block: add missing blk_queue_dead() checks
[linux-2.6.git] / block / blk-core.c
blob30add45a87efb1fdcfe066f22a6f48ab4790c1ed
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
36 #include "blk.h"
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43 * For the allocated request tables
45 static struct kmem_cache *request_cachep;
48 * For queue allocation
50 struct kmem_cache *blk_requestq_cachep;
53 * Controlling structure to kblockd
55 static struct workqueue_struct *kblockd_workqueue;
57 static void drive_stat_acct(struct request *rq, int new_io)
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
63 if (!blk_do_io_stat(rq))
64 return;
66 cpu = part_stat_lock();
68 if (!new_io) {
69 part = rq->part;
70 part_stat_inc(cpu, part, merges[rw]);
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 if (!hd_struct_try_get(part)) {
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
82 part = &rq->rq_disk->part0;
83 hd_struct_get(part);
85 part_round_stats(cpu, part);
86 part_inc_in_flight(part, rw);
87 rq->part = part;
90 part_stat_unlock();
93 void blk_queue_congestion_threshold(struct request_queue *q)
95 int nr;
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
115 * Will return NULL if the request queue cannot be located.
117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 struct backing_dev_info *ret = NULL;
120 struct request_queue *q = bdev_get_queue(bdev);
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
126 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 void blk_rq_init(struct request_queue *q, struct request *rq)
130 memset(rq, 0, sizeof(*rq));
132 INIT_LIST_HEAD(&rq->queuelist);
133 INIT_LIST_HEAD(&rq->timeout_list);
134 rq->cpu = -1;
135 rq->q = q;
136 rq->__sector = (sector_t) -1;
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
139 rq->cmd = rq->__cmd;
140 rq->cmd_len = BLK_MAX_CDB;
141 rq->tag = -1;
142 rq->ref_count = 1;
143 rq->start_time = jiffies;
144 set_start_time_ns(rq);
145 rq->part = NULL;
147 EXPORT_SYMBOL(blk_rq_init);
149 static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
177 void blk_dump_rq_flags(struct request *rq, char *msg)
179 int bit;
181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
192 printk(KERN_INFO " cdb: ");
193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
198 EXPORT_SYMBOL(blk_dump_rq_flags);
200 static void blk_delay_work(struct work_struct *work)
202 struct request_queue *q;
204 q = container_of(work, struct request_queue, delay_work.work);
205 spin_lock_irq(q->queue_lock);
206 __blk_run_queue(q);
207 spin_unlock_irq(q->queue_lock);
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
215 * Description:
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
220 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
222 queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 msecs_to_jiffies(msecs));
225 EXPORT_SYMBOL(blk_delay_queue);
228 * blk_start_queue - restart a previously stopped queue
229 * @q: The &struct request_queue in question
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 void blk_start_queue(struct request_queue *q)
238 WARN_ON(!irqs_disabled());
240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
241 __blk_run_queue(q);
243 EXPORT_SYMBOL(blk_start_queue);
246 * blk_stop_queue - stop a queue
247 * @q: The &struct request_queue in question
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 void blk_stop_queue(struct request_queue *q)
261 __cancel_delayed_work(&q->delay_work);
262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 EXPORT_SYMBOL(blk_stop_queue);
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
275 * that the callbacks might use. The caller must already have made sure
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
284 void blk_sync_queue(struct request_queue *q)
286 del_timer_sync(&q->timeout);
287 cancel_delayed_work_sync(&q->delay_work);
289 EXPORT_SYMBOL(blk_sync_queue);
292 * __blk_run_queue - run a single device queue
293 * @q: The queue to run
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
297 * held and interrupts disabled.
299 void __blk_run_queue(struct request_queue *q)
301 if (unlikely(blk_queue_stopped(q)))
302 return;
304 q->request_fn(q);
306 EXPORT_SYMBOL(__blk_run_queue);
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us.
316 void blk_run_queue_async(struct request_queue *q)
318 if (likely(!blk_queue_stopped(q))) {
319 __cancel_delayed_work(&q->delay_work);
320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
323 EXPORT_SYMBOL(blk_run_queue_async);
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
333 void blk_run_queue(struct request_queue *q)
335 unsigned long flags;
337 spin_lock_irqsave(q->queue_lock, flags);
338 __blk_run_queue(q);
339 spin_unlock_irqrestore(q->queue_lock, flags);
341 EXPORT_SYMBOL(blk_run_queue);
343 void blk_put_queue(struct request_queue *q)
345 kobject_put(&q->kobj);
347 EXPORT_SYMBOL(blk_put_queue);
350 * blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
358 void blk_drain_queue(struct request_queue *q, bool drain_all)
360 while (true) {
361 bool drain = false;
362 int i;
364 spin_lock_irq(q->queue_lock);
366 elv_drain_elevator(q);
367 if (drain_all)
368 blk_throtl_drain(q);
370 __blk_run_queue(q);
372 drain |= q->rq.elvpriv;
375 * Unfortunately, requests are queued at and tracked from
376 * multiple places and there's no single counter which can
377 * be drained. Check all the queues and counters.
379 if (drain_all) {
380 drain |= !list_empty(&q->queue_head);
381 for (i = 0; i < 2; i++) {
382 drain |= q->rq.count[i];
383 drain |= q->in_flight[i];
384 drain |= !list_empty(&q->flush_queue[i]);
388 spin_unlock_irq(q->queue_lock);
390 if (!drain)
391 break;
392 msleep(10);
397 * blk_cleanup_queue - shutdown a request queue
398 * @q: request queue to shutdown
400 * Mark @q DEAD, drain all pending requests, destroy and put it. All
401 * future requests will be failed immediately with -ENODEV.
403 void blk_cleanup_queue(struct request_queue *q)
405 spinlock_t *lock = q->queue_lock;
407 /* mark @q DEAD, no new request or merges will be allowed afterwards */
408 mutex_lock(&q->sysfs_lock);
409 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
411 spin_lock_irq(lock);
412 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
413 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
414 queue_flag_set(QUEUE_FLAG_DEAD, q);
416 if (q->queue_lock != &q->__queue_lock)
417 q->queue_lock = &q->__queue_lock;
419 spin_unlock_irq(lock);
420 mutex_unlock(&q->sysfs_lock);
423 * Drain all requests queued before DEAD marking. The caller might
424 * be trying to tear down @q before its elevator is initialized, in
425 * which case we don't want to call into draining.
427 if (q->elevator)
428 blk_drain_queue(q, true);
430 /* @q won't process any more request, flush async actions */
431 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
432 blk_sync_queue(q);
434 /* @q is and will stay empty, shutdown and put */
435 blk_put_queue(q);
437 EXPORT_SYMBOL(blk_cleanup_queue);
439 static int blk_init_free_list(struct request_queue *q)
441 struct request_list *rl = &q->rq;
443 if (unlikely(rl->rq_pool))
444 return 0;
446 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
447 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
448 rl->elvpriv = 0;
449 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
450 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
452 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
453 mempool_free_slab, request_cachep, q->node);
455 if (!rl->rq_pool)
456 return -ENOMEM;
458 return 0;
461 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
463 return blk_alloc_queue_node(gfp_mask, -1);
465 EXPORT_SYMBOL(blk_alloc_queue);
467 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
469 struct request_queue *q;
470 int err;
472 q = kmem_cache_alloc_node(blk_requestq_cachep,
473 gfp_mask | __GFP_ZERO, node_id);
474 if (!q)
475 return NULL;
477 q->backing_dev_info.ra_pages =
478 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
479 q->backing_dev_info.state = 0;
480 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
481 q->backing_dev_info.name = "block";
483 err = bdi_init(&q->backing_dev_info);
484 if (err) {
485 kmem_cache_free(blk_requestq_cachep, q);
486 return NULL;
489 if (blk_throtl_init(q)) {
490 kmem_cache_free(blk_requestq_cachep, q);
491 return NULL;
494 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
495 laptop_mode_timer_fn, (unsigned long) q);
496 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
497 INIT_LIST_HEAD(&q->timeout_list);
498 INIT_LIST_HEAD(&q->flush_queue[0]);
499 INIT_LIST_HEAD(&q->flush_queue[1]);
500 INIT_LIST_HEAD(&q->flush_data_in_flight);
501 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
503 kobject_init(&q->kobj, &blk_queue_ktype);
505 mutex_init(&q->sysfs_lock);
506 spin_lock_init(&q->__queue_lock);
509 * By default initialize queue_lock to internal lock and driver can
510 * override it later if need be.
512 q->queue_lock = &q->__queue_lock;
514 return q;
516 EXPORT_SYMBOL(blk_alloc_queue_node);
519 * blk_init_queue - prepare a request queue for use with a block device
520 * @rfn: The function to be called to process requests that have been
521 * placed on the queue.
522 * @lock: Request queue spin lock
524 * Description:
525 * If a block device wishes to use the standard request handling procedures,
526 * which sorts requests and coalesces adjacent requests, then it must
527 * call blk_init_queue(). The function @rfn will be called when there
528 * are requests on the queue that need to be processed. If the device
529 * supports plugging, then @rfn may not be called immediately when requests
530 * are available on the queue, but may be called at some time later instead.
