4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy
)
124 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
129 static inline int task_has_rt_policy(struct task_struct
*p
)
131 return rt_policy(p
->policy
);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array
{
138 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
139 struct list_head queue
[MAX_RT_PRIO
];
142 struct rt_bandwidth
{
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock
;
147 struct hrtimer rt_period_timer
;
150 static struct rt_bandwidth def_rt_bandwidth
;
152 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
154 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
156 struct rt_bandwidth
*rt_b
=
157 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
163 now
= hrtimer_cb_get_time(timer
);
164 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
169 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
172 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
176 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
178 rt_b
->rt_period
= ns_to_ktime(period
);
179 rt_b
->rt_runtime
= runtime
;
181 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
183 hrtimer_init(&rt_b
->rt_period_timer
,
184 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
185 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime
>= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
197 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
200 if (hrtimer_active(&rt_b
->rt_period_timer
))
203 raw_spin_lock(&rt_b
->rt_runtime_lock
);
208 if (hrtimer_active(&rt_b
->rt_period_timer
))
211 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
212 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
214 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
215 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
216 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
217 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
218 HRTIMER_MODE_ABS_PINNED
, 0);
220 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 hrtimer_cancel(&rt_b
->rt_period_timer
);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex
);
236 #ifdef CONFIG_CGROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups
);
244 /* task group related information */
246 struct cgroup_subsys_state css
;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity
**se
;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq
**cfs_rq
;
253 unsigned long shares
;
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity
**rt_se
;
258 struct rt_rq
**rt_rq
;
260 struct rt_bandwidth rt_bandwidth
;
264 struct list_head list
;
266 struct task_group
*parent
;
267 struct list_head siblings
;
268 struct list_head children
;
271 #define root_task_group init_task_group
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
276 static DEFINE_SPINLOCK(task_group_lock
);
278 #ifdef CONFIG_FAIR_GROUP_SCHED
281 static int root_task_group_empty(void)
283 return list_empty(&root_task_group
.children
);
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
298 #define MAX_SHARES (1UL << 18)
300 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
306 struct task_group init_task_group
;
308 /* return group to which a task belongs */
309 static inline struct task_group
*task_group(struct task_struct
*p
)
311 struct task_group
*tg
;
313 #ifdef CONFIG_CGROUP_SCHED
314 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
315 struct task_group
, css
);
317 tg
= &init_task_group
;
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
327 p
->se
.parent
= task_group(p
)->se
[cpu
];
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
332 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
338 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
339 static inline struct task_group
*task_group(struct task_struct
*p
)
344 #endif /* CONFIG_CGROUP_SCHED */
346 /* CFS-related fields in a runqueue */
348 struct load_weight load
;
349 unsigned long nr_running
;
354 struct rb_root tasks_timeline
;
355 struct rb_node
*rb_leftmost
;
357 struct list_head tasks
;
358 struct list_head
*balance_iterator
;
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
364 struct sched_entity
*curr
, *next
, *last
;
366 unsigned int nr_spread_over
;
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
379 struct list_head leaf_cfs_rq_list
;
380 struct task_group
*tg
; /* group that "owns" this runqueue */
384 * the part of load.weight contributed by tasks
386 unsigned long task_weight
;
389 * h_load = weight * f(tg)
391 * Where f(tg) is the recursive weight fraction assigned to
394 unsigned long h_load
;
397 * this cpu's part of tg->shares
399 unsigned long shares
;
402 * load.weight at the time we set shares
404 unsigned long rq_weight
;
409 /* Real-Time classes' related field in a runqueue: */
411 struct rt_prio_array active
;
412 unsigned long rt_nr_running
;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 int curr
; /* highest queued rt task prio */
417 int next
; /* next highest */
422 unsigned long rt_nr_migratory
;
423 unsigned long rt_nr_total
;
425 struct plist_head pushable_tasks
;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock
;
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted
;
437 struct list_head leaf_rt_rq_list
;
438 struct task_group
*tg
;
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
455 cpumask_var_t online
;
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
461 cpumask_var_t rto_mask
;
464 struct cpupri cpupri
;
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
472 static struct root_domain def_root_domain
;
477 * This is the main, per-CPU runqueue data structure.
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
491 unsigned long nr_running
;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
495 unsigned char in_nohz_recently
;
497 /* capture load from *all* tasks on this cpu: */
498 struct load_weight load
;
499 unsigned long nr_load_updates
;
505 #ifdef CONFIG_FAIR_GROUP_SCHED
506 /* list of leaf cfs_rq on this cpu: */
507 struct list_head leaf_cfs_rq_list
;
509 #ifdef CONFIG_RT_GROUP_SCHED
510 struct list_head leaf_rt_rq_list
;
514 * This is part of a global counter where only the total sum
515 * over all CPUs matters. A task can increase this counter on
516 * one CPU and if it got migrated afterwards it may decrease
517 * it on another CPU. Always updated under the runqueue lock:
519 unsigned long nr_uninterruptible
;
521 struct task_struct
*curr
, *idle
;
522 unsigned long next_balance
;
523 struct mm_struct
*prev_mm
;
530 struct root_domain
*rd
;
531 struct sched_domain
*sd
;
533 unsigned char idle_at_tick
;
534 /* For active balancing */
538 /* cpu of this runqueue: */
542 unsigned long avg_load_per_task
;
544 struct task_struct
*migration_thread
;
545 struct list_head migration_queue
;
553 /* calc_load related fields */
554 unsigned long calc_load_update
;
555 long calc_load_active
;
557 #ifdef CONFIG_SCHED_HRTICK
559 int hrtick_csd_pending
;
560 struct call_single_data hrtick_csd
;
562 struct hrtimer hrtick_timer
;
565 #ifdef CONFIG_SCHEDSTATS
567 struct sched_info rq_sched_info
;
568 unsigned long long rq_cpu_time
;
569 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
571 /* sys_sched_yield() stats */
572 unsigned int yld_count
;
574 /* schedule() stats */
575 unsigned int sched_switch
;
576 unsigned int sched_count
;
577 unsigned int sched_goidle
;
579 /* try_to_wake_up() stats */
580 unsigned int ttwu_count
;
581 unsigned int ttwu_local
;
584 unsigned int bkl_count
;
588 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
591 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
593 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
596 static inline int cpu_of(struct rq
*rq
)
605 #define rcu_dereference_check_sched_domain(p) \
606 rcu_dereference_check((p), \
607 rcu_read_lock_sched_held() || \
608 lockdep_is_held(&sched_domains_mutex))
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612 * See detach_destroy_domains: synchronize_sched for details.
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
617 #define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
620 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621 #define this_rq() (&__get_cpu_var(runqueues))
622 #define task_rq(p) cpu_rq(task_cpu(p))
623 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
624 #define raw_rq() (&__raw_get_cpu_var(runqueues))
626 inline void update_rq_clock(struct rq
*rq
)
628 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
632 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
634 #ifdef CONFIG_SCHED_DEBUG
635 # define const_debug __read_mostly
637 # define const_debug static const
642 * @cpu: the processor in question.
644 * Returns true if the current cpu runqueue is locked.
645 * This interface allows printk to be called with the runqueue lock
646 * held and know whether or not it is OK to wake up the klogd.
648 int runqueue_is_locked(int cpu
)
650 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
654 * Debugging: various feature bits
657 #define SCHED_FEAT(name, enabled) \
658 __SCHED_FEAT_##name ,
661 #include "sched_features.h"
666 #define SCHED_FEAT(name, enabled) \
667 (1UL << __SCHED_FEAT_##name) * enabled |
669 const_debug
unsigned int sysctl_sched_features
=
670 #include "sched_features.h"
675 #ifdef CONFIG_SCHED_DEBUG
676 #define SCHED_FEAT(name, enabled) \
679 static __read_mostly
char *sched_feat_names
[] = {
680 #include "sched_features.h"
686 static int sched_feat_show(struct seq_file
*m
, void *v
)
690 for (i
= 0; sched_feat_names
[i
]; i
++) {
691 if (!(sysctl_sched_features
& (1UL << i
)))
693 seq_printf(m
, "%s ", sched_feat_names
[i
]);
701 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
702 size_t cnt
, loff_t
*ppos
)
712 if (copy_from_user(&buf
, ubuf
, cnt
))
717 if (strncmp(buf
, "NO_", 3) == 0) {
722 for (i
= 0; sched_feat_names
[i
]; i
++) {
723 int len
= strlen(sched_feat_names
[i
]);
725 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
727 sysctl_sched_features
&= ~(1UL << i
);
729 sysctl_sched_features
|= (1UL << i
);
734 if (!sched_feat_names
[i
])
742 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
744 return single_open(filp
, sched_feat_show
, NULL
);
747 static const struct file_operations sched_feat_fops
= {
748 .open
= sched_feat_open
,
749 .write
= sched_feat_write
,
752 .release
= single_release
,
755 static __init
int sched_init_debug(void)
757 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
762 late_initcall(sched_init_debug
);
766 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
769 * Number of tasks to iterate in a single balance run.
770 * Limited because this is done with IRQs disabled.
772 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
775 * ratelimit for updating the group shares.
778 unsigned int sysctl_sched_shares_ratelimit
= 250000;
779 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
782 * Inject some fuzzyness into changing the per-cpu group shares
783 * this avoids remote rq-locks at the expense of fairness.
786 unsigned int sysctl_sched_shares_thresh
= 4;
789 * period over which we average the RT time consumption, measured
794 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
797 * period over which we measure -rt task cpu usage in us.
800 unsigned int sysctl_sched_rt_period
= 1000000;
802 static __read_mostly
int scheduler_running
;
805 * part of the period that we allow rt tasks to run in us.
808 int sysctl_sched_rt_runtime
= 950000;
810 static inline u64
global_rt_period(void)
812 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
815 static inline u64
global_rt_runtime(void)
817 if (sysctl_sched_rt_runtime
< 0)
820 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
823 #ifndef prepare_arch_switch
824 # define prepare_arch_switch(next) do { } while (0)
826 #ifndef finish_arch_switch
827 # define finish_arch_switch(prev) do { } while (0)
830 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
832 return rq
->curr
== p
;
835 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
836 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
838 return task_current(rq
, p
);
841 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
845 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
847 #ifdef CONFIG_DEBUG_SPINLOCK
848 /* this is a valid case when another task releases the spinlock */
849 rq
->lock
.owner
= current
;
852 * If we are tracking spinlock dependencies then we have to
853 * fix up the runqueue lock - which gets 'carried over' from
856 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
858 raw_spin_unlock_irq(&rq
->lock
);
861 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
862 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
867 return task_current(rq
, p
);
871 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
875 * We can optimise this out completely for !SMP, because the
876 * SMP rebalancing from interrupt is the only thing that cares
881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 raw_spin_unlock_irq(&rq
->lock
);
884 raw_spin_unlock(&rq
->lock
);
888 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
892 * After ->oncpu is cleared, the task can be moved to a different CPU.
893 * We must ensure this doesn't happen until the switch is completely
899 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
906 * Check whether the task is waking, we use this to synchronize against
907 * ttwu() so that task_cpu() reports a stable number.
909 * We need to make an exception for PF_STARTING tasks because the fork
910 * path might require task_rq_lock() to work, eg. it can call
911 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
913 static inline int task_is_waking(struct task_struct
*p
)
915 return unlikely((p
->state
== TASK_WAKING
) && !(p
->flags
& PF_STARTING
));
919 * __task_rq_lock - lock the runqueue a given task resides on.
920 * Must be called interrupts disabled.
922 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
928 while (task_is_waking(p
))
931 raw_spin_lock(&rq
->lock
);
932 if (likely(rq
== task_rq(p
) && !task_is_waking(p
)))
934 raw_spin_unlock(&rq
->lock
);
939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption.
943 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
949 while (task_is_waking(p
))
951 local_irq_save(*flags
);
953 raw_spin_lock(&rq
->lock
);
954 if (likely(rq
== task_rq(p
) && !task_is_waking(p
)))
956 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
960 void task_rq_unlock_wait(struct task_struct
*p
)
962 struct rq
*rq
= task_rq(p
);
964 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
965 raw_spin_unlock_wait(&rq
->lock
);
968 static void __task_rq_unlock(struct rq
*rq
)
971 raw_spin_unlock(&rq
->lock
);
974 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
977 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
981 * this_rq_lock - lock this runqueue and disable interrupts.
983 static struct rq
*this_rq_lock(void)
990 raw_spin_lock(&rq
->lock
);
995 #ifdef CONFIG_SCHED_HRTICK
997 * Use HR-timers to deliver accurate preemption points.
999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * - enabled by features
1010 * - hrtimer is actually high res
1012 static inline int hrtick_enabled(struct rq
*rq
)
1014 if (!sched_feat(HRTICK
))
1016 if (!cpu_active(cpu_of(rq
)))
1018 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1021 static void hrtick_clear(struct rq
*rq
)
1023 if (hrtimer_active(&rq
->hrtick_timer
))
1024 hrtimer_cancel(&rq
->hrtick_timer
);
1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled.
1031 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1033 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1035 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1037 raw_spin_lock(&rq
->lock
);
1038 update_rq_clock(rq
);
1039 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1040 raw_spin_unlock(&rq
->lock
);
1042 return HRTIMER_NORESTART
;
1047 * called from hardirq (IPI) context
1049 static void __hrtick_start(void *arg
)
1051 struct rq
*rq
= arg
;
1053 raw_spin_lock(&rq
->lock
);
1054 hrtimer_restart(&rq
->hrtick_timer
);
1055 rq
->hrtick_csd_pending
= 0;
1056 raw_spin_unlock(&rq
->lock
);
1060 * Called to set the hrtick timer state.
1062 * called with rq->lock held and irqs disabled
1064 static void hrtick_start(struct rq
*rq
, u64 delay
)
1066 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1067 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1069 hrtimer_set_expires(timer
, time
);
1071 if (rq
== this_rq()) {
1072 hrtimer_restart(timer
);
1073 } else if (!rq
->hrtick_csd_pending
) {
1074 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1075 rq
->hrtick_csd_pending
= 1;
1080 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1082 int cpu
= (int)(long)hcpu
;
1085 case CPU_UP_CANCELED
:
1086 case CPU_UP_CANCELED_FROZEN
:
1087 case CPU_DOWN_PREPARE
:
1088 case CPU_DOWN_PREPARE_FROZEN
:
1090 case CPU_DEAD_FROZEN
:
1091 hrtick_clear(cpu_rq(cpu
));
1098 static __init
void init_hrtick(void)
1100 hotcpu_notifier(hotplug_hrtick
, 0);
1104 * Called to set the hrtick timer state.
1106 * called with rq->lock held and irqs disabled
1108 static void hrtick_start(struct rq
*rq
, u64 delay
)
1110 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1111 HRTIMER_MODE_REL_PINNED
, 0);
1114 static inline void init_hrtick(void)
1117 #endif /* CONFIG_SMP */
1119 static void init_rq_hrtick(struct rq
*rq
)
1122 rq
->hrtick_csd_pending
= 0;
1124 rq
->hrtick_csd
.flags
= 0;
1125 rq
->hrtick_csd
.func
= __hrtick_start
;
1126 rq
->hrtick_csd
.info
= rq
;
1129 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1130 rq
->hrtick_timer
.function
= hrtick
;
1132 #else /* CONFIG_SCHED_HRTICK */
1133 static inline void hrtick_clear(struct rq
*rq
)
1137 static inline void init_rq_hrtick(struct rq
*rq
)
1141 static inline void init_hrtick(void)
1144 #endif /* CONFIG_SCHED_HRTICK */
1147 * resched_task - mark a task 'to be rescheduled now'.
1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on
1155 #ifndef tsk_is_polling
1156 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159 static void resched_task(struct task_struct
*p
)
1163 assert_raw_spin_locked(&task_rq(p
)->lock
);
1165 if (test_tsk_need_resched(p
))
1168 set_tsk_need_resched(p
);
1171 if (cpu
== smp_processor_id())
1174 /* NEED_RESCHED must be visible before we test polling */
1176 if (!tsk_is_polling(p
))
1177 smp_send_reschedule(cpu
);
1180 static void resched_cpu(int cpu
)
1182 struct rq
*rq
= cpu_rq(cpu
);
1183 unsigned long flags
;
1185 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1187 resched_task(cpu_curr(cpu
));
1188 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1193 * When add_timer_on() enqueues a timer into the timer wheel of an
1194 * idle CPU then this timer might expire before the next timer event
1195 * which is scheduled to wake up that CPU. In case of a completely
1196 * idle system the next event might even be infinite time into the
1197 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1198 * leaves the inner idle loop so the newly added timer is taken into
1199 * account when the CPU goes back to idle and evaluates the timer
1200 * wheel for the next timer event.
1202 void wake_up_idle_cpu(int cpu
)
1204 struct rq
*rq
= cpu_rq(cpu
);
1206 if (cpu
== smp_processor_id())
1210 * This is safe, as this function is called with the timer
1211 * wheel base lock of (cpu) held. When the CPU is on the way
1212 * to idle and has not yet set rq->curr to idle then it will
1213 * be serialized on the timer wheel base lock and take the new
1214 * timer into account automatically.
1216 if (rq
->curr
!= rq
->idle
)
1220 * We can set TIF_RESCHED on the idle task of the other CPU
1221 * lockless. The worst case is that the other CPU runs the
1222 * idle task through an additional NOOP schedule()
1224 set_tsk_need_resched(rq
->idle
);
1226 /* NEED_RESCHED must be visible before we test polling */
1228 if (!tsk_is_polling(rq
->idle
))
1229 smp_send_reschedule(cpu
);
1231 #endif /* CONFIG_NO_HZ */
1233 static u64
sched_avg_period(void)
1235 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1238 static void sched_avg_update(struct rq
*rq
)
1240 s64 period
= sched_avg_period();
1242 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1243 rq
->age_stamp
+= period
;
1248 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1250 rq
->rt_avg
+= rt_delta
;
1251 sched_avg_update(rq
);
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct
*p
)
1257 assert_raw_spin_locked(&task_rq(p
)->lock
);
1258 set_tsk_need_resched(p
);
1261 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1264 #endif /* CONFIG_SMP */
1266 #if BITS_PER_LONG == 32
1267 # define WMULT_CONST (~0UL)
1269 # define WMULT_CONST (1UL << 32)
1272 #define WMULT_SHIFT 32
1275 * Shift right and round:
1277 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1280 * delta *= weight / lw
1282 static unsigned long
1283 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1284 struct load_weight
*lw
)
1288 if (!lw
->inv_weight
) {
1289 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1292 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1296 tmp
= (u64
)delta_exec
* weight
;
1298 * Check whether we'd overflow the 64-bit multiplication:
1300 if (unlikely(tmp
> WMULT_CONST
))
1301 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1304 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1306 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1309 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1315 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1322 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1323 * of tasks with abnormal "nice" values across CPUs the contribution that
1324 * each task makes to its run queue's load is weighted according to its
1325 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1326 * scaled version of the new time slice allocation that they receive on time
1330 #define WEIGHT_IDLEPRIO 3
1331 #define WMULT_IDLEPRIO 1431655765
1334 * Nice levels are multiplicative, with a gentle 10% change for every
1335 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1336 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1337 * that remained on nice 0.
1339 * The "10% effect" is relative and cumulative: from _any_ nice level,
1340 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1341 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1342 * If a task goes up by ~10% and another task goes down by ~10% then
1343 * the relative distance between them is ~25%.)
1345 static const int prio_to_weight
[40] = {
1346 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1347 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1348 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1349 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1350 /* 0 */ 1024, 820, 655, 526, 423,
1351 /* 5 */ 335, 272, 215, 172, 137,
1352 /* 10 */ 110, 87, 70, 56, 45,
1353 /* 15 */ 36, 29, 23, 18, 15,
1357 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1359 * In cases where the weight does not change often, we can use the
1360 * precalculated inverse to speed up arithmetics by turning divisions
1361 * into multiplications:
1363 static const u32 prio_to_wmult
[40] = {
1364 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1365 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1366 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1367 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1368 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1369 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1370 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1371 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1374 /* Time spent by the tasks of the cpu accounting group executing in ... */
1375 enum cpuacct_stat_index
{
1376 CPUACCT_STAT_USER
, /* ... user mode */
1377 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1379 CPUACCT_STAT_NSTATS
,
1382 #ifdef CONFIG_CGROUP_CPUACCT
1383 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1384 static void cpuacct_update_stats(struct task_struct
*tsk
,
1385 enum cpuacct_stat_index idx
, cputime_t val
);
1387 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1388 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1389 enum cpuacct_stat_index idx
, cputime_t val
) {}
1392 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1394 update_load_add(&rq
->load
, load
);
1397 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1399 update_load_sub(&rq
->load
, load
);
1402 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1403 typedef int (*tg_visitor
)(struct task_group
*, void *);
1406 * Iterate the full tree, calling @down when first entering a node and @up when
1407 * leaving it for the final time.
1409 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1411 struct task_group
*parent
, *child
;
1415 parent
= &root_task_group
;
1417 ret
= (*down
)(parent
, data
);
1420 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1427 ret
= (*up
)(parent
, data
);
1432 parent
= parent
->parent
;
1441 static int tg_nop(struct task_group
*tg
, void *data
)
1448 /* Used instead of source_load when we know the type == 0 */
1449 static unsigned long weighted_cpuload(const int cpu
)
1451 return cpu_rq(cpu
)->load
.weight
;
1455 * Return a low guess at the load of a migration-source cpu weighted
1456 * according to the scheduling class and "nice" value.
1458 * We want to under-estimate the load of migration sources, to
1459 * balance conservatively.
1461 static unsigned long source_load(int cpu
, int type
)
1463 struct rq
*rq
= cpu_rq(cpu
);
1464 unsigned long total
= weighted_cpuload(cpu
);
1466 if (type
== 0 || !sched_feat(LB_BIAS
))
1469 return min(rq
->cpu_load
[type
-1], total
);
1473 * Return a high guess at the load of a migration-target cpu weighted
1474 * according to the scheduling class and "nice" value.
1476 static unsigned long target_load(int cpu
, int type
)
1478 struct rq
*rq
= cpu_rq(cpu
);
1479 unsigned long total
= weighted_cpuload(cpu
);
1481 if (type
== 0 || !sched_feat(LB_BIAS
))
1484 return max(rq
->cpu_load
[type
-1], total
);
1487 static struct sched_group
*group_of(int cpu
)
1489 struct sched_domain
*sd
= rcu_dereference_sched(cpu_rq(cpu
)->sd
);
1497 static unsigned long power_of(int cpu
)
1499 struct sched_group
*group
= group_of(cpu
);
1502 return SCHED_LOAD_SCALE
;
1504 return group
->cpu_power
;
1507 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1509 static unsigned long cpu_avg_load_per_task(int cpu
)
1511 struct rq
*rq
= cpu_rq(cpu
);
1512 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1515 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1517 rq
->avg_load_per_task
= 0;
1519 return rq
->avg_load_per_task
;
1522 #ifdef CONFIG_FAIR_GROUP_SCHED
1524 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1526 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1529 * Calculate and set the cpu's group shares.
