KVM: clean up kvm_(set|get)_apic_base
[linux-2.6.git] / fs / xfs / xfs_log.c
blob7f4f9370d0e7438df3820fab9b0026b37292623b
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
38 kmem_zone_t *xfs_log_ticket_zone;
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 char *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 boolean_t syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
138 static void
139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
147 do {
148 int cycle, space;
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
164 static void
165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
173 do {
174 int tmp;
175 int cycle, space;
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
193 STATIC void
194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
202 STATIC void
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
206 struct xlog_ticket *tic;
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
214 static inline int
215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
231 STATIC bool
232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
237 struct xlog_ticket *tic;
238 int need_bytes;
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
250 return true;
253 STATIC int
254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes)
260 list_add_tail(&tic->t_queue, &head->waiters);
262 do {
263 if (XLOG_FORCED_SHUTDOWN(log))
264 goto shutdown;
265 xlog_grant_push_ail(log, need_bytes);
267 __set_current_state(TASK_UNINTERRUPTIBLE);
268 spin_unlock(&head->lock);
270 XFS_STATS_INC(xs_sleep_logspace);
272 trace_xfs_log_grant_sleep(log, tic);
273 schedule();
274 trace_xfs_log_grant_wake(log, tic);
276 spin_lock(&head->lock);
277 if (XLOG_FORCED_SHUTDOWN(log))
278 goto shutdown;
279 } while (xlog_space_left(log, &head->grant) < need_bytes);
281 list_del_init(&tic->t_queue);
282 return 0;
283 shutdown:
284 list_del_init(&tic->t_queue);
285 return XFS_ERROR(EIO);
289 * Atomically get the log space required for a log ticket.
291 * Once a ticket gets put onto head->waiters, it will only return after the
292 * needed reservation is satisfied.
294 * This function is structured so that it has a lock free fast path. This is
295 * necessary because every new transaction reservation will come through this
296 * path. Hence any lock will be globally hot if we take it unconditionally on
297 * every pass.
299 * As tickets are only ever moved on and off head->waiters under head->lock, we
300 * only need to take that lock if we are going to add the ticket to the queue
301 * and sleep. We can avoid taking the lock if the ticket was never added to
302 * head->waiters because the t_queue list head will be empty and we hold the
303 * only reference to it so it can safely be checked unlocked.
305 STATIC int
306 xlog_grant_head_check(
307 struct xlog *log,
308 struct xlog_grant_head *head,
309 struct xlog_ticket *tic,
310 int *need_bytes)
312 int free_bytes;
313 int error = 0;
315 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318 * If there are other waiters on the queue then give them a chance at
319 * logspace before us. Wake up the first waiters, if we do not wake
320 * up all the waiters then go to sleep waiting for more free space,
321 * otherwise try to get some space for this transaction.
323 *need_bytes = xlog_ticket_reservation(log, head, tic);
324 free_bytes = xlog_space_left(log, &head->grant);
325 if (!list_empty_careful(&head->waiters)) {
326 spin_lock(&head->lock);
327 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
328 free_bytes < *need_bytes) {
329 error = xlog_grant_head_wait(log, head, tic,
330 *need_bytes);
332 spin_unlock(&head->lock);
333 } else if (free_bytes < *need_bytes) {
334 spin_lock(&head->lock);
335 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
336 spin_unlock(&head->lock);
339 return error;
342 static void
343 xlog_tic_reset_res(xlog_ticket_t *tic)
345 tic->t_res_num = 0;
346 tic->t_res_arr_sum = 0;
347 tic->t_res_num_ophdrs = 0;
350 static void
351 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
354 /* add to overflow and start again */
355 tic->t_res_o_flow += tic->t_res_arr_sum;
356 tic->t_res_num = 0;
357 tic->t_res_arr_sum = 0;
360 tic->t_res_arr[tic->t_res_num].r_len = len;
361 tic->t_res_arr[tic->t_res_num].r_type = type;
362 tic->t_res_arr_sum += len;
363 tic->t_res_num++;
367 * Replenish the byte reservation required by moving the grant write head.
370 xfs_log_regrant(
371 struct xfs_mount *mp,
372 struct xlog_ticket *tic)
374 struct xlog *log = mp->m_log;
375 int need_bytes;
376 int error = 0;
378 if (XLOG_FORCED_SHUTDOWN(log))
379 return XFS_ERROR(EIO);
381 XFS_STATS_INC(xs_try_logspace);
384 * This is a new transaction on the ticket, so we need to change the
385 * transaction ID so that the next transaction has a different TID in
386 * the log. Just add one to the existing tid so that we can see chains
387 * of rolling transactions in the log easily.
389 tic->t_tid++;
391 xlog_grant_push_ail(log, tic->t_unit_res);
393 tic->t_curr_res = tic->t_unit_res;
394 xlog_tic_reset_res(tic);
396 if (tic->t_cnt > 0)
397 return 0;
399 trace_xfs_log_regrant(log, tic);
401 error = xlog_grant_head_check(log, &log->l_write_head, tic,
402 &need_bytes);
403 if (error)
404 goto out_error;
406 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
407 trace_xfs_log_regrant_exit(log, tic);
408 xlog_verify_grant_tail(log);
409 return 0;
411 out_error:
413 * If we are failing, make sure the ticket doesn't have any current
414 * reservations. We don't want to add this back when the ticket/
415 * transaction gets cancelled.
417 tic->t_curr_res = 0;
418 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
419 return error;
423 * Reserve log space and return a ticket corresponding the reservation.
425 * Each reservation is going to reserve extra space for a log record header.
426 * When writes happen to the on-disk log, we don't subtract the length of the
427 * log record header from any reservation. By wasting space in each
428 * reservation, we prevent over allocation problems.
431 xfs_log_reserve(
432 struct xfs_mount *mp,
433 int unit_bytes,
434 int cnt,
435 struct xlog_ticket **ticp,
436 __uint8_t client,
437 bool permanent,
438 uint t_type)
440 struct xlog *log = mp->m_log;
441 struct xlog_ticket *tic;
442 int need_bytes;
443 int error = 0;
445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 if (XLOG_FORCED_SHUTDOWN(log))
448 return XFS_ERROR(EIO);
450 XFS_STATS_INC(xs_try_logspace);
452 ASSERT(*ticp == NULL);
453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 KM_SLEEP | KM_MAYFAIL);
455 if (!tic)
456 return XFS_ERROR(ENOMEM);
458 tic->t_trans_type = t_type;
459 *ticp = tic;
461 xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
463 trace_xfs_log_reserve(log, tic);
465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 &need_bytes);
467 if (error)
468 goto out_error;
470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 trace_xfs_log_reserve_exit(log, tic);
473 xlog_verify_grant_tail(log);
474 return 0;
476 out_error:
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
482 tic->t_curr_res = 0;
483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484 return error;
489 * NOTES:
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
509 xfs_lsn_t
510 xfs_log_done(
511 struct xfs_mount *mp,
512 struct xlog_ticket *ticket,
513 struct xlog_in_core **iclog,
514 uint flags)
516 struct xlog *log = mp->m_log;
517 xfs_lsn_t lsn = 0;
519 if (XLOG_FORCED_SHUTDOWN(log) ||
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 lsn = (xfs_lsn_t) -1;
527 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
528 flags |= XFS_LOG_REL_PERM_RESERV;
533 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
534 (flags & XFS_LOG_REL_PERM_RESERV)) {
535 trace_xfs_log_done_nonperm(log, ticket);
538 * Release ticket if not permanent reservation or a specific
539 * request has been made to release a permanent reservation.
541 xlog_ungrant_log_space(log, ticket);
542 xfs_log_ticket_put(ticket);
543 } else {
544 trace_xfs_log_done_perm(log, ticket);
546 xlog_regrant_reserve_log_space(log, ticket);
547 /* If this ticket was a permanent reservation and we aren't
548 * trying to release it, reset the inited flags; so next time
549 * we write, a start record will be written out.