531 * Plugged queues are generally unplugged when a buffer belonging to one
532 * of the requests on the queue is needed, or due to memory pressure.
534 * @rfn is not required, or even expected, to remove all requests off the
535 * queue, but only as many as it can handle at a time. If it does leave
536 * requests on the queue, it is responsible for arranging that the requests
537 * get dealt with eventually.
539 * The queue spin lock must be held while manipulating the requests on the
540 * request queue; this lock will be taken also from interrupt context, so irq
541 * disabling is needed for it.
543 * Function returns a pointer to the initialized request queue, or %NULL if
544 * it didn't succeed.
546 * Note:
547 * blk_init_queue() must be paired with a blk_cleanup_queue() call
548 * when the block device is deactivated (such as at module unload).
551 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
553 return blk_init_queue_node(rfn, lock, -1);
555 EXPORT_SYMBOL(blk_init_queue);
557 struct request_queue *
558 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
560 struct request_queue *uninit_q, *q;
562 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
563 if (!uninit_q)
564 return NULL;
566 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
567 if (!q)
568 blk_cleanup_queue(uninit_q);
570 return q;
572 EXPORT_SYMBOL(blk_init_queue_node);
574 struct request_queue *
575 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
576 spinlock_t *lock)
578 return blk_init_allocated_queue_node(q, rfn, lock, -1);
580 EXPORT_SYMBOL(blk_init_allocated_queue);
582 struct request_queue *
583 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
584 spinlock_t *lock, int node_id)
586 if (!q)
587 return NULL;
589 q->node = node_id;
590 if (blk_init_free_list(q))
591 return NULL;
593 q->request_fn = rfn;
594 q->prep_rq_fn = NULL;
595 q->unprep_rq_fn = NULL;
596 q->queue_flags = QUEUE_FLAG_DEFAULT;
598 /* Override internal queue lock with supplied lock pointer */
599 if (lock)
600 q->queue_lock = lock;
603 * This also sets hw/phys segments, boundary and size
605 blk_queue_make_request(q, blk_queue_bio);
607 q->sg_reserved_size = INT_MAX;
610 * all done
612 if (!elevator_init(q, NULL)) {
613 blk_queue_congestion_threshold(q);
614 return q;
617 return NULL;
619 EXPORT_SYMBOL(blk_init_allocated_queue_node);
621 int blk_get_queue(struct request_queue *q)
623 if (likely(!blk_queue_dead(q))) {
624 kobject_get(&q->kobj);
625 return 0;
628 return 1;
630 EXPORT_SYMBOL(blk_get_queue);
632 static inline void blk_free_request(struct request_queue *q, struct request *rq)
634 if (rq->cmd_flags & REQ_ELVPRIV)
635 elv_put_request(q, rq);
636 mempool_free(rq, q->rq.rq_pool);
639 static struct request *
640 blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
642 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
644 if (!rq)
645 return NULL;
647 blk_rq_init(q, rq);
649 rq->cmd_flags = flags | REQ_ALLOCED;
651 if ((flags & REQ_ELVPRIV) &&
652 unlikely(elv_set_request(q, rq, gfp_mask))) {
653 mempool_free(rq, q->rq.rq_pool);
654 return NULL;
657 return rq;
661 * ioc_batching returns true if the ioc is a valid batching request and
662 * should be given priority access to a request.
664 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
666 if (!ioc)
667 return 0;
670 * Make sure the process is able to allocate at least 1 request
671 * even if the batch times out, otherwise we could theoretically
672 * lose wakeups.
674 return ioc->nr_batch_requests == q->nr_batching ||
675 (ioc->nr_batch_requests > 0
676 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
680 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
681 * will cause the process to be a "batcher" on all queues in the system. This
682 * is the behaviour we want though - once it gets a wakeup it should be given
683 * a nice run.
685 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
687 if (!ioc || ioc_batching(q, ioc))
688 return;
690 ioc->nr_batch_requests = q->nr_batching;
691 ioc->last_waited = jiffies;
694 static void __freed_request(struct request_queue *q, int sync)
696 struct request_list *rl = &q->rq;
698 if (rl->count[sync] < queue_congestion_off_threshold(q))
699 blk_clear_queue_congested(q, sync);
701 if (rl->count[sync] + 1 <= q->nr_requests) {
702 if (waitqueue_active(&rl->wait[sync]))
703 wake_up(&rl->wait[sync]);
705 blk_clear_queue_full(q, sync);
710 * A request has just been released. Account for it, update the full and
711 * congestion status, wake up any waiters. Called under q->queue_lock.
713 static void freed_request(struct request_queue *q, unsigned int flags)
715 struct request_list *rl = &q->rq;
716 int sync = rw_is_sync(flags);
718 rl->count[sync]--;
719 if (flags & REQ_ELVPRIV)
720 rl->elvpriv--;
722 __freed_request(q, sync);
724 if (unlikely(rl->starved[sync ^ 1]))
725 __freed_request(q, sync ^ 1);
729 * Determine if elevator data should be initialized when allocating the
730 * request associated with @bio.
732 static bool blk_rq_should_init_elevator(struct bio *bio)
734 if (!bio)
735 return true;
738 * Flush requests do not use the elevator so skip initialization.
739 * This allows a request to share the flush and elevator data.
741 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
742 return false;
744 return true;
748 * get_request - get a free request
749 * @q: request_queue to allocate request from
750 * @rw_flags: RW and SYNC flags
751 * @bio: bio to allocate request for (can be %NULL)
752 * @gfp_mask: allocation mask
754 * Get a free request from @q. This function may fail under memory
755 * pressure or if @q is dead.
757 * Must be callled with @q->queue_lock held and,
758 * Returns %NULL on failure, with @q->queue_lock held.
759 * Returns !%NULL on success, with @q->queue_lock *not held*.
761 static struct request *get_request(struct request_queue *q, int rw_flags,
762 struct bio *bio, gfp_t gfp_mask)
764 struct request *rq = NULL;
765 struct request_list *rl = &q->rq;
766 struct io_context *ioc = NULL;
767 const bool is_sync = rw_is_sync(rw_flags) != 0;
768 int may_queue;
770 if (unlikely(blk_queue_dead(q)))
771 return NULL;
773 may_queue = elv_may_queue(q, rw_flags);
774 if (may_queue == ELV_MQUEUE_NO)
775 goto rq_starved;
777 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
778 if (rl->count[is_sync]+1 >= q->nr_requests) {
779 ioc = current_io_context(GFP_ATOMIC, q->node);
781 * The queue will fill after this allocation, so set
782 * it as full, and mark this process as "batching".
783 * This process will be allowed to complete a batch of
784 * requests, others will be blocked.
786 if (!blk_queue_full(q, is_sync)) {
787 ioc_set_batching(q, ioc);
788 blk_set_queue_full(q, is_sync);
789 } else {
790 if (may_queue != ELV_MQUEUE_MUST
791 && !ioc_batching(q, ioc)) {
793 * The queue is full and the allocating
794 * process is not a "batcher", and not
795 * exempted by the IO scheduler
797 goto out;
801 blk_set_queue_congested(q, is_sync);
805 * Only allow batching queuers to allocate up to 50% over the defined
806 * limit of requests, otherwise we could have thousands of requests
807 * allocated with any setting of ->nr_requests
809 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
810 goto out;
812 rl->count[is_sync]++;
813 rl->starved[is_sync] = 0;
815 if (blk_rq_should_init_elevator(bio) &&
816 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
817 rw_flags |= REQ_ELVPRIV;
818 rl->elvpriv++;
821 if (blk_queue_io_stat(q))
822 rw_flags |= REQ_IO_STAT;
823 spin_unlock_irq(q->queue_lock);
825 rq = blk_alloc_request(q, rw_flags, gfp_mask);
826 if (unlikely(!rq)) {
828 * Allocation failed presumably due to memory. Undo anything
829 * we might have messed up.
831 * Allocating task should really be put onto the front of the
832 * wait queue, but this is pretty rare.
834 spin_lock_irq(q->queue_lock);
835 freed_request(q, rw_flags);
838 * in the very unlikely event that allocation failed and no
839 * requests for this direction was pending, mark us starved
840 * so that freeing of a request in the other direction will
841 * notice us. another possible fix would be to split the
842 * rq mempool into READ and WRITE
844 rq_starved:
845 if (unlikely(rl->count[is_sync] == 0))
846 rl->starved[is_sync] = 1;
848 goto out;
852 * ioc may be NULL here, and ioc_batching will be false. That's
853 * OK, if the queue is under the request limit then requests need
854 * not count toward the nr_batch_requests limit. There will always
855 * be some limit enforced by BLK_BATCH_TIME.
