is insufficient now since you can call code without suid, but
736 * yet with increased caps.
737 * So we check for increased caps on the target process.
739 static int cap_safe_nice(struct task_struct
*p
)
744 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
745 current_cred()->cap_permitted
);
748 if (!is_subset
&& !capable(CAP_SYS_NICE
))
754 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
755 * @p: The task to affect
757 * Detemine if the requested scheduler policy change is permitted for the
758 * specified task, returning 0 if permission is granted, -ve if denied.
760 int cap_task_setscheduler(struct task_struct
*p
)
762 return cap_safe_nice(p
);
766 * cap_task_ioprio - Detemine if I/O priority change is permitted
767 * @p: The task to affect
768 * @ioprio: The I/O priority to set
770 * Detemine if the requested I/O priority change is permitted for the specified
771 * task, returning 0 if permission is granted, -ve if denied.
773 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
775 return cap_safe_nice(p
);
779 * cap_task_ioprio - Detemine if task priority change is permitted
780 * @p: The task to affect
781 * @nice: The nice value to set
783 * Detemine if the requested task priority change is permitted for the
784 * specified task, returning 0 if permission is granted, -ve if denied.
786 int cap_task_setnice(struct task_struct
*p
, int nice
)
788 return cap_safe_nice(p
);
792 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
793 * the current task's bounding set. Returns 0 on success, -ve on error.
795 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
797 if (!capable(CAP_SETPCAP
))
802 cap_lower(new->cap_bset
, cap
);
807 * cap_task_prctl - Implement process control functions for this security module
808 * @option: The process control function requested
809 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
811 * Allow process control functions (sys_prctl()) to alter capabilities; may
812 * also deny access to other functions not otherwise implemented here.
814 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
815 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
816 * modules will consider performing the function.
818 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
819 unsigned long arg4
, unsigned long arg5
)
824 new = prepare_creds();
829 case PR_CAPBSET_READ
:
831 if (!cap_valid(arg2
))
833 error
= !!cap_raised(new->cap_bset
, arg2
);
836 case PR_CAPBSET_DROP
:
837 error
= cap_prctl_drop(new, arg2
);
843 * The next four prctl's remain to assist with transitioning a
844 * system from legacy UID=0 based privilege (when filesystem
845 * capabilities are not in use) to a system using filesystem
846 * capabilities only - as the POSIX.1e draft intended.
850 * PR_SET_SECUREBITS =
851 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
852 * | issecure_mask(SECURE_NOROOT)
853 * | issecure_mask(SECURE_NOROOT_LOCKED)
854 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
855 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
857 * will ensure that the current process and all of its
858 * children will be locked into a pure
859 * capability-based-privilege environment.
861 case PR_SET_SECUREBITS
:
863 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
864 & (new->securebits
^ arg2
)) /*[1]*/
865 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
866 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
867 || (cap_capable(current_cred(),
868 current_cred()->user
->user_ns
, CAP_SETPCAP
,
869 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
871 * [1] no changing of bits that are locked
872 * [2] no unlocking of locks
873 * [3] no setting of unsupported bits
874 * [4] doing anything requires privilege (go read about
875 * the "sendmail capabilities bug")
878 /* cannot change a locked bit */
880 new->securebits
= arg2
;
883 case PR_GET_SECUREBITS
:
884 error
= new->securebits
;
887 case PR_GET_KEEPCAPS
:
888 if (issecure(SECURE_KEEP_CAPS
))
892 case PR_SET_KEEPCAPS
:
894 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
897 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
900 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
902 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
906 /* No functionality available - continue with default */
911 /* Functionality provided */
913 return commit_creds(new);
922 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
923 * @mm: The VM space in which the new mapping is to be made
924 * @pages: The size of the mapping
926 * Determine whether the allocation of a new virtual mapping by the current
927 * task is permitted, returning 0 if permission is granted, -ve if not.
929 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
931 int cap_sys_admin
= 0;
933 if (cap_capable(current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
934 SECURITY_CAP_NOAUDIT
) == 0)
936 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
940 * cap_file_mmap - check if able to map given addr
945 * @addr: address attempting to be mapped
948 * If the process is attempting to map memory below dac_mmap_min_addr they need
949 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
950 * capability security module. Returns 0 if this mapping should be allowed
953 int cap_file_mmap(struct file
*file
, unsigned long reqprot
,
954 unsigned long prot
, unsigned long flags
,
955 unsigned long addr
, unsigned long addr_only
)
959 if (addr
< dac_mmap_min_addr
) {
960 ret
= cap_capable(current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
962 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
964 current
->flags
|= PF_SUPERPRIV
;