551 ticket->t_flags |= XLOG_TIC_INITED;
554 return lsn;
558 * Attaches a new iclog I/O completion callback routine during
559 * transaction commit. If the log is in error state, a non-zero
560 * return code is handed back and the caller is responsible for
561 * executing the callback at an appropriate time.
564 xfs_log_notify(
565 struct xfs_mount *mp,
566 struct xlog_in_core *iclog,
567 xfs_log_callback_t *cb)
569 int abortflg;
571 spin_lock(&iclog->ic_callback_lock);
572 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
573 if (!abortflg) {
574 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
575 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
576 cb->cb_next = NULL;
577 *(iclog->ic_callback_tail) = cb;
578 iclog->ic_callback_tail = &(cb->cb_next);
580 spin_unlock(&iclog->ic_callback_lock);
581 return abortflg;
585 xfs_log_release_iclog(
586 struct xfs_mount *mp,
587 struct xlog_in_core *iclog)
589 if (xlog_state_release_iclog(mp->m_log, iclog)) {
590 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
591 return EIO;
594 return 0;
598 * Mount a log filesystem
600 * mp - ubiquitous xfs mount point structure
601 * log_target - buftarg of on-disk log device
602 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
603 * num_bblocks - Number of BBSIZE blocks in on-disk log
605 * Return error or zero.
608 xfs_log_mount(
609 xfs_mount_t *mp,
610 xfs_buftarg_t *log_target,
611 xfs_daddr_t blk_offset,
612 int num_bblks)
614 int error;
616 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
617 xfs_notice(mp, "Mounting Filesystem");
618 else {
619 xfs_notice(mp,
620 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 if (IS_ERR(mp->m_log)) {
626 error = -PTR_ERR(mp->m_log);
627 goto out;
631 * Initialize the AIL now we have a log.
633 error = xfs_trans_ail_init(mp);
634 if (error) {
635 xfs_warn(mp, "AIL initialisation failed: error %d", error);
636 goto out_free_log;
638 mp->m_log->l_ailp = mp->m_ail;
641 * skip log recovery on a norecovery mount. pretend it all
642 * just worked.
644 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
645 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
647 if (readonly)
648 mp->m_flags &= ~XFS_MOUNT_RDONLY;
650 error = xlog_recover(mp->m_log);
652 if (readonly)
653 mp->m_flags |= XFS_MOUNT_RDONLY;
654 if (error) {
655 xfs_warn(mp, "log mount/recovery failed: error %d",
656 error);
657 goto out_destroy_ail;
661 /* Normal transactions can now occur */
662 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
665 * Now the log has been fully initialised and we know were our
666 * space grant counters are, we can initialise the permanent ticket
667 * needed for delayed logging to work.
669 xlog_cil_init_post_recovery(mp->m_log);
671 return 0;
673 out_destroy_ail:
674 xfs_trans_ail_destroy(mp);
675 out_free_log:
676 xlog_dealloc_log(mp->m_log);
677 out:
678 return error;
682 * Finish the recovery of the file system. This is separate from
683 * the xfs_log_mount() call, because it depends on the code in
684 * xfs_mountfs() to read in the root and real-time bitmap inodes
685 * between calling xfs_log_mount() and here.
687 * mp - ubiquitous xfs mount point structure
690 xfs_log_mount_finish(xfs_mount_t *mp)
692 int error;
694 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
695 error = xlog_recover_finish(mp->m_log);
696 else {
697 error = 0;
698 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
701 return error;
705 * Final log writes as part of unmount.
707 * Mark the filesystem clean as unmount happens. Note that during relocation
708 * this routine needs to be executed as part of source-bag while the
709 * deallocation must not be done until source-end.
713 * Unmount record used to have a string "Unmount filesystem--" in the
714 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
715 * We just write the magic number now since that particular field isn't
716 * currently architecture converted and "nUmount" is a bit foo.
717 * As far as I know, there weren't any dependencies on the old behaviour.
721 xfs_log_unmount_write(xfs_mount_t *mp)
723 struct xlog *log = mp->m_log;
724 xlog_in_core_t *iclog;
725 #ifdef DEBUG
726 xlog_in_core_t *first_iclog;
727 #endif
728 xlog_ticket_t *tic = NULL;
729 xfs_lsn_t lsn;
730 int error;
733 * Don't write out unmount record on read-only mounts.
734 * Or, if we are doing a forced umount (typically because of IO errors).
736 if (mp->m_flags & XFS_MOUNT_RDONLY)
737 return 0;
739 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
740 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
742 #ifdef DEBUG
743 first_iclog = iclog = log->l_iclog;
744 do {
745 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
746 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
747 ASSERT(iclog->ic_offset == 0);
749 iclog = iclog->ic_next;
750 } while (iclog != first_iclog);
751 #endif
752 if (! (XLOG_FORCED_SHUTDOWN(log))) {
753 error = xfs_log_reserve(mp, 600, 1, &tic,
754 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
755 if (!error) {
756 /* the data section must be 32 bit size aligned */
757 struct {
758 __uint16_t magic;
759 __uint16_t pad1;
760 __uint32_t pad2; /* may as well make it 64 bits */
761 } magic = {
762 .magic = XLOG_UNMOUNT_TYPE,
764 struct xfs_log_iovec reg = {
765 .i_addr = &magic,
766 .i_len = sizeof(magic),
767 .i_type = XLOG_REG_TYPE_UNMOUNT,
769 struct xfs_log_vec vec = {
770 .lv_niovecs = 1,
771 .lv_iovecp = &reg,
774 /* remove inited flag, and account for space used */
775 tic->t_flags = 0;
776 tic->t_curr_res -= sizeof(magic);
777 error = xlog_write(log, &vec, tic, &lsn,
778 NULL, XLOG_UNMOUNT_TRANS);
780 * At this point, we're umounting anyway,
781 * so there's no point in transitioning log state
782 * to IOERROR. Just continue...
786 if (error)
787 xfs_alert(mp, "%s: unmount record failed", __func__);
790 spin_lock(&log->l_icloglock);
791 iclog = log->l_iclog;
792 atomic_inc(&iclog->ic_refcnt);
793 xlog_state_want_sync(log, iclog);
794 spin_unlock(&log->l_icloglock);
795 error = xlog_state_release_iclog(log, iclog);
797 spin_lock(&log->l_icloglock);
798 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
799 iclog->ic_state == XLOG_STATE_DIRTY)) {
800 if (!XLOG_FORCED_SHUTDOWN(log)) {
801 xlog_wait(&iclog->ic_force_wait,
802 &log->l_icloglock);
803 } else {
804 spin_unlock(&log->l_icloglock);
806 } else {
807 spin_unlock(&log->l_icloglock);
809 if (tic) {
810 trace_xfs_log_umount_write(log, tic);
811 xlog_ungrant_log_space(log, tic);
812 xfs_log_ticket_put(tic);
814 } else {
816 * We're already in forced_shutdown mode, couldn't
817 * even attempt to write out the unmount transaction.
819 * Go through the motions of sync'ing and releasing
820 * the iclog, even though no I/O will actually happen,
821 * we need to wait for other log I/Os that may already
822 * be in progress. Do this as a separate section of
823 * code so we'll know if we ever get stuck here that
824 * we're in this odd situation of trying to unmount
825 * a file system that went into forced_shutdown as
826 * the result of an unmount..
828 spin_lock(&log->l_icloglock);
829 iclog = log->l_iclog;
830 atomic_inc(&iclog->ic_refcnt);
832 xlog_state_want_sync(log, iclog);
833 spin_unlock(&log->l_icloglock);
834 error = xlog_state_release_iclog(log, iclog);
836 spin_lock(&log->l_icloglock);
838 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
839 || iclog->ic_state == XLOG_STATE_DIRTY
840 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
842 xlog_wait(&iclog->ic_force_wait,
843 &log->l_icloglock);
844 } else {
845 spin_unlock(&log->l_icloglock);
849 return error;
850 } /* xfs_log_unmount_write */
853 * Deallocate log structures for unmount/relocation.