1531 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1532 unsigned long sd_shares
,
1533 unsigned long sd_rq_weight
,
1534 unsigned long *usd_rq_weight
)
1536 unsigned long shares
, rq_weight
;
1539 rq_weight
= usd_rq_weight
[cpu
];
1542 rq_weight
= NICE_0_LOAD
;
1546 * \Sum_j shares_j * rq_weight_i
1547 * shares_i = -----------------------------
1548 * \Sum_j rq_weight_j
1550 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1551 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1553 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1554 sysctl_sched_shares_thresh
) {
1555 struct rq
*rq
= cpu_rq(cpu
);
1556 unsigned long flags
;
1558 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1559 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1560 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1561 __set_se_shares(tg
->se
[cpu
], shares
);
1562 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1567 * Re-compute the task group their per cpu shares over the given domain.
1568 * This needs to be done in a bottom-up fashion because the rq weight of a
1569 * parent group depends on the shares of its child groups.
1571 static int tg_shares_up(struct task_group
*tg
, void *data
)
1573 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1574 unsigned long *usd_rq_weight
;
1575 struct sched_domain
*sd
= data
;
1576 unsigned long flags
;
1582 local_irq_save(flags
);
1583 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1585 for_each_cpu(i
, sched_domain_span(sd
)) {
1586 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1587 usd_rq_weight
[i
] = weight
;
1589 rq_weight
+= weight
;
1591 * If there are currently no tasks on the cpu pretend there
1592 * is one of average load so that when a new task gets to
1593 * run here it will not get delayed by group starvation.
1596 weight
= NICE_0_LOAD
;
1598 sum_weight
+= weight
;
1599 shares
+= tg
->cfs_rq
[i
]->shares
;
1603 rq_weight
= sum_weight
;
1605 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1606 shares
= tg
->shares
;
1608 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1609 shares
= tg
->shares
;
1611 for_each_cpu(i
, sched_domain_span(sd
))
1612 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1614 local_irq_restore(flags
);
1620 * Compute the cpu's hierarchical load factor for each task group.
1621 * This needs to be done in a top-down fashion because the load of a child
1622 * group is a fraction of its parents load.
1624 static int tg_load_down(struct task_group
*tg
, void *data
)
1627 long cpu
= (long)data
;
1630 load
= cpu_rq(cpu
)->load
.weight
;
1632 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1633 load
*= tg
->cfs_rq
[cpu
]->shares
;
1634 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1637 tg
->cfs_rq
[cpu
]->h_load
= load
;
1642 static void update_shares(struct sched_domain
*sd
)
1647 if (root_task_group_empty())
1650 now
= cpu_clock(raw_smp_processor_id());
1651 elapsed
= now
- sd
->last_update
;
1653 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1654 sd
->last_update
= now
;
1655 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1659 static void update_h_load(long cpu
)
1661 if (root_task_group_empty())
1664 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1669 static inline void update_shares(struct sched_domain
*sd
)
1675 #ifdef CONFIG_PREEMPT
1677 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
1687 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1688 __releases(this_rq
->lock
)
1689 __acquires(busiest
->lock
)
1690 __acquires(this_rq
->lock
)
1692 raw_spin_unlock(&this_rq
->lock
);
1693 double_rq_lock(this_rq
, busiest
);
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1706 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1707 __releases(this_rq
->lock
)
1708 __acquires(busiest
->lock
)
1709 __acquires(this_rq
->lock
)
1713 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1714 if (busiest
< this_rq
) {
1715 raw_spin_unlock(&this_rq
->lock
);
1716 raw_spin_lock(&busiest
->lock
);
1717 raw_spin_lock_nested(&this_rq
->lock
,
1718 SINGLE_DEPTH_NESTING
);
1721 raw_spin_lock_nested(&busiest
->lock
,
1722 SINGLE_DEPTH_NESTING
);
1727 #endif /* CONFIG_PREEMPT */
1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1732 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1734 if (unlikely(!irqs_disabled())) {
1735 /* printk() doesn't work good under rq->lock */
1736 raw_spin_unlock(&this_rq
->lock
);
1740 return _double_lock_balance(this_rq
, busiest
);
1743 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1744 __releases(busiest
->lock
)
1746 raw_spin_unlock(&busiest
->lock
);
1747 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1751 * double_rq_lock - safely lock two runqueues
1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling.
1756 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1757 __acquires(rq1
->lock
)
1758 __acquires(rq2
->lock
)
1760 BUG_ON(!irqs_disabled());
1762 raw_spin_lock(&rq1
->lock
);
1763 __acquire(rq2
->lock
); /* Fake it out ;) */
1766 raw_spin_lock(&rq1
->lock
);
1767 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1769 raw_spin_lock(&rq2
->lock
);
1770 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1773 update_rq_clock(rq1
);
1774 update_rq_clock(rq2
);
1778 * double_rq_unlock - safely unlock two runqueues
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1783 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1784 __releases(rq1
->lock
)
1785 __releases(rq2
->lock
)
1787 raw_spin_unlock(&rq1
->lock
);
1789 raw_spin_unlock(&rq2
->lock
);
1791 __release(rq2
->lock
);
1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1800 cfs_rq
->shares
= shares
;
1805 static void calc_load_account_active(struct rq
*this_rq
);
1806 static void update_sysctl(void);
1807 static int get_update_sysctl_factor(void);
1809 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1811 set_task_rq(p
, cpu
);
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1819 task_thread_info(p
)->cpu
= cpu
;
1823 static const struct sched_class rt_sched_class
;
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1829 #include "sched_stats.h"
1831 static void inc_nr_running(struct rq
*rq
)
1836 static void dec_nr_running(struct rq
*rq
)
1841 static void set_load_weight(struct task_struct
*p
)
1843 if (task_has_rt_policy(p
)) {
1844 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1845 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1850 * SCHED_IDLE tasks get minimal weight:
1852 if (p
->policy
== SCHED_IDLE
) {
1853 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1854 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1858 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1859 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1862 static void update_avg(u64
*avg
, u64 sample
)
1864 s64 diff
= sample
- *avg
;
1869 enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
, bool head
)
1872 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1874 sched_info_queued(p
);
1875 p
->sched_class
->enqueue_task(rq
, p
, wakeup
, head
);
1879 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1882 if (p
->se
.last_wakeup
) {
1883 update_avg(&p
->se
.avg_overlap
,
1884 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1885 p
->se
.last_wakeup
= 0;
1887 update_avg(&p
->se
.avg_wakeup
,
1888 sysctl_sched_wakeup_granularity
);
1892 sched_info_dequeued(p
);
1893 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1898 * activate_task - move a task to the runqueue.
1900 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1902 if (task_contributes_to_load(p
))
1903 rq
->nr_uninterruptible
--;
1905 enqueue_task(rq
, p
, wakeup
, false);
1910 * deactivate_task - remove a task from the runqueue.
1912 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1914 if (task_contributes_to_load(p
))
1915 rq
->nr_uninterruptible
++;
1917 dequeue_task(rq
, p
, sleep
);
1921 #include "sched_idletask.c"
1922 #include "sched_fair.c"
1923 #include "sched_rt.c"
1924 #ifdef CONFIG_SCHED_DEBUG
1925 # include "sched_debug.c"
1929 * __normal_prio - return the priority that is based on the static prio
1931 static inline int __normal_prio(struct task_struct
*p
)
1933 return p
->static_prio
;
1937 * Calculate the expected normal priority: i.e. priority
1938 * without taking RT-inheritance into account. Might be
1939 * boosted by interactivity modifiers. Changes upon fork,
1940 * setprio syscalls, and whenever the interactivity
1941 * estimator recalculates.
1943 static inline int normal_prio(struct task_struct
*p
)
1947 if (task_has_rt_policy(p
))
1948 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1950 prio
= __normal_prio(p
);
1955 * Calculate the current priority, i.e. the priority
1956 * taken into account by the scheduler. This value might
1957 * be boosted by RT tasks, or might be boosted by
1958 * interactivity modifiers. Will be RT if the task got
1959 * RT-boosted. If not then it returns p->normal_prio.
1961 static int effective_prio(struct task_struct
*p
)
1963 p
->normal_prio
= normal_prio(p
);
1965 * If we are RT tasks or we were boosted to RT priority,
1966 * keep the priority unchanged. Otherwise, update priority
1967 * to the normal priority:
1969 if (!rt_prio(p
->prio
))
1970 return p
->normal_prio
;
1975 * task_curr - is this task currently executing on a CPU?
1976 * @p: the task in question.
1978 inline int task_curr(const struct task_struct
*p
)
1980 return cpu_curr(task_cpu(p
)) == p
;
1983 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1984 const struct sched_class
*prev_class
,
1985 int oldprio
, int running
)
1987 if (prev_class
!= p
->sched_class
) {
1988 if (prev_class
->switched_from
)
1989 prev_class
->switched_from(rq
, p
, running
);
1990 p
->sched_class
->switched_to(rq
, p
, running
);
1992 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1997 * Is this task likely cache-hot:
2000 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2004 if (p
->sched_class
!= &fair_sched_class
)
2008 * Buddy candidates are cache hot:
2010 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2011 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2012 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2015 if (sysctl_sched_migration_cost
== -1)
2017 if (sysctl_sched_migration_cost
== 0)
2020 delta
= now
- p
->se
.exec_start
;
2022 return delta
< (s64
)sysctl_sched_migration_cost
;
2025 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2027 #ifdef CONFIG_SCHED_DEBUG
2029 * We should never call set_task_cpu() on a blocked task,
2030 * ttwu() will sort out the placement.
2032 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2033 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2036 trace_sched_migrate_task(p
, new_cpu
);
2038 if (task_cpu(p
) != new_cpu
) {
2039 p
->se
.nr_migrations
++;
2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2043 __set_task_cpu(p
, new_cpu
);
2046 struct migration_req
{
2047 struct list_head list
;
2049 struct task_struct
*task
;
2052 struct completion done
;
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2060 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2062 struct rq
*rq
= task_rq(p
);
2065 * If the task is not on a runqueue (and not running), then
2066 * the next wake-up will properly place the task.
2068 if (!p
->se
.on_rq
&& !task_running(rq
, p
))
2071 init_completion(&req
->done
);
2073 req
->dest_cpu
= dest_cpu
;
2074 list_add(&req
->list
, &rq
->migration_queue
);
2080 * wait_task_context_switch - wait for a thread to complete at least one
2083 * @p must not be current.
2085 void wait_task_context_switch(struct task_struct
*p
)
2087 unsigned long nvcsw
, nivcsw
, flags
;
2095 * The runqueue is assigned before the actual context
2096 * switch. We need to take the runqueue lock.
2098 * We could check initially without the lock but it is
2099 * very likely that we need to take the lock in every
2102 rq
= task_rq_lock(p
, &flags
);
2103 running
= task_running(rq
, p
);
2104 task_rq_unlock(rq
, &flags
);
2106 if (likely(!running
))
2109 * The switch count is incremented before the actual
2110 * context switch. We thus wait for two switches to be
2111 * sure at least one completed.
2113 if ((p
->nvcsw
- nvcsw
) > 1)
2115 if ((p
->nivcsw
- nivcsw
) > 1)
2123 * wait_task_inactive - wait for a thread to unschedule.
2125 * If @match_state is nonzero, it's the @p->state value just checked and
2126 * not expected to change. If it changes, i.e. @p might have woken up,
2127 * then return zero. When we succeed in waiting for @p to be off its CPU,
2128 * we return a positive number (its total switch count). If a second call
2129 * a short while later returns the same number, the caller can be sure that
2130 * @p has remained unscheduled the whole time.
2132 * The caller must ensure that the task *will* unschedule sometime soon,
2133 * else this function might spin for a *long* time. This function can't
2134 * be called with interrupts off, or it may introduce deadlock with
2135 * smp_call_function() if an IPI is sent by the same process we are
2136 * waiting to become inactive.
2138 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2140 unsigned long flags
;
2147 * We do the initial early heuristics without holding
2148 * any task-queue locks at all. We'll only try to get
2149 * the runqueue lock when things look like they will
2155 * If the task is actively running on another CPU
2156 * still, just relax and busy-wait without holding
2159 * NOTE! Since we don't hold any locks, it's not
2160 * even sure that "rq" stays as the right runqueue!
2161 * But we don't care, since "task_running()" will
2162 * return false if the runqueue has changed and p
2163 * is actually now running somewhere else!
2165 while (task_running(rq
, p
)) {
2166 if (match_state
&& unlikely(p
->state
!= match_state
))
2172 * Ok, time to look more closely! We need the rq
2173 * lock now, to be *sure*. If we're wrong, we'll
2174 * just go back and repeat.
2176 rq
= task_rq_lock(p
, &flags
);
2177 trace_sched_wait_task(rq
, p
);
2178 running
= task_running(rq
, p
);
2179 on_rq
= p
->se
.on_rq
;
2181 if (!match_state
|| p
->state
== match_state
)
2182 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2183 task_rq_unlock(rq
, &flags
);
2186 * If it changed from the expected state, bail out now.
2188 if (unlikely(!ncsw
))
2192 * Was it really running after all now that we
2193 * checked with the proper locks actually held?
2195 * Oops. Go back and try again..
2197 if (unlikely(running
)) {
2203 * It's not enough that it's not actively running,
2204 * it must be off the runqueue _entirely_, and not
2207 * So if it was still runnable (but just not actively
2208 * running right now), it's preempted, and we should
2209 * yield - it could be a while.
2211 if (unlikely(on_rq
)) {
2212 schedule_timeout_uninterruptible(1);
2217 * Ahh, all good. It wasn't running, and it wasn't
2218 * runnable, which means that it will never become
2219 * running in the future either. We're all done!
2228 * kick_process - kick a running thread to enter/exit the kernel
2229 * @p: the to-be-kicked thread
2231 * Cause a process which is running on another CPU to enter
2232 * kernel-mode, without any delay. (to get signals handled.)
2234 * NOTE: this function doesnt have to take the runqueue lock,
2235 * because all it wants to ensure is that the remote task enters
2236 * the kernel. If the IPI races and the task has been migrated
2237 * to another CPU then no harm is done and the purpose has been
2240 void kick_process(struct task_struct
*p
)
2246 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2247 smp_send_reschedule(cpu
);
2250 EXPORT_SYMBOL_GPL(kick_process
);
2251 #endif /* CONFIG_SMP */
2254 * task_oncpu_function_call - call a function on the cpu on which a task runs
2255 * @p: the task to evaluate
2256 * @func: the function to be called
2257 * @info: the function call argument
2259 * Calls the function @func when the task is currently running. This might
2260 * be on the current CPU, which just calls the function directly
2262 void task_oncpu_function_call(struct task_struct
*p
,
2263 void (*func
) (void *info
), void *info
)
2270 smp_call_function_single(cpu
, func
, info
, 1);
2275 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2278 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2280 /* Look for allowed, online CPU in same node. */
2281 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2282 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2285 /* Any allowed, online CPU? */
2286 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2287 if (dest_cpu
< nr_cpu_ids
)
2290 /* No more Mr. Nice Guy. */
2291 if (dest_cpu
>= nr_cpu_ids
) {
2293 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
2295 dest_cpu
= cpumask_any_and(cpu_active_mask
, &p
->cpus_allowed
);
2298 * Don't tell them about moving exiting tasks or
2299 * kernel threads (both mm NULL), since they never
2302 if (p
->mm
&& printk_ratelimit()) {
2303 printk(KERN_INFO
"process %d (%s) no "
2304 "longer affine to cpu%d\n",
2305 task_pid_nr(p
), p
->comm
, cpu
);
2313 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2314 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2317 * exec: is unstable, retry loop
2318 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2321 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2323 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2326 * In order not to call set_task_cpu() on a blocking task we need
2327 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2330 * Since this is common to all placement strategies, this lives here.
2332 * [ this allows ->select_task() to simply return task_cpu(p) and
2333 * not worry about this generic constraint ]
2335 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2337 cpu
= select_fallback_rq(task_cpu(p
), p
);
2344 * try_to_wake_up - wake up a thread
2345 * @p: the to-be-woken-up thread
2346 * @state: the mask of task states that can be woken
2347 * @sync: do a synchronous wakeup?
2349 * Put it on the run-queue if it's not already there. The "current"
2350 * thread is always on the run-queue (except when the actual
2351 * re-schedule is in progress), and as such you're allowed to do
2352 * the simpler "current->state = TASK_RUNNING" to mark yourself
2353 * runnable without the overhead of this.
2355 * returns failure only if the task is already active.
2357 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2360 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2361 unsigned long flags
;
2364 if (!sched_feat(SYNC_WAKEUPS
))
2365 wake_flags
&= ~WF_SYNC
;
2367 this_cpu
= get_cpu();
2370 rq
= task_rq_lock(p
, &flags
);
2371 update_rq_clock(rq
);
2372 if (!(p
->state
& state
))
2382 if (unlikely(task_running(rq
, p
)))
2386 * In order to handle concurrent wakeups and release the rq->lock
2387 * we put the task in TASK_WAKING state.
2389 * First fix up the nr_uninterruptible count:
2391 if (task_contributes_to_load(p
))
2392 rq
->nr_uninterruptible
--;
2393 p
->state
= TASK_WAKING
;
2395 if (p
->sched_class
->task_waking
)
2396 p
->sched_class
->task_waking(rq
, p
);
2398 __task_rq_unlock(rq
);
2400 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2401 if (cpu
!= orig_cpu
) {
2403 * Since we migrate the task without holding any rq->lock,
2404 * we need to be careful with task_rq_lock(), since that
2405 * might end up locking an invalid rq.
2407 set_task_cpu(p
, cpu
);
2411 raw_spin_lock(&rq
->lock
);
2412 update_rq_clock(rq
);
2415 * We migrated the task without holding either rq->lock, however
2416 * since the task is not on the task list itself, nobody else
2417 * will try and migrate the task, hence the rq should match the
2418 * cpu we just moved it to.
2420 WARN_ON(task_cpu(p
) != cpu
);
2421 WARN_ON(p
->state
!= TASK_WAKING
);
2423 #ifdef CONFIG_SCHEDSTATS
2424 schedstat_inc(rq
, ttwu_count
);
2425 if (cpu
== this_cpu
)
2426 schedstat_inc(rq
, ttwu_local
);
2428 struct sched_domain
*sd
;
2429 for_each_domain(this_cpu
, sd
) {
2430 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2431 schedstat_inc(sd
, ttwu_wake_remote
);
2436 #endif /* CONFIG_SCHEDSTATS */
2439 #endif /* CONFIG_SMP */
2440 schedstat_inc(p
, se
.nr_wakeups
);
2441 if (wake_flags
& WF_SYNC
)
2442 schedstat_inc(p
, se
.nr_wakeups_sync
);
2443 if (orig_cpu
!= cpu
)
2444 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2445 if (cpu
== this_cpu
)
2446 schedstat_inc(p
, se
.nr_wakeups_local
);
2448 schedstat_inc(p
, se
.nr_wakeups_remote
);
2449 activate_task(rq
, p
, 1);
2453 * Only attribute actual wakeups done by this task.
2455 if (!in_interrupt()) {
2456 struct sched_entity
*se
= ¤t
->se
;
2457 u64 sample
= se
->sum_exec_runtime
;
2459 if (se
->last_wakeup
)
2460 sample
-= se
->last_wakeup
;
2462 sample
-= se
->start_runtime
;
2463 update_avg(&se
->avg_wakeup
, sample
);
2465 se
->last_wakeup
= se
->sum_exec_runtime
;
2469 trace_sched_wakeup(rq
, p
, success
);
2470 check_preempt_curr(rq
, p
, wake_flags
);
2472 p
->state
= TASK_RUNNING
;
2474 if (p
->sched_class
->task_woken
)
2475 p
->sched_class
->task_woken(rq
, p
);
2477 if (unlikely(rq
->idle_stamp
)) {
2478 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2479 u64 max
= 2*sysctl_sched_migration_cost
;
2484 update_avg(&rq
->avg_idle
, delta
);
2489 task_rq_unlock(rq
, &flags
);
2496 * wake_up_process - Wake up a specific process
2497 * @p: The process to be woken up.
2499 * Attempt to wake up the nominated process and move it to the set of runnable
2500 * processes. Returns 1 if the process was woken up, 0 if it was already
2503 * It may be assumed that this function implies a write memory barrier before
2504 * changing the task state if and only if any tasks are woken up.
2506 int wake_up_process(struct task_struct
*p
)
2508 return try_to_wake_up(p
, TASK_ALL
, 0);
2510 EXPORT_SYMBOL(wake_up_process
);
2512 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2514 return try_to_wake_up(p
, state
, 0);
2518 * Perform scheduler related setup for a newly forked process p.
2519 * p is forked by current.
2521 * __sched_fork() is basic setup used by init_idle() too:
2523 static void __sched_fork(struct task_struct
*p
)
2525 p
->se
.exec_start
= 0;
2526 p
->se
.sum_exec_runtime
= 0;
2527 p
->se
.prev_sum_exec_runtime
= 0;
2528 p
->se
.nr_migrations
= 0;
2529 p
->se
.last_wakeup
= 0;
2530 p
->se
.avg_overlap
= 0;
2531 p
->se
.start_runtime
= 0;
2532 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2534 #ifdef CONFIG_SCHEDSTATS
2535 p
->se
.wait_start
= 0;
2537 p
->se
.wait_count
= 0;
2540 p
->se
.sleep_start
= 0;
2541 p
->se
.sleep_max
= 0;
2542 p
->se
.sum_sleep_runtime
= 0;
2544 p
->se
.block_start
= 0;
2545 p
->se
.block_max
= 0;
2547 p
->se
.slice_max
= 0;
2549 p
->se
.nr_migrations_cold
= 0;
2550 p
->se
.nr_failed_migrations_affine
= 0;
2551 p
->se
.nr_failed_migrations_running
= 0;
2552 p
->se
.nr_failed_migrations_hot
= 0;
2553 p
->se
.nr_forced_migrations
= 0;
2555 p
->se
.nr_wakeups
= 0;
2556 p
->se
.nr_wakeups_sync
= 0;
2557 p
->se
.nr_wakeups_migrate
= 0;
2558 p
->se
.nr_wakeups_local
= 0;
2559 p
->se
.nr_wakeups_remote
= 0;
2560 p
->se
.nr_wakeups_affine
= 0;
2561 p
->se
.nr_wakeups_affine_attempts
= 0;
2562 p
->se
.nr_wakeups_passive
= 0;
2563 p
->se
.nr_wakeups_idle
= 0;
2567 INIT_LIST_HEAD(&p
->rt
.run_list
);
2569 INIT_LIST_HEAD(&p
->se
.group_node
);
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2572 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2577 * fork()/clone()-time setup:
2579 void sched_fork(struct task_struct
*p
, int clone_flags
)
2581 int cpu
= get_cpu();
2585 * We mark the process as waking here. This guarantees that
2586 * nobody will actually run it, and a signal or other external
2587 * event cannot wake it up and insert it on the runqueue either.