857 if (ioc_batching(q, ioc))
858 ioc->nr_batch_requests--;
860 trace_block_getrq(q, bio, rw_flags & 1);
861 out:
862 return rq;
866 * get_request_wait - get a free request with retry
867 * @q: request_queue to allocate request from
868 * @rw_flags: RW and SYNC flags
869 * @bio: bio to allocate request for (can be %NULL)
871 * Get a free request from @q. This function keeps retrying under memory
872 * pressure and fails iff @q is dead.
874 * Must be callled with @q->queue_lock held and,
875 * Returns %NULL on failure, with @q->queue_lock held.
876 * Returns !%NULL on success, with @q->queue_lock *not held*.
878 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
879 struct bio *bio)
881 const bool is_sync = rw_is_sync(rw_flags) != 0;
882 struct request *rq;
884 rq = get_request(q, rw_flags, bio, GFP_NOIO);
885 while (!rq) {
886 DEFINE_WAIT(wait);
887 struct io_context *ioc;
888 struct request_list *rl = &q->rq;
890 if (unlikely(blk_queue_dead(q)))
891 return NULL;
893 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
894 TASK_UNINTERRUPTIBLE);
896 trace_block_sleeprq(q, bio, rw_flags & 1);
898 spin_unlock_irq(q->queue_lock);
899 io_schedule();
902 * After sleeping, we become a "batching" process and
903 * will be able to allocate at least one request, and
904 * up to a big batch of them for a small period time.
905 * See ioc_batching, ioc_set_batching
907 ioc = current_io_context(GFP_NOIO, q->node);
908 ioc_set_batching(q, ioc);
910 spin_lock_irq(q->queue_lock);
911 finish_wait(&rl->wait[is_sync], &wait);
913 rq = get_request(q, rw_flags, bio, GFP_NOIO);
916 return rq;
919 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
921 struct request *rq;
923 BUG_ON(rw != READ && rw != WRITE);
925 spin_lock_irq(q->queue_lock);
926 if (gfp_mask & __GFP_WAIT)
927 rq = get_request_wait(q, rw, NULL);
928 else
929 rq = get_request(q, rw, NULL, gfp_mask);
930 if (!rq)
931 spin_unlock_irq(q->queue_lock);
932 /* q->queue_lock is unlocked at this point */
934 return rq;
936 EXPORT_SYMBOL(blk_get_request);
939 * blk_make_request - given a bio, allocate a corresponding struct request.
940 * @q: target request queue
941 * @bio: The bio describing the memory mappings that will be submitted for IO.
942 * It may be a chained-bio properly constructed by block/bio layer.
943 * @gfp_mask: gfp flags to be used for memory allocation
945 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
946 * type commands. Where the struct request needs to be farther initialized by
947 * the caller. It is passed a &struct bio, which describes the memory info of
948 * the I/O transfer.
950 * The caller of blk_make_request must make sure that bi_io_vec
951 * are set to describe the memory buffers. That bio_data_dir() will return
952 * the needed direction of the request. (And all bio's in the passed bio-chain
953 * are properly set accordingly)
955 * If called under none-sleepable conditions, mapped bio buffers must not
956 * need bouncing, by calling the appropriate masked or flagged allocator,
957 * suitable for the target device. Otherwise the call to blk_queue_bounce will
958 * BUG.
960 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
961 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
962 * anything but the first bio in the chain. Otherwise you risk waiting for IO
963 * completion of a bio that hasn't been submitted yet, thus resulting in a
964 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
965 * of bio_alloc(), as that avoids the mempool deadlock.
966 * If possible a big IO should be split into smaller parts when allocation
967 * fails. Partial allocation should not be an error, or you risk a live-lock.
969 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
970 gfp_t gfp_mask)
972 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
974 if (unlikely(!rq))
975 return ERR_PTR(-ENOMEM);
977 for_each_bio(bio) {
978 struct bio *bounce_bio = bio;
979 int ret;
981 blk_queue_bounce(q, &bounce_bio);
982 ret = blk_rq_append_bio(q, rq, bounce_bio);
983 if (unlikely(ret)) {
984 blk_put_request(rq);
985 return ERR_PTR(ret);
989 return rq;
991 EXPORT_SYMBOL(blk_make_request);
994 * blk_requeue_request - put a request back on queue
995 * @q: request queue where request should be inserted
996 * @rq: request to be inserted
998 * Description:
999 * Drivers often keep queueing requests until the hardware cannot accept
1000 * more, when that condition happens we need to put the request back
1001 * on the queue. Must be called with queue lock held.
1003 void blk_requeue_request(struct request_queue *q, struct request *rq)
1005 blk_delete_timer(rq);
1006 blk_clear_rq_complete(rq);
1007 trace_block_rq_requeue(q, rq);
1009 if (blk_rq_tagged(rq))
1010 blk_queue_end_tag(q, rq);
1012 BUG_ON(blk_queued_rq(rq));
1014 elv_requeue_request(q, rq);
1016 EXPORT_SYMBOL(blk_requeue_request);
1018 static void add_acct_request(struct request_queue *q, struct request *rq,
1019 int where)
1021 drive_stat_acct(rq, 1);
1022 __elv_add_request(q, rq, where);
1025 static void part_round_stats_single(int cpu, struct hd_struct *part,
1026 unsigned long now)
1028 if (now == part->stamp)
1029 return;
1031 if (part_in_flight(part)) {
1032 __part_stat_add(cpu, part, time_in_queue,
1033 part_in_flight(part) * (now - part->stamp));
1034 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1036 part->stamp = now;
1040 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1041 * @cpu: cpu number for stats access
1042 * @part: target partition
1044 * The average IO queue length and utilisation statistics are maintained
1045 * by observing the current state of the queue length and the amount of
1046 * time it has been in this state for.
1048 * Normally, that accounting is done on IO completion, but that can result
1049 * in more than a second's worth of IO being accounted for within any one
1050 * second, leading to >100% utilisation. To deal with that, we call this
1051 * function to do a round-off before returning the results when reading
1052 * /proc/diskstats. This accounts immediately for all queue usage up to
1053 * the current jiffies and restarts the counters again.
1055 void part_round_stats(int cpu, struct hd_struct *part)
1057 unsigned long now = jiffies;
1059 if (part->partno)
1060 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1061 part_round_stats_single(cpu, part, now);
1063 EXPORT_SYMBOL_GPL(part_round_stats);
1066 * queue lock must be held
1068 void __blk_put_request(struct request_queue *q, struct request *req)
1070 if (unlikely(!q))
1071 return;
1072 if (unlikely(--req->ref_count))
1073 return;
1075 elv_completed_request(q, req);
1077 /* this is a bio leak */
1078 WARN_ON(req->bio != NULL);
1081 * Request may not have originated from ll_rw_blk. if not,
1082 * it didn't come out of our reserved rq pools
1084 if (req->cmd_flags & REQ_ALLOCED) {
1085 unsigned int flags = req->cmd_flags;
1087 BUG_ON(!list_empty(&req->queuelist));
1088 BUG_ON(!hlist_unhashed(&req->hash));
1090 blk_free_request(q, req);
1091 freed_request(q, flags);
1094 EXPORT_SYMBOL_GPL(__blk_put_request);
1096 void blk_put_request(struct request *req)
1098 unsigned long flags;
1099 struct request_queue *q = req->q;
1101 spin_lock_irqsave(q->queue_lock, flags);
1102 __blk_put_request(q, req);
1103 spin_unlock_irqrestore(q->queue_lock, flags);
1105 EXPORT_SYMBOL(blk_put_request);
1108 * blk_add_request_payload - add a payload to a request
1109 * @rq: request to update
1110 * @page: page backing the payload
1111 * @len: length of the payload.
1113 * This allows to later add a payload to an already submitted request by
1114 * a block driver. The driver needs to take care of freeing the payload
1115 * itself.
1117 * Note that this is a quite horrible hack and nothing but handling of
1118 * discard requests should ever use it.
1120 void blk_add_request_payload(struct request *rq, struct page *page,
1121 unsigned int len)
1123 struct bio *bio = rq->bio;
1125 bio->bi_io_vec->bv_page = page;
1126 bio->bi_io_vec->bv_offset = 0;
1127 bio->bi_io_vec->bv_len = len;
1129 bio->bi_size = len;
1130 bio->bi_vcnt = 1;
1131 bio->bi_phys_segments = 1;
1133 rq->__data_len = rq->resid_len = len;
1134 rq->nr_phys_segments = 1;
1135 rq->buffer = bio_data(bio);
1137 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1139 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1140 struct bio *bio)
1142 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1144 if (!ll_back_merge_fn(q, req, bio))
1145 return false;
1147 trace_block_bio_backmerge(q, bio);
1149 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1150 blk_rq_set_mixed_merge(req);
1152 req->biotail->bi_next = bio;
1153 req->biotail = bio;
1154 req->__data_len += bio->bi_size;
1155 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1157 drive_stat_acct(req, 0);
1158 elv_bio_merged(q, req, bio);
1159 return true;
1162 static bool bio_attempt_front_merge(struct request_queue *q,
1163 struct request *req, struct bio *bio)
1165 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1167 if (!ll_front_merge_fn(q, req, bio))
1168 return false;
1170 trace_block_bio_frontmerge(q, bio);
1172 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1173 blk_rq_set_mixed_merge(req);
1175 bio->bi_next = req->bio;
1176 req->bio = bio;
1179 * may not be valid. if the low level driver said
1180 * it didn't need a bounce buffer then it better
1181 * not touch req->buffer either...