855 * We need to stop the aild from running before we destroy
856 * and deallocate the log as the aild references the log.
858 void
859 xfs_log_unmount(xfs_mount_t *mp)
861 cancel_delayed_work_sync(&mp->m_sync_work);
862 xfs_trans_ail_destroy(mp);
863 xlog_dealloc_log(mp->m_log);
866 void
867 xfs_log_item_init(
868 struct xfs_mount *mp,
869 struct xfs_log_item *item,
870 int type,
871 const struct xfs_item_ops *ops)
873 item->li_mountp = mp;
874 item->li_ailp = mp->m_ail;
875 item->li_type = type;
876 item->li_ops = ops;
877 item->li_lv = NULL;
879 INIT_LIST_HEAD(&item->li_ail);
880 INIT_LIST_HEAD(&item->li_cil);
884 * Wake up processes waiting for log space after we have moved the log tail.
886 void
887 xfs_log_space_wake(
888 struct xfs_mount *mp)
890 struct xlog *log = mp->m_log;
891 int free_bytes;
893 if (XLOG_FORCED_SHUTDOWN(log))
894 return;
896 if (!list_empty_careful(&log->l_write_head.waiters)) {
897 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
899 spin_lock(&log->l_write_head.lock);
900 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
901 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
902 spin_unlock(&log->l_write_head.lock);
905 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
906 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
908 spin_lock(&log->l_reserve_head.lock);
909 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
910 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
911 spin_unlock(&log->l_reserve_head.lock);
916 * Determine if we have a transaction that has gone to disk
917 * that needs to be covered. To begin the transition to the idle state
918 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
919 * If we are then in a state where covering is needed, the caller is informed
920 * that dummy transactions are required to move the log into the idle state.
922 * Because this is called as part of the sync process, we should also indicate
923 * that dummy transactions should be issued in anything but the covered or
924 * idle states. This ensures that the log tail is accurately reflected in
925 * the log at the end of the sync, hence if a crash occurrs avoids replay
926 * of transactions where the metadata is already on disk.
929 xfs_log_need_covered(xfs_mount_t *mp)
931 int needed = 0;
932 struct xlog *log = mp->m_log;
934 if (!xfs_fs_writable(mp))
935 return 0;
937 spin_lock(&log->l_icloglock);
938 switch (log->l_covered_state) {
939 case XLOG_STATE_COVER_DONE:
940 case XLOG_STATE_COVER_DONE2:
941 case XLOG_STATE_COVER_IDLE:
942 break;
943 case XLOG_STATE_COVER_NEED:
944 case XLOG_STATE_COVER_NEED2:
945 if (!xfs_ail_min_lsn(log->l_ailp) &&
946 xlog_iclogs_empty(log)) {
947 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
948 log->l_covered_state = XLOG_STATE_COVER_DONE;
949 else
950 log->l_covered_state = XLOG_STATE_COVER_DONE2;
952 /* FALLTHRU */
953 default:
954 needed = 1;
955 break;
957 spin_unlock(&log->l_icloglock);
958 return needed;
962 * We may be holding the log iclog lock upon entering this routine.
964 xfs_lsn_t
965 xlog_assign_tail_lsn_locked(
966 struct xfs_mount *mp)
968 struct xlog *log = mp->m_log;
969 struct xfs_log_item *lip;
970 xfs_lsn_t tail_lsn;
972 assert_spin_locked(&mp->m_ail->xa_lock);
975 * To make sure we always have a valid LSN for the log tail we keep
976 * track of the last LSN which was committed in log->l_last_sync_lsn,
977 * and use that when the AIL was empty.
979 lip = xfs_ail_min(mp->m_ail);
980 if (lip)
981 tail_lsn = lip->li_lsn;
982 else
983 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
984 atomic64_set(&log->l_tail_lsn, tail_lsn);
985 return tail_lsn;
988 xfs_lsn_t
989 xlog_assign_tail_lsn(
990 struct xfs_mount *mp)
992 xfs_lsn_t tail_lsn;
994 spin_lock(&mp->m_ail->xa_lock);
995 tail_lsn = xlog_assign_tail_lsn_locked(mp);
996 spin_unlock(&mp->m_ail->xa_lock);
998 return tail_lsn;
1002 * Return the space in the log between the tail and the head. The head
1003 * is passed in the cycle/bytes formal parms. In the special case where
1004 * the reserve head has wrapped passed the tail, this calculation is no
1005 * longer valid. In this case, just return 0 which means there is no space
1006 * in the log. This works for all places where this function is called
1007 * with the reserve head. Of course, if the write head were to ever
1008 * wrap the tail, we should blow up. Rather than catch this case here,
1009 * we depend on other ASSERTions in other parts of the code. XXXmiken
1011 * This code also handles the case where the reservation head is behind
1012 * the tail. The details of this case are described below, but the end
1013 * result is that we return the size of the log as the amount of space left.
1015 STATIC int
1016 xlog_space_left(
1017 struct xlog *log,
1018 atomic64_t *head)
1020 int free_bytes;
1021 int tail_bytes;
1022 int tail_cycle;
1023 int head_cycle;
1024 int head_bytes;
1026 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1027 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1028 tail_bytes = BBTOB(tail_bytes);
1029 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1030 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1031 else if (tail_cycle + 1 < head_cycle)
1032 return 0;
1033 else if (tail_cycle < head_cycle) {
1034 ASSERT(tail_cycle == (head_cycle - 1));
1035 free_bytes = tail_bytes - head_bytes;
1036 } else {
1038 * The reservation head is behind the tail.
1039 * In this case we just want to return the size of the
1040 * log as the amount of space left.
1042 xfs_alert(log->l_mp,
1043 "xlog_space_left: head behind tail\n"
1044 " tail_cycle = %d, tail_bytes = %d\n"
1045 " GH cycle = %d, GH bytes = %d",
1046 tail_cycle, tail_bytes, head_cycle, head_bytes);
1047 ASSERT(0);
1048 free_bytes = log->l_logsize;
1050 return free_bytes;
1055 * Log function which is called when an io completes.
1057 * The log manager needs its own routine, in order to control what
1058 * happens with the buffer after the write completes.
1060 void
1061 xlog_iodone(xfs_buf_t *bp)
1063 struct xlog_in_core *iclog = bp->b_fspriv;
1064 struct xlog *l = iclog->ic_log;
1065 int aborted = 0;
1068 * Race to shutdown the filesystem if we see an error.
1070 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1071 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1072 xfs_buf_ioerror_alert(bp, __func__);
1073 xfs_buf_stale(bp);
1074 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1076 * This flag will be propagated to the trans-committed
1077 * callback routines to let them know that the log-commit
1078 * didn't succeed.
1080 aborted = XFS_LI_ABORTED;
1081 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1082 aborted = XFS_LI_ABORTED;
1085 /* log I/O is always issued ASYNC */
1086 ASSERT(XFS_BUF_ISASYNC(bp));
1087 xlog_state_done_syncing(iclog, aborted);
1089 * do not reference the buffer (bp) here as we could race
1090 * with it being freed after writing the unmount record to the
1091 * log.
1094 } /* xlog_iodone */
1097 * Return size of each in-core log record buffer.
1099 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1101 * If the filesystem blocksize is too large, we may need to choose a
1102 * larger size since the directory code currently logs entire blocks.
1105 STATIC void
1106 xlog_get_iclog_buffer_size(
1107 struct xfs_mount *mp,
1108 struct xlog *log)
1110 int size;
1111 int xhdrs;
1113 if (mp->m_logbufs <= 0)
1114 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1115 else
1116 log->l_iclog_bufs = mp->m_logbufs;
1119 * Buffer size passed in from mount system call.