2589 p
->state
= TASK_WAKING
;
2592 * Revert to default priority/policy on fork if requested.
2594 if (unlikely(p
->sched_reset_on_fork
)) {
2595 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2596 p
->policy
= SCHED_NORMAL
;
2597 p
->normal_prio
= p
->static_prio
;
2600 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2601 p
->static_prio
= NICE_TO_PRIO(0);
2602 p
->normal_prio
= p
->static_prio
;
2607 * We don't need the reset flag anymore after the fork. It has
2608 * fulfilled its duty:
2610 p
->sched_reset_on_fork
= 0;
2614 * Make sure we do not leak PI boosting priority to the child.
2616 p
->prio
= current
->normal_prio
;
2618 if (!rt_prio(p
->prio
))
2619 p
->sched_class
= &fair_sched_class
;
2621 if (p
->sched_class
->task_fork
)
2622 p
->sched_class
->task_fork(p
);
2624 set_task_cpu(p
, cpu
);
2626 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2627 if (likely(sched_info_on()))
2628 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2630 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2633 #ifdef CONFIG_PREEMPT
2634 /* Want to start with kernel preemption disabled. */
2635 task_thread_info(p
)->preempt_count
= 1;
2637 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2643 * wake_up_new_task - wake up a newly created task for the first time.
2645 * This function will do some initial scheduler statistics housekeeping
2646 * that must be done for every newly created context, then puts the task
2647 * on the runqueue and wakes it.
2649 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2651 unsigned long flags
;
2653 int cpu __maybe_unused
= get_cpu();
2657 * Fork balancing, do it here and not earlier because:
2658 * - cpus_allowed can change in the fork path
2659 * - any previously selected cpu might disappear through hotplug
2661 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2662 * ->cpus_allowed is stable, we have preemption disabled, meaning
2663 * cpu_online_mask is stable.
2665 cpu
= select_task_rq(p
, SD_BALANCE_FORK
, 0);
2666 set_task_cpu(p
, cpu
);
2670 * Since the task is not on the rq and we still have TASK_WAKING set
2671 * nobody else will migrate this task.
2674 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2676 BUG_ON(p
->state
!= TASK_WAKING
);
2677 p
->state
= TASK_RUNNING
;
2678 update_rq_clock(rq
);
2679 activate_task(rq
, p
, 0);
2680 trace_sched_wakeup_new(rq
, p
, 1);
2681 check_preempt_curr(rq
, p
, WF_FORK
);
2683 if (p
->sched_class
->task_woken
)
2684 p
->sched_class
->task_woken(rq
, p
);
2686 task_rq_unlock(rq
, &flags
);
2690 #ifdef CONFIG_PREEMPT_NOTIFIERS
2693 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2694 * @notifier: notifier struct to register
2696 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2698 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2700 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2703 * preempt_notifier_unregister - no longer interested in preemption notifications
2704 * @notifier: notifier struct to unregister
2706 * This is safe to call from within a preemption notifier.
2708 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2710 hlist_del(¬ifier
->link
);
2712 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2714 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2716 struct preempt_notifier
*notifier
;
2717 struct hlist_node
*node
;
2719 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2720 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2724 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2725 struct task_struct
*next
)
2727 struct preempt_notifier
*notifier
;
2728 struct hlist_node
*node
;
2730 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2731 notifier
->ops
->sched_out(notifier
, next
);
2734 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2736 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2741 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2742 struct task_struct
*next
)
2746 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2749 * prepare_task_switch - prepare to switch tasks
2750 * @rq: the runqueue preparing to switch
2751 * @prev: the current task that is being switched out
2752 * @next: the task we are going to switch to.
2754 * This is called with the rq lock held and interrupts off. It must
2755 * be paired with a subsequent finish_task_switch after the context
2758 * prepare_task_switch sets up locking and calls architecture specific
2762 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2763 struct task_struct
*next
)
2765 fire_sched_out_preempt_notifiers(prev
, next
);
2766 prepare_lock_switch(rq
, next
);
2767 prepare_arch_switch(next
);
2771 * finish_task_switch - clean up after a task-switch
2772 * @rq: runqueue associated with task-switch
2773 * @prev: the thread we just switched away from.
2775 * finish_task_switch must be called after the context switch, paired
2776 * with a prepare_task_switch call before the context switch.
2777 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2778 * and do any other architecture-specific cleanup actions.
2780 * Note that we may have delayed dropping an mm in context_switch(). If
2781 * so, we finish that here outside of the runqueue lock. (Doing it
2782 * with the lock held can cause deadlocks; see schedule() for
2785 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2786 __releases(rq
->lock
)
2788 struct mm_struct
*mm
= rq
->prev_mm
;
2794 * A task struct has one reference for the use as "current".
2795 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2796 * schedule one last time. The schedule call will never return, and
2797 * the scheduled task must drop that reference.
2798 * The test for TASK_DEAD must occur while the runqueue locks are
2799 * still held, otherwise prev could be scheduled on another cpu, die
2800 * there before we look at prev->state, and then the reference would
2802 * Manfred Spraul <manfred@colorfullife.com>
2804 prev_state
= prev
->state
;
2805 finish_arch_switch(prev
);
2806 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2807 local_irq_disable();
2808 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2809 perf_event_task_sched_in(current
);
2810 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2812 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2813 finish_lock_switch(rq
, prev
);
2815 fire_sched_in_preempt_notifiers(current
);
2818 if (unlikely(prev_state
== TASK_DEAD
)) {
2820 * Remove function-return probe instances associated with this
2821 * task and put them back on the free list.
2823 kprobe_flush_task(prev
);
2824 put_task_struct(prev
);
2830 /* assumes rq->lock is held */
2831 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2833 if (prev
->sched_class
->pre_schedule
)
2834 prev
->sched_class
->pre_schedule(rq
, prev
);
2837 /* rq->lock is NOT held, but preemption is disabled */
2838 static inline void post_schedule(struct rq
*rq
)
2840 if (rq
->post_schedule
) {
2841 unsigned long flags
;
2843 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2844 if (rq
->curr
->sched_class
->post_schedule
)
2845 rq
->curr
->sched_class
->post_schedule(rq
);
2846 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2848 rq
->post_schedule
= 0;
2854 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2858 static inline void post_schedule(struct rq
*rq
)
2865 * schedule_tail - first thing a freshly forked thread must call.
2866 * @prev: the thread we just switched away from.
2868 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2869 __releases(rq
->lock
)
2871 struct rq
*rq
= this_rq();
2873 finish_task_switch(rq
, prev
);
2876 * FIXME: do we need to worry about rq being invalidated by the
2881 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2882 /* In this case, finish_task_switch does not reenable preemption */
2885 if (current
->set_child_tid
)
2886 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2890 * context_switch - switch to the new MM and the new
2891 * thread's register state.
2894 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2895 struct task_struct
*next
)
2897 struct mm_struct
*mm
, *oldmm
;
2899 prepare_task_switch(rq
, prev
, next
);
2900 trace_sched_switch(rq
, prev
, next
);
2902 oldmm
= prev
->active_mm
;
2904 * For paravirt, this is coupled with an exit in switch_to to
2905 * combine the page table reload and the switch backend into
2908 arch_start_context_switch(prev
);
2911 next
->active_mm
= oldmm
;
2912 atomic_inc(&oldmm
->mm_count
);
2913 enter_lazy_tlb(oldmm
, next
);
2915 switch_mm(oldmm
, mm
, next
);
2917 if (likely(!prev
->mm
)) {
2918 prev
->active_mm
= NULL
;
2919 rq
->prev_mm
= oldmm
;
2922 * Since the runqueue lock will be released by the next
2923 * task (which is an invalid locking op but in the case
2924 * of the scheduler it's an obvious special-case), so we
2925 * do an early lockdep release here:
2927 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2928 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2931 /* Here we just switch the register state and the stack. */
2932 switch_to(prev
, next
, prev
);
2936 * this_rq must be evaluated again because prev may have moved
2937 * CPUs since it called schedule(), thus the 'rq' on its stack
2938 * frame will be invalid.
2940 finish_task_switch(this_rq(), prev
);
2944 * nr_running, nr_uninterruptible and nr_context_switches:
2946 * externally visible scheduler statistics: current number of runnable
2947 * threads, current number of uninterruptible-sleeping threads, total
2948 * number of context switches performed since bootup.
2950 unsigned long nr_running(void)
2952 unsigned long i
, sum
= 0;
2954 for_each_online_cpu(i
)
2955 sum
+= cpu_rq(i
)->nr_running
;
2960 unsigned long nr_uninterruptible(void)
2962 unsigned long i
, sum
= 0;
2964 for_each_possible_cpu(i
)
2965 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2968 * Since we read the counters lockless, it might be slightly
2969 * inaccurate. Do not allow it to go below zero though:
2971 if (unlikely((long)sum
< 0))
2977 unsigned long long nr_context_switches(void)
2980 unsigned long long sum
= 0;
2982 for_each_possible_cpu(i
)
2983 sum
+= cpu_rq(i
)->nr_switches
;
2988 unsigned long nr_iowait(void)
2990 unsigned long i
, sum
= 0;
2992 for_each_possible_cpu(i
)
2993 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2998 unsigned long nr_iowait_cpu(void)
3000 struct rq
*this = this_rq();
3001 return atomic_read(&this->nr_iowait
);
3004 unsigned long this_cpu_load(void)
3006 struct rq
*this = this_rq();
3007 return this->cpu_load
[0];
3011 /* Variables and functions for calc_load */
3012 static atomic_long_t calc_load_tasks
;
3013 static unsigned long calc_load_update
;
3014 unsigned long avenrun
[3];
3015 EXPORT_SYMBOL(avenrun
);
3018 * get_avenrun - get the load average array
3019 * @loads: pointer to dest load array
3020 * @offset: offset to add
3021 * @shift: shift count to shift the result left
3023 * These values are estimates at best, so no need for locking.
3025 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3027 loads
[0] = (avenrun
[0] + offset
) << shift
;
3028 loads
[1] = (avenrun
[1] + offset
) << shift
;
3029 loads
[2] = (avenrun
[2] + offset
) << shift
;
3032 static unsigned long
3033 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3036 load
+= active
* (FIXED_1
- exp
);
3037 return load
>> FSHIFT
;
3041 * calc_load - update the avenrun load estimates 10 ticks after the
3042 * CPUs have updated calc_load_tasks.
3044 void calc_global_load(void)
3046 unsigned long upd
= calc_load_update
+ 10;
3049 if (time_before(jiffies
, upd
))
3052 active
= atomic_long_read(&calc_load_tasks
);
3053 active
= active
> 0 ? active
* FIXED_1
: 0;
3055 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3056 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3057 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3059 calc_load_update
+= LOAD_FREQ
;
3063 * Either called from update_cpu_load() or from a cpu going idle
3065 static void calc_load_account_active(struct rq
*this_rq
)
3067 long nr_active
, delta
;
3069 nr_active
= this_rq
->nr_running
;
3070 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3072 if (nr_active
!= this_rq
->calc_load_active
) {
3073 delta
= nr_active
- this_rq
->calc_load_active
;
3074 this_rq
->calc_load_active
= nr_active
;
3075 atomic_long_add(delta
, &calc_load_tasks
);
3080 * Update rq->cpu_load[] statistics. This function is usually called every
3081 * scheduler tick (TICK_NSEC).
3083 static void update_cpu_load(struct rq
*this_rq
)
3085 unsigned long this_load
= this_rq
->load
.weight
;
3088 this_rq
->nr_load_updates
++;
3090 /* Update our load: */
3091 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3092 unsigned long old_load
, new_load
;
3094 /* scale is effectively 1 << i now, and >> i divides by scale */
3096 old_load
= this_rq
->cpu_load
[i
];
3097 new_load
= this_load
;
3099 * Round up the averaging division if load is increasing. This
3100 * prevents us from getting stuck on 9 if the load is 10, for
3103 if (new_load
> old_load
)
3104 new_load
+= scale
-1;
3105 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3108 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3109 this_rq
->calc_load_update
+= LOAD_FREQ
;
3110 calc_load_account_active(this_rq
);
3117 * sched_exec - execve() is a valuable balancing opportunity, because at
3118 * this point the task has the smallest effective memory and cache footprint.
3120 void sched_exec(void)
3122 struct task_struct
*p
= current
;
3123 struct migration_req req
;
3124 int dest_cpu
, this_cpu
;
3125 unsigned long flags
;
3129 this_cpu
= get_cpu();
3130 dest_cpu
= select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3131 if (dest_cpu
== this_cpu
) {
3136 rq
= task_rq_lock(p
, &flags
);
3140 * select_task_rq() can race against ->cpus_allowed
3142 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3143 || unlikely(!cpu_active(dest_cpu
))) {
3144 task_rq_unlock(rq
, &flags
);
3148 /* force the process onto the specified CPU */
3149 if (migrate_task(p
, dest_cpu
, &req
)) {
3150 /* Need to wait for migration thread (might exit: take ref). */
3151 struct task_struct
*mt
= rq
->migration_thread
;
3153 get_task_struct(mt
);
3154 task_rq_unlock(rq
, &flags
);
3155 wake_up_process(mt
);
3156 put_task_struct(mt
);
3157 wait_for_completion(&req
.done
);
3161 task_rq_unlock(rq
, &flags
);
3166 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3168 EXPORT_PER_CPU_SYMBOL(kstat
);
3171 * Return any ns on the sched_clock that have not yet been accounted in
3172 * @p in case that task is currently running.
3174 * Called with task_rq_lock() held on @rq.
3176 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3180 if (task_current(rq
, p
)) {
3181 update_rq_clock(rq
);
3182 ns
= rq
->clock
- p
->se
.exec_start
;
3190 unsigned long long task_delta_exec(struct task_struct
*p
)
3192 unsigned long flags
;
3196 rq
= task_rq_lock(p
, &flags
);
3197 ns
= do_task_delta_exec(p
, rq
);
3198 task_rq_unlock(rq
, &flags
);
3204 * Return accounted runtime for the task.
3205 * In case the task is currently running, return the runtime plus current's
3206 * pending runtime that have not been accounted yet.
3208 unsigned long long task_sched_runtime(struct task_struct
*p
)
3210 unsigned long flags
;
3214 rq
= task_rq_lock(p
, &flags
);
3215 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3216 task_rq_unlock(rq
, &flags
);
3222 * Return sum_exec_runtime for the thread group.
3223 * In case the task is currently running, return the sum plus current's
3224 * pending runtime that have not been accounted yet.
3226 * Note that the thread group might have other running tasks as well,
3227 * so the return value not includes other pending runtime that other
3228 * running tasks might have.
3230 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3232 struct task_cputime totals
;
3233 unsigned long flags
;
3237 rq
= task_rq_lock(p
, &flags
);
3238 thread_group_cputime(p
, &totals
);
3239 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3240 task_rq_unlock(rq
, &flags
);
3246 * Account user cpu time to a process.
3247 * @p: the process that the cpu time gets accounted to
3248 * @cputime: the cpu time spent in user space since the last update
3249 * @cputime_scaled: cputime scaled by cpu frequency
3251 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3252 cputime_t cputime_scaled
)
3254 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3257 /* Add user time to process. */
3258 p
->utime
= cputime_add(p
->utime
, cputime
);
3259 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3260 account_group_user_time(p
, cputime
);
3262 /* Add user time to cpustat. */
3263 tmp
= cputime_to_cputime64(cputime
);
3264 if (TASK_NICE(p
) > 0)
3265 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3267 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3269 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3270 /* Account for user time used */
3271 acct_update_integrals(p
);
3275 * Account guest cpu time to a process.
3276 * @p: the process that the cpu time gets accounted to
3277 * @cputime: the cpu time spent in virtual machine since the last update
3278 * @cputime_scaled: cputime scaled by cpu frequency
3280 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3281 cputime_t cputime_scaled
)
3284 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3286 tmp
= cputime_to_cputime64(cputime
);
3288 /* Add guest time to process. */
3289 p
->utime
= cputime_add(p
->utime
, cputime
);
3290 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3291 account_group_user_time(p
, cputime
);
3292 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3294 /* Add guest time to cpustat. */
3295 if (TASK_NICE(p
) > 0) {
3296 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3297 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3299 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3300 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3305 * Account system cpu time to a process.
3306 * @p: the process that the cpu time gets accounted to
3307 * @hardirq_offset: the offset to subtract from hardirq_count()
3308 * @cputime: the cpu time spent in kernel space since the last update
3309 * @cputime_scaled: cputime scaled by cpu frequency
3311 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3312 cputime_t cputime
, cputime_t cputime_scaled
)
3314 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3317 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3318 account_guest_time(p
, cputime
, cputime_scaled
);
3322 /* Add system time to process. */
3323 p
->stime
= cputime_add(p
->stime
, cputime
);
3324 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3325 account_group_system_time(p
, cputime
);
3327 /* Add system time to cpustat. */
3328 tmp
= cputime_to_cputime64(cputime
);
3329 if (hardirq_count() - hardirq_offset
)
3330 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3331 else if (softirq_count())
3332 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3334 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3336 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3338 /* Account for system time used */
3339 acct_update_integrals(p
);
3343 * Account for involuntary wait time.
3344 * @steal: the cpu time spent in involuntary wait
3346 void account_steal_time(cputime_t cputime
)
3348 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3349 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3351 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3355 * Account for idle time.
3356 * @cputime: the cpu time spent in idle wait
3358 void account_idle_time(cputime_t cputime
)
3360 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3361 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3362 struct rq
*rq
= this_rq();
3364 if (atomic_read(&rq
->nr_iowait
) > 0)
3365 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3367 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3370 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3373 * Account a single tick of cpu time.
3374 * @p: the process that the cpu time gets accounted to
3375 * @user_tick: indicates if the tick is a user or a system tick
3377 void account_process_tick(struct task_struct
*p
, int user_tick
)
3379 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3380 struct rq
*rq
= this_rq();
3383 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3384 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3385 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3388 account_idle_time(cputime_one_jiffy
);
3392 * Account multiple ticks of steal time.
3393 * @p: the process from which the cpu time has been stolen
3394 * @ticks: number of stolen ticks
3396 void account_steal_ticks(unsigned long ticks
)
3398 account_steal_time(jiffies_to_cputime(ticks
));
3402 * Account multiple ticks of idle time.
3403 * @ticks: number of stolen ticks
3405 void account_idle_ticks(unsigned long ticks
)
3407 account_idle_time(jiffies_to_cputime(ticks
));
3413 * Use precise platform statistics if available:
3415 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3416 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3422 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3424 struct task_cputime cputime
;
3426 thread_group_cputime(p
, &cputime
);
3428 *ut
= cputime
.utime
;
3429 *st
= cputime
.stime
;
3433 #ifndef nsecs_to_cputime
3434 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3437 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3439 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3442 * Use CFS's precise accounting:
3444 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3449 temp
= (u64
)(rtime
* utime
);
3450 do_div(temp
, total
);
3451 utime
= (cputime_t
)temp
;
3456 * Compare with previous values, to keep monotonicity:
3458 p
->prev_utime
= max(p
->prev_utime
, utime
);
3459 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3461 *ut
= p
->prev_utime
;
3462 *st
= p
->prev_stime
;
3466 * Must be called with siglock held.
3468 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3470 struct signal_struct
*sig
= p
->signal
;
3471 struct task_cputime cputime
;
3472 cputime_t rtime
, utime
, total
;
3474 thread_group_cputime(p
, &cputime
);
3476 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3477 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3482 temp
= (u64
)(rtime
* cputime
.utime
);
3483 do_div(temp
, total
);
3484 utime
= (cputime_t
)temp
;
3488 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3489 sig
->prev_stime
= max(sig
->prev_stime
,
3490 cputime_sub(rtime
, sig
->prev_utime
));
3492 *ut
= sig
->prev_utime
;
3493 *st
= sig
->prev_stime
;
3498 * This function gets called by the timer code, with HZ frequency.
3499 * We call it with interrupts disabled.
3501 * It also gets called by the fork code, when changing the parent's
3504 void scheduler_tick(void)
3506 int cpu
= smp_processor_id();
3507 struct rq
*rq
= cpu_rq(cpu
);
3508 struct task_struct
*curr
= rq
->curr
;
3512 raw_spin_lock(&rq
->lock
);
3513 update_rq_clock(rq
);
3514 update_cpu_load(rq
);
3515 curr
->sched_class
->task_tick(rq
, curr
, 0);
3516 raw_spin_unlock(&rq
->lock
);
3518 perf_event_task_tick(curr
);
3521 rq
->idle_at_tick
= idle_cpu(cpu
);
3522 trigger_load_balance(rq
, cpu
);
3526 notrace
unsigned long get_parent_ip(unsigned long addr
)
3528 if (in_lock_functions(addr
)) {
3529 addr
= CALLER_ADDR2
;
3530 if (in_lock_functions(addr
))
3531 addr
= CALLER_ADDR3
;
3536 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3537 defined(CONFIG_PREEMPT_TRACER))
3539 void __kprobes
add_preempt_count(int val
)
3541 #ifdef CONFIG_DEBUG_PREEMPT
3545 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3548 preempt_count() += val
;
3549 #ifdef CONFIG_DEBUG_PREEMPT
3551 * Spinlock count overflowing soon?
3553 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3556 if (preempt_count() == val
)
3557 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3559 EXPORT_SYMBOL(add_preempt_count
);
3561 void __kprobes
sub_preempt_count(int val
)
3563 #ifdef CONFIG_DEBUG_PREEMPT
3567 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3570 * Is the spinlock portion underflowing?
3572 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3573 !(preempt_count() & PREEMPT_MASK
)))
3577 if (preempt_count() == val
)
3578 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3579 preempt_count() -= val
;
3581 EXPORT_SYMBOL(sub_preempt_count
);
3586 * Print scheduling while atomic bug:
3588 static noinline
void __schedule_bug(struct task_struct
*prev
)
3590 struct pt_regs
*regs
= get_irq_regs();
3592 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3593 prev
->comm
, prev
->pid
, preempt_count());
3595 debug_show_held_locks(prev
);
3597 if (irqs_disabled())
3598 print_irqtrace_events(prev
);
3607 * Various schedule()-time debugging checks and statistics:
3609 static inline void schedule_debug(struct task_struct
*prev
)
3612 * Test if we are atomic. Since do_exit() needs to call into
3613 * schedule() atomically, we ignore that path for now.