1183 req->buffer = bio_data(bio);
1184 req->__sector = bio->bi_sector;
1185 req->__data_len += bio->bi_size;
1186 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1188 drive_stat_acct(req, 0);
1189 elv_bio_merged(q, req, bio);
1190 return true;
1194 * attempt_plug_merge - try to merge with %current's plugged list
1195 * @q: request_queue new bio is being queued at
1196 * @bio: new bio being queued
1197 * @request_count: out parameter for number of traversed plugged requests
1199 * Determine whether @bio being queued on @q can be merged with a request
1200 * on %current's plugged list. Returns %true if merge was successful,
1201 * otherwise %false.
1203 * This function is called without @q->queue_lock; however, elevator is
1204 * accessed iff there already are requests on the plugged list which in
1205 * turn guarantees validity of the elevator.
1207 * Note that, on successful merge, elevator operation
1208 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1209 * must be ready for this.
1211 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1212 unsigned int *request_count)
1214 struct blk_plug *plug;
1215 struct request *rq;
1216 bool ret = false;
1218 plug = current->plug;
1219 if (!plug)
1220 goto out;
1221 *request_count = 0;
1223 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1224 int el_ret;
1226 (*request_count)++;
1228 if (rq->q != q)
1229 continue;
1231 el_ret = elv_try_merge(rq, bio);
1232 if (el_ret == ELEVATOR_BACK_MERGE) {
1233 ret = bio_attempt_back_merge(q, rq, bio);
1234 if (ret)
1235 break;
1236 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1237 ret = bio_attempt_front_merge(q, rq, bio);
1238 if (ret)
1239 break;
1242 out:
1243 return ret;
1246 void init_request_from_bio(struct request *req, struct bio *bio)
1248 req->cmd_type = REQ_TYPE_FS;
1250 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1251 if (bio->bi_rw & REQ_RAHEAD)
1252 req->cmd_flags |= REQ_FAILFAST_MASK;
1254 req->errors = 0;
1255 req->__sector = bio->bi_sector;
1256 req->ioprio = bio_prio(bio);
1257 blk_rq_bio_prep(req->q, req, bio);
1260 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1262 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1263 struct blk_plug *plug;
1264 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1265 struct request *req;
1266 unsigned int request_count = 0;
1269 * low level driver can indicate that it wants pages above a
1270 * certain limit bounced to low memory (ie for highmem, or even
1271 * ISA dma in theory)
1273 blk_queue_bounce(q, &bio);
1275 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1276 spin_lock_irq(q->queue_lock);
1277 where = ELEVATOR_INSERT_FLUSH;
1278 goto get_rq;
1282 * Check if we can merge with the plugged list before grabbing
1283 * any locks.
1285 if (attempt_plug_merge(q, bio, &request_count))
1286 return;
1288 spin_lock_irq(q->queue_lock);
1290 el_ret = elv_merge(q, &req, bio);
1291 if (el_ret == ELEVATOR_BACK_MERGE) {
1292 if (bio_attempt_back_merge(q, req, bio)) {
1293 if (!attempt_back_merge(q, req))
1294 elv_merged_request(q, req, el_ret);
1295 goto out_unlock;
1297 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1298 if (bio_attempt_front_merge(q, req, bio)) {
1299 if (!attempt_front_merge(q, req))
1300 elv_merged_request(q, req, el_ret);
1301 goto out_unlock;
1305 get_rq:
1307 * This sync check and mask will be re-done in init_request_from_bio(),
1308 * but we need to set it earlier to expose the sync flag to the
1309 * rq allocator and io schedulers.
1311 rw_flags = bio_data_dir(bio);
1312 if (sync)
1313 rw_flags |= REQ_SYNC;
1316 * Grab a free request. This is might sleep but can not fail.
1317 * Returns with the queue unlocked.
1319 req = get_request_wait(q, rw_flags, bio);
1320 if (unlikely(!req)) {
1321 bio_endio(bio, -ENODEV); /* @q is dead */
1322 goto out_unlock;
1326 * After dropping the lock and possibly sleeping here, our request
1327 * may now be mergeable after it had proven unmergeable (above).
1328 * We don't worry about that case for efficiency. It won't happen
1329 * often, and the elevators are able to handle it.
1331 init_request_from_bio(req, bio);
1333 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1334 req->cpu = raw_smp_processor_id();
1336 plug = current->plug;
1337 if (plug) {
1339 * If this is the first request added after a plug, fire
1340 * of a plug trace. If others have been added before, check
1341 * if we have multiple devices in this plug. If so, make a
1342 * note to sort the list before dispatch.
1344 if (list_empty(&plug->list))
1345 trace_block_plug(q);
1346 else {
1347 if (!plug->should_sort) {
1348 struct request *__rq;
1350 __rq = list_entry_rq(plug->list.prev);
1351 if (__rq->q != q)
1352 plug->should_sort = 1;
1354 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1355 blk_flush_plug_list(plug, false);
1356 trace_block_plug(q);
1359 list_add_tail(&req->queuelist, &plug->list);
1360 drive_stat_acct(req, 1);
1361 } else {
1362 spin_lock_irq(q->queue_lock);
1363 add_acct_request(q, req, where);
1364 __blk_run_queue(q);
1365 out_unlock:
1366 spin_unlock_irq(q->queue_lock);
1369 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1372 * If bio->bi_dev is a partition, remap the location
1374 static inline void blk_partition_remap(struct bio *bio)
1376 struct block_device *bdev = bio->bi_bdev;
1378 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1379 struct hd_struct *p = bdev->bd_part;
1381 bio->bi_sector += p->start_sect;
1382 bio->bi_bdev = bdev->bd_contains;
1384 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1385 bdev->bd_dev,
1386 bio->bi_sector - p->start_sect);
1390 static void handle_bad_sector(struct bio *bio)
1392 char b[BDEVNAME_SIZE];
1394 printk(KERN_INFO "attempt to access beyond end of device\n");
1395 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1396 bdevname(bio->bi_bdev, b),
1397 bio->bi_rw,
1398 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1399 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1401 set_bit(BIO_EOF, &bio->bi_flags);
1404 #ifdef CONFIG_FAIL_MAKE_REQUEST
1406 static DECLARE_FAULT_ATTR(fail_make_request);
1408 static int __init setup_fail_make_request(char *str)
1410 return setup_fault_attr(&fail_make_request, str);
1412 __setup("fail_make_request=", setup_fail_make_request);
1414 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1416 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1419 static int __init fail_make_request_debugfs(void)
1421 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1422 NULL, &fail_make_request);
1424 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1427 late_initcall(fail_make_request_debugfs);
1429 #else /* CONFIG_FAIL_MAKE_REQUEST */
1431 static inline bool should_fail_request(struct hd_struct *part,
1432 unsigned int bytes)
1434 return false;
1437 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1440 * Check whether this bio extends beyond the end of the device.
1442 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1444 sector_t maxsector;
1446 if (!nr_sectors)
1447 return 0;
1449 /* Test device or partition size, when known. */
1450 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1451 if (maxsector) {
1452 sector_t sector = bio->bi_sector;
1454 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1456 * This may well happen - the kernel calls bread()
1457 * without checking the size of the device, e.g., when
1458 * mounting a device.
1460 handle_bad_sector(bio);
1461 return 1;
1465 return 0;
1468 static noinline_for_stack bool
1469 generic_make_request_checks(struct bio *bio)
1471 struct request_queue *q;
1472 int nr_sectors = bio_sectors(bio);
1473 int err = -EIO;
1474 char b[BDEVNAME_SIZE];
1475 struct hd_struct *part;
1477 might_sleep();
1479 if (bio_check_eod(bio, nr_sectors))
1480 goto end_io;
1482 q = bdev_get_queue(bio->bi_bdev);
1483 if (unlikely(!q)) {
1484 printk(KERN_ERR
1485 "generic_make_request: Trying to access "
1486 "nonexistent block-device %s (%Lu)\n",
1487 bdevname(bio->bi_bdev, b),
1488 (long long) bio->bi_sector);
1489 goto end_io;
1492 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1493 nr_sectors > queue_max_hw_sectors(q))) {
1494 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1495 bdevname(bio->bi_bdev, b),
1496 bio_sectors(bio),
1497 queue_max_hw_sectors(q));
1498 goto end_io;
1501 part = bio->bi_bdev->bd_part;
1502 if (should_fail_request(part, bio->bi_size) ||
1503 should_fail_request(&part_to_disk(part)->part0,
1504 bio->bi_size))
1505 goto end_io;
1508 * If this device has partitions, remap block n
1509 * of partition p to block n+start(p) of the disk.