1121 if (mp->m_logbsize > 0) {
1122 size = log->l_iclog_size = mp->m_logbsize;
1123 log->l_iclog_size_log = 0;
1124 while (size != 1) {
1125 log->l_iclog_size_log++;
1126 size >>= 1;
1129 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1130 /* # headers = size / 32k
1131 * one header holds cycles from 32k of data
1134 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1135 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1136 xhdrs++;
1137 log->l_iclog_hsize = xhdrs << BBSHIFT;
1138 log->l_iclog_heads = xhdrs;
1139 } else {
1140 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1141 log->l_iclog_hsize = BBSIZE;
1142 log->l_iclog_heads = 1;
1144 goto done;
1147 /* All machines use 32kB buffers by default. */
1148 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1149 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1151 /* the default log size is 16k or 32k which is one header sector */
1152 log->l_iclog_hsize = BBSIZE;
1153 log->l_iclog_heads = 1;
1155 done:
1156 /* are we being asked to make the sizes selected above visible? */
1157 if (mp->m_logbufs == 0)
1158 mp->m_logbufs = log->l_iclog_bufs;
1159 if (mp->m_logbsize == 0)
1160 mp->m_logbsize = log->l_iclog_size;
1161 } /* xlog_get_iclog_buffer_size */
1165 * This routine initializes some of the log structure for a given mount point.
1166 * Its primary purpose is to fill in enough, so recovery can occur. However,
1167 * some other stuff may be filled in too.
1169 STATIC struct xlog *
1170 xlog_alloc_log(
1171 struct xfs_mount *mp,
1172 struct xfs_buftarg *log_target,
1173 xfs_daddr_t blk_offset,
1174 int num_bblks)
1176 struct xlog *log;
1177 xlog_rec_header_t *head;
1178 xlog_in_core_t **iclogp;
1179 xlog_in_core_t *iclog, *prev_iclog=NULL;
1180 xfs_buf_t *bp;
1181 int i;
1182 int error = ENOMEM;
1183 uint log2_size = 0;
1185 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1186 if (!log) {
1187 xfs_warn(mp, "Log allocation failed: No memory!");
1188 goto out;
1191 log->l_mp = mp;
1192 log->l_targ = log_target;
1193 log->l_logsize = BBTOB(num_bblks);
1194 log->l_logBBstart = blk_offset;
1195 log->l_logBBsize = num_bblks;
1196 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1197 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1199 log->l_prev_block = -1;
1200 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1201 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1202 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1203 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1205 xlog_grant_head_init(&log->l_reserve_head);
1206 xlog_grant_head_init(&log->l_write_head);
1208 error = EFSCORRUPTED;
1209 if (xfs_sb_version_hassector(&mp->m_sb)) {
1210 log2_size = mp->m_sb.sb_logsectlog;
1211 if (log2_size < BBSHIFT) {
1212 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1213 log2_size, BBSHIFT);
1214 goto out_free_log;
1217 log2_size -= BBSHIFT;
1218 if (log2_size > mp->m_sectbb_log) {
1219 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1220 log2_size, mp->m_sectbb_log);
1221 goto out_free_log;
1224 /* for larger sector sizes, must have v2 or external log */
1225 if (log2_size && log->l_logBBstart > 0 &&
1226 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1227 xfs_warn(mp,
1228 "log sector size (0x%x) invalid for configuration.",
1229 log2_size);
1230 goto out_free_log;
1233 log->l_sectBBsize = 1 << log2_size;
1235 xlog_get_iclog_buffer_size(mp, log);
1237 error = ENOMEM;
1238 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1239 if (!bp)
1240 goto out_free_log;
1241 bp->b_iodone = xlog_iodone;
1242 ASSERT(xfs_buf_islocked(bp));
1243 log->l_xbuf = bp;
1245 spin_lock_init(&log->l_icloglock);
1246 init_waitqueue_head(&log->l_flush_wait);
1248 iclogp = &log->l_iclog;
1250 * The amount of memory to allocate for the iclog structure is
1251 * rather funky due to the way the structure is defined. It is
1252 * done this way so that we can use different sizes for machines
1253 * with different amounts of memory. See the definition of
1254 * xlog_in_core_t in xfs_log_priv.h for details.
1256 ASSERT(log->l_iclog_size >= 4096);
1257 for (i=0; i < log->l_iclog_bufs; i++) {
1258 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1259 if (!*iclogp)
1260 goto out_free_iclog;
1262 iclog = *iclogp;
1263 iclog->ic_prev = prev_iclog;
1264 prev_iclog = iclog;
1266 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1267 BTOBB(log->l_iclog_size), 0);
1268 if (!bp)
1269 goto out_free_iclog;
1271 bp->b_iodone = xlog_iodone;
1272 iclog->ic_bp = bp;
1273 iclog->ic_data = bp->b_addr;
1274 #ifdef DEBUG
1275 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1276 #endif
1277 head = &iclog->ic_header;
1278 memset(head, 0, sizeof(xlog_rec_header_t));
1279 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1280 head->h_version = cpu_to_be32(
1281 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1282 head->h_size = cpu_to_be32(log->l_iclog_size);
1283 /* new fields */
1284 head->h_fmt = cpu_to_be32(XLOG_FMT);
1285 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1287 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1288 iclog->ic_state = XLOG_STATE_ACTIVE;
1289 iclog->ic_log = log;
1290 atomic_set(&iclog->ic_refcnt, 0);
1291 spin_lock_init(&iclog->ic_callback_lock);
1292 iclog->ic_callback_tail = &(iclog->ic_callback);
1293 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1295 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1296 init_waitqueue_head(&iclog->ic_force_wait);
1297 init_waitqueue_head(&iclog->ic_write_wait);
1299 iclogp = &iclog->ic_next;
1301 *iclogp = log->l_iclog; /* complete ring */
1302 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1304 error = xlog_cil_init(log);
1305 if (error)
1306 goto out_free_iclog;
1307 return log;
1309 out_free_iclog:
1310 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1311 prev_iclog = iclog->ic_next;
1312 if (iclog->ic_bp)
1313 xfs_buf_free(iclog->ic_bp);
1314 kmem_free(iclog);
1316 spinlock_destroy(&log->l_icloglock);
1317 xfs_buf_free(log->l_xbuf);
1318 out_free_log:
1319 kmem_free(log);
1320 out:
1321 return ERR_PTR(-error);
1322 } /* xlog_alloc_log */
1326 * Write out the commit record of a transaction associated with the given
1327 * ticket. Return the lsn of the commit record.
1329 STATIC int
1330 xlog_commit_record(
1331 struct xlog *log,
1332 struct xlog_ticket *ticket,
1333 struct xlog_in_core **iclog,
1334 xfs_lsn_t *commitlsnp)
1336 struct xfs_mount *mp = log->l_mp;
1337 int error;
1338 struct xfs_log_iovec reg = {
1339 .i_addr = NULL,
1340 .i_len = 0,
1341 .i_type = XLOG_REG_TYPE_COMMIT,
1343 struct xfs_log_vec vec = {
1344 .lv_niovecs = 1,
1345 .lv_iovecp = &reg,
1348 ASSERT_ALWAYS(iclog);
1349 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1350 XLOG_COMMIT_TRANS);
1351 if (error)
1352 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1353 return error;
1357 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1358 * log space. This code pushes on the lsn which would supposedly free up
1359 * the 25% which we want to leave free. We may need to adopt a policy which
1360 * pushes on an lsn which is further along in the log once we reach the high
1361 * water mark. In this manner, we would be creating a low water mark.
1363 STATIC void
1364 xlog_grant_push_ail(
1365 struct xlog *log,
1366 int need_bytes)
1368 xfs_lsn_t threshold_lsn = 0;
1369 xfs_lsn_t last_sync_lsn;
1370 int free_blocks;
1371 int free_bytes;
1372 int threshold_block;
1373 int threshold_cycle;
1374 int free_threshold;
1376 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1378 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1379 free_blocks = BTOBBT(free_bytes);
1382 * Set the threshold for the minimum number of free blocks in the
1383 * log to the maximum of what the caller needs, one quarter of the
1384 * log, and 256 blocks.