3614 * Otherwise, whine if we are scheduling when we should not be.
3616 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3617 __schedule_bug(prev
);
3619 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3621 schedstat_inc(this_rq(), sched_count
);
3622 #ifdef CONFIG_SCHEDSTATS
3623 if (unlikely(prev
->lock_depth
>= 0)) {
3624 schedstat_inc(this_rq(), bkl_count
);
3625 schedstat_inc(prev
, sched_info
.bkl_count
);
3630 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3632 if (prev
->state
== TASK_RUNNING
) {
3633 u64 runtime
= prev
->se
.sum_exec_runtime
;
3635 runtime
-= prev
->se
.prev_sum_exec_runtime
;
3636 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
3639 * In order to avoid avg_overlap growing stale when we are
3640 * indeed overlapping and hence not getting put to sleep, grow
3641 * the avg_overlap on preemption.
3643 * We use the average preemption runtime because that
3644 * correlates to the amount of cache footprint a task can
3647 update_avg(&prev
->se
.avg_overlap
, runtime
);
3649 prev
->sched_class
->put_prev_task(rq
, prev
);
3653 * Pick up the highest-prio task:
3655 static inline struct task_struct
*
3656 pick_next_task(struct rq
*rq
)
3658 const struct sched_class
*class;
3659 struct task_struct
*p
;
3662 * Optimization: we know that if all tasks are in
3663 * the fair class we can call that function directly:
3665 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3666 p
= fair_sched_class
.pick_next_task(rq
);
3671 class = sched_class_highest
;
3673 p
= class->pick_next_task(rq
);
3677 * Will never be NULL as the idle class always
3678 * returns a non-NULL p:
3680 class = class->next
;
3685 * schedule() is the main scheduler function.
3687 asmlinkage
void __sched
schedule(void)
3689 struct task_struct
*prev
, *next
;
3690 unsigned long *switch_count
;
3696 cpu
= smp_processor_id();
3700 switch_count
= &prev
->nivcsw
;
3702 release_kernel_lock(prev
);
3703 need_resched_nonpreemptible
:
3705 schedule_debug(prev
);
3707 if (sched_feat(HRTICK
))
3710 raw_spin_lock_irq(&rq
->lock
);
3711 update_rq_clock(rq
);
3712 clear_tsk_need_resched(prev
);
3714 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3715 if (unlikely(signal_pending_state(prev
->state
, prev
)))
3716 prev
->state
= TASK_RUNNING
;
3718 deactivate_task(rq
, prev
, 1);
3719 switch_count
= &prev
->nvcsw
;
3722 pre_schedule(rq
, prev
);
3724 if (unlikely(!rq
->nr_running
))
3725 idle_balance(cpu
, rq
);
3727 put_prev_task(rq
, prev
);
3728 next
= pick_next_task(rq
);
3730 if (likely(prev
!= next
)) {
3731 sched_info_switch(prev
, next
);
3732 perf_event_task_sched_out(prev
, next
);
3738 context_switch(rq
, prev
, next
); /* unlocks the rq */
3740 * the context switch might have flipped the stack from under
3741 * us, hence refresh the local variables.
3743 cpu
= smp_processor_id();
3746 raw_spin_unlock_irq(&rq
->lock
);
3750 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3752 switch_count
= &prev
->nivcsw
;
3753 goto need_resched_nonpreemptible
;
3756 preempt_enable_no_resched();
3760 EXPORT_SYMBOL(schedule
);
3762 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3764 * Look out! "owner" is an entirely speculative pointer
3765 * access and not reliable.
3767 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3772 if (!sched_feat(OWNER_SPIN
))
3775 #ifdef CONFIG_DEBUG_PAGEALLOC
3777 * Need to access the cpu field knowing that
3778 * DEBUG_PAGEALLOC could have unmapped it if
3779 * the mutex owner just released it and exited.
3781 if (probe_kernel_address(&owner
->cpu
, cpu
))
3788 * Even if the access succeeded (likely case),
3789 * the cpu field may no longer be valid.
3791 if (cpu
>= nr_cpumask_bits
)
3795 * We need to validate that we can do a
3796 * get_cpu() and that we have the percpu area.
3798 if (!cpu_online(cpu
))
3805 * Owner changed, break to re-assess state.
3807 if (lock
->owner
!= owner
)
3811 * Is that owner really running on that cpu?
3813 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
3823 #ifdef CONFIG_PREEMPT
3825 * this is the entry point to schedule() from in-kernel preemption
3826 * off of preempt_enable. Kernel preemptions off return from interrupt
3827 * occur there and call schedule directly.
3829 asmlinkage
void __sched
preempt_schedule(void)
3831 struct thread_info
*ti
= current_thread_info();
3834 * If there is a non-zero preempt_count or interrupts are disabled,
3835 * we do not want to preempt the current task. Just return..
3837 if (likely(ti
->preempt_count
|| irqs_disabled()))
3841 add_preempt_count(PREEMPT_ACTIVE
);
3843 sub_preempt_count(PREEMPT_ACTIVE
);
3846 * Check again in case we missed a preemption opportunity
3847 * between schedule and now.
3850 } while (need_resched());
3852 EXPORT_SYMBOL(preempt_schedule
);
3855 * this is the entry point to schedule() from kernel preemption
3856 * off of irq context.
3857 * Note, that this is called and return with irqs disabled. This will
3858 * protect us against recursive calling from irq.
3860 asmlinkage
void __sched
preempt_schedule_irq(void)
3862 struct thread_info
*ti
= current_thread_info();
3864 /* Catch callers which need to be fixed */
3865 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3868 add_preempt_count(PREEMPT_ACTIVE
);
3871 local_irq_disable();
3872 sub_preempt_count(PREEMPT_ACTIVE
);
3875 * Check again in case we missed a preemption opportunity
3876 * between schedule and now.
3879 } while (need_resched());
3882 #endif /* CONFIG_PREEMPT */
3884 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3887 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3889 EXPORT_SYMBOL(default_wake_function
);
3892 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3893 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3894 * number) then we wake all the non-exclusive tasks and one exclusive task.
3896 * There are circumstances in which we can try to wake a task which has already
3897 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3898 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3900 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3901 int nr_exclusive
, int wake_flags
, void *key
)
3903 wait_queue_t
*curr
, *next
;
3905 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3906 unsigned flags
= curr
->flags
;
3908 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3909 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3915 * __wake_up - wake up threads blocked on a waitqueue.
3917 * @mode: which threads
3918 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3919 * @key: is directly passed to the wakeup function
3921 * It may be assumed that this function implies a write memory barrier before
3922 * changing the task state if and only if any tasks are woken up.
3924 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3925 int nr_exclusive
, void *key
)
3927 unsigned long flags
;
3929 spin_lock_irqsave(&q
->lock
, flags
);
3930 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3931 spin_unlock_irqrestore(&q
->lock
, flags
);
3933 EXPORT_SYMBOL(__wake_up
);
3936 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3938 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3940 __wake_up_common(q
, mode
, 1, 0, NULL
);
3943 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
3945 __wake_up_common(q
, mode
, 1, 0, key
);
3949 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3951 * @mode: which threads
3952 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3953 * @key: opaque value to be passed to wakeup targets
3955 * The sync wakeup differs that the waker knows that it will schedule
3956 * away soon, so while the target thread will be woken up, it will not
3957 * be migrated to another CPU - ie. the two threads are 'synchronized'
3958 * with each other. This can prevent needless bouncing between CPUs.
3960 * On UP it can prevent extra preemption.
3962 * It may be assumed that this function implies a write memory barrier before
3963 * changing the task state if and only if any tasks are woken up.
3965 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
3966 int nr_exclusive
, void *key
)
3968 unsigned long flags
;
3969 int wake_flags
= WF_SYNC
;
3974 if (unlikely(!nr_exclusive
))
3977 spin_lock_irqsave(&q
->lock
, flags
);
3978 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
3979 spin_unlock_irqrestore(&q
->lock
, flags
);
3981 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
3984 * __wake_up_sync - see __wake_up_sync_key()
3986 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3988 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
3990 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3993 * complete: - signals a single thread waiting on this completion
3994 * @x: holds the state of this particular completion
3996 * This will wake up a single thread waiting on this completion. Threads will be
3997 * awakened in the same order in which they were queued.
3999 * See also complete_all(), wait_for_completion() and related routines.
4001 * It may be assumed that this function implies a write memory barrier before
4002 * changing the task state if and only if any tasks are woken up.
4004 void complete(struct completion
*x
)
4006 unsigned long flags
;
4008 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4010 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4011 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4013 EXPORT_SYMBOL(complete
);
4016 * complete_all: - signals all threads waiting on this completion
4017 * @x: holds the state of this particular completion
4019 * This will wake up all threads waiting on this particular completion event.
4021 * It may be assumed that this function implies a write memory barrier before
4022 * changing the task state if and only if any tasks are woken up.
4024 void complete_all(struct completion
*x
)
4026 unsigned long flags
;
4028 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4029 x
->done
+= UINT_MAX
/2;
4030 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4031 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4033 EXPORT_SYMBOL(complete_all
);
4035 static inline long __sched
4036 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4039 DECLARE_WAITQUEUE(wait
, current
);
4041 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4042 __add_wait_queue_tail(&x
->wait
, &wait
);
4044 if (signal_pending_state(state
, current
)) {
4045 timeout
= -ERESTARTSYS
;
4048 __set_current_state(state
);
4049 spin_unlock_irq(&x
->wait
.lock
);
4050 timeout
= schedule_timeout(timeout
);
4051 spin_lock_irq(&x
->wait
.lock
);
4052 } while (!x
->done
&& timeout
);
4053 __remove_wait_queue(&x
->wait
, &wait
);
4058 return timeout
?: 1;
4062 wait_for_common(struct completion
*x
, long timeout
, int state
)
4066 spin_lock_irq(&x
->wait
.lock
);
4067 timeout
= do_wait_for_common(x
, timeout
, state
);
4068 spin_unlock_irq(&x
->wait
.lock
);
4073 * wait_for_completion: - waits for completion of a task
4074 * @x: holds the state of this particular completion
4076 * This waits to be signaled for completion of a specific task. It is NOT
4077 * interruptible and there is no timeout.
4079 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4080 * and interrupt capability. Also see complete().
4082 void __sched
wait_for_completion(struct completion
*x
)
4084 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4086 EXPORT_SYMBOL(wait_for_completion
);
4089 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4090 * @x: holds the state of this particular completion
4091 * @timeout: timeout value in jiffies
4093 * This waits for either a completion of a specific task to be signaled or for a
4094 * specified timeout to expire. The timeout is in jiffies. It is not
4097 unsigned long __sched
4098 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4100 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4102 EXPORT_SYMBOL(wait_for_completion_timeout
);
4105 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4106 * @x: holds the state of this particular completion
4108 * This waits for completion of a specific task to be signaled. It is
4111 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4113 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4114 if (t
== -ERESTARTSYS
)
4118 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4121 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4122 * @x: holds the state of this particular completion
4123 * @timeout: timeout value in jiffies
4125 * This waits for either a completion of a specific task to be signaled or for a
4126 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4128 unsigned long __sched
4129 wait_for_completion_interruptible_timeout(struct completion
*x
,
4130 unsigned long timeout
)
4132 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4134 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4137 * wait_for_completion_killable: - waits for completion of a task (killable)
4138 * @x: holds the state of this particular completion
4140 * This waits to be signaled for completion of a specific task. It can be
4141 * interrupted by a kill signal.
4143 int __sched
wait_for_completion_killable(struct completion
*x
)
4145 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4146 if (t
== -ERESTARTSYS
)
4150 EXPORT_SYMBOL(wait_for_completion_killable
);
4153 * try_wait_for_completion - try to decrement a completion without blocking
4154 * @x: completion structure
4156 * Returns: 0 if a decrement cannot be done without blocking
4157 * 1 if a decrement succeeded.
4159 * If a completion is being used as a counting completion,
4160 * attempt to decrement the counter without blocking. This
4161 * enables us to avoid waiting if the resource the completion
4162 * is protecting is not available.
4164 bool try_wait_for_completion(struct completion
*x
)
4166 unsigned long flags
;
4169 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4174 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4177 EXPORT_SYMBOL(try_wait_for_completion
);
4180 * completion_done - Test to see if a completion has any waiters
4181 * @x: completion structure
4183 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4184 * 1 if there are no waiters.
4187 bool completion_done(struct completion
*x
)
4189 unsigned long flags
;
4192 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4195 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4198 EXPORT_SYMBOL(completion_done
);
4201 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4203 unsigned long flags
;
4206 init_waitqueue_entry(&wait
, current
);
4208 __set_current_state(state
);
4210 spin_lock_irqsave(&q
->lock
, flags
);
4211 __add_wait_queue(q
, &wait
);
4212 spin_unlock(&q
->lock
);
4213 timeout
= schedule_timeout(timeout
);
4214 spin_lock_irq(&q
->lock
);
4215 __remove_wait_queue(q
, &wait
);
4216 spin_unlock_irqrestore(&q
->lock
, flags
);
4221 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4223 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4225 EXPORT_SYMBOL(interruptible_sleep_on
);
4228 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4230 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4232 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4234 void __sched
sleep_on(wait_queue_head_t
*q
)
4236 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4238 EXPORT_SYMBOL(sleep_on
);
4240 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4242 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4244 EXPORT_SYMBOL(sleep_on_timeout
);
4246 #ifdef CONFIG_RT_MUTEXES
4249 * rt_mutex_setprio - set the current priority of a task
4251 * @prio: prio value (kernel-internal form)
4253 * This function changes the 'effective' priority of a task. It does
4254 * not touch ->normal_prio like __setscheduler().
4256 * Used by the rt_mutex code to implement priority inheritance logic.
4258 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4260 unsigned long flags
;
4261 int oldprio
, on_rq
, running
;
4263 const struct sched_class
*prev_class
;
4265 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4267 rq
= task_rq_lock(p
, &flags
);
4268 update_rq_clock(rq
);
4271 prev_class
= p
->sched_class
;
4272 on_rq
= p
->se
.on_rq
;
4273 running
= task_current(rq
, p
);
4275 dequeue_task(rq
, p
, 0);
4277 p
->sched_class
->put_prev_task(rq
, p
);
4280 p
->sched_class
= &rt_sched_class
;
4282 p
->sched_class
= &fair_sched_class
;
4287 p
->sched_class
->set_curr_task(rq
);
4289 enqueue_task(rq
, p
, 0, oldprio
< prio
);
4291 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4293 task_rq_unlock(rq
, &flags
);
4298 void set_user_nice(struct task_struct
*p
, long nice
)
4300 int old_prio
, delta
, on_rq
;
4301 unsigned long flags
;
4304 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4307 * We have to be careful, if called from sys_setpriority(),
4308 * the task might be in the middle of scheduling on another CPU.
4310 rq
= task_rq_lock(p
, &flags
);
4311 update_rq_clock(rq
);
4313 * The RT priorities are set via sched_setscheduler(), but we still
4314 * allow the 'normal' nice value to be set - but as expected
4315 * it wont have any effect on scheduling until the task is
4316 * SCHED_FIFO/SCHED_RR:
4318 if (task_has_rt_policy(p
)) {
4319 p
->static_prio
= NICE_TO_PRIO(nice
);
4322 on_rq
= p
->se
.on_rq
;
4324 dequeue_task(rq
, p
, 0);
4326 p
->static_prio
= NICE_TO_PRIO(nice
);
4329 p
->prio
= effective_prio(p
);
4330 delta
= p
->prio
- old_prio
;
4333 enqueue_task(rq
, p
, 0, false);
4335 * If the task increased its priority or is running and
4336 * lowered its priority, then reschedule its CPU:
4338 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4339 resched_task(rq
->curr
);
4342 task_rq_unlock(rq
, &flags
);
4344 EXPORT_SYMBOL(set_user_nice
);
4347 * can_nice - check if a task can reduce its nice value
4351 int can_nice(const struct task_struct
*p
, const int nice
)
4353 /* convert nice value [19,-20] to rlimit style value [1,40] */
4354 int nice_rlim
= 20 - nice
;
4356 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4357 capable(CAP_SYS_NICE
));
4360 #ifdef __ARCH_WANT_SYS_NICE
4363 * sys_nice - change the priority of the current process.
4364 * @increment: priority increment
4366 * sys_setpriority is a more generic, but much slower function that
4367 * does similar things.
4369 SYSCALL_DEFINE1(nice
, int, increment
)
4374 * Setpriority might change our priority at the same moment.
4375 * We don't have to worry. Conceptually one call occurs first
4376 * and we have a single winner.
4378 if (increment
< -40)
4383 nice
= TASK_NICE(current
) + increment
;
4389 if (increment
< 0 && !can_nice(current
, nice
))
4392 retval
= security_task_setnice(current
, nice
);
4396 set_user_nice(current
, nice
);
4403 * task_prio - return the priority value of a given task.
4404 * @p: the task in question.
4406 * This is the priority value as seen by users in /proc.
4407 * RT tasks are offset by -200. Normal tasks are centered
4408 * around 0, value goes from -16 to +15.
4410 int task_prio(const struct task_struct
*p
)
4412 return p
->prio
- MAX_RT_PRIO
;
4416 * task_nice - return the nice value of a given task.
4417 * @p: the task in question.
4419 int task_nice(const struct task_struct
*p
)
4421 return TASK_NICE(p
);
4423 EXPORT_SYMBOL(task_nice
);
4426 * idle_cpu - is a given cpu idle currently?
4427 * @cpu: the processor in question.
4429 int idle_cpu(int cpu
)
4431 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4435 * idle_task - return the idle task for a given cpu.
4436 * @cpu: the processor in question.
4438 struct task_struct
*idle_task(int cpu
)
4440 return cpu_rq(cpu
)->idle
;
4444 * find_process_by_pid - find a process with a matching PID value.
4445 * @pid: the pid in question.
4447 static struct task_struct
*find_process_by_pid(pid_t pid
)
4449 return pid
? find_task_by_vpid(pid
) : current
;
4452 /* Actually do priority change: must hold rq lock. */
4454 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4456 BUG_ON(p
->se
.on_rq
);
4459 p
->rt_priority
= prio
;
4460 p
->normal_prio
= normal_prio(p
);
4461 /* we are holding p->pi_lock already */
4462 p
->prio
= rt_mutex_getprio(p
);
4463 if (rt_prio(p
->prio
))
4464 p
->sched_class
= &rt_sched_class
;
4466 p
->sched_class
= &fair_sched_class
;
4471 * check the target process has a UID that matches the current process's
4473 static bool check_same_owner(struct task_struct
*p
)
4475 const struct cred
*cred
= current_cred(), *pcred
;
4479 pcred
= __task_cred(p
);
4480 match
= (cred
->euid
== pcred
->euid
||
4481 cred
->euid
== pcred
->uid
);
4486 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4487 struct sched_param
*param
, bool user
)
4489 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4490 unsigned long flags
;
4491 const struct sched_class
*prev_class
;
4495 /* may grab non-irq protected spin_locks */
4496 BUG_ON(in_interrupt());
4498 /* double check policy once rq lock held */
4500 reset_on_fork
= p
->sched_reset_on_fork
;
4501 policy
= oldpolicy
= p
->policy
;
4503 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4504 policy
&= ~SCHED_RESET_ON_FORK
;
4506 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4507 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4508 policy
!= SCHED_IDLE
)
4513 * Valid priorities for SCHED_FIFO and SCHED_RR are
4514 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4515 * SCHED_BATCH and SCHED_IDLE is 0.
4517 if (param
->sched_priority
< 0 ||
4518 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4519 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4521 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4525 * Allow unprivileged RT tasks to decrease priority:
4527 if (user
&& !capable(CAP_SYS_NICE
)) {
4528 if (rt_policy(policy
)) {
4529 unsigned long rlim_rtprio
;
4531 if (!lock_task_sighand(p
, &flags
))
4533 rlim_rtprio
= task_rlimit(p
, RLIMIT_RTPRIO
);
4534 unlock_task_sighand(p
, &flags
);
4536 /* can't set/change the rt policy */
4537 if (policy
!= p
->policy
&& !rlim_rtprio
)
4540 /* can't increase priority */
4541 if (param
->sched_priority
> p
->rt_priority
&&
4542 param
->sched_priority
> rlim_rtprio
)
4546 * Like positive nice levels, dont allow tasks to
4547 * move out of SCHED_IDLE either:
4549 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4552 /* can't change other user's priorities */
4553 if (!check_same_owner(p
))
4556 /* Normal users shall not reset the sched_reset_on_fork flag */
4557 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4562 #ifdef CONFIG_RT_GROUP_SCHED
4564 * Do not allow realtime tasks into groups that have no runtime
4567 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4568 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
4572 retval
= security_task_setscheduler(p
, policy
, param
);
4578 * make sure no PI-waiters arrive (or leave) while we are
4579 * changing the priority of the task:
4581 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4583 * To be able to change p->policy safely, the apropriate
4584 * runqueue lock must be held.
4586 rq
= __task_rq_lock(p
);
4587 /* recheck policy now with rq lock held */
4588 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4589 policy
= oldpolicy
= -1;
4590 __task_rq_unlock(rq
);
4591 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4594 update_rq_clock(rq
);
4595 on_rq
= p
->se
.on_rq
;
4596 running
= task_current(rq
, p
);
4598 deactivate_task(rq
, p
, 0);
4600 p
->sched_class
->put_prev_task(rq
, p
);
4602 p
->sched_reset_on_fork
= reset_on_fork
;
4605 prev_class
= p
->sched_class
;
4606 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4609 p
->sched_class
->set_curr_task(rq
);
4611 activate_task(rq
, p
, 0);
4613 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4615 __task_rq_unlock(rq
);
4616 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4618 rt_mutex_adjust_pi(p
);
4624 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4625 * @p: the task in question.
4626 * @policy: new policy.
4627 * @param: structure containing the new RT priority.
4629 * NOTE that the task may be already dead.
4631 int sched_setscheduler(struct task_struct
*p
, int policy
,
4632 struct sched_param
*param
)
4634 return __sched_setscheduler(p
, policy
, param
, true);
4636 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4639 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4640 * @p: the task in question.
4641 * @policy: new policy.
4642 * @param: structure containing the new RT priority.
4644 * Just like sched_setscheduler, only don't bother checking if the
4645 * current context has permission. For example, this is needed in
4646 * stop_machine(): we create temporary high priority worker threads,
4647 * but our caller might not have that capability.
4649 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4650 struct sched_param
*param
)
4652 return __sched_setscheduler(p
, policy
, param
, false);
4656 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4658 struct sched_param lparam
;
4659 struct task_struct
*p
;
4662 if (!param
|| pid
< 0)
4664 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4669 p
= find_process_by_pid(pid
);
4671 retval
= sched_setscheduler(p
, policy
, &lparam
);
4678 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4679 * @pid: the pid in question.