1511 blk_partition_remap(bio);
1513 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1514 goto end_io;
1516 if (bio_check_eod(bio, nr_sectors))
1517 goto end_io;
1520 * Filter flush bio's early so that make_request based
1521 * drivers without flush support don't have to worry
1522 * about them.
1524 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1525 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1526 if (!nr_sectors) {
1527 err = 0;
1528 goto end_io;
1532 if ((bio->bi_rw & REQ_DISCARD) &&
1533 (!blk_queue_discard(q) ||
1534 ((bio->bi_rw & REQ_SECURE) &&
1535 !blk_queue_secdiscard(q)))) {
1536 err = -EOPNOTSUPP;
1537 goto end_io;
1540 if (blk_throtl_bio(q, bio))
1541 return false; /* throttled, will be resubmitted later */
1543 trace_block_bio_queue(q, bio);
1544 return true;
1546 end_io:
1547 bio_endio(bio, err);
1548 return false;
1552 * generic_make_request - hand a buffer to its device driver for I/O
1553 * @bio: The bio describing the location in memory and on the device.
1555 * generic_make_request() is used to make I/O requests of block
1556 * devices. It is passed a &struct bio, which describes the I/O that needs
1557 * to be done.
1559 * generic_make_request() does not return any status. The
1560 * success/failure status of the request, along with notification of
1561 * completion, is delivered asynchronously through the bio->bi_end_io
1562 * function described (one day) else where.
1564 * The caller of generic_make_request must make sure that bi_io_vec
1565 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1566 * set to describe the device address, and the
1567 * bi_end_io and optionally bi_private are set to describe how
1568 * completion notification should be signaled.
1570 * generic_make_request and the drivers it calls may use bi_next if this
1571 * bio happens to be merged with someone else, and may resubmit the bio to
1572 * a lower device by calling into generic_make_request recursively, which
1573 * means the bio should NOT be touched after the call to ->make_request_fn.
1575 void generic_make_request(struct bio *bio)
1577 struct bio_list bio_list_on_stack;
1579 if (!generic_make_request_checks(bio))
1580 return;
1583 * We only want one ->make_request_fn to be active at a time, else
1584 * stack usage with stacked devices could be a problem. So use
1585 * current->bio_list to keep a list of requests submited by a
1586 * make_request_fn function. current->bio_list is also used as a
1587 * flag to say if generic_make_request is currently active in this
1588 * task or not. If it is NULL, then no make_request is active. If
1589 * it is non-NULL, then a make_request is active, and new requests
1590 * should be added at the tail
1592 if (current->bio_list) {
1593 bio_list_add(current->bio_list, bio);
1594 return;
1597 /* following loop may be a bit non-obvious, and so deserves some
1598 * explanation.
1599 * Before entering the loop, bio->bi_next is NULL (as all callers
1600 * ensure that) so we have a list with a single bio.
1601 * We pretend that we have just taken it off a longer list, so
1602 * we assign bio_list to a pointer to the bio_list_on_stack,
1603 * thus initialising the bio_list of new bios to be
1604 * added. ->make_request() may indeed add some more bios
1605 * through a recursive call to generic_make_request. If it
1606 * did, we find a non-NULL value in bio_list and re-enter the loop
1607 * from the top. In this case we really did just take the bio
1608 * of the top of the list (no pretending) and so remove it from
1609 * bio_list, and call into ->make_request() again.
1611 BUG_ON(bio->bi_next);
1612 bio_list_init(&bio_list_on_stack);
1613 current->bio_list = &bio_list_on_stack;
1614 do {
1615 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1617 q->make_request_fn(q, bio);
1619 bio = bio_list_pop(current->bio_list);
1620 } while (bio);
1621 current->bio_list = NULL; /* deactivate */
1623 EXPORT_SYMBOL(generic_make_request);
1626 * submit_bio - submit a bio to the block device layer for I/O
1627 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1628 * @bio: The &struct bio which describes the I/O
1630 * submit_bio() is very similar in purpose to generic_make_request(), and
1631 * uses that function to do most of the work. Both are fairly rough
1632 * interfaces; @bio must be presetup and ready for I/O.
1635 void submit_bio(int rw, struct bio *bio)
1637 int count = bio_sectors(bio);
1639 bio->bi_rw |= rw;
1642 * If it's a regular read/write or a barrier with data attached,
1643 * go through the normal accounting stuff before submission.
1645 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1646 if (rw & WRITE) {
1647 count_vm_events(PGPGOUT, count);
1648 } else {
1649 task_io_account_read(bio->bi_size);
1650 count_vm_events(PGPGIN, count);
1653 if (unlikely(block_dump)) {
1654 char b[BDEVNAME_SIZE];
1655 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1656 current->comm, task_pid_nr(current),
1657 (rw & WRITE) ? "WRITE" : "READ",
1658 (unsigned long long)bio->bi_sector,
1659 bdevname(bio->bi_bdev, b),
1660 count);
1664 generic_make_request(bio);
1666 EXPORT_SYMBOL(submit_bio);
1669 * blk_rq_check_limits - Helper function to check a request for the queue limit
1670 * @q: the queue
1671 * @rq: the request being checked
1673 * Description:
1674 * @rq may have been made based on weaker limitations of upper-level queues
1675 * in request stacking drivers, and it may violate the limitation of @q.
1676 * Since the block layer and the underlying device driver trust @rq
1677 * after it is inserted to @q, it should be checked against @q before
1678 * the insertion using this generic function.
1680 * This function should also be useful for request stacking drivers
1681 * in some cases below, so export this function.
1682 * Request stacking drivers like request-based dm may change the queue
1683 * limits while requests are in the queue (e.g. dm's table swapping).
1684 * Such request stacking drivers should check those requests agaist
1685 * the new queue limits again when they dispatch those requests,
1686 * although such checkings are also done against the old queue limits
1687 * when submitting requests.
1689 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1691 if (rq->cmd_flags & REQ_DISCARD)
1692 return 0;
1694 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1695 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1696 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1697 return -EIO;
1701 * queue's settings related to segment counting like q->bounce_pfn
1702 * may differ from that of other stacking queues.
1703 * Recalculate it to check the request correctly on this queue's
1704 * limitation.
1706 blk_recalc_rq_segments(rq);
1707 if (rq->nr_phys_segments > queue_max_segments(q)) {
1708 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1709 return -EIO;
1712 return 0;
1714 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1717 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1718 * @q: the queue to submit the request
1719 * @rq: the request being queued
1721 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1723 unsigned long flags;
1724 int where = ELEVATOR_INSERT_BACK;
1726 if (blk_rq_check_limits(q, rq))
1727 return -EIO;
1729 if (rq->rq_disk &&
1730 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1731 return -EIO;
1733 spin_lock_irqsave(q->queue_lock, flags);
1734 if (unlikely(blk_queue_dead(q))) {
1735 spin_unlock_irqrestore(q->queue_lock, flags);
1736 return -ENODEV;
1740 * Submitting request must be dequeued before calling this function
1741 * because it will be linked to another request_queue
1743 BUG_ON(blk_queued_rq(rq));
1745 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1746 where = ELEVATOR_INSERT_FLUSH;
1748 add_acct_request(q, rq, where);
1749 if (where == ELEVATOR_INSERT_FLUSH)
1750 __blk_run_queue(q);
1751 spin_unlock_irqrestore(q->queue_lock, flags);
1753 return 0;
1755 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1758 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1759 * @rq: request to examine
1761 * Description:
1762 * A request could be merge of IOs which require different failure
1763 * handling. This function determines the number of bytes which
1764 * can be failed from the beginning of the request without
1765 * crossing into area which need to be retried further.
1767 * Return:
1768 * The number of bytes to fail.
1770 * Context:
1771 * queue_lock must be held.
1773 unsigned int blk_rq_err_bytes(const struct request *rq)
1775 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1776 unsigned int bytes = 0;
1777 struct bio *bio;
1779 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1780 return blk_rq_bytes(rq);
1783 * Currently the only 'mixing' which can happen is between
1784 * different fastfail types. We can safely fail portions
1785 * which have all the failfast bits that the first one has -
1786 * the ones which are at least as eager to fail as the first
1787 * one.
1789 for (bio = rq->bio; bio; bio = bio->bi_next) {
1790 if ((bio->bi_rw & ff) != ff)
1791 break;
1792 bytes += bio->bi_size;
1795 /* this could lead to infinite loop */
1796 BUG_ON(blk_rq_bytes(rq) && !bytes);
1797 return bytes;
1799 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1801 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1803 if (blk_do_io_stat(req)) {
1804 const int rw = rq_data_dir(req);
1805 struct hd_struct *part;
1806 int cpu;
1808 cpu = part_stat_lock();
1809 part = req->part;
1810 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1811 part_stat_unlock();
1815 static void blk_account_io_done(struct request *req)
1818 * Account IO completion. flush_rq isn't accounted as a
1819 * normal IO on queueing nor completion. Accounting the
1820 * containing request is enough.