1386 free_threshold = BTOBB(need_bytes);
1387 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1388 free_threshold = MAX(free_threshold, 256);
1389 if (free_blocks >= free_threshold)
1390 return;
1392 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1393 &threshold_block);
1394 threshold_block += free_threshold;
1395 if (threshold_block >= log->l_logBBsize) {
1396 threshold_block -= log->l_logBBsize;
1397 threshold_cycle += 1;
1399 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1400 threshold_block);
1402 * Don't pass in an lsn greater than the lsn of the last
1403 * log record known to be on disk. Use a snapshot of the last sync lsn
1404 * so that it doesn't change between the compare and the set.
1406 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1407 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1408 threshold_lsn = last_sync_lsn;
1411 * Get the transaction layer to kick the dirty buffers out to
1412 * disk asynchronously. No point in trying to do this if
1413 * the filesystem is shutting down.
1415 if (!XLOG_FORCED_SHUTDOWN(log))
1416 xfs_ail_push(log->l_ailp, threshold_lsn);
1420 * The bdstrat callback function for log bufs. This gives us a central
1421 * place to trap bufs in case we get hit by a log I/O error and need to
1422 * shutdown. Actually, in practice, even when we didn't get a log error,
1423 * we transition the iclogs to IOERROR state *after* flushing all existing
1424 * iclogs to disk. This is because we don't want anymore new transactions to be
1425 * started or completed afterwards.
1427 STATIC int
1428 xlog_bdstrat(
1429 struct xfs_buf *bp)
1431 struct xlog_in_core *iclog = bp->b_fspriv;
1433 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1434 xfs_buf_ioerror(bp, EIO);
1435 xfs_buf_stale(bp);
1436 xfs_buf_ioend(bp, 0);
1438 * It would seem logical to return EIO here, but we rely on
1439 * the log state machine to propagate I/O errors instead of
1440 * doing it here.
1442 return 0;
1445 xfs_buf_iorequest(bp);
1446 return 0;
1450 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1451 * fashion. Previously, we should have moved the current iclog
1452 * ptr in the log to point to the next available iclog. This allows further
1453 * write to continue while this code syncs out an iclog ready to go.
1454 * Before an in-core log can be written out, the data section must be scanned
1455 * to save away the 1st word of each BBSIZE block into the header. We replace
1456 * it with the current cycle count. Each BBSIZE block is tagged with the
1457 * cycle count because there in an implicit assumption that drives will
1458 * guarantee that entire 512 byte blocks get written at once. In other words,
1459 * we can't have part of a 512 byte block written and part not written. By
1460 * tagging each block, we will know which blocks are valid when recovering
1461 * after an unclean shutdown.
1463 * This routine is single threaded on the iclog. No other thread can be in
1464 * this routine with the same iclog. Changing contents of iclog can there-
1465 * fore be done without grabbing the state machine lock. Updating the global
1466 * log will require grabbing the lock though.
1468 * The entire log manager uses a logical block numbering scheme. Only
1469 * log_sync (and then only bwrite()) know about the fact that the log may
1470 * not start with block zero on a given device. The log block start offset
1471 * is added immediately before calling bwrite().
1474 STATIC int
1475 xlog_sync(
1476 struct xlog *log,
1477 struct xlog_in_core *iclog)
1479 xfs_caddr_t dptr; /* pointer to byte sized element */
1480 xfs_buf_t *bp;
1481 int i;
1482 uint count; /* byte count of bwrite */
1483 uint count_init; /* initial count before roundup */
1484 int roundoff; /* roundoff to BB or stripe */
1485 int split = 0; /* split write into two regions */
1486 int error;
1487 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1489 XFS_STATS_INC(xs_log_writes);
1490 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1492 /* Add for LR header */
1493 count_init = log->l_iclog_hsize + iclog->ic_offset;
1495 /* Round out the log write size */
1496 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1497 /* we have a v2 stripe unit to use */
1498 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1499 } else {
1500 count = BBTOB(BTOBB(count_init));
1502 roundoff = count - count_init;
1503 ASSERT(roundoff >= 0);
1504 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1505 roundoff < log->l_mp->m_sb.sb_logsunit)
1507 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1508 roundoff < BBTOB(1)));
1510 /* move grant heads by roundoff in sync */
1511 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1512 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1514 /* put cycle number in every block */
1515 xlog_pack_data(log, iclog, roundoff);
1517 /* real byte length */
1518 if (v2) {
1519 iclog->ic_header.h_len =
1520 cpu_to_be32(iclog->ic_offset + roundoff);
1521 } else {
1522 iclog->ic_header.h_len =
1523 cpu_to_be32(iclog->ic_offset);
1526 bp = iclog->ic_bp;
1527 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1529 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1531 /* Do we need to split this write into 2 parts? */
1532 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1533 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1534 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1535 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1536 } else {
1537 iclog->ic_bwritecnt = 1;
1539 bp->b_io_length = BTOBB(count);
1540 bp->b_fspriv = iclog;
1541 XFS_BUF_ZEROFLAGS(bp);
1542 XFS_BUF_ASYNC(bp);
1543 bp->b_flags |= XBF_SYNCIO;
1545 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1546 bp->b_flags |= XBF_FUA;
1549 * Flush the data device before flushing the log to make
1550 * sure all meta data written back from the AIL actually made
1551 * it to disk before stamping the new log tail LSN into the
1552 * log buffer. For an external log we need to issue the
1553 * flush explicitly, and unfortunately synchronously here;
1554 * for an internal log we can simply use the block layer
1555 * state machine for preflushes.
1557 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1558 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1559 else
1560 bp->b_flags |= XBF_FLUSH;
1563 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1564 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1566 xlog_verify_iclog(log, iclog, count, B_TRUE);
1568 /* account for log which doesn't start at block #0 */
1569 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1571 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1572 * is shutting down.
1574 XFS_BUF_WRITE(bp);
1576 error = xlog_bdstrat(bp);
1577 if (error) {
1578 xfs_buf_ioerror_alert(bp, "xlog_sync");
1579 return error;
1581 if (split) {
1582 bp = iclog->ic_log->l_xbuf;
1583 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1584 xfs_buf_associate_memory(bp,
1585 (char *)&iclog->ic_header + count, split);
1586 bp->b_fspriv = iclog;
1587 XFS_BUF_ZEROFLAGS(bp);
1588 XFS_BUF_ASYNC(bp);
1589 bp->b_flags |= XBF_SYNCIO;
1590 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1591 bp->b_flags |= XBF_FUA;
1592 dptr = bp->b_addr;
1594 * Bump the cycle numbers at the start of each block
1595 * since this part of the buffer is at the start of
1596 * a new cycle. Watch out for the header magic number
1597 * case, though.
1599 for (i = 0; i < split; i += BBSIZE) {
1600 be32_add_cpu((__be32 *)dptr, 1);
1601 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1602 be32_add_cpu((__be32 *)dptr, 1);
1603 dptr += BBSIZE;
1606 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1607 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1609 /* account for internal log which doesn't start at block #0 */
1610 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1611 XFS_BUF_WRITE(bp);
1612 error = xlog_bdstrat(bp);
1613 if (error) {
1614 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1615 return error;
1618 return 0;
1619 } /* xlog_sync */
1623 * Deallocate a log structure
1625 STATIC void
1626 xlog_dealloc_log(
1627 struct xlog *log)
1629 xlog_in_core_t *iclog, *next_iclog;
1630 int i;
1632 xlog_cil_destroy(log);
1635 * always need to ensure that the extra buffer does not point to memory
1636 * owned by another log buffer before we free it.