4680 * @policy: new policy.
4681 * @param: structure containing the new RT priority.
4683 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4684 struct sched_param __user
*, param
)
4686 /* negative values for policy are not valid */
4690 return do_sched_setscheduler(pid
, policy
, param
);
4694 * sys_sched_setparam - set/change the RT priority of a thread
4695 * @pid: the pid in question.
4696 * @param: structure containing the new RT priority.
4698 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4700 return do_sched_setscheduler(pid
, -1, param
);
4704 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4705 * @pid: the pid in question.
4707 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4709 struct task_struct
*p
;
4717 p
= find_process_by_pid(pid
);
4719 retval
= security_task_getscheduler(p
);
4722 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4729 * sys_sched_getparam - get the RT priority of a thread
4730 * @pid: the pid in question.
4731 * @param: structure containing the RT priority.
4733 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4735 struct sched_param lp
;
4736 struct task_struct
*p
;
4739 if (!param
|| pid
< 0)
4743 p
= find_process_by_pid(pid
);
4748 retval
= security_task_getscheduler(p
);
4752 lp
.sched_priority
= p
->rt_priority
;
4756 * This one might sleep, we cannot do it with a spinlock held ...
4758 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4767 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4769 cpumask_var_t cpus_allowed
, new_mask
;
4770 struct task_struct
*p
;
4776 p
= find_process_by_pid(pid
);
4783 /* Prevent p going away */
4787 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4791 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4793 goto out_free_cpus_allowed
;
4796 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
4799 retval
= security_task_setscheduler(p
, 0, NULL
);
4803 cpuset_cpus_allowed(p
, cpus_allowed
);
4804 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4806 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4809 cpuset_cpus_allowed(p
, cpus_allowed
);
4810 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4812 * We must have raced with a concurrent cpuset
4813 * update. Just reset the cpus_allowed to the
4814 * cpuset's cpus_allowed
4816 cpumask_copy(new_mask
, cpus_allowed
);
4821 free_cpumask_var(new_mask
);
4822 out_free_cpus_allowed
:
4823 free_cpumask_var(cpus_allowed
);
4830 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4831 struct cpumask
*new_mask
)
4833 if (len
< cpumask_size())
4834 cpumask_clear(new_mask
);
4835 else if (len
> cpumask_size())
4836 len
= cpumask_size();
4838 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4842 * sys_sched_setaffinity - set the cpu affinity of a process
4843 * @pid: pid of the process
4844 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4845 * @user_mask_ptr: user-space pointer to the new cpu mask
4847 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4848 unsigned long __user
*, user_mask_ptr
)
4850 cpumask_var_t new_mask
;
4853 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4856 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4858 retval
= sched_setaffinity(pid
, new_mask
);
4859 free_cpumask_var(new_mask
);
4863 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4865 struct task_struct
*p
;
4866 unsigned long flags
;
4874 p
= find_process_by_pid(pid
);
4878 retval
= security_task_getscheduler(p
);
4882 rq
= task_rq_lock(p
, &flags
);
4883 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4884 task_rq_unlock(rq
, &flags
);
4894 * sys_sched_getaffinity - get the cpu affinity of a process
4895 * @pid: pid of the process
4896 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4897 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4899 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4900 unsigned long __user
*, user_mask_ptr
)
4905 if (len
< nr_cpu_ids
)
4907 if (len
& (sizeof(unsigned long)-1))
4910 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4913 ret
= sched_getaffinity(pid
, mask
);
4915 size_t retlen
= min_t(size_t, len
, cpumask_size());
4917 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4922 free_cpumask_var(mask
);
4928 * sys_sched_yield - yield the current processor to other threads.
4930 * This function yields the current CPU to other tasks. If there are no
4931 * other threads running on this CPU then this function will return.
4933 SYSCALL_DEFINE0(sched_yield
)
4935 struct rq
*rq
= this_rq_lock();
4937 schedstat_inc(rq
, yld_count
);
4938 current
->sched_class
->yield_task(rq
);
4941 * Since we are going to call schedule() anyway, there's
4942 * no need to preempt or enable interrupts:
4944 __release(rq
->lock
);
4945 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4946 do_raw_spin_unlock(&rq
->lock
);
4947 preempt_enable_no_resched();
4954 static inline int should_resched(void)
4956 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
4959 static void __cond_resched(void)
4961 add_preempt_count(PREEMPT_ACTIVE
);
4963 sub_preempt_count(PREEMPT_ACTIVE
);
4966 int __sched
_cond_resched(void)
4968 if (should_resched()) {
4974 EXPORT_SYMBOL(_cond_resched
);
4977 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4978 * call schedule, and on return reacquire the lock.
4980 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4981 * operations here to prevent schedule() from being called twice (once via
4982 * spin_unlock(), once by hand).
4984 int __cond_resched_lock(spinlock_t
*lock
)
4986 int resched
= should_resched();
4989 lockdep_assert_held(lock
);
4991 if (spin_needbreak(lock
) || resched
) {
5002 EXPORT_SYMBOL(__cond_resched_lock
);
5004 int __sched
__cond_resched_softirq(void)
5006 BUG_ON(!in_softirq());
5008 if (should_resched()) {
5016 EXPORT_SYMBOL(__cond_resched_softirq
);
5019 * yield - yield the current processor to other threads.
5021 * This is a shortcut for kernel-space yielding - it marks the
5022 * thread runnable and calls sys_sched_yield().
5024 void __sched
yield(void)
5026 set_current_state(TASK_RUNNING
);
5029 EXPORT_SYMBOL(yield
);
5032 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5033 * that process accounting knows that this is a task in IO wait state.
5035 void __sched
io_schedule(void)
5037 struct rq
*rq
= raw_rq();
5039 delayacct_blkio_start();
5040 atomic_inc(&rq
->nr_iowait
);
5041 current
->in_iowait
= 1;
5043 current
->in_iowait
= 0;
5044 atomic_dec(&rq
->nr_iowait
);
5045 delayacct_blkio_end();
5047 EXPORT_SYMBOL(io_schedule
);
5049 long __sched
io_schedule_timeout(long timeout
)
5051 struct rq
*rq
= raw_rq();
5054 delayacct_blkio_start();
5055 atomic_inc(&rq
->nr_iowait
);
5056 current
->in_iowait
= 1;
5057 ret
= schedule_timeout(timeout
);
5058 current
->in_iowait
= 0;
5059 atomic_dec(&rq
->nr_iowait
);
5060 delayacct_blkio_end();
5065 * sys_sched_get_priority_max - return maximum RT priority.
5066 * @policy: scheduling class.
5068 * this syscall returns the maximum rt_priority that can be used
5069 * by a given scheduling class.
5071 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5078 ret
= MAX_USER_RT_PRIO
-1;
5090 * sys_sched_get_priority_min - return minimum RT priority.
5091 * @policy: scheduling class.
5093 * this syscall returns the minimum rt_priority that can be used
5094 * by a given scheduling class.
5096 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5114 * sys_sched_rr_get_interval - return the default timeslice of a process.
5115 * @pid: pid of the process.
5116 * @interval: userspace pointer to the timeslice value.
5118 * this syscall writes the default timeslice value of a given process
5119 * into the user-space timespec buffer. A value of '0' means infinity.
5121 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5122 struct timespec __user
*, interval
)
5124 struct task_struct
*p
;
5125 unsigned int time_slice
;
5126 unsigned long flags
;
5136 p
= find_process_by_pid(pid
);
5140 retval
= security_task_getscheduler(p
);
5144 rq
= task_rq_lock(p
, &flags
);
5145 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5146 task_rq_unlock(rq
, &flags
);
5149 jiffies_to_timespec(time_slice
, &t
);
5150 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5158 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5160 void sched_show_task(struct task_struct
*p
)
5162 unsigned long free
= 0;
5165 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5166 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5167 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5168 #if BITS_PER_LONG == 32
5169 if (state
== TASK_RUNNING
)
5170 printk(KERN_CONT
" running ");
5172 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5174 if (state
== TASK_RUNNING
)
5175 printk(KERN_CONT
" running task ");
5177 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5179 #ifdef CONFIG_DEBUG_STACK_USAGE
5180 free
= stack_not_used(p
);
5182 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5183 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5184 (unsigned long)task_thread_info(p
)->flags
);
5186 show_stack(p
, NULL
);
5189 void show_state_filter(unsigned long state_filter
)
5191 struct task_struct
*g
, *p
;
5193 #if BITS_PER_LONG == 32
5195 " task PC stack pid father\n");
5198 " task PC stack pid father\n");
5200 read_lock(&tasklist_lock
);
5201 do_each_thread(g
, p
) {
5203 * reset the NMI-timeout, listing all files on a slow
5204 * console might take alot of time:
5206 touch_nmi_watchdog();
5207 if (!state_filter
|| (p
->state
& state_filter
))
5209 } while_each_thread(g
, p
);
5211 touch_all_softlockup_watchdogs();
5213 #ifdef CONFIG_SCHED_DEBUG
5214 sysrq_sched_debug_show();
5216 read_unlock(&tasklist_lock
);
5218 * Only show locks if all tasks are dumped:
5221 debug_show_all_locks();
5224 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5226 idle
->sched_class
= &idle_sched_class
;
5230 * init_idle - set up an idle thread for a given CPU
5231 * @idle: task in question
5232 * @cpu: cpu the idle task belongs to
5234 * NOTE: this function does not set the idle thread's NEED_RESCHED
5235 * flag, to make booting more robust.
5237 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5239 struct rq
*rq
= cpu_rq(cpu
);
5240 unsigned long flags
;
5242 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5245 idle
->state
= TASK_RUNNING
;
5246 idle
->se
.exec_start
= sched_clock();
5248 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5249 __set_task_cpu(idle
, cpu
);
5251 rq
->curr
= rq
->idle
= idle
;
5252 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5255 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5257 /* Set the preempt count _outside_ the spinlocks! */
5258 #if defined(CONFIG_PREEMPT)
5259 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5261 task_thread_info(idle
)->preempt_count
= 0;
5264 * The idle tasks have their own, simple scheduling class:
5266 idle
->sched_class
= &idle_sched_class
;
5267 ftrace_graph_init_task(idle
);
5271 * In a system that switches off the HZ timer nohz_cpu_mask
5272 * indicates which cpus entered this state. This is used
5273 * in the rcu update to wait only for active cpus. For system
5274 * which do not switch off the HZ timer nohz_cpu_mask should
5275 * always be CPU_BITS_NONE.
5277 cpumask_var_t nohz_cpu_mask
;
5280 * Increase the granularity value when there are more CPUs,
5281 * because with more CPUs the 'effective latency' as visible
5282 * to users decreases. But the relationship is not linear,
5283 * so pick a second-best guess by going with the log2 of the
5286 * This idea comes from the SD scheduler of Con Kolivas:
5288 static int get_update_sysctl_factor(void)
5290 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5291 unsigned int factor
;
5293 switch (sysctl_sched_tunable_scaling
) {
5294 case SCHED_TUNABLESCALING_NONE
:
5297 case SCHED_TUNABLESCALING_LINEAR
:
5300 case SCHED_TUNABLESCALING_LOG
:
5302 factor
= 1 + ilog2(cpus
);
5309 static void update_sysctl(void)
5311 unsigned int factor
= get_update_sysctl_factor();
5313 #define SET_SYSCTL(name) \
5314 (sysctl_##name = (factor) * normalized_sysctl_##name)
5315 SET_SYSCTL(sched_min_granularity
);
5316 SET_SYSCTL(sched_latency
);
5317 SET_SYSCTL(sched_wakeup_granularity
);
5318 SET_SYSCTL(sched_shares_ratelimit
);
5322 static inline void sched_init_granularity(void)
5329 * This is how migration works:
5331 * 1) we queue a struct migration_req structure in the source CPU's
5332 * runqueue and wake up that CPU's migration thread.
5333 * 2) we down() the locked semaphore => thread blocks.
5334 * 3) migration thread wakes up (implicitly it forces the migrated
5335 * thread off the CPU)
5336 * 4) it gets the migration request and checks whether the migrated
5337 * task is still in the wrong runqueue.
5338 * 5) if it's in the wrong runqueue then the migration thread removes
5339 * it and puts it into the right queue.
5340 * 6) migration thread up()s the semaphore.
5341 * 7) we wake up and the migration is done.
5345 * Change a given task's CPU affinity. Migrate the thread to a
5346 * proper CPU and schedule it away if the CPU it's executing on
5347 * is removed from the allowed bitmask.
5349 * NOTE: the caller must have a valid reference to the task, the
5350 * task must not exit() & deallocate itself prematurely. The
5351 * call is not atomic; no spinlocks may be held.
5353 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5355 struct migration_req req
;
5356 unsigned long flags
;
5360 rq
= task_rq_lock(p
, &flags
);
5362 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5367 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5368 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5373 if (p
->sched_class
->set_cpus_allowed
)
5374 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5376 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5377 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5380 /* Can the task run on the task's current CPU? If so, we're done */
5381 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5384 if (migrate_task(p
, cpumask_any_and(cpu_active_mask
, new_mask
), &req
)) {
5385 /* Need help from migration thread: drop lock and wait. */
5386 struct task_struct
*mt
= rq
->migration_thread
;
5388 get_task_struct(mt
);
5389 task_rq_unlock(rq
, &flags
);
5390 wake_up_process(rq
->migration_thread
);
5391 put_task_struct(mt
);
5392 wait_for_completion(&req
.done
);
5393 tlb_migrate_finish(p
->mm
);
5397 task_rq_unlock(rq
, &flags
);
5401 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5404 * Move (not current) task off this cpu, onto dest cpu. We're doing
5405 * this because either it can't run here any more (set_cpus_allowed()
5406 * away from this CPU, or CPU going down), or because we're
5407 * attempting to rebalance this task on exec (sched_exec).
5409 * So we race with normal scheduler movements, but that's OK, as long
5410 * as the task is no longer on this CPU.
5412 * Returns non-zero if task was successfully migrated.
5414 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5416 struct rq
*rq_dest
, *rq_src
;
5419 if (unlikely(!cpu_active(dest_cpu
)))
5422 rq_src
= cpu_rq(src_cpu
);
5423 rq_dest
= cpu_rq(dest_cpu
);
5425 double_rq_lock(rq_src
, rq_dest
);
5426 /* Already moved. */
5427 if (task_cpu(p
) != src_cpu
)
5429 /* Affinity changed (again). */
5430 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5434 * If we're not on a rq, the next wake-up will ensure we're
5438 deactivate_task(rq_src
, p
, 0);
5439 set_task_cpu(p
, dest_cpu
);
5440 activate_task(rq_dest
, p
, 0);
5441 check_preempt_curr(rq_dest
, p
, 0);
5446 double_rq_unlock(rq_src
, rq_dest
);
5450 #define RCU_MIGRATION_IDLE 0
5451 #define RCU_MIGRATION_NEED_QS 1
5452 #define RCU_MIGRATION_GOT_QS 2
5453 #define RCU_MIGRATION_MUST_SYNC 3
5456 * migration_thread - this is a highprio system thread that performs
5457 * thread migration by bumping thread off CPU then 'pushing' onto
5460 static int migration_thread(void *data
)
5463 int cpu
= (long)data
;
5467 BUG_ON(rq
->migration_thread
!= current
);
5469 set_current_state(TASK_INTERRUPTIBLE
);
5470 while (!kthread_should_stop()) {
5471 struct migration_req
*req
;
5472 struct list_head
*head
;
5474 raw_spin_lock_irq(&rq
->lock
);
5476 if (cpu_is_offline(cpu
)) {
5477 raw_spin_unlock_irq(&rq
->lock
);
5481 if (rq
->active_balance
) {
5482 active_load_balance(rq
, cpu
);
5483 rq
->active_balance
= 0;
5486 head
= &rq
->migration_queue
;
5488 if (list_empty(head
)) {
5489 raw_spin_unlock_irq(&rq
->lock
);
5491 set_current_state(TASK_INTERRUPTIBLE
);
5494 req
= list_entry(head
->next
, struct migration_req
, list
);
5495 list_del_init(head
->next
);
5497 if (req
->task
!= NULL
) {
5498 raw_spin_unlock(&rq
->lock
);
5499 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5500 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
5501 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
5502 raw_spin_unlock(&rq
->lock
);
5504 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
5505 raw_spin_unlock(&rq
->lock
);
5506 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
5510 complete(&req
->done
);
5512 __set_current_state(TASK_RUNNING
);
5517 #ifdef CONFIG_HOTPLUG_CPU
5519 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5523 local_irq_disable();
5524 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5530 * Figure out where task on dead CPU should go, use force if necessary.
5532 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5537 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5539 /* It can have affinity changed while we were choosing. */
5540 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
5545 * While a dead CPU has no uninterruptible tasks queued at this point,
5546 * it might still have a nonzero ->nr_uninterruptible counter, because
5547 * for performance reasons the counter is not stricly tracking tasks to
5548 * their home CPUs. So we just add the counter to another CPU's counter,
5549 * to keep the global sum constant after CPU-down:
5551 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5553 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5554 unsigned long flags
;
5556 local_irq_save(flags
);
5557 double_rq_lock(rq_src
, rq_dest
);
5558 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5559 rq_src
->nr_uninterruptible
= 0;
5560 double_rq_unlock(rq_src
, rq_dest
);
5561 local_irq_restore(flags
);
5564 /* Run through task list and migrate tasks from the dead cpu. */
5565 static void migrate_live_tasks(int src_cpu
)
5567 struct task_struct
*p
, *t
;
5569 read_lock(&tasklist_lock
);
5571 do_each_thread(t
, p
) {
5575 if (task_cpu(p
) == src_cpu
)
5576 move_task_off_dead_cpu(src_cpu
, p
);
5577 } while_each_thread(t
, p
);
5579 read_unlock(&tasklist_lock
);
5583 * Schedules idle task to be the next runnable task on current CPU.
5584 * It does so by boosting its priority to highest possible.
5585 * Used by CPU offline code.
5587 void sched_idle_next(void)
5589 int this_cpu
= smp_processor_id();
5590 struct rq
*rq
= cpu_rq(this_cpu
);
5591 struct task_struct
*p
= rq
->idle
;
5592 unsigned long flags
;
5594 /* cpu has to be offline */
5595 BUG_ON(cpu_online(this_cpu
));
5598 * Strictly not necessary since rest of the CPUs are stopped by now
5599 * and interrupts disabled on the current cpu.
5601 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5603 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5605 update_rq_clock(rq
);
5606 activate_task(rq
, p
, 0);
5608 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5612 * Ensures that the idle task is using init_mm right before its cpu goes
5615 void idle_task_exit(void)
5617 struct mm_struct
*mm
= current
->active_mm
;
5619 BUG_ON(cpu_online(smp_processor_id()));
5622 switch_mm(mm
, &init_mm
, current
);
5626 /* called under rq->lock with disabled interrupts */
5627 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5629 struct rq
*rq
= cpu_rq(dead_cpu
);
5631 /* Must be exiting, otherwise would be on tasklist. */
5632 BUG_ON(!p
->exit_state
);
5634 /* Cannot have done final schedule yet: would have vanished. */
5635 BUG_ON(p
->state
== TASK_DEAD
);
5640 * Drop lock around migration; if someone else moves it,
5641 * that's OK. No task can be added to this CPU, so iteration is
5644 raw_spin_unlock_irq(&rq
->lock
);
5645 move_task_off_dead_cpu(dead_cpu
, p
);
5646 raw_spin_lock_irq(&rq
->lock
);
5651 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5652 static void migrate_dead_tasks(unsigned int dead_cpu
)
5654 struct rq
*rq
= cpu_rq(dead_cpu
);
5655 struct task_struct
*next
;
5658 if (!rq
->nr_running
)
5660 update_rq_clock(rq
);
5661 next
= pick_next_task(rq
);
5664 next
->sched_class
->put_prev_task(rq
, next
);
5665 migrate_dead(dead_cpu
, next
);
5671 * remove the tasks which were accounted by rq from calc_load_tasks.
5673 static void calc_global_load_remove(struct rq
*rq
)
5675 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5676 rq
->calc_load_active
= 0;
5678 #endif /* CONFIG_HOTPLUG_CPU */
5680 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5682 static struct ctl_table sd_ctl_dir
[] = {
5684 .procname
= "sched_domain",
5690 static struct ctl_table sd_ctl_root
[] = {
5692 .procname
= "kernel",
5694 .child
= sd_ctl_dir
,
5699 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5701 struct ctl_table
*entry
=
5702 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5707 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5709 struct ctl_table
*entry
;
5712 * In the intermediate directories, both the child directory and
5713 * procname are dynamically allocated and could fail but the mode
5714 * will always be set. In the lowest directory the names are
5715 * static strings and all have proc handlers.
5717 for (entry
= *tablep
; entry
->mode
; entry
++) {
5719 sd_free_ctl_entry(&entry
->child
);
5720 if (entry
->proc_handler
== NULL
)
5721 kfree(entry
->procname
);
5729 set_table_entry(struct ctl_table
*entry
,
5730 const char *procname
, void *data
, int maxlen
,
5731 mode_t mode
, proc_handler
*proc_handler
)
5733 entry
->procname
= procname
;
5735 entry
->maxlen
= maxlen
;
5737 entry
->proc_handler
= proc_handler
;
5740 static struct ctl_table
*
5741 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5743 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5748 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5749 sizeof(long), 0644, proc_doulongvec_minmax
);
5750 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5751 sizeof(long), 0644, proc_doulongvec_minmax
);
5752 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5753 sizeof(int), 0644, proc_dointvec_minmax
);
5754 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5755 sizeof(int), 0644, proc_dointvec_minmax
);
5756 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5757 sizeof(int), 0644, proc_dointvec_minmax
);
5758 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5759 sizeof(int), 0644, proc_dointvec_minmax
);
5760 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5761 sizeof(int), 0644, proc_dointvec_minmax
);
5762 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5763 sizeof(int), 0644, proc_dointvec_minmax
);
5764 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5765 sizeof(int), 0644, proc_dointvec_minmax
);
5766 set_table_entry(&table
[9], "cache_nice_tries",
5767 &sd
->cache_nice_tries
,
5768 sizeof(int), 0644, proc_dointvec_minmax
);
5769 set_table_entry(&table
[10], "flags", &sd
->flags
,
5770 sizeof(int), 0644, proc_dointvec_minmax
);
5771 set_table_entry(&table
[11], "name", sd
->name
,
5772 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5773 /* &table[12] is terminator */
5778 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5780 struct ctl_table
*entry
, *table
;
5781 struct sched_domain
*sd
;
5782 int domain_num
= 0, i
;
5785 for_each_domain(cpu
, sd
)
5787 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5792 for_each_domain(cpu
, sd
) {
5793 snprintf(buf
, 32, "domain%d", i
);
5794 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5796 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5803 static struct ctl_table_header
*sd_sysctl_header
;
5804 static void register_sched_domain_sysctl(void)
5806 int i
, cpu_num
= num_possible_cpus();
5807 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5810 WARN_ON(sd_ctl_dir
[0].child
);
5811 sd_ctl_dir
[0].child
= entry
;
5816 for_each_possible_cpu(i
) {
5817 snprintf(buf
, 32, "cpu%d", i
);
5818 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5820 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5824 WARN_ON(sd_sysctl_header
);
5825 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5828 /* may be called multiple times per register */
5829 static void unregister_sched_domain_sysctl(void)
5831 if (sd_sysctl_header
)
5832 unregister_sysctl_table(sd_sysctl_header
);
5833 sd_sysctl_header
= NULL
;
5834 if (sd_ctl_dir
[0].child
)
5835 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5838 static void register_sched_domain_sysctl(void)
5841 static void unregister_sched_domain_sysctl(void)
5846 static void set_rq_online(struct rq
*rq
)
5849 const struct sched_class
*class;
5851 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5854 for_each_class(class) {
5855 if (class->rq_online
)
5856 class->rq_online(rq
);
5861 static void set_rq_offline(struct rq
*rq
)
5864 const struct sched_class
*class;
5866 for_each_class(class) {
5867 if (class->rq_offline
)
5868 class->rq_offline(rq
);
5871 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5877 * migration_call - callback that gets triggered when a CPU is added.