1822 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1823 unsigned long duration = jiffies - req->start_time;
1824 const int rw = rq_data_dir(req);
1825 struct hd_struct *part;
1826 int cpu;
1828 cpu = part_stat_lock();
1829 part = req->part;
1831 part_stat_inc(cpu, part, ios[rw]);
1832 part_stat_add(cpu, part, ticks[rw], duration);
1833 part_round_stats(cpu, part);
1834 part_dec_in_flight(part, rw);
1836 hd_struct_put(part);
1837 part_stat_unlock();
1842 * blk_peek_request - peek at the top of a request queue
1843 * @q: request queue to peek at
1845 * Description:
1846 * Return the request at the top of @q. The returned request
1847 * should be started using blk_start_request() before LLD starts
1848 * processing it.
1850 * Return:
1851 * Pointer to the request at the top of @q if available. Null
1852 * otherwise.
1854 * Context:
1855 * queue_lock must be held.
1857 struct request *blk_peek_request(struct request_queue *q)
1859 struct request *rq;
1860 int ret;
1862 while ((rq = __elv_next_request(q)) != NULL) {
1863 if (!(rq->cmd_flags & REQ_STARTED)) {
1865 * This is the first time the device driver
1866 * sees this request (possibly after
1867 * requeueing). Notify IO scheduler.
1869 if (rq->cmd_flags & REQ_SORTED)
1870 elv_activate_rq(q, rq);
1873 * just mark as started even if we don't start
1874 * it, a request that has been delayed should
1875 * not be passed by new incoming requests
1877 rq->cmd_flags |= REQ_STARTED;
1878 trace_block_rq_issue(q, rq);
1881 if (!q->boundary_rq || q->boundary_rq == rq) {
1882 q->end_sector = rq_end_sector(rq);
1883 q->boundary_rq = NULL;
1886 if (rq->cmd_flags & REQ_DONTPREP)
1887 break;
1889 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1891 * make sure space for the drain appears we
1892 * know we can do this because max_hw_segments
1893 * has been adjusted to be one fewer than the
1894 * device can handle
1896 rq->nr_phys_segments++;
1899 if (!q->prep_rq_fn)
1900 break;
1902 ret = q->prep_rq_fn(q, rq);
1903 if (ret == BLKPREP_OK) {
1904 break;
1905 } else if (ret == BLKPREP_DEFER) {
1907 * the request may have been (partially) prepped.
1908 * we need to keep this request in the front to
1909 * avoid resource deadlock. REQ_STARTED will
1910 * prevent other fs requests from passing this one.
1912 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1913 !(rq->cmd_flags & REQ_DONTPREP)) {
1915 * remove the space for the drain we added
1916 * so that we don't add it again
1918 --rq->nr_phys_segments;
1921 rq = NULL;
1922 break;
1923 } else if (ret == BLKPREP_KILL) {
1924 rq->cmd_flags |= REQ_QUIET;
1926 * Mark this request as started so we don't trigger
1927 * any debug logic in the end I/O path.
1929 blk_start_request(rq);
1930 __blk_end_request_all(rq, -EIO);
1931 } else {
1932 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1933 break;
1937 return rq;
1939 EXPORT_SYMBOL(blk_peek_request);
1941 void blk_dequeue_request(struct request *rq)
1943 struct request_queue *q = rq->q;
1945 BUG_ON(list_empty(&rq->queuelist));
1946 BUG_ON(ELV_ON_HASH(rq));
1948 list_del_init(&rq->queuelist);
1951 * the time frame between a request being removed from the lists
1952 * and to it is freed is accounted as io that is in progress at
1953 * the driver side.
1955 if (blk_account_rq(rq)) {
1956 q->in_flight[rq_is_sync(rq)]++;
1957 set_io_start_time_ns(rq);
1962 * blk_start_request - start request processing on the driver
1963 * @req: request to dequeue
1965 * Description:
1966 * Dequeue @req and start timeout timer on it. This hands off the
1967 * request to the driver.
1969 * Block internal functions which don't want to start timer should
1970 * call blk_dequeue_request().
1972 * Context:
1973 * queue_lock must be held.
1975 void blk_start_request(struct request *req)
1977 blk_dequeue_request(req);
1980 * We are now handing the request to the hardware, initialize
1981 * resid_len to full count and add the timeout handler.
1983 req->resid_len = blk_rq_bytes(req);
1984 if (unlikely(blk_bidi_rq(req)))
1985 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1987 blk_add_timer(req);
1989 EXPORT_SYMBOL(blk_start_request);
1992 * blk_fetch_request - fetch a request from a request queue
1993 * @q: request queue to fetch a request from
1995 * Description:
1996 * Return the request at the top of @q. The request is started on
1997 * return and LLD can start processing it immediately.
1999 * Return:
2000 * Pointer to the request at the top of @q if available. Null
2001 * otherwise.
2003 * Context:
2004 * queue_lock must be held.
2006 struct request *blk_fetch_request(struct request_queue *q)
2008 struct request *rq;
2010 rq = blk_peek_request(q);
2011 if (rq)
2012 blk_start_request(rq);
2013 return rq;
2015 EXPORT_SYMBOL(blk_fetch_request);
2018 * blk_update_request - Special helper function for request stacking drivers
2019 * @req: the request being processed
2020 * @error: %0 for success, < %0 for error
2021 * @nr_bytes: number of bytes to complete @req
2023 * Description:
2024 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2025 * the request structure even if @req doesn't have leftover.
2026 * If @req has leftover, sets it up for the next range of segments.
2028 * This special helper function is only for request stacking drivers
2029 * (e.g. request-based dm) so that they can handle partial completion.
2030 * Actual device drivers should use blk_end_request instead.
2032 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2033 * %false return from this function.
2035 * Return:
2036 * %false - this request doesn't have any more data
2037 * %true - this request has more data
2039 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2041 int total_bytes, bio_nbytes, next_idx = 0;
2042 struct bio *bio;
2044 if (!req->bio)
2045 return false;
2047 trace_block_rq_complete(req->q, req);
2050 * For fs requests, rq is just carrier of independent bio's
2051 * and each partial completion should be handled separately.
2052 * Reset per-request error on each partial completion.
2054 * TODO: tj: This is too subtle. It would be better to let
2055 * low level drivers do what they see fit.
2057 if (req->cmd_type == REQ_TYPE_FS)
2058 req->errors = 0;
2060 if (error && req->cmd_type == REQ_TYPE_FS &&
2061 !(req->cmd_flags & REQ_QUIET)) {
2062 char *error_type;
2064 switch (error) {
2065 case -ENOLINK:
2066 error_type = "recoverable transport";
2067 break;
2068 case -EREMOTEIO:
2069 error_type = "critical target";
2070 break;
2071 case -EBADE:
2072 error_type = "critical nexus";
2073 break;
2074 case -EIO:
2075 default:
2076 error_type = "I/O";
2077 break;
2079 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2080 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2081 (unsigned long long)blk_rq_pos(req));
2084 blk_account_io_completion(req, nr_bytes);
2086 total_bytes = bio_nbytes = 0;
2087 while ((bio = req->bio) != NULL) {
2088 int nbytes;
2090 if (nr_bytes >= bio->bi_size) {
2091 req->bio = bio->bi_next;
2092 nbytes = bio->bi_size;
2093 req_bio_endio(req, bio, nbytes, error);
2094 next_idx = 0;
2095 bio_nbytes = 0;
2096 } else {
2097 int idx = bio->bi_idx + next_idx;
2099 if (unlikely(idx >= bio->bi_vcnt)) {
2100 blk_dump_rq_flags(req, "__end_that");
2101 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2102 __func__, idx, bio->bi_vcnt);
2103 break;
2106 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2107 BIO_BUG_ON(nbytes > bio->bi_size);
2110 * not a complete bvec done
2112 if (unlikely(nbytes > nr_bytes)) {
2113 bio_nbytes += nr_bytes;
2114 total_bytes += nr_bytes;
2115 break;
2119 * advance to the next vector
2121 next_idx++;
2122 bio_nbytes += nbytes;
2125 total_bytes += nbytes;
2126 nr_bytes -= nbytes;
2128 bio = req->bio;
2129 if (bio) {
2131 * end more in this run, or just return 'not-done'
2133 if (unlikely(nr_bytes <= 0))
2134 break;
2139 * completely done
2141 if (!req->bio) {
2143 * Reset counters so that the request stacking driver
2144 * can find how many bytes remain in the request
2145 * later.
2147 req->__data_len = 0;
2148 return false;
2152 * if the request wasn't completed, update state
2154 if (bio_nbytes) {
2155 req_bio_endio(req, bio, bio_nbytes, error);
2156 bio->bi_idx += next_idx;
2157 bio_iovec(bio)->bv_offset += nr_bytes;
2158 bio_iovec(bio)->bv_len -= nr_bytes;
2161 req->__data_len -= total_bytes;
2162 req->buffer = bio_data(req->bio);
2164 /* update sector only for requests with clear definition of sector */
2165 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2166 req->__sector += total_bytes >> 9;
2168 /* mixed attributes always follow the first bio */
2169 if (req->cmd_flags & REQ_MIXED_MERGE) {
2170 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2171 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2175 * If total number of sectors is less than the first segment
2176 * size, something has gone terribly wrong.