1638 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1639 xfs_buf_free(log->l_xbuf);
1641 iclog = log->l_iclog;
1642 for (i=0; i<log->l_iclog_bufs; i++) {
1643 xfs_buf_free(iclog->ic_bp);
1644 next_iclog = iclog->ic_next;
1645 kmem_free(iclog);
1646 iclog = next_iclog;
1648 spinlock_destroy(&log->l_icloglock);
1650 log->l_mp->m_log = NULL;
1651 kmem_free(log);
1652 } /* xlog_dealloc_log */
1655 * Update counters atomically now that memcpy is done.
1657 /* ARGSUSED */
1658 static inline void
1659 xlog_state_finish_copy(
1660 struct xlog *log,
1661 struct xlog_in_core *iclog,
1662 int record_cnt,
1663 int copy_bytes)
1665 spin_lock(&log->l_icloglock);
1667 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1668 iclog->ic_offset += copy_bytes;
1670 spin_unlock(&log->l_icloglock);
1671 } /* xlog_state_finish_copy */
1677 * print out info relating to regions written which consume
1678 * the reservation
1680 void
1681 xlog_print_tic_res(
1682 struct xfs_mount *mp,
1683 struct xlog_ticket *ticket)
1685 uint i;
1686 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1688 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1689 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1690 "bformat",
1691 "bchunk",
1692 "efi_format",
1693 "efd_format",
1694 "iformat",
1695 "icore",
1696 "iext",
1697 "ibroot",
1698 "ilocal",
1699 "iattr_ext",
1700 "iattr_broot",
1701 "iattr_local",
1702 "qformat",
1703 "dquot",
1704 "quotaoff",
1705 "LR header",
1706 "unmount",
1707 "commit",
1708 "trans header"
1710 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1711 "SETATTR_NOT_SIZE",
1712 "SETATTR_SIZE",
1713 "INACTIVE",
1714 "CREATE",
1715 "CREATE_TRUNC",
1716 "TRUNCATE_FILE",
1717 "REMOVE",
1718 "LINK",
1719 "RENAME",
1720 "MKDIR",
1721 "RMDIR",
1722 "SYMLINK",
1723 "SET_DMATTRS",
1724 "GROWFS",
1725 "STRAT_WRITE",
1726 "DIOSTRAT",
1727 "WRITE_SYNC",
1728 "WRITEID",
1729 "ADDAFORK",
1730 "ATTRINVAL",
1731 "ATRUNCATE",
1732 "ATTR_SET",
1733 "ATTR_RM",
1734 "ATTR_FLAG",
1735 "CLEAR_AGI_BUCKET",
1736 "QM_SBCHANGE",
1737 "DUMMY1",
1738 "DUMMY2",
1739 "QM_QUOTAOFF",
1740 "QM_DQALLOC",
1741 "QM_SETQLIM",
1742 "QM_DQCLUSTER",
1743 "QM_QINOCREATE",
1744 "QM_QUOTAOFF_END",
1745 "SB_UNIT",
1746 "FSYNC_TS",
1747 "GROWFSRT_ALLOC",
1748 "GROWFSRT_ZERO",
1749 "GROWFSRT_FREE",
1750 "SWAPEXT"
1753 xfs_warn(mp,
1754 "xlog_write: reservation summary:\n"
1755 " trans type = %s (%u)\n"
1756 " unit res = %d bytes\n"
1757 " current res = %d bytes\n"
1758 " total reg = %u bytes (o/flow = %u bytes)\n"
1759 " ophdrs = %u (ophdr space = %u bytes)\n"
1760 " ophdr + reg = %u bytes\n"
1761 " num regions = %u\n",
1762 ((ticket->t_trans_type <= 0 ||
1763 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1764 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1765 ticket->t_trans_type,
1766 ticket->t_unit_res,
1767 ticket->t_curr_res,
1768 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1769 ticket->t_res_num_ophdrs, ophdr_spc,
1770 ticket->t_res_arr_sum +
1771 ticket->t_res_o_flow + ophdr_spc,
1772 ticket->t_res_num);
1774 for (i = 0; i < ticket->t_res_num; i++) {
1775 uint r_type = ticket->t_res_arr[i].r_type;
1776 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1777 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1778 "bad-rtype" : res_type_str[r_type-1]),
1779 ticket->t_res_arr[i].r_len);
1782 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1783 "xlog_write: reservation ran out. Need to up reservation");
1784 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1788 * Calculate the potential space needed by the log vector. Each region gets
1789 * its own xlog_op_header_t and may need to be double word aligned.
1791 static int
1792 xlog_write_calc_vec_length(
1793 struct xlog_ticket *ticket,
1794 struct xfs_log_vec *log_vector)
1796 struct xfs_log_vec *lv;
1797 int headers = 0;
1798 int len = 0;
1799 int i;
1801 /* acct for start rec of xact */
1802 if (ticket->t_flags & XLOG_TIC_INITED)
1803 headers++;
1805 for (lv = log_vector; lv; lv = lv->lv_next) {
1806 headers += lv->lv_niovecs;
1808 for (i = 0; i < lv->lv_niovecs; i++) {
1809 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1811 len += vecp->i_len;
1812 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1816 ticket->t_res_num_ophdrs += headers;
1817 len += headers * sizeof(struct xlog_op_header);
1819 return len;
1823 * If first write for transaction, insert start record We can't be trying to
1824 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1826 static int
1827 xlog_write_start_rec(
1828 struct xlog_op_header *ophdr,
1829 struct xlog_ticket *ticket)
1831 if (!(ticket->t_flags & XLOG_TIC_INITED))
1832 return 0;
1834 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1835 ophdr->oh_clientid = ticket->t_clientid;
1836 ophdr->oh_len = 0;
1837 ophdr->oh_flags = XLOG_START_TRANS;
1838 ophdr->oh_res2 = 0;
1840 ticket->t_flags &= ~XLOG_TIC_INITED;
1842 return sizeof(struct xlog_op_header);
1845 static xlog_op_header_t *
1846 xlog_write_setup_ophdr(
1847 struct xlog *log,
1848 struct xlog_op_header *ophdr,
1849 struct xlog_ticket *ticket,
1850 uint flags)
1852 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1853 ophdr->oh_clientid = ticket->t_clientid;
1854 ophdr->oh_res2 = 0;
1856 /* are we copying a commit or unmount record? */
1857 ophdr->oh_flags = flags;
1860 * We've seen logs corrupted with bad transaction client ids. This
1861 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1862 * and shut down the filesystem.
1864 switch (ophdr->oh_clientid) {
1865 case XFS_TRANSACTION:
1866 case XFS_VOLUME:
1867 case XFS_LOG:
1868 break;
1869 default:
1870 xfs_warn(log->l_mp,
1871 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1872 ophdr->oh_clientid, ticket);
1873 return NULL;
1876 return ophdr;
1880 * Set up the parameters of the region copy into the log. This has
1881 * to handle region write split across multiple log buffers - this
1882 * state is kept external to this function so that this code can
1883 * can be written in an obvious, self documenting manner.
1885 static int
1886 xlog_write_setup_copy(
1887 struct xlog_ticket *ticket,
1888 struct xlog_op_header *ophdr,
1889 int space_available,
1890 int space_required,
1891 int *copy_off,
1892 int *copy_len,
1893 int *last_was_partial_copy,
1894 int *bytes_consumed)
1896 int still_to_copy;
1898 still_to_copy = space_required - *bytes_consumed;
1899 *copy_off = *bytes_consumed;
1901 if (still_to_copy <= space_available) {
1902 /* write of region completes here */
1903 *copy_len = still_to_copy;
1904 ophdr->oh_len = cpu_to_be32(*copy_len);
1905 if (*last_was_partial_copy)
1906 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1907 *last_was_partial_copy = 0;
1908 *bytes_consumed = 0;
1909 return 0;
1912 /* partial write of region, needs extra log op header reservation */
1913 *copy_len = space_available;
1914 ophdr->oh_len = cpu_to_be32(*copy_len);
1915 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1916 if (*last_was_partial_copy)
1917 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1918 *bytes_consumed += *copy_len;
1919 (*last_was_partial_copy)++;
1921 /* account for new log op header */
1922 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1923 ticket->t_res_num_ophdrs++;
1925 return sizeof(struct xlog_op_header);
1928 static int
1929 xlog_write_copy_finish(
1930 struct xlog *log,
1931 struct xlog_in_core *iclog,
1932 uint flags,
1933 int *record_cnt,
1934 int *data_cnt,
1935 int *partial_copy,
1936 int *partial_copy_len,
1937 int log_offset,
1938 struct xlog_in_core **commit_iclog)
1940 if (*partial_copy) {
1942 * This iclog has already been marked WANT_SYNC by
1943 * xlog_state_get_iclog_space.