5878 * Here we can start up the necessary migration thread for the new CPU.
5880 static int __cpuinit
5881 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5883 struct task_struct
*p
;
5884 int cpu
= (long)hcpu
;
5885 unsigned long flags
;
5890 case CPU_UP_PREPARE
:
5891 case CPU_UP_PREPARE_FROZEN
:
5892 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5895 kthread_bind(p
, cpu
);
5896 /* Must be high prio: stop_machine expects to yield to it. */
5897 rq
= task_rq_lock(p
, &flags
);
5898 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5899 task_rq_unlock(rq
, &flags
);
5901 cpu_rq(cpu
)->migration_thread
= p
;
5902 rq
->calc_load_update
= calc_load_update
;
5906 case CPU_ONLINE_FROZEN
:
5907 /* Strictly unnecessary, as first user will wake it. */
5908 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5910 /* Update our root-domain */
5912 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5914 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5918 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5921 #ifdef CONFIG_HOTPLUG_CPU
5922 case CPU_UP_CANCELED
:
5923 case CPU_UP_CANCELED_FROZEN
:
5924 if (!cpu_rq(cpu
)->migration_thread
)
5926 /* Unbind it from offline cpu so it can run. Fall thru. */
5927 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5928 cpumask_any(cpu_online_mask
));
5929 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5930 put_task_struct(cpu_rq(cpu
)->migration_thread
);
5931 cpu_rq(cpu
)->migration_thread
= NULL
;
5935 case CPU_DEAD_FROZEN
:
5936 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5937 migrate_live_tasks(cpu
);
5939 kthread_stop(rq
->migration_thread
);
5940 put_task_struct(rq
->migration_thread
);
5941 rq
->migration_thread
= NULL
;
5942 /* Idle task back to normal (off runqueue, low prio) */
5943 raw_spin_lock_irq(&rq
->lock
);
5944 update_rq_clock(rq
);
5945 deactivate_task(rq
, rq
->idle
, 0);
5946 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5947 rq
->idle
->sched_class
= &idle_sched_class
;
5948 migrate_dead_tasks(cpu
);
5949 raw_spin_unlock_irq(&rq
->lock
);
5951 migrate_nr_uninterruptible(rq
);
5952 BUG_ON(rq
->nr_running
!= 0);
5953 calc_global_load_remove(rq
);
5955 * No need to migrate the tasks: it was best-effort if
5956 * they didn't take sched_hotcpu_mutex. Just wake up
5959 raw_spin_lock_irq(&rq
->lock
);
5960 while (!list_empty(&rq
->migration_queue
)) {
5961 struct migration_req
*req
;
5963 req
= list_entry(rq
->migration_queue
.next
,
5964 struct migration_req
, list
);
5965 list_del_init(&req
->list
);
5966 raw_spin_unlock_irq(&rq
->lock
);
5967 complete(&req
->done
);
5968 raw_spin_lock_irq(&rq
->lock
);
5970 raw_spin_unlock_irq(&rq
->lock
);
5974 case CPU_DYING_FROZEN
:
5975 /* Update our root-domain */
5977 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5979 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5982 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5990 * Register at high priority so that task migration (migrate_all_tasks)
5991 * happens before everything else. This has to be lower priority than
5992 * the notifier in the perf_event subsystem, though.
5994 static struct notifier_block __cpuinitdata migration_notifier
= {
5995 .notifier_call
= migration_call
,
5999 static int __init
migration_init(void)
6001 void *cpu
= (void *)(long)smp_processor_id();
6004 /* Start one for the boot CPU: */
6005 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6006 BUG_ON(err
== NOTIFY_BAD
);
6007 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6008 register_cpu_notifier(&migration_notifier
);
6012 early_initcall(migration_init
);
6017 #ifdef CONFIG_SCHED_DEBUG
6019 static __read_mostly
int sched_domain_debug_enabled
;
6021 static int __init
sched_domain_debug_setup(char *str
)
6023 sched_domain_debug_enabled
= 1;
6027 early_param("sched_debug", sched_domain_debug_setup
);
6029 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6030 struct cpumask
*groupmask
)
6032 struct sched_group
*group
= sd
->groups
;
6035 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6036 cpumask_clear(groupmask
);
6038 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6040 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6041 printk("does not load-balance\n");
6043 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6048 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6050 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6051 printk(KERN_ERR
"ERROR: domain->span does not contain "
6054 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6055 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6059 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6063 printk(KERN_ERR
"ERROR: group is NULL\n");
6067 if (!group
->cpu_power
) {
6068 printk(KERN_CONT
"\n");
6069 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6074 if (!cpumask_weight(sched_group_cpus(group
))) {
6075 printk(KERN_CONT
"\n");
6076 printk(KERN_ERR
"ERROR: empty group\n");
6080 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6081 printk(KERN_CONT
"\n");
6082 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6086 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6088 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6090 printk(KERN_CONT
" %s", str
);
6091 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6092 printk(KERN_CONT
" (cpu_power = %d)",
6096 group
= group
->next
;
6097 } while (group
!= sd
->groups
);
6098 printk(KERN_CONT
"\n");
6100 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6101 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6104 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6105 printk(KERN_ERR
"ERROR: parent span is not a superset "
6106 "of domain->span\n");
6110 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6112 cpumask_var_t groupmask
;
6115 if (!sched_domain_debug_enabled
)
6119 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6123 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6125 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6126 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6131 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6138 free_cpumask_var(groupmask
);
6140 #else /* !CONFIG_SCHED_DEBUG */
6141 # define sched_domain_debug(sd, cpu) do { } while (0)
6142 #endif /* CONFIG_SCHED_DEBUG */
6144 static int sd_degenerate(struct sched_domain
*sd
)
6146 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6149 /* Following flags need at least 2 groups */
6150 if (sd
->flags
& (SD_LOAD_BALANCE
|
6151 SD_BALANCE_NEWIDLE
|
6155 SD_SHARE_PKG_RESOURCES
)) {
6156 if (sd
->groups
!= sd
->groups
->next
)
6160 /* Following flags don't use groups */
6161 if (sd
->flags
& (SD_WAKE_AFFINE
))
6168 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6170 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6172 if (sd_degenerate(parent
))
6175 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6178 /* Flags needing groups don't count if only 1 group in parent */
6179 if (parent
->groups
== parent
->groups
->next
) {
6180 pflags
&= ~(SD_LOAD_BALANCE
|
6181 SD_BALANCE_NEWIDLE
|
6185 SD_SHARE_PKG_RESOURCES
);
6186 if (nr_node_ids
== 1)
6187 pflags
&= ~SD_SERIALIZE
;
6189 if (~cflags
& pflags
)
6195 static void free_rootdomain(struct root_domain
*rd
)
6197 synchronize_sched();
6199 cpupri_cleanup(&rd
->cpupri
);
6201 free_cpumask_var(rd
->rto_mask
);
6202 free_cpumask_var(rd
->online
);
6203 free_cpumask_var(rd
->span
);
6207 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6209 struct root_domain
*old_rd
= NULL
;
6210 unsigned long flags
;
6212 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6217 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6220 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6223 * If we dont want to free the old_rt yet then
6224 * set old_rd to NULL to skip the freeing later
6227 if (!atomic_dec_and_test(&old_rd
->refcount
))
6231 atomic_inc(&rd
->refcount
);
6234 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6235 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6238 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6241 free_rootdomain(old_rd
);
6244 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6246 gfp_t gfp
= GFP_KERNEL
;
6248 memset(rd
, 0, sizeof(*rd
));
6253 if (!alloc_cpumask_var(&rd
->span
, gfp
))
6255 if (!alloc_cpumask_var(&rd
->online
, gfp
))
6257 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
6260 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
6265 free_cpumask_var(rd
->rto_mask
);
6267 free_cpumask_var(rd
->online
);
6269 free_cpumask_var(rd
->span
);
6274 static void init_defrootdomain(void)
6276 init_rootdomain(&def_root_domain
, true);
6278 atomic_set(&def_root_domain
.refcount
, 1);
6281 static struct root_domain
*alloc_rootdomain(void)
6283 struct root_domain
*rd
;
6285 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6289 if (init_rootdomain(rd
, false) != 0) {
6298 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6299 * hold the hotplug lock.
6302 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6304 struct rq
*rq
= cpu_rq(cpu
);
6305 struct sched_domain
*tmp
;
6307 /* Remove the sched domains which do not contribute to scheduling. */
6308 for (tmp
= sd
; tmp
; ) {
6309 struct sched_domain
*parent
= tmp
->parent
;
6313 if (sd_parent_degenerate(tmp
, parent
)) {
6314 tmp
->parent
= parent
->parent
;
6316 parent
->parent
->child
= tmp
;
6321 if (sd
&& sd_degenerate(sd
)) {
6327 sched_domain_debug(sd
, cpu
);
6329 rq_attach_root(rq
, rd
);
6330 rcu_assign_pointer(rq
->sd
, sd
);
6333 /* cpus with isolated domains */
6334 static cpumask_var_t cpu_isolated_map
;
6336 /* Setup the mask of cpus configured for isolated domains */
6337 static int __init
isolated_cpu_setup(char *str
)
6339 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6340 cpulist_parse(str
, cpu_isolated_map
);
6344 __setup("isolcpus=", isolated_cpu_setup
);
6347 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6348 * to a function which identifies what group(along with sched group) a CPU
6349 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6350 * (due to the fact that we keep track of groups covered with a struct cpumask).
6352 * init_sched_build_groups will build a circular linked list of the groups
6353 * covered by the given span, and will set each group's ->cpumask correctly,
6354 * and ->cpu_power to 0.
6357 init_sched_build_groups(const struct cpumask
*span
,
6358 const struct cpumask
*cpu_map
,
6359 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6360 struct sched_group
**sg
,
6361 struct cpumask
*tmpmask
),
6362 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6364 struct sched_group
*first
= NULL
, *last
= NULL
;
6367 cpumask_clear(covered
);
6369 for_each_cpu(i
, span
) {
6370 struct sched_group
*sg
;
6371 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6374 if (cpumask_test_cpu(i
, covered
))
6377 cpumask_clear(sched_group_cpus(sg
));
6380 for_each_cpu(j
, span
) {
6381 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6384 cpumask_set_cpu(j
, covered
);
6385 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6396 #define SD_NODES_PER_DOMAIN 16
6401 * find_next_best_node - find the next node to include in a sched_domain
6402 * @node: node whose sched_domain we're building
6403 * @used_nodes: nodes already in the sched_domain
6405 * Find the next node to include in a given scheduling domain. Simply
6406 * finds the closest node not already in the @used_nodes map.
6408 * Should use nodemask_t.
6410 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6412 int i
, n
, val
, min_val
, best_node
= 0;
6416 for (i
= 0; i
< nr_node_ids
; i
++) {
6417 /* Start at @node */
6418 n
= (node
+ i
) % nr_node_ids
;
6420 if (!nr_cpus_node(n
))
6423 /* Skip already used nodes */
6424 if (node_isset(n
, *used_nodes
))
6427 /* Simple min distance search */
6428 val
= node_distance(node
, n
);
6430 if (val
< min_val
) {
6436 node_set(best_node
, *used_nodes
);
6441 * sched_domain_node_span - get a cpumask for a node's sched_domain
6442 * @node: node whose cpumask we're constructing
6443 * @span: resulting cpumask
6445 * Given a node, construct a good cpumask for its sched_domain to span. It
6446 * should be one that prevents unnecessary balancing, but also spreads tasks
6449 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6451 nodemask_t used_nodes
;
6454 cpumask_clear(span
);
6455 nodes_clear(used_nodes
);
6457 cpumask_or(span
, span
, cpumask_of_node(node
));
6458 node_set(node
, used_nodes
);
6460 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6461 int next_node
= find_next_best_node(node
, &used_nodes
);
6463 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6466 #endif /* CONFIG_NUMA */
6468 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6471 * The cpus mask in sched_group and sched_domain hangs off the end.
6473 * ( See the the comments in include/linux/sched.h:struct sched_group
6474 * and struct sched_domain. )
6476 struct static_sched_group
{
6477 struct sched_group sg
;
6478 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6481 struct static_sched_domain
{
6482 struct sched_domain sd
;
6483 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6489 cpumask_var_t domainspan
;
6490 cpumask_var_t covered
;
6491 cpumask_var_t notcovered
;
6493 cpumask_var_t nodemask
;
6494 cpumask_var_t this_sibling_map
;
6495 cpumask_var_t this_core_map
;
6496 cpumask_var_t send_covered
;
6497 cpumask_var_t tmpmask
;
6498 struct sched_group
**sched_group_nodes
;
6499 struct root_domain
*rd
;
6503 sa_sched_groups
= 0,
6508 sa_this_sibling_map
,
6510 sa_sched_group_nodes
,
6520 * SMT sched-domains:
6522 #ifdef CONFIG_SCHED_SMT
6523 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6524 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6527 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6528 struct sched_group
**sg
, struct cpumask
*unused
)
6531 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6534 #endif /* CONFIG_SCHED_SMT */
6537 * multi-core sched-domains:
6539 #ifdef CONFIG_SCHED_MC
6540 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6541 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6542 #endif /* CONFIG_SCHED_MC */
6544 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6546 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6547 struct sched_group
**sg
, struct cpumask
*mask
)
6551 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6552 group
= cpumask_first(mask
);
6554 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6557 #elif defined(CONFIG_SCHED_MC)
6559 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6560 struct sched_group
**sg
, struct cpumask
*unused
)
6563 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
6568 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6569 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6572 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6573 struct sched_group
**sg
, struct cpumask
*mask
)
6576 #ifdef CONFIG_SCHED_MC
6577 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6578 group
= cpumask_first(mask
);
6579 #elif defined(CONFIG_SCHED_SMT)
6580 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6581 group
= cpumask_first(mask
);
6586 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6592 * The init_sched_build_groups can't handle what we want to do with node
6593 * groups, so roll our own. Now each node has its own list of groups which
6594 * gets dynamically allocated.
6596 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6597 static struct sched_group
***sched_group_nodes_bycpu
;
6599 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6600 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6602 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6603 struct sched_group
**sg
,
6604 struct cpumask
*nodemask
)
6608 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6609 group
= cpumask_first(nodemask
);
6612 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6616 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6618 struct sched_group
*sg
= group_head
;
6624 for_each_cpu(j
, sched_group_cpus(sg
)) {
6625 struct sched_domain
*sd
;
6627 sd
= &per_cpu(phys_domains
, j
).sd
;
6628 if (j
!= group_first_cpu(sd
->groups
)) {
6630 * Only add "power" once for each
6636 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6639 } while (sg
!= group_head
);
6642 static int build_numa_sched_groups(struct s_data
*d
,
6643 const struct cpumask
*cpu_map
, int num
)
6645 struct sched_domain
*sd
;
6646 struct sched_group
*sg
, *prev
;
6649 cpumask_clear(d
->covered
);
6650 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6651 if (cpumask_empty(d
->nodemask
)) {
6652 d
->sched_group_nodes
[num
] = NULL
;
6656 sched_domain_node_span(num
, d
->domainspan
);
6657 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6659 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6662 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6666 d
->sched_group_nodes
[num
] = sg
;
6668 for_each_cpu(j
, d
->nodemask
) {
6669 sd
= &per_cpu(node_domains
, j
).sd
;
6674 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6676 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6679 for (j
= 0; j
< nr_node_ids
; j
++) {
6680 n
= (num
+ j
) % nr_node_ids
;
6681 cpumask_complement(d
->notcovered
, d
->covered
);
6682 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6683 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6684 if (cpumask_empty(d
->tmpmask
))
6686 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6687 if (cpumask_empty(d
->tmpmask
))
6689 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6693 "Can not alloc domain group for node %d\n", j
);
6697 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6698 sg
->next
= prev
->next
;
6699 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6706 #endif /* CONFIG_NUMA */
6709 /* Free memory allocated for various sched_group structures */
6710 static void free_sched_groups(const struct cpumask
*cpu_map
,
6711 struct cpumask
*nodemask
)
6715 for_each_cpu(cpu
, cpu_map
) {
6716 struct sched_group
**sched_group_nodes
6717 = sched_group_nodes_bycpu
[cpu
];
6719 if (!sched_group_nodes
)
6722 for (i
= 0; i
< nr_node_ids
; i
++) {
6723 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6725 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6726 if (cpumask_empty(nodemask
))
6736 if (oldsg
!= sched_group_nodes
[i
])
6739 kfree(sched_group_nodes
);
6740 sched_group_nodes_bycpu
[cpu
] = NULL
;
6743 #else /* !CONFIG_NUMA */
6744 static void free_sched_groups(const struct cpumask
*cpu_map
,
6745 struct cpumask
*nodemask
)
6748 #endif /* CONFIG_NUMA */
6751 * Initialize sched groups cpu_power.
6753 * cpu_power indicates the capacity of sched group, which is used while
6754 * distributing the load between different sched groups in a sched domain.
6755 * Typically cpu_power for all the groups in a sched domain will be same unless
6756 * there are asymmetries in the topology. If there are asymmetries, group
6757 * having more cpu_power will pickup more load compared to the group having
6760 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6762 struct sched_domain
*child
;
6763 struct sched_group
*group
;
6767 WARN_ON(!sd
|| !sd
->groups
);
6769 if (cpu
!= group_first_cpu(sd
->groups
))
6774 sd
->groups
->cpu_power
= 0;
6777 power
= SCHED_LOAD_SCALE
;
6778 weight
= cpumask_weight(sched_domain_span(sd
));
6780 * SMT siblings share the power of a single core.
6781 * Usually multiple threads get a better yield out of
6782 * that one core than a single thread would have,
6783 * reflect that in sd->smt_gain.
6785 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6786 power
*= sd
->smt_gain
;
6788 power
>>= SCHED_LOAD_SHIFT
;
6790 sd
->groups
->cpu_power
+= power
;
6795 * Add cpu_power of each child group to this groups cpu_power.
6797 group
= child
->groups
;
6799 sd
->groups
->cpu_power
+= group
->cpu_power
;
6800 group
= group
->next
;
6801 } while (group
!= child
->groups
);
6805 * Initializers for schedule domains
6806 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6809 #ifdef CONFIG_SCHED_DEBUG
6810 # define SD_INIT_NAME(sd, type) sd->name = #type
6812 # define SD_INIT_NAME(sd, type) do { } while (0)
6815 #define SD_INIT(sd, type) sd_init_##type(sd)
6817 #define SD_INIT_FUNC(type) \
6818 static noinline void sd_init_##type(struct sched_domain *sd) \
6820 memset(sd, 0, sizeof(*sd)); \
6821 *sd = SD_##type##_INIT; \
6822 sd->level = SD_LV_##type; \
6823 SD_INIT_NAME(sd, type); \
6828 SD_INIT_FUNC(ALLNODES
)
6831 #ifdef CONFIG_SCHED_SMT
6832 SD_INIT_FUNC(SIBLING
)
6834 #ifdef CONFIG_SCHED_MC
6838 static int default_relax_domain_level
= -1;
6840 static int __init
setup_relax_domain_level(char *str
)
6844 val
= simple_strtoul(str
, NULL
, 0);
6845 if (val
< SD_LV_MAX
)
6846 default_relax_domain_level
= val
;
6850 __setup("relax_domain_level=", setup_relax_domain_level
);
6852 static void set_domain_attribute(struct sched_domain
*sd
,
6853 struct sched_domain_attr
*attr
)
6857 if (!attr
|| attr
->relax_domain_level
< 0) {
6858 if (default_relax_domain_level
< 0)
6861 request
= default_relax_domain_level
;
6863 request
= attr
->relax_domain_level
;
6864 if (request
< sd
->level
) {
6865 /* turn off idle balance on this domain */
6866 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6868 /* turn on idle balance on this domain */
6869 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6873 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6874 const struct cpumask
*cpu_map
)
6877 case sa_sched_groups
:
6878 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
6879 d
->sched_group_nodes
= NULL
;
6881 free_rootdomain(d
->rd
); /* fall through */
6883 free_cpumask_var(d
->tmpmask
); /* fall through */
6884 case sa_send_covered
:
6885 free_cpumask_var(d
->send_covered
); /* fall through */
6886 case sa_this_core_map
:
6887 free_cpumask_var(d
->this_core_map
); /* fall through */
6888 case sa_this_sibling_map
:
6889 free_cpumask_var(d
->this_sibling_map
); /* fall through */
6891 free_cpumask_var(d
->nodemask
); /* fall through */
6892 case sa_sched_group_nodes
:
6894 kfree(d
->sched_group_nodes
); /* fall through */
6896 free_cpumask_var(d
->notcovered
); /* fall through */
6898 free_cpumask_var(d
->covered
); /* fall through */
6900 free_cpumask_var(d
->domainspan
); /* fall through */
6907 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6908 const struct cpumask
*cpu_map
)
6911 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
6913 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
6914 return sa_domainspan
;
6915 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
6917 /* Allocate the per-node list of sched groups */
6918 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
6919 sizeof(struct sched_group
*), GFP_KERNEL
);
6920 if (!d
->sched_group_nodes
) {
6921 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6922 return sa_notcovered
;
6924 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
6926 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
6927 return sa_sched_group_nodes
;
6928 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
6930 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
6931 return sa_this_sibling_map
;
6932 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
6933 return sa_this_core_map
;
6934 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
6935 return sa_send_covered
;
6936 d
->rd
= alloc_rootdomain();
6938 printk(KERN_WARNING
"Cannot alloc root domain\n");
6941 return sa_rootdomain
;
6944 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
6945 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
6947 struct sched_domain
*sd
= NULL
;
6949 struct sched_domain
*parent
;
6952 if (cpumask_weight(cpu_map
) >
6953 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
6954 sd
= &per_cpu(allnodes_domains
, i
).sd
;
6955 SD_INIT(sd
, ALLNODES
);
6956 set_domain_attribute(sd
, attr
);
6957 cpumask_copy(sched_domain_span(sd
), cpu_map
);
6958 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6963 sd
= &per_cpu(node_domains
, i
).sd
;
6965 set_domain_attribute(sd
, attr
);
6966 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
6967 sd
->parent
= parent
;
6970 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
6975 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
6976 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6977 struct sched_domain
*parent
, int i
)
6979 struct sched_domain
*sd
;
6980 sd
= &per_cpu(phys_domains
, i
).sd
;
6982 set_domain_attribute(sd
, attr
);
6983 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
6984 sd
->parent
= parent
;
6987 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6991 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
6992 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6993 struct sched_domain
*parent
, int i
)
6995 struct sched_domain
*sd
= parent
;
6996 #ifdef CONFIG_SCHED_MC
6997 sd
= &per_cpu(core_domains
, i
).sd
;
6999 set_domain_attribute(sd
, attr
);
7000 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
7001 sd
->parent
= parent
;
7003 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7008 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
7009 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7010 struct sched_domain
*parent
, int i
)
7012 struct sched_domain
*sd
= parent
;
7013 #ifdef CONFIG_SCHED_SMT
7014 sd
= &per_cpu(cpu_domains
, i
).sd
;
7015 SD_INIT(sd
, SIBLING
);
7016 set_domain_attribute(sd
, attr
);
7017 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
7018 sd
->parent
= parent
;
7020 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7025 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
7026 const struct cpumask
*cpu_map
, int cpu
)
7029 #ifdef CONFIG_SCHED_SMT
7030 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
7031 cpumask_and(d
->this_sibling_map
, cpu_map
,
7032 topology_thread_cpumask(cpu
));
7033 if (cpu
== cpumask_first(d
->this_sibling_map
))
7034 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
7036 d
->send_covered
, d
->tmpmask
);
7039 #ifdef CONFIG_SCHED_MC
7040 case SD_LV_MC
: /* set up multi-core groups */
7041 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
7042 if (cpu
== cpumask_first(d
->this_core_map
))
7043 init_sched_build_groups(d
->this_core_map
, cpu_map
,
7045 d
->send_covered
, d
->tmpmask
);
7048 case SD_LV_CPU
: /* set up physical groups */
7049 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
7050 if (!cpumask_empty(d
->nodemask
))
7051 init_sched_build_groups(d
->nodemask
, cpu_map
,
7053 d
->send_covered
, d
->tmpmask
);
7056 case SD_LV_ALLNODES
:
7057 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
7058 d
->send_covered
, d
->tmpmask
);
7067 * Build sched domains for a given set of cpus and attach the sched domains
7068 * to the individual cpus
7070 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7071 struct sched_domain_attr
*attr
)
7073 enum s_alloc alloc_state
= sa_none
;
7075 struct sched_domain
*sd
;
7081 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7082 if (alloc_state
!= sa_rootdomain
)
7084 alloc_state
= sa_sched_groups
;
7087 * Set up domains for cpus specified by the cpu_map.