2178 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2179 blk_dump_rq_flags(req, "request botched");
2180 req->__data_len = blk_rq_cur_bytes(req);
2183 /* recalculate the number of segments */
2184 blk_recalc_rq_segments(req);
2186 return true;
2188 EXPORT_SYMBOL_GPL(blk_update_request);
2190 static bool blk_update_bidi_request(struct request *rq, int error,
2191 unsigned int nr_bytes,
2192 unsigned int bidi_bytes)
2194 if (blk_update_request(rq, error, nr_bytes))
2195 return true;
2197 /* Bidi request must be completed as a whole */
2198 if (unlikely(blk_bidi_rq(rq)) &&
2199 blk_update_request(rq->next_rq, error, bidi_bytes))
2200 return true;
2202 if (blk_queue_add_random(rq->q))
2203 add_disk_randomness(rq->rq_disk);
2205 return false;
2209 * blk_unprep_request - unprepare a request
2210 * @req: the request
2212 * This function makes a request ready for complete resubmission (or
2213 * completion). It happens only after all error handling is complete,
2214 * so represents the appropriate moment to deallocate any resources
2215 * that were allocated to the request in the prep_rq_fn. The queue
2216 * lock is held when calling this.
2218 void blk_unprep_request(struct request *req)
2220 struct request_queue *q = req->q;
2222 req->cmd_flags &= ~REQ_DONTPREP;
2223 if (q->unprep_rq_fn)
2224 q->unprep_rq_fn(q, req);
2226 EXPORT_SYMBOL_GPL(blk_unprep_request);
2229 * queue lock must be held
2231 static void blk_finish_request(struct request *req, int error)
2233 if (blk_rq_tagged(req))
2234 blk_queue_end_tag(req->q, req);
2236 BUG_ON(blk_queued_rq(req));
2238 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2239 laptop_io_completion(&req->q->backing_dev_info);
2241 blk_delete_timer(req);
2243 if (req->cmd_flags & REQ_DONTPREP)
2244 blk_unprep_request(req);
2247 blk_account_io_done(req);
2249 if (req->end_io)
2250 req->end_io(req, error);
2251 else {
2252 if (blk_bidi_rq(req))
2253 __blk_put_request(req->next_rq->q, req->next_rq);
2255 __blk_put_request(req->q, req);
2260 * blk_end_bidi_request - Complete a bidi request
2261 * @rq: the request to complete
2262 * @error: %0 for success, < %0 for error
2263 * @nr_bytes: number of bytes to complete @rq
2264 * @bidi_bytes: number of bytes to complete @rq->next_rq
2266 * Description:
2267 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2268 * Drivers that supports bidi can safely call this member for any
2269 * type of request, bidi or uni. In the later case @bidi_bytes is
2270 * just ignored.
2272 * Return:
2273 * %false - we are done with this request
2274 * %true - still buffers pending for this request
2276 static bool blk_end_bidi_request(struct request *rq, int error,
2277 unsigned int nr_bytes, unsigned int bidi_bytes)
2279 struct request_queue *q = rq->q;
2280 unsigned long flags;
2282 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2283 return true;
2285 spin_lock_irqsave(q->queue_lock, flags);
2286 blk_finish_request(rq, error);
2287 spin_unlock_irqrestore(q->queue_lock, flags);
2289 return false;
2293 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2294 * @rq: the request to complete
2295 * @error: %0 for success, < %0 for error
2296 * @nr_bytes: number of bytes to complete @rq
2297 * @bidi_bytes: number of bytes to complete @rq->next_rq
2299 * Description:
2300 * Identical to blk_end_bidi_request() except that queue lock is
2301 * assumed to be locked on entry and remains so on return.
2303 * Return:
2304 * %false - we are done with this request
2305 * %true - still buffers pending for this request
2307 bool __blk_end_bidi_request(struct request *rq, int error,
2308 unsigned int nr_bytes, unsigned int bidi_bytes)
2310 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2311 return true;
2313 blk_finish_request(rq, error);
2315 return false;
2319 * blk_end_request - Helper function for drivers to complete the request.
2320 * @rq: the request being processed
2321 * @error: %0 for success, < %0 for error
2322 * @nr_bytes: number of bytes to complete
2324 * Description:
2325 * Ends I/O on a number of bytes attached to @rq.
2326 * If @rq has leftover, sets it up for the next range of segments.
2328 * Return:
2329 * %false - we are done with this request
2330 * %true - still buffers pending for this request
2332 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2334 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2336 EXPORT_SYMBOL(blk_end_request);
2339 * blk_end_request_all - Helper function for drives to finish the request.
2340 * @rq: the request to finish
2341 * @error: %0 for success, < %0 for error
2343 * Description:
2344 * Completely finish @rq.
2346 void blk_end_request_all(struct request *rq, int error)
2348 bool pending;
2349 unsigned int bidi_bytes = 0;
2351 if (unlikely(blk_bidi_rq(rq)))
2352 bidi_bytes = blk_rq_bytes(rq->next_rq);
2354 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2355 BUG_ON(pending);
2357 EXPORT_SYMBOL(blk_end_request_all);
2360 * blk_end_request_cur - Helper function to finish the current request chunk.
2361 * @rq: the request to finish the current chunk for
2362 * @error: %0 for success, < %0 for error
2364 * Description:
2365 * Complete the current consecutively mapped chunk from @rq.
2367 * Return:
2368 * %false - we are done with this request
2369 * %true - still buffers pending for this request
2371 bool blk_end_request_cur(struct request *rq, int error)
2373 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2375 EXPORT_SYMBOL(blk_end_request_cur);
2378 * blk_end_request_err - Finish a request till the next failure boundary.
2379 * @rq: the request to finish till the next failure boundary for
2380 * @error: must be negative errno
2382 * Description:
2383 * Complete @rq till the next failure boundary.
2385 * Return:
2386 * %false - we are done with this request
2387 * %true - still buffers pending for this request
2389 bool blk_end_request_err(struct request *rq, int error)
2391 WARN_ON(error >= 0);
2392 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2394 EXPORT_SYMBOL_GPL(blk_end_request_err);
2397 * __blk_end_request - Helper function for drivers to complete the request.
2398 * @rq: the request being processed
2399 * @error: %0 for success, < %0 for error
2400 * @nr_bytes: number of bytes to complete
2402 * Description:
2403 * Must be called with queue lock held unlike blk_end_request().
2405 * Return:
2406 * %false - we are done with this request
2407 * %true - still buffers pending for this request
2409 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2411 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2413 EXPORT_SYMBOL(__blk_end_request);
2416 * __blk_end_request_all - Helper function for drives to finish the request.
2417 * @rq: the request to finish
2418 * @error: %0 for success, < %0 for error
2420 * Description:
2421 * Completely finish @rq. Must be called with queue lock held.
2423 void __blk_end_request_all(struct request *rq, int error)
2425 bool pending;
2426 unsigned int bidi_bytes = 0;
2428 if (unlikely(blk_bidi_rq(rq)))
2429 bidi_bytes = blk_rq_bytes(rq->next_rq);
2431 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2432 BUG_ON(pending);
2434 EXPORT_SYMBOL(__blk_end_request_all);
2437 * __blk_end_request_cur - Helper function to finish the current request chunk.
2438 * @rq: the request to finish the current chunk for
2439 * @error: %0 for success, < %0 for error
2441 * Description:
2442 * Complete the current consecutively mapped chunk from @rq. Must
2443 * be called with queue lock held.
2445 * Return:
2446 * %false - we are done with this request
2447 * %true - still buffers pending for this request
2449 bool __blk_end_request_cur(struct request *rq, int error)
2451 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2453 EXPORT_SYMBOL(__blk_end_request_cur);
2456 * __blk_end_request_err - Finish a request till the next failure boundary.
2457 * @rq: the request to finish till the next failure boundary for
2458 * @error: must be negative errno
2460 * Description:
2461 * Complete @rq till the next failure boundary. Must be called
2462 * with queue lock held.
2464 * Return:
2465 * %false - we are done with this request
2466 * %true - still buffers pending for this request
2468 bool __blk_end_request_err(struct request *rq, int error)
2470 WARN_ON(error >= 0);
2471 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2473 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2475 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2476 struct bio *bio)
2478 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2479 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2481 if (bio_has_data(bio)) {
2482 rq->nr_phys_segments = bio_phys_segments(q, bio);
2483 rq->buffer = bio_data(bio);
2485 rq->__data_len = bio->bi_size;
2486 rq->bio = rq->biotail = bio;
2488 if (bio->bi_bdev)
2489 rq->rq_disk = bio->bi_bdev->bd_disk;
2492 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2494 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2495 * @rq: the request to be flushed
2497 * Description:
2498 * Flush all pages in @rq.