1945 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1946 *record_cnt = 0;
1947 *data_cnt = 0;
1948 return xlog_state_release_iclog(log, iclog);
1951 *partial_copy = 0;
1952 *partial_copy_len = 0;
1954 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1955 /* no more space in this iclog - push it. */
1956 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1957 *record_cnt = 0;
1958 *data_cnt = 0;
1960 spin_lock(&log->l_icloglock);
1961 xlog_state_want_sync(log, iclog);
1962 spin_unlock(&log->l_icloglock);
1964 if (!commit_iclog)
1965 return xlog_state_release_iclog(log, iclog);
1966 ASSERT(flags & XLOG_COMMIT_TRANS);
1967 *commit_iclog = iclog;
1970 return 0;
1974 * Write some region out to in-core log
1976 * This will be called when writing externally provided regions or when
1977 * writing out a commit record for a given transaction.
1979 * General algorithm:
1980 * 1. Find total length of this write. This may include adding to the
1981 * lengths passed in.
1982 * 2. Check whether we violate the tickets reservation.
1983 * 3. While writing to this iclog
1984 * A. Reserve as much space in this iclog as can get
1985 * B. If this is first write, save away start lsn
1986 * C. While writing this region:
1987 * 1. If first write of transaction, write start record
1988 * 2. Write log operation header (header per region)
1989 * 3. Find out if we can fit entire region into this iclog
1990 * 4. Potentially, verify destination memcpy ptr
1991 * 5. Memcpy (partial) region
1992 * 6. If partial copy, release iclog; otherwise, continue
1993 * copying more regions into current iclog
1994 * 4. Mark want sync bit (in simulation mode)
1995 * 5. Release iclog for potential flush to on-disk log.
1997 * ERRORS:
1998 * 1. Panic if reservation is overrun. This should never happen since
1999 * reservation amounts are generated internal to the filesystem.
2000 * NOTES:
2001 * 1. Tickets are single threaded data structures.
2002 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2003 * syncing routine. When a single log_write region needs to span
2004 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2005 * on all log operation writes which don't contain the end of the
2006 * region. The XLOG_END_TRANS bit is used for the in-core log
2007 * operation which contains the end of the continued log_write region.
2008 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2009 * we don't really know exactly how much space will be used. As a result,
2010 * we don't update ic_offset until the end when we know exactly how many
2011 * bytes have been written out.
2014 xlog_write(
2015 struct xlog *log,
2016 struct xfs_log_vec *log_vector,
2017 struct xlog_ticket *ticket,
2018 xfs_lsn_t *start_lsn,
2019 struct xlog_in_core **commit_iclog,
2020 uint flags)
2022 struct xlog_in_core *iclog = NULL;
2023 struct xfs_log_iovec *vecp;
2024 struct xfs_log_vec *lv;
2025 int len;
2026 int index;
2027 int partial_copy = 0;
2028 int partial_copy_len = 0;
2029 int contwr = 0;
2030 int record_cnt = 0;
2031 int data_cnt = 0;
2032 int error;
2034 *start_lsn = 0;
2036 len = xlog_write_calc_vec_length(ticket, log_vector);
2039 * Region headers and bytes are already accounted for.
2040 * We only need to take into account start records and
2041 * split regions in this function.
2043 if (ticket->t_flags & XLOG_TIC_INITED)
2044 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2047 * Commit record headers need to be accounted for. These
2048 * come in as separate writes so are easy to detect.
2050 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2051 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2053 if (ticket->t_curr_res < 0)
2054 xlog_print_tic_res(log->l_mp, ticket);
2056 index = 0;
2057 lv = log_vector;
2058 vecp = lv->lv_iovecp;
2059 while (lv && index < lv->lv_niovecs) {
2060 void *ptr;
2061 int log_offset;
2063 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2064 &contwr, &log_offset);
2065 if (error)
2066 return error;
2068 ASSERT(log_offset <= iclog->ic_size - 1);
2069 ptr = iclog->ic_datap + log_offset;
2071 /* start_lsn is the first lsn written to. That's all we need. */
2072 if (!*start_lsn)
2073 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2076 * This loop writes out as many regions as can fit in the amount
2077 * of space which was allocated by xlog_state_get_iclog_space().
2079 while (lv && index < lv->lv_niovecs) {
2080 struct xfs_log_iovec *reg = &vecp[index];
2081 struct xlog_op_header *ophdr;
2082 int start_rec_copy;
2083 int copy_len;
2084 int copy_off;
2086 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2087 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2089 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2090 if (start_rec_copy) {
2091 record_cnt++;
2092 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2093 start_rec_copy);
2096 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2097 if (!ophdr)
2098 return XFS_ERROR(EIO);
2100 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2101 sizeof(struct xlog_op_header));
2103 len += xlog_write_setup_copy(ticket, ophdr,
2104 iclog->ic_size-log_offset,
2105 reg->i_len,
2106 &copy_off, &copy_len,
2107 &partial_copy,
2108 &partial_copy_len);
2109 xlog_verify_dest_ptr(log, ptr);
2111 /* copy region */
2112 ASSERT(copy_len >= 0);
2113 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2114 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2116 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2117 record_cnt++;
2118 data_cnt += contwr ? copy_len : 0;
2120 error = xlog_write_copy_finish(log, iclog, flags,
2121 &record_cnt, &data_cnt,
2122 &partial_copy,
2123 &partial_copy_len,
2124 log_offset,
2125 commit_iclog);
2126 if (error)
2127 return error;
2130 * if we had a partial copy, we need to get more iclog
2131 * space but we don't want to increment the region
2132 * index because there is still more is this region to
2133 * write.
2135 * If we completed writing this region, and we flushed
2136 * the iclog (indicated by resetting of the record
2137 * count), then we also need to get more log space. If
2138 * this was the last record, though, we are done and
2139 * can just return.
2141 if (partial_copy)
2142 break;
2144 if (++index == lv->lv_niovecs) {
2145 lv = lv->lv_next;
2146 index = 0;
2147 if (lv)
2148 vecp = lv->lv_iovecp;
2150 if (record_cnt == 0) {
2151 if (!lv)
2152 return 0;
2153 break;
2158 ASSERT(len == 0);
2160 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2161 if (!commit_iclog)
2162 return xlog_state_release_iclog(log, iclog);
2164 ASSERT(flags & XLOG_COMMIT_TRANS);
2165 *commit_iclog = iclog;
2166 return 0;
2170 /*****************************************************************************
2172 * State Machine functions
2174 *****************************************************************************
2177 /* Clean iclogs starting from the head. This ordering must be
2178 * maintained, so an iclog doesn't become ACTIVE beyond one that
2179 * is SYNCING. This is also required to maintain the notion that we use
2180 * a ordered wait queue to hold off would be writers to the log when every
2181 * iclog is trying to sync to disk.