7089 for_each_cpu(i
, cpu_map
) {
7090 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
7093 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7094 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7095 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7096 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7099 for_each_cpu(i
, cpu_map
) {
7100 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7101 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7104 /* Set up physical groups */
7105 for (i
= 0; i
< nr_node_ids
; i
++)
7106 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7109 /* Set up node groups */
7111 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7113 for (i
= 0; i
< nr_node_ids
; i
++)
7114 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7118 /* Calculate CPU power for physical packages and nodes */
7119 #ifdef CONFIG_SCHED_SMT
7120 for_each_cpu(i
, cpu_map
) {
7121 sd
= &per_cpu(cpu_domains
, i
).sd
;
7122 init_sched_groups_power(i
, sd
);
7125 #ifdef CONFIG_SCHED_MC
7126 for_each_cpu(i
, cpu_map
) {
7127 sd
= &per_cpu(core_domains
, i
).sd
;
7128 init_sched_groups_power(i
, sd
);
7132 for_each_cpu(i
, cpu_map
) {
7133 sd
= &per_cpu(phys_domains
, i
).sd
;
7134 init_sched_groups_power(i
, sd
);
7138 for (i
= 0; i
< nr_node_ids
; i
++)
7139 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7141 if (d
.sd_allnodes
) {
7142 struct sched_group
*sg
;
7144 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7146 init_numa_sched_groups_power(sg
);
7150 /* Attach the domains */
7151 for_each_cpu(i
, cpu_map
) {
7152 #ifdef CONFIG_SCHED_SMT
7153 sd
= &per_cpu(cpu_domains
, i
).sd
;
7154 #elif defined(CONFIG_SCHED_MC)
7155 sd
= &per_cpu(core_domains
, i
).sd
;
7157 sd
= &per_cpu(phys_domains
, i
).sd
;
7159 cpu_attach_domain(sd
, d
.rd
, i
);
7162 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7163 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7167 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7171 static int build_sched_domains(const struct cpumask
*cpu_map
)
7173 return __build_sched_domains(cpu_map
, NULL
);
7176 static cpumask_var_t
*doms_cur
; /* current sched domains */
7177 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7178 static struct sched_domain_attr
*dattr_cur
;
7179 /* attribues of custom domains in 'doms_cur' */
7182 * Special case: If a kmalloc of a doms_cur partition (array of
7183 * cpumask) fails, then fallback to a single sched domain,
7184 * as determined by the single cpumask fallback_doms.
7186 static cpumask_var_t fallback_doms
;
7189 * arch_update_cpu_topology lets virtualized architectures update the
7190 * cpu core maps. It is supposed to return 1 if the topology changed
7191 * or 0 if it stayed the same.
7193 int __attribute__((weak
)) arch_update_cpu_topology(void)
7198 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7201 cpumask_var_t
*doms
;
7203 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7206 for (i
= 0; i
< ndoms
; i
++) {
7207 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7208 free_sched_domains(doms
, i
);
7215 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7218 for (i
= 0; i
< ndoms
; i
++)
7219 free_cpumask_var(doms
[i
]);
7224 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7225 * For now this just excludes isolated cpus, but could be used to
7226 * exclude other special cases in the future.
7228 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7232 arch_update_cpu_topology();
7234 doms_cur
= alloc_sched_domains(ndoms_cur
);
7236 doms_cur
= &fallback_doms
;
7237 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7239 err
= build_sched_domains(doms_cur
[0]);
7240 register_sched_domain_sysctl();
7245 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7246 struct cpumask
*tmpmask
)
7248 free_sched_groups(cpu_map
, tmpmask
);
7252 * Detach sched domains from a group of cpus specified in cpu_map
7253 * These cpus will now be attached to the NULL domain
7255 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7257 /* Save because hotplug lock held. */
7258 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7261 for_each_cpu(i
, cpu_map
)
7262 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7263 synchronize_sched();
7264 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7267 /* handle null as "default" */
7268 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7269 struct sched_domain_attr
*new, int idx_new
)
7271 struct sched_domain_attr tmp
;
7278 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7279 new ? (new + idx_new
) : &tmp
,
7280 sizeof(struct sched_domain_attr
));
7284 * Partition sched domains as specified by the 'ndoms_new'
7285 * cpumasks in the array doms_new[] of cpumasks. This compares
7286 * doms_new[] to the current sched domain partitioning, doms_cur[].
7287 * It destroys each deleted domain and builds each new domain.
7289 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7290 * The masks don't intersect (don't overlap.) We should setup one
7291 * sched domain for each mask. CPUs not in any of the cpumasks will
7292 * not be load balanced. If the same cpumask appears both in the
7293 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7296 * The passed in 'doms_new' should be allocated using
7297 * alloc_sched_domains. This routine takes ownership of it and will
7298 * free_sched_domains it when done with it. If the caller failed the
7299 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7300 * and partition_sched_domains() will fallback to the single partition
7301 * 'fallback_doms', it also forces the domains to be rebuilt.
7303 * If doms_new == NULL it will be replaced with cpu_online_mask.
7304 * ndoms_new == 0 is a special case for destroying existing domains,
7305 * and it will not create the default domain.
7307 * Call with hotplug lock held
7309 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7310 struct sched_domain_attr
*dattr_new
)
7315 mutex_lock(&sched_domains_mutex
);
7317 /* always unregister in case we don't destroy any domains */
7318 unregister_sched_domain_sysctl();
7320 /* Let architecture update cpu core mappings. */
7321 new_topology
= arch_update_cpu_topology();
7323 n
= doms_new
? ndoms_new
: 0;
7325 /* Destroy deleted domains */
7326 for (i
= 0; i
< ndoms_cur
; i
++) {
7327 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7328 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7329 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7332 /* no match - a current sched domain not in new doms_new[] */
7333 detach_destroy_domains(doms_cur
[i
]);
7338 if (doms_new
== NULL
) {
7340 doms_new
= &fallback_doms
;
7341 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7342 WARN_ON_ONCE(dattr_new
);
7345 /* Build new domains */
7346 for (i
= 0; i
< ndoms_new
; i
++) {
7347 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7348 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7349 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7352 /* no match - add a new doms_new */
7353 __build_sched_domains(doms_new
[i
],
7354 dattr_new
? dattr_new
+ i
: NULL
);
7359 /* Remember the new sched domains */
7360 if (doms_cur
!= &fallback_doms
)
7361 free_sched_domains(doms_cur
, ndoms_cur
);
7362 kfree(dattr_cur
); /* kfree(NULL) is safe */
7363 doms_cur
= doms_new
;
7364 dattr_cur
= dattr_new
;
7365 ndoms_cur
= ndoms_new
;
7367 register_sched_domain_sysctl();
7369 mutex_unlock(&sched_domains_mutex
);
7372 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7373 static void arch_reinit_sched_domains(void)
7377 /* Destroy domains first to force the rebuild */
7378 partition_sched_domains(0, NULL
, NULL
);
7380 rebuild_sched_domains();
7384 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7386 unsigned int level
= 0;
7388 if (sscanf(buf
, "%u", &level
) != 1)
7392 * level is always be positive so don't check for
7393 * level < POWERSAVINGS_BALANCE_NONE which is 0
7394 * What happens on 0 or 1 byte write,
7395 * need to check for count as well?
7398 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7402 sched_smt_power_savings
= level
;
7404 sched_mc_power_savings
= level
;
7406 arch_reinit_sched_domains();
7411 #ifdef CONFIG_SCHED_MC
7412 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7413 struct sysdev_class_attribute
*attr
,
7416 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7418 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7419 struct sysdev_class_attribute
*attr
,
7420 const char *buf
, size_t count
)
7422 return sched_power_savings_store(buf
, count
, 0);
7424 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7425 sched_mc_power_savings_show
,
7426 sched_mc_power_savings_store
);
7429 #ifdef CONFIG_SCHED_SMT
7430 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7431 struct sysdev_class_attribute
*attr
,
7434 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7436 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7437 struct sysdev_class_attribute
*attr
,
7438 const char *buf
, size_t count
)
7440 return sched_power_savings_store(buf
, count
, 1);
7442 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7443 sched_smt_power_savings_show
,
7444 sched_smt_power_savings_store
);
7447 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7451 #ifdef CONFIG_SCHED_SMT
7453 err
= sysfs_create_file(&cls
->kset
.kobj
,
7454 &attr_sched_smt_power_savings
.attr
);
7456 #ifdef CONFIG_SCHED_MC
7457 if (!err
&& mc_capable())
7458 err
= sysfs_create_file(&cls
->kset
.kobj
,
7459 &attr_sched_mc_power_savings
.attr
);
7463 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7465 #ifndef CONFIG_CPUSETS
7467 * Add online and remove offline CPUs from the scheduler domains.
7468 * When cpusets are enabled they take over this function.
7470 static int update_sched_domains(struct notifier_block
*nfb
,
7471 unsigned long action
, void *hcpu
)
7475 case CPU_ONLINE_FROZEN
:
7476 case CPU_DOWN_PREPARE
:
7477 case CPU_DOWN_PREPARE_FROZEN
:
7478 case CPU_DOWN_FAILED
:
7479 case CPU_DOWN_FAILED_FROZEN
:
7480 partition_sched_domains(1, NULL
, NULL
);
7489 static int update_runtime(struct notifier_block
*nfb
,
7490 unsigned long action
, void *hcpu
)
7492 int cpu
= (int)(long)hcpu
;
7495 case CPU_DOWN_PREPARE
:
7496 case CPU_DOWN_PREPARE_FROZEN
:
7497 disable_runtime(cpu_rq(cpu
));
7500 case CPU_DOWN_FAILED
:
7501 case CPU_DOWN_FAILED_FROZEN
:
7503 case CPU_ONLINE_FROZEN
:
7504 enable_runtime(cpu_rq(cpu
));
7512 void __init
sched_init_smp(void)
7514 cpumask_var_t non_isolated_cpus
;
7516 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7517 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7519 #if defined(CONFIG_NUMA)
7520 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7522 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7525 mutex_lock(&sched_domains_mutex
);
7526 arch_init_sched_domains(cpu_active_mask
);
7527 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7528 if (cpumask_empty(non_isolated_cpus
))
7529 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7530 mutex_unlock(&sched_domains_mutex
);
7533 #ifndef CONFIG_CPUSETS
7534 /* XXX: Theoretical race here - CPU may be hotplugged now */
7535 hotcpu_notifier(update_sched_domains
, 0);
7538 /* RT runtime code needs to handle some hotplug events */
7539 hotcpu_notifier(update_runtime
, 0);
7543 /* Move init over to a non-isolated CPU */
7544 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7546 sched_init_granularity();
7547 free_cpumask_var(non_isolated_cpus
);
7549 init_sched_rt_class();
7552 void __init
sched_init_smp(void)
7554 sched_init_granularity();
7556 #endif /* CONFIG_SMP */
7558 const_debug
unsigned int sysctl_timer_migration
= 1;
7560 int in_sched_functions(unsigned long addr
)
7562 return in_lock_functions(addr
) ||
7563 (addr
>= (unsigned long)__sched_text_start
7564 && addr
< (unsigned long)__sched_text_end
);
7567 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7569 cfs_rq
->tasks_timeline
= RB_ROOT
;
7570 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7571 #ifdef CONFIG_FAIR_GROUP_SCHED
7574 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7577 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7579 struct rt_prio_array
*array
;
7582 array
= &rt_rq
->active
;
7583 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7584 INIT_LIST_HEAD(array
->queue
+ i
);
7585 __clear_bit(i
, array
->bitmap
);
7587 /* delimiter for bitsearch: */
7588 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7590 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7591 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7593 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7597 rt_rq
->rt_nr_migratory
= 0;
7598 rt_rq
->overloaded
= 0;
7599 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7603 rt_rq
->rt_throttled
= 0;
7604 rt_rq
->rt_runtime
= 0;
7605 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7607 #ifdef CONFIG_RT_GROUP_SCHED
7608 rt_rq
->rt_nr_boosted
= 0;
7613 #ifdef CONFIG_FAIR_GROUP_SCHED
7614 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7615 struct sched_entity
*se
, int cpu
, int add
,
7616 struct sched_entity
*parent
)
7618 struct rq
*rq
= cpu_rq(cpu
);
7619 tg
->cfs_rq
[cpu
] = cfs_rq
;
7620 init_cfs_rq(cfs_rq
, rq
);
7623 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7626 /* se could be NULL for init_task_group */
7631 se
->cfs_rq
= &rq
->cfs
;
7633 se
->cfs_rq
= parent
->my_q
;
7636 se
->load
.weight
= tg
->shares
;
7637 se
->load
.inv_weight
= 0;
7638 se
->parent
= parent
;
7642 #ifdef CONFIG_RT_GROUP_SCHED
7643 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7644 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7645 struct sched_rt_entity
*parent
)
7647 struct rq
*rq
= cpu_rq(cpu
);
7649 tg
->rt_rq
[cpu
] = rt_rq
;
7650 init_rt_rq(rt_rq
, rq
);
7652 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7654 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7656 tg
->rt_se
[cpu
] = rt_se
;
7661 rt_se
->rt_rq
= &rq
->rt
;
7663 rt_se
->rt_rq
= parent
->my_q
;
7665 rt_se
->my_q
= rt_rq
;
7666 rt_se
->parent
= parent
;
7667 INIT_LIST_HEAD(&rt_se
->run_list
);
7671 void __init
sched_init(void)
7674 unsigned long alloc_size
= 0, ptr
;
7676 #ifdef CONFIG_FAIR_GROUP_SCHED
7677 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7679 #ifdef CONFIG_RT_GROUP_SCHED
7680 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7682 #ifdef CONFIG_CPUMASK_OFFSTACK
7683 alloc_size
+= num_possible_cpus() * cpumask_size();
7686 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7688 #ifdef CONFIG_FAIR_GROUP_SCHED
7689 init_task_group
.se
= (struct sched_entity
**)ptr
;
7690 ptr
+= nr_cpu_ids
* sizeof(void **);
7692 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7693 ptr
+= nr_cpu_ids
* sizeof(void **);
7695 #endif /* CONFIG_FAIR_GROUP_SCHED */
7696 #ifdef CONFIG_RT_GROUP_SCHED
7697 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7698 ptr
+= nr_cpu_ids
* sizeof(void **);
7700 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7701 ptr
+= nr_cpu_ids
* sizeof(void **);
7703 #endif /* CONFIG_RT_GROUP_SCHED */
7704 #ifdef CONFIG_CPUMASK_OFFSTACK
7705 for_each_possible_cpu(i
) {
7706 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7707 ptr
+= cpumask_size();
7709 #endif /* CONFIG_CPUMASK_OFFSTACK */
7713 init_defrootdomain();
7716 init_rt_bandwidth(&def_rt_bandwidth
,
7717 global_rt_period(), global_rt_runtime());
7719 #ifdef CONFIG_RT_GROUP_SCHED
7720 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7721 global_rt_period(), global_rt_runtime());
7722 #endif /* CONFIG_RT_GROUP_SCHED */
7724 #ifdef CONFIG_CGROUP_SCHED
7725 list_add(&init_task_group
.list
, &task_groups
);
7726 INIT_LIST_HEAD(&init_task_group
.children
);
7728 #endif /* CONFIG_CGROUP_SCHED */
7730 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7731 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7732 __alignof__(unsigned long));
7734 for_each_possible_cpu(i
) {
7738 raw_spin_lock_init(&rq
->lock
);
7740 rq
->calc_load_active
= 0;
7741 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7742 init_cfs_rq(&rq
->cfs
, rq
);
7743 init_rt_rq(&rq
->rt
, rq
);
7744 #ifdef CONFIG_FAIR_GROUP_SCHED
7745 init_task_group
.shares
= init_task_group_load
;
7746 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7747 #ifdef CONFIG_CGROUP_SCHED
7749 * How much cpu bandwidth does init_task_group get?
7751 * In case of task-groups formed thr' the cgroup filesystem, it
7752 * gets 100% of the cpu resources in the system. This overall
7753 * system cpu resource is divided among the tasks of
7754 * init_task_group and its child task-groups in a fair manner,
7755 * based on each entity's (task or task-group's) weight
7756 * (se->load.weight).
7758 * In other words, if init_task_group has 10 tasks of weight
7759 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7760 * then A0's share of the cpu resource is:
7762 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7764 * We achieve this by letting init_task_group's tasks sit
7765 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7767 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7769 #endif /* CONFIG_FAIR_GROUP_SCHED */
7771 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7772 #ifdef CONFIG_RT_GROUP_SCHED
7773 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7774 #ifdef CONFIG_CGROUP_SCHED
7775 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7779 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7780 rq
->cpu_load
[j
] = 0;
7784 rq
->post_schedule
= 0;
7785 rq
->active_balance
= 0;
7786 rq
->next_balance
= jiffies
;
7790 rq
->migration_thread
= NULL
;
7792 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7793 INIT_LIST_HEAD(&rq
->migration_queue
);
7794 rq_attach_root(rq
, &def_root_domain
);
7797 atomic_set(&rq
->nr_iowait
, 0);
7800 set_load_weight(&init_task
);
7802 #ifdef CONFIG_PREEMPT_NOTIFIERS
7803 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7807 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7810 #ifdef CONFIG_RT_MUTEXES
7811 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7815 * The boot idle thread does lazy MMU switching as well:
7817 atomic_inc(&init_mm
.mm_count
);
7818 enter_lazy_tlb(&init_mm
, current
);
7821 * Make us the idle thread. Technically, schedule() should not be
7822 * called from this thread, however somewhere below it might be,
7823 * but because we are the idle thread, we just pick up running again
7824 * when this runqueue becomes "idle".
7826 init_idle(current
, smp_processor_id());
7828 calc_load_update
= jiffies
+ LOAD_FREQ
;
7831 * During early bootup we pretend to be a normal task:
7833 current
->sched_class
= &fair_sched_class
;
7835 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7836 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7839 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
7840 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
7842 /* May be allocated at isolcpus cmdline parse time */
7843 if (cpu_isolated_map
== NULL
)
7844 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7849 scheduler_running
= 1;
7852 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7853 static inline int preempt_count_equals(int preempt_offset
)
7855 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7857 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
7860 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7863 static unsigned long prev_jiffy
; /* ratelimiting */
7865 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7866 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7868 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7870 prev_jiffy
= jiffies
;
7873 "BUG: sleeping function called from invalid context at %s:%d\n",
7876 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7877 in_atomic(), irqs_disabled(),
7878 current
->pid
, current
->comm
);
7880 debug_show_held_locks(current
);
7881 if (irqs_disabled())
7882 print_irqtrace_events(current
);
7886 EXPORT_SYMBOL(__might_sleep
);
7889 #ifdef CONFIG_MAGIC_SYSRQ
7890 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7894 update_rq_clock(rq
);
7895 on_rq
= p
->se
.on_rq
;
7897 deactivate_task(rq
, p
, 0);
7898 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7900 activate_task(rq
, p
, 0);
7901 resched_task(rq
->curr
);
7905 void normalize_rt_tasks(void)
7907 struct task_struct
*g
, *p
;
7908 unsigned long flags
;
7911 read_lock_irqsave(&tasklist_lock
, flags
);
7912 do_each_thread(g
, p
) {
7914 * Only normalize user tasks:
7919 p
->se
.exec_start
= 0;
7920 #ifdef CONFIG_SCHEDSTATS
7921 p
->se
.wait_start
= 0;
7922 p
->se
.sleep_start
= 0;
7923 p
->se
.block_start
= 0;
7928 * Renice negative nice level userspace
7931 if (TASK_NICE(p
) < 0 && p
->mm
)
7932 set_user_nice(p
, 0);
7936 raw_spin_lock(&p
->pi_lock
);
7937 rq
= __task_rq_lock(p
);
7939 normalize_task(rq
, p
);
7941 __task_rq_unlock(rq
);
7942 raw_spin_unlock(&p
->pi_lock
);
7943 } while_each_thread(g
, p
);
7945 read_unlock_irqrestore(&tasklist_lock
, flags
);
7948 #endif /* CONFIG_MAGIC_SYSRQ */
7952 * These functions are only useful for the IA64 MCA handling.