2500 void rq_flush_dcache_pages(struct request *rq)
2502 struct req_iterator iter;
2503 struct bio_vec *bvec;
2505 rq_for_each_segment(bvec, rq, iter)
2506 flush_dcache_page(bvec->bv_page);
2508 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2509 #endif
2512 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2513 * @q : the queue of the device being checked
2515 * Description:
2516 * Check if underlying low-level drivers of a device are busy.
2517 * If the drivers want to export their busy state, they must set own
2518 * exporting function using blk_queue_lld_busy() first.
2520 * Basically, this function is used only by request stacking drivers
2521 * to stop dispatching requests to underlying devices when underlying
2522 * devices are busy. This behavior helps more I/O merging on the queue
2523 * of the request stacking driver and prevents I/O throughput regression
2524 * on burst I/O load.
2526 * Return:
2527 * 0 - Not busy (The request stacking driver should dispatch request)
2528 * 1 - Busy (The request stacking driver should stop dispatching request)
2530 int blk_lld_busy(struct request_queue *q)
2532 if (q->lld_busy_fn)
2533 return q->lld_busy_fn(q);
2535 return 0;
2537 EXPORT_SYMBOL_GPL(blk_lld_busy);
2540 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2541 * @rq: the clone request to be cleaned up
2543 * Description:
2544 * Free all bios in @rq for a cloned request.
2546 void blk_rq_unprep_clone(struct request *rq)
2548 struct bio *bio;
2550 while ((bio = rq->bio) != NULL) {
2551 rq->bio = bio->bi_next;
2553 bio_put(bio);
2556 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2559 * Copy attributes of the original request to the clone request.
2560 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2562 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2564 dst->cpu = src->cpu;
2565 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2566 dst->cmd_type = src->cmd_type;
2567 dst->__sector = blk_rq_pos(src);
2568 dst->__data_len = blk_rq_bytes(src);
2569 dst->nr_phys_segments = src->nr_phys_segments;
2570 dst->ioprio = src->ioprio;
2571 dst->extra_len = src->extra_len;
2575 * blk_rq_prep_clone - Helper function to setup clone request
2576 * @rq: the request to be setup
2577 * @rq_src: original request to be cloned
2578 * @bs: bio_set that bios for clone are allocated from
2579 * @gfp_mask: memory allocation mask for bio
2580 * @bio_ctr: setup function to be called for each clone bio.
2581 * Returns %0 for success, non %0 for failure.
2582 * @data: private data to be passed to @bio_ctr
2584 * Description:
2585 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2586 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2587 * are not copied, and copying such parts is the caller's responsibility.
2588 * Also, pages which the original bios are pointing to are not copied
2589 * and the cloned bios just point same pages.
2590 * So cloned bios must be completed before original bios, which means
2591 * the caller must complete @rq before @rq_src.
2593 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2594 struct bio_set *bs, gfp_t gfp_mask,
2595 int (*bio_ctr)(struct bio *, struct bio *, void *),
2596 void *data)
2598 struct bio *bio, *bio_src;
2600 if (!bs)
2601 bs = fs_bio_set;
2603 blk_rq_init(NULL, rq);
2605 __rq_for_each_bio(bio_src, rq_src) {
2606 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2607 if (!bio)
2608 goto free_and_out;
2610 __bio_clone(bio, bio_src);
2612 if (bio_integrity(bio_src) &&
2613 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2614 goto free_and_out;
2616 if (bio_ctr && bio_ctr(bio, bio_src, data))
2617 goto free_and_out;
2619 if (rq->bio) {
2620 rq->biotail->bi_next = bio;
2621 rq->biotail = bio;
2622 } else
2623 rq->bio = rq->biotail = bio;
2626 __blk_rq_prep_clone(rq, rq_src);
2628 return 0;
2630 free_and_out:
2631 if (bio)
2632 bio_free(bio, bs);
2633 blk_rq_unprep_clone(rq);
2635 return -ENOMEM;
2637 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2639 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2641 return queue_work(kblockd_workqueue, work);
2643 EXPORT_SYMBOL(kblockd_schedule_work);
2645 int kblockd_schedule_delayed_work(struct request_queue *q,
2646 struct delayed_work *dwork, unsigned long delay)
2648 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2650 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2652 #define PLUG_MAGIC 0x91827364
2655 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2656 * @plug: The &struct blk_plug that needs to be initialized
2658 * Description:
2659 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2660 * pending I/O should the task end up blocking between blk_start_plug() and
2661 * blk_finish_plug(). This is important from a performance perspective, but
2662 * also ensures that we don't deadlock. For instance, if the task is blocking
2663 * for a memory allocation, memory reclaim could end up wanting to free a
2664 * page belonging to that request that is currently residing in our private
2665 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2666 * this kind of deadlock.
2668 void blk_start_plug(struct blk_plug *plug)
2670 struct task_struct *tsk = current;
2672 plug->magic = PLUG_MAGIC;
2673 INIT_LIST_HEAD(&plug->list);
2674 INIT_LIST_HEAD(&plug->cb_list);
2675 plug->should_sort = 0;
2678 * If this is a nested plug, don't actually assign it. It will be
2679 * flushed on its own.
2681 if (!tsk->plug) {
2683 * Store ordering should not be needed here, since a potential
2684 * preempt will imply a full memory barrier
2686 tsk->plug = plug;
2689 EXPORT_SYMBOL(blk_start_plug);
2691 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2693 struct request *rqa = container_of(a, struct request, queuelist);
2694 struct request *rqb = container_of(b, struct request, queuelist);
2696 return !(rqa->q <= rqb->q);
2700 * If 'from_schedule' is true, then postpone the dispatch of requests
2701 * until a safe kblockd context. We due this to avoid accidental big
2702 * additional stack usage in driver dispatch, in places where the originally
2703 * plugger did not intend it.
2705 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2706 bool from_schedule)
2707 __releases(q->queue_lock)
2709 trace_block_unplug(q, depth, !from_schedule);
2712 * Don't mess with dead queue.
2714 if (unlikely(blk_queue_dead(q))) {
2715 spin_unlock(q->queue_lock);
2716 return;
2720 * If we are punting this to kblockd, then we can safely drop
2721 * the queue_lock before waking kblockd (which needs to take
2722 * this lock).
2724 if (from_schedule) {
2725 spin_unlock(q->queue_lock);
2726 blk_run_queue_async(q);
2727 } else {
2728 __blk_run_queue(q);
2729 spin_unlock(q->queue_lock);
2734 static void flush_plug_callbacks(struct blk_plug *plug)
2736 LIST_HEAD(callbacks);
2738 if (list_empty(&plug->cb_list))
2739 return;
2741 list_splice_init(&plug->cb_list, &callbacks);
2743 while (!list_empty(&callbacks)) {
2744 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2745 struct blk_plug_cb,
2746 list);
2747 list_del(&cb->list);
2748 cb->callback(cb);
2752 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2754 struct request_queue *q;
2755 unsigned long flags;
2756 struct request *rq;
2757 LIST_HEAD(list);
2758 unsigned int depth;
2760 BUG_ON(plug->magic != PLUG_MAGIC);
2762 flush_plug_callbacks(plug);
2763 if (list_empty(&plug->list))
2764 return;
2766 list_splice_init(&plug->list, &list);
2768 if (plug->should_sort) {
2769 list_sort(NULL, &list, plug_rq_cmp);
2770 plug->should_sort = 0;
2773 q = NULL;
2774 depth = 0;
2777 * Save and disable interrupts here, to avoid doing it for every
2778 * queue lock we have to take.
2780 local_irq_save(flags);
2781 while (!list_empty(&list)) {
2782 rq = list_entry_rq(list.next);
2783 list_del_init(&rq->queuelist);
2784 BUG_ON(!rq->q);
2785 if (rq->q != q) {
2787 * This drops the queue lock
2789 if (q)
2790 queue_unplugged(q, depth, from_schedule);
2791 q = rq->q;
2792 depth = 0;
2793 spin_lock(q->queue_lock);
2797 * Short-circuit if @q is dead
2799 if (unlikely(blk_queue_dead(q))) {
2800 __blk_end_request_all(rq, -ENODEV);
2801 continue;
2805 * rq is already accounted, so use raw insert
2807 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2808 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2809 else
2810 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2812 depth++;
2816 * This drops the queue lock
2818 if (q)
2819 queue_unplugged(q, depth, from_schedule);
2821 local_irq_restore(flags);
2824 void blk_finish_plug(struct blk_plug *plug)
2826 blk_flush_plug_list(plug, false);
2828 if (plug == current->plug)
2829 current->plug = NULL;
2831 EXPORT_SYMBOL(blk_finish_plug);
2833 int __init blk_dev_init(void)
2835 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2836 sizeof(((struct request *)0)->cmd_flags));
2838 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2839 kblockd_workqueue = alloc_workqueue("kblockd",
2840 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2841 if (!kblockd_workqueue)
2842 panic("Failed to create kblockd\n");
2844 request_cachep = kmem_cache_create("blkdev_requests",
2845 sizeof(struct request), 0, SLAB_PANIC, NULL);
2847 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2848 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2850 return 0;