7954 * They can only be called when the whole system has been
7955 * stopped - every CPU needs to be quiescent, and no scheduling
7956 * activity can take place. Using them for anything else would
7957 * be a serious bug, and as a result, they aren't even visible
7958 * under any other configuration.
7962 * curr_task - return the current task for a given cpu.
7963 * @cpu: the processor in question.
7965 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7967 struct task_struct
*curr_task(int cpu
)
7969 return cpu_curr(cpu
);
7973 * set_curr_task - set the current task for a given cpu.
7974 * @cpu: the processor in question.
7975 * @p: the task pointer to set.
7977 * Description: This function must only be used when non-maskable interrupts
7978 * are serviced on a separate stack. It allows the architecture to switch the
7979 * notion of the current task on a cpu in a non-blocking manner. This function
7980 * must be called with all CPU's synchronized, and interrupts disabled, the
7981 * and caller must save the original value of the current task (see
7982 * curr_task() above) and restore that value before reenabling interrupts and
7983 * re-starting the system.
7985 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7987 void set_curr_task(int cpu
, struct task_struct
*p
)
7994 #ifdef CONFIG_FAIR_GROUP_SCHED
7995 static void free_fair_sched_group(struct task_group
*tg
)
7999 for_each_possible_cpu(i
) {
8001 kfree(tg
->cfs_rq
[i
]);
8011 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8013 struct cfs_rq
*cfs_rq
;
8014 struct sched_entity
*se
;
8018 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8021 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8025 tg
->shares
= NICE_0_LOAD
;
8027 for_each_possible_cpu(i
) {
8030 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8031 GFP_KERNEL
, cpu_to_node(i
));
8035 se
= kzalloc_node(sizeof(struct sched_entity
),
8036 GFP_KERNEL
, cpu_to_node(i
));
8040 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8051 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8053 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8054 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8057 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8059 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8061 #else /* !CONFG_FAIR_GROUP_SCHED */
8062 static inline void free_fair_sched_group(struct task_group
*tg
)
8067 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8072 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8076 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8079 #endif /* CONFIG_FAIR_GROUP_SCHED */
8081 #ifdef CONFIG_RT_GROUP_SCHED
8082 static void free_rt_sched_group(struct task_group
*tg
)
8086 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8088 for_each_possible_cpu(i
) {
8090 kfree(tg
->rt_rq
[i
]);
8092 kfree(tg
->rt_se
[i
]);
8100 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8102 struct rt_rq
*rt_rq
;
8103 struct sched_rt_entity
*rt_se
;
8107 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8110 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8114 init_rt_bandwidth(&tg
->rt_bandwidth
,
8115 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8117 for_each_possible_cpu(i
) {
8120 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8121 GFP_KERNEL
, cpu_to_node(i
));
8125 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8126 GFP_KERNEL
, cpu_to_node(i
));
8130 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8141 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8143 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8144 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8147 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8149 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8151 #else /* !CONFIG_RT_GROUP_SCHED */
8152 static inline void free_rt_sched_group(struct task_group
*tg
)
8157 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8162 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8166 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8169 #endif /* CONFIG_RT_GROUP_SCHED */
8171 #ifdef CONFIG_CGROUP_SCHED
8172 static void free_sched_group(struct task_group
*tg
)
8174 free_fair_sched_group(tg
);
8175 free_rt_sched_group(tg
);
8179 /* allocate runqueue etc for a new task group */
8180 struct task_group
*sched_create_group(struct task_group
*parent
)
8182 struct task_group
*tg
;
8183 unsigned long flags
;
8186 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8188 return ERR_PTR(-ENOMEM
);
8190 if (!alloc_fair_sched_group(tg
, parent
))
8193 if (!alloc_rt_sched_group(tg
, parent
))
8196 spin_lock_irqsave(&task_group_lock
, flags
);
8197 for_each_possible_cpu(i
) {
8198 register_fair_sched_group(tg
, i
);
8199 register_rt_sched_group(tg
, i
);
8201 list_add_rcu(&tg
->list
, &task_groups
);
8203 WARN_ON(!parent
); /* root should already exist */
8205 tg
->parent
= parent
;
8206 INIT_LIST_HEAD(&tg
->children
);
8207 list_add_rcu(&tg
->siblings
, &parent
->children
);
8208 spin_unlock_irqrestore(&task_group_lock
, flags
);
8213 free_sched_group(tg
);
8214 return ERR_PTR(-ENOMEM
);
8217 /* rcu callback to free various structures associated with a task group */
8218 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8220 /* now it should be safe to free those cfs_rqs */
8221 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8224 /* Destroy runqueue etc associated with a task group */
8225 void sched_destroy_group(struct task_group
*tg
)
8227 unsigned long flags
;
8230 spin_lock_irqsave(&task_group_lock
, flags
);
8231 for_each_possible_cpu(i
) {
8232 unregister_fair_sched_group(tg
, i
);
8233 unregister_rt_sched_group(tg
, i
);
8235 list_del_rcu(&tg
->list
);
8236 list_del_rcu(&tg
->siblings
);
8237 spin_unlock_irqrestore(&task_group_lock
, flags
);
8239 /* wait for possible concurrent references to cfs_rqs complete */
8240 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8243 /* change task's runqueue when it moves between groups.
8244 * The caller of this function should have put the task in its new group
8245 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8246 * reflect its new group.
8248 void sched_move_task(struct task_struct
*tsk
)
8251 unsigned long flags
;
8254 rq
= task_rq_lock(tsk
, &flags
);
8256 update_rq_clock(rq
);
8258 running
= task_current(rq
, tsk
);
8259 on_rq
= tsk
->se
.on_rq
;
8262 dequeue_task(rq
, tsk
, 0);
8263 if (unlikely(running
))
8264 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8266 set_task_rq(tsk
, task_cpu(tsk
));
8268 #ifdef CONFIG_FAIR_GROUP_SCHED
8269 if (tsk
->sched_class
->moved_group
)
8270 tsk
->sched_class
->moved_group(tsk
, on_rq
);
8273 if (unlikely(running
))
8274 tsk
->sched_class
->set_curr_task(rq
);
8276 enqueue_task(rq
, tsk
, 0, false);
8278 task_rq_unlock(rq
, &flags
);
8280 #endif /* CONFIG_CGROUP_SCHED */
8282 #ifdef CONFIG_FAIR_GROUP_SCHED
8283 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8285 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8290 dequeue_entity(cfs_rq
, se
, 0);
8292 se
->load
.weight
= shares
;
8293 se
->load
.inv_weight
= 0;
8296 enqueue_entity(cfs_rq
, se
, 0);
8299 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8301 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8302 struct rq
*rq
= cfs_rq
->rq
;
8303 unsigned long flags
;
8305 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8306 __set_se_shares(se
, shares
);
8307 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8310 static DEFINE_MUTEX(shares_mutex
);
8312 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8315 unsigned long flags
;
8318 * We can't change the weight of the root cgroup.
8323 if (shares
< MIN_SHARES
)
8324 shares
= MIN_SHARES
;
8325 else if (shares
> MAX_SHARES
)
8326 shares
= MAX_SHARES
;
8328 mutex_lock(&shares_mutex
);
8329 if (tg
->shares
== shares
)
8332 spin_lock_irqsave(&task_group_lock
, flags
);
8333 for_each_possible_cpu(i
)
8334 unregister_fair_sched_group(tg
, i
);
8335 list_del_rcu(&tg
->siblings
);
8336 spin_unlock_irqrestore(&task_group_lock
, flags
);
8338 /* wait for any ongoing reference to this group to finish */
8339 synchronize_sched();
8342 * Now we are free to modify the group's share on each cpu
8343 * w/o tripping rebalance_share or load_balance_fair.
8345 tg
->shares
= shares
;
8346 for_each_possible_cpu(i
) {
8350 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8351 set_se_shares(tg
->se
[i
], shares
);
8355 * Enable load balance activity on this group, by inserting it back on
8356 * each cpu's rq->leaf_cfs_rq_list.
8358 spin_lock_irqsave(&task_group_lock
, flags
);
8359 for_each_possible_cpu(i
)
8360 register_fair_sched_group(tg
, i
);
8361 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8362 spin_unlock_irqrestore(&task_group_lock
, flags
);
8364 mutex_unlock(&shares_mutex
);
8368 unsigned long sched_group_shares(struct task_group
*tg
)
8374 #ifdef CONFIG_RT_GROUP_SCHED
8376 * Ensure that the real time constraints are schedulable.
8378 static DEFINE_MUTEX(rt_constraints_mutex
);
8380 static unsigned long to_ratio(u64 period
, u64 runtime
)
8382 if (runtime
== RUNTIME_INF
)
8385 return div64_u64(runtime
<< 20, period
);
8388 /* Must be called with tasklist_lock held */
8389 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8391 struct task_struct
*g
, *p
;
8393 do_each_thread(g
, p
) {
8394 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8396 } while_each_thread(g
, p
);
8401 struct rt_schedulable_data
{
8402 struct task_group
*tg
;
8407 static int tg_schedulable(struct task_group
*tg
, void *data
)
8409 struct rt_schedulable_data
*d
= data
;
8410 struct task_group
*child
;
8411 unsigned long total
, sum
= 0;
8412 u64 period
, runtime
;
8414 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8415 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8418 period
= d
->rt_period
;
8419 runtime
= d
->rt_runtime
;
8423 * Cannot have more runtime than the period.
8425 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8429 * Ensure we don't starve existing RT tasks.
8431 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8434 total
= to_ratio(period
, runtime
);
8437 * Nobody can have more than the global setting allows.
8439 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8443 * The sum of our children's runtime should not exceed our own.
8445 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8446 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8447 runtime
= child
->rt_bandwidth
.rt_runtime
;
8449 if (child
== d
->tg
) {
8450 period
= d
->rt_period
;
8451 runtime
= d
->rt_runtime
;
8454 sum
+= to_ratio(period
, runtime
);
8463 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8465 struct rt_schedulable_data data
= {
8467 .rt_period
= period
,
8468 .rt_runtime
= runtime
,
8471 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8474 static int tg_set_bandwidth(struct task_group
*tg
,
8475 u64 rt_period
, u64 rt_runtime
)
8479 mutex_lock(&rt_constraints_mutex
);
8480 read_lock(&tasklist_lock
);
8481 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8485 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8486 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8487 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8489 for_each_possible_cpu(i
) {
8490 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8492 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8493 rt_rq
->rt_runtime
= rt_runtime
;
8494 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8496 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8498 read_unlock(&tasklist_lock
);
8499 mutex_unlock(&rt_constraints_mutex
);
8504 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8506 u64 rt_runtime
, rt_period
;
8508 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8509 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8510 if (rt_runtime_us
< 0)
8511 rt_runtime
= RUNTIME_INF
;
8513 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8516 long sched_group_rt_runtime(struct task_group
*tg
)
8520 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8523 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8524 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8525 return rt_runtime_us
;
8528 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8530 u64 rt_runtime
, rt_period
;
8532 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8533 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8538 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8541 long sched_group_rt_period(struct task_group
*tg
)
8545 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8546 do_div(rt_period_us
, NSEC_PER_USEC
);
8547 return rt_period_us
;
8550 static int sched_rt_global_constraints(void)
8552 u64 runtime
, period
;
8555 if (sysctl_sched_rt_period
<= 0)
8558 runtime
= global_rt_runtime();
8559 period
= global_rt_period();
8562 * Sanity check on the sysctl variables.
8564 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8567 mutex_lock(&rt_constraints_mutex
);
8568 read_lock(&tasklist_lock
);
8569 ret
= __rt_schedulable(NULL
, 0, 0);
8570 read_unlock(&tasklist_lock
);
8571 mutex_unlock(&rt_constraints_mutex
);
8576 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8578 /* Don't accept realtime tasks when there is no way for them to run */
8579 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8585 #else /* !CONFIG_RT_GROUP_SCHED */
8586 static int sched_rt_global_constraints(void)
8588 unsigned long flags
;
8591 if (sysctl_sched_rt_period
<= 0)
8595 * There's always some RT tasks in the root group
8596 * -- migration, kstopmachine etc..
8598 if (sysctl_sched_rt_runtime
== 0)
8601 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8602 for_each_possible_cpu(i
) {
8603 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8605 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8606 rt_rq
->rt_runtime
= global_rt_runtime();
8607 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8609 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8613 #endif /* CONFIG_RT_GROUP_SCHED */
8615 int sched_rt_handler(struct ctl_table
*table
, int write
,
8616 void __user
*buffer
, size_t *lenp
,
8620 int old_period
, old_runtime
;
8621 static DEFINE_MUTEX(mutex
);
8624 old_period
= sysctl_sched_rt_period
;
8625 old_runtime
= sysctl_sched_rt_runtime
;
8627 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8629 if (!ret
&& write
) {
8630 ret
= sched_rt_global_constraints();
8632 sysctl_sched_rt_period
= old_period
;
8633 sysctl_sched_rt_runtime
= old_runtime
;
8635 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8636 def_rt_bandwidth
.rt_period
=
8637 ns_to_ktime(global_rt_period());
8640 mutex_unlock(&mutex
);
8645 #ifdef CONFIG_CGROUP_SCHED
8647 /* return corresponding task_group object of a cgroup */
8648 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8650 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8651 struct task_group
, css
);
8654 static struct cgroup_subsys_state
*
8655 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8657 struct task_group
*tg
, *parent
;
8659 if (!cgrp
->parent
) {
8660 /* This is early initialization for the top cgroup */
8661 return &init_task_group
.css
;
8664 parent
= cgroup_tg(cgrp
->parent
);
8665 tg
= sched_create_group(parent
);
8667 return ERR_PTR(-ENOMEM
);
8673 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8675 struct task_group
*tg
= cgroup_tg(cgrp
);
8677 sched_destroy_group(tg
);
8681 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8683 #ifdef CONFIG_RT_GROUP_SCHED
8684 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8687 /* We don't support RT-tasks being in separate groups */
8688 if (tsk
->sched_class
!= &fair_sched_class
)
8695 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8696 struct task_struct
*tsk
, bool threadgroup
)
8698 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8702 struct task_struct
*c
;
8704 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8705 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8717 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8718 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8721 sched_move_task(tsk
);
8723 struct task_struct
*c
;
8725 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8732 #ifdef CONFIG_FAIR_GROUP_SCHED
8733 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8736 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8739 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8741 struct task_group
*tg
= cgroup_tg(cgrp
);
8743 return (u64
) tg
->shares
;
8745 #endif /* CONFIG_FAIR_GROUP_SCHED */
8747 #ifdef CONFIG_RT_GROUP_SCHED
8748 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8751 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8754 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8756 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8759 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8762 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8765 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8767 return sched_group_rt_period(cgroup_tg(cgrp
));
8769 #endif /* CONFIG_RT_GROUP_SCHED */
8771 static struct cftype cpu_files
[] = {
8772 #ifdef CONFIG_FAIR_GROUP_SCHED
8775 .read_u64
= cpu_shares_read_u64
,
8776 .write_u64
= cpu_shares_write_u64
,
8779 #ifdef CONFIG_RT_GROUP_SCHED
8781 .name
= "rt_runtime_us",
8782 .read_s64
= cpu_rt_runtime_read
,
8783 .write_s64
= cpu_rt_runtime_write
,
8786 .name
= "rt_period_us",
8787 .read_u64
= cpu_rt_period_read_uint
,
8788 .write_u64
= cpu_rt_period_write_uint
,
8793 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8795 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8798 struct cgroup_subsys cpu_cgroup_subsys
= {
8800 .create
= cpu_cgroup_create
,
8801 .destroy
= cpu_cgroup_destroy
,
8802 .can_attach
= cpu_cgroup_can_attach
,
8803 .attach
= cpu_cgroup_attach
,
8804 .populate
= cpu_cgroup_populate
,
8805 .subsys_id
= cpu_cgroup_subsys_id
,
8809 #endif /* CONFIG_CGROUP_SCHED */
8811 #ifdef CONFIG_CGROUP_CPUACCT
8814 * CPU accounting code for task groups.
8816 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8817 * (balbir@in.ibm.com).
8820 /* track cpu usage of a group of tasks and its child groups */
8822 struct cgroup_subsys_state css
;
8823 /* cpuusage holds pointer to a u64-type object on every cpu */
8824 u64 __percpu
*cpuusage
;
8825 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8826 struct cpuacct
*parent
;
8829 struct cgroup_subsys cpuacct_subsys
;
8831 /* return cpu accounting group corresponding to this container */
8832 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8834 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8835 struct cpuacct
, css
);
8838 /* return cpu accounting group to which this task belongs */
8839 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8841 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8842 struct cpuacct
, css
);
8845 /* create a new cpu accounting group */
8846 static struct cgroup_subsys_state
*cpuacct_create(
8847 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8849 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8855 ca
->cpuusage
= alloc_percpu(u64
);
8859 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8860 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8861 goto out_free_counters
;
8864 ca
->parent
= cgroup_ca(cgrp
->parent
);
8870 percpu_counter_destroy(&ca
->cpustat
[i
]);
8871 free_percpu(ca
->cpuusage
);
8875 return ERR_PTR(-ENOMEM
);
8878 /* destroy an existing cpu accounting group */
8880 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8882 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8885 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8886 percpu_counter_destroy(&ca
->cpustat
[i
]);
8887 free_percpu(ca
->cpuusage
);
8891 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8893 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8896 #ifndef CONFIG_64BIT
8898 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8900 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8902 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8910 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8912 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8914 #ifndef CONFIG_64BIT
8916 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8918 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8920 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8926 /* return total cpu usage (in nanoseconds) of a group */
8927 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8929 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8930 u64 totalcpuusage
= 0;
8933 for_each_present_cpu(i
)
8934 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8936 return totalcpuusage
;
8939 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8942 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8951 for_each_present_cpu(i
)
8952 cpuacct_cpuusage_write(ca
, i
, 0);
8958 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8961 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8965 for_each_present_cpu(i
) {
8966 percpu
= cpuacct_cpuusage_read(ca
, i
);
8967 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8969 seq_printf(m
, "\n");
8973 static const char *cpuacct_stat_desc
[] = {
8974 [CPUACCT_STAT_USER
] = "user",
8975 [CPUACCT_STAT_SYSTEM
] = "system",
8978 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8979 struct cgroup_map_cb
*cb
)
8981 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8984 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
8985 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
8986 val
= cputime64_to_clock_t(val
);
8987 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
8992 static struct cftype files
[] = {
8995 .read_u64
= cpuusage_read
,
8996 .write_u64
= cpuusage_write
,
8999 .name
= "usage_percpu",
9000 .read_seq_string
= cpuacct_percpu_seq_read
,
9004 .read_map
= cpuacct_stats_show
,
9008 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9010 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9014 * charge this task's execution time to its accounting group.
9016 * called with rq->lock held.
9018 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9023 if (unlikely(!cpuacct_subsys
.active
))
9026 cpu
= task_cpu(tsk
);
9032 for (; ca
; ca
= ca
->parent
) {
9033 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9034 *cpuusage
+= cputime
;
9041 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9042 * in cputime_t units. As a result, cpuacct_update_stats calls
9043 * percpu_counter_add with values large enough to always overflow the
9044 * per cpu batch limit causing bad SMP scalability.
9046 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9047 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9048 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9051 #define CPUACCT_BATCH \
9052 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9054 #define CPUACCT_BATCH 0
9058 * Charge the system/user time to the task's accounting group.
9060 static void cpuacct_update_stats(struct task_struct
*tsk
,
9061 enum cpuacct_stat_index idx
, cputime_t val
)
9064 int batch
= CPUACCT_BATCH
;
9066 if (unlikely(!cpuacct_subsys
.active
))
9073 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9079 struct cgroup_subsys cpuacct_subsys
= {
9081 .create
= cpuacct_create
,
9082 .destroy
= cpuacct_destroy
,
9083 .populate
= cpuacct_populate
,
9084 .subsys_id
= cpuacct_subsys_id
,
9086 #endif /* CONFIG_CGROUP_CPUACCT */
9090 int rcu_expedited_torture_stats(char *page
)
9094 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
9096 void synchronize_sched_expedited(void)
9099 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9101 #else /* #ifndef CONFIG_SMP */
9103 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
9104 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
9106 #define RCU_EXPEDITED_STATE_POST -2
9107 #define RCU_EXPEDITED_STATE_IDLE -1
9109 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
9111 int rcu_expedited_torture_stats(char *page
)
9116 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
9117 for_each_online_cpu(cpu
) {
9118 cnt
+= sprintf(&page
[cnt
], " %d:%d",
9119 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
9121 cnt
+= sprintf(&page
[cnt
], "\n");
9124 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
9126 static long synchronize_sched_expedited_count
;
9129 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9130 * approach to force grace period to end quickly. This consumes
9131 * significant time on all CPUs, and is thus not recommended for
9132 * any sort of common-case code.
9134 * Note that it is illegal to call this function while holding any
9135 * lock that is acquired by a CPU-hotplug notifier. Failing to
9136 * observe this restriction will result in deadlock.
9138 void synchronize_sched_expedited(void)
9141 unsigned long flags
;
9142 bool need_full_sync
= 0;
9144 struct migration_req
*req
;
9148 smp_mb(); /* ensure prior mod happens before capturing snap. */
9149 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
9151 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
9153 if (trycount
++ < 10)
9154 udelay(trycount
* num_online_cpus());
9156 synchronize_sched();
9159 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
9160 smp_mb(); /* ensure test happens before caller kfree */
9165 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
9166 for_each_online_cpu(cpu
) {
9168 req
= &per_cpu(rcu_migration_req
, cpu
);
9169 init_completion(&req
->done
);
9171 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
9172 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9173 list_add(&req
->list
, &rq
->migration_queue
);
9174 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9175 wake_up_process(rq
->migration_thread
);
9177 for_each_online_cpu(cpu
) {
9178 rcu_expedited_state
= cpu
;
9179 req
= &per_cpu(rcu_migration_req
, cpu
);
9181 wait_for_completion(&req
->done
);
9182 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9183 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
9185 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
9186 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9188 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
9189 synchronize_sched_expedited_count
++;
9190 mutex_unlock(&rcu_sched_expedited_mutex
);
9193 synchronize_sched();
9195 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9197 #endif /* #else #ifndef CONFIG_SMP */