2183 * State Change: DIRTY -> ACTIVE
2185 STATIC void
2186 xlog_state_clean_log(
2187 struct xlog *log)
2189 xlog_in_core_t *iclog;
2190 int changed = 0;
2192 iclog = log->l_iclog;
2193 do {
2194 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2195 iclog->ic_state = XLOG_STATE_ACTIVE;
2196 iclog->ic_offset = 0;
2197 ASSERT(iclog->ic_callback == NULL);
2199 * If the number of ops in this iclog indicate it just
2200 * contains the dummy transaction, we can
2201 * change state into IDLE (the second time around).
2202 * Otherwise we should change the state into
2203 * NEED a dummy.
2204 * We don't need to cover the dummy.
2206 if (!changed &&
2207 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2208 XLOG_COVER_OPS)) {
2209 changed = 1;
2210 } else {
2212 * We have two dirty iclogs so start over
2213 * This could also be num of ops indicates
2214 * this is not the dummy going out.
2216 changed = 2;
2218 iclog->ic_header.h_num_logops = 0;
2219 memset(iclog->ic_header.h_cycle_data, 0,
2220 sizeof(iclog->ic_header.h_cycle_data));
2221 iclog->ic_header.h_lsn = 0;
2222 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2223 /* do nothing */;
2224 else
2225 break; /* stop cleaning */
2226 iclog = iclog->ic_next;
2227 } while (iclog != log->l_iclog);
2229 /* log is locked when we are called */
2231 * Change state for the dummy log recording.
2232 * We usually go to NEED. But we go to NEED2 if the changed indicates
2233 * we are done writing the dummy record.
2234 * If we are done with the second dummy recored (DONE2), then
2235 * we go to IDLE.
2237 if (changed) {
2238 switch (log->l_covered_state) {
2239 case XLOG_STATE_COVER_IDLE:
2240 case XLOG_STATE_COVER_NEED:
2241 case XLOG_STATE_COVER_NEED2:
2242 log->l_covered_state = XLOG_STATE_COVER_NEED;
2243 break;
2245 case XLOG_STATE_COVER_DONE:
2246 if (changed == 1)
2247 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2248 else
2249 log->l_covered_state = XLOG_STATE_COVER_NEED;
2250 break;
2252 case XLOG_STATE_COVER_DONE2:
2253 if (changed == 1)
2254 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2255 else
2256 log->l_covered_state = XLOG_STATE_COVER_NEED;
2257 break;
2259 default:
2260 ASSERT(0);
2263 } /* xlog_state_clean_log */
2265 STATIC xfs_lsn_t
2266 xlog_get_lowest_lsn(
2267 struct xlog *log)
2269 xlog_in_core_t *lsn_log;
2270 xfs_lsn_t lowest_lsn, lsn;
2272 lsn_log = log->l_iclog;
2273 lowest_lsn = 0;
2274 do {
2275 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2276 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2277 if ((lsn && !lowest_lsn) ||
2278 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2279 lowest_lsn = lsn;
2282 lsn_log = lsn_log->ic_next;
2283 } while (lsn_log != log->l_iclog);
2284 return lowest_lsn;
2288 STATIC void
2289 xlog_state_do_callback(
2290 struct xlog *log,
2291 int aborted,
2292 struct xlog_in_core *ciclog)
2294 xlog_in_core_t *iclog;
2295 xlog_in_core_t *first_iclog; /* used to know when we've
2296 * processed all iclogs once */
2297 xfs_log_callback_t *cb, *cb_next;
2298 int flushcnt = 0;
2299 xfs_lsn_t lowest_lsn;
2300 int ioerrors; /* counter: iclogs with errors */
2301 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2302 int funcdidcallbacks; /* flag: function did callbacks */
2303 int repeats; /* for issuing console warnings if
2304 * looping too many times */
2305 int wake = 0;
2307 spin_lock(&log->l_icloglock);
2308 first_iclog = iclog = log->l_iclog;
2309 ioerrors = 0;
2310 funcdidcallbacks = 0;
2311 repeats = 0;
2313 do {
2315 * Scan all iclogs starting with the one pointed to by the
2316 * log. Reset this starting point each time the log is
2317 * unlocked (during callbacks).
2319 * Keep looping through iclogs until one full pass is made
2320 * without running any callbacks.
2322 first_iclog = log->l_iclog;
2323 iclog = log->l_iclog;
2324 loopdidcallbacks = 0;
2325 repeats++;
2327 do {
2329 /* skip all iclogs in the ACTIVE & DIRTY states */
2330 if (iclog->ic_state &
2331 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2332 iclog = iclog->ic_next;
2333 continue;
2337 * Between marking a filesystem SHUTDOWN and stopping
2338 * the log, we do flush all iclogs to disk (if there
2339 * wasn't a log I/O error). So, we do want things to
2340 * go smoothly in case of just a SHUTDOWN w/o a
2341 * LOG_IO_ERROR.
2343 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2345 * Can only perform callbacks in order. Since
2346 * this iclog is not in the DONE_SYNC/
2347 * DO_CALLBACK state, we skip the rest and
2348 * just try to clean up. If we set our iclog
2349 * to DO_CALLBACK, we will not process it when
2350 * we retry since a previous iclog is in the
2351 * CALLBACK and the state cannot change since
2352 * we are holding the l_icloglock.
2354 if (!(iclog->ic_state &
2355 (XLOG_STATE_DONE_SYNC |
2356 XLOG_STATE_DO_CALLBACK))) {
2357 if (ciclog && (ciclog->ic_state ==
2358 XLOG_STATE_DONE_SYNC)) {
2359 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2361 break;
2364 * We now have an iclog that is in either the
2365 * DO_CALLBACK or DONE_SYNC states. The other
2366 * states (WANT_SYNC, SYNCING, or CALLBACK were
2367 * caught by the above if and are going to
2368 * clean (i.e. we aren't doing their callbacks)
2369 * see the above if.
2373 * We will do one more check here to see if we
2374 * have chased our tail around.
2377 lowest_lsn = xlog_get_lowest_lsn(log);
2378 if (lowest_lsn &&
2379 XFS_LSN_CMP(lowest_lsn,
2380 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2381 iclog = iclog->ic_next;
2382 continue; /* Leave this iclog for
2383 * another thread */
2386 iclog->ic_state = XLOG_STATE_CALLBACK;
2390 * update the last_sync_lsn before we drop the
2391 * icloglock to ensure we are the only one that
2392 * can update it.
2394 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2395 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2396 atomic64_set(&log->l_last_sync_lsn,
2397 be64_to_cpu(iclog->ic_header.h_lsn));
2399 } else
2400 ioerrors++;
2402 spin_unlock(&log->l_icloglock);
2405 * Keep processing entries in the callback list until
2406 * we come around and it is empty. We need to
2407 * atomically see that the list is empty and change the
2408 * state to DIRTY so that we don't miss any more
2409 * callbacks being added.
2411 spin_lock(&iclog->ic_callback_lock);
2412 cb = iclog->ic_callback;
2413 while (cb) {
2414 iclog->ic_callback_tail = &(iclog->ic_callback);
2415 iclog->ic_callback = NULL;
2416 spin_unlock(&iclog->ic_callback_lock);
2418 /* perform callbacks in the order given */
2419 for (; cb; cb = cb_next) {
2420 cb_next = cb->cb_next;
2421 cb->cb_func(cb->cb_arg, aborted);
2423 spin_lock(&iclog->ic_callback_lock);
2424 cb = iclog->ic_callback;
2427 loopdidcallbacks++;
2428 funcdidcallbacks++;
2430 spin_lock(&log->l_icloglock);
2431 ASSERT(iclog->ic_callback == NULL);
2432 spin_unlock(&iclog->ic_callback_lock);
2433 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2434 iclog->ic_state = XLOG_STATE_DIRTY;
2437 * Transition from DIRTY to ACTIVE if applicable.
2438 * NOP if STATE_IOERROR.
2440 xlog_state_clean_log(log);
2442 /* wake up threads waiting in xfs_log_force() */
2443 wake_up_all(&iclog->ic_force_wait);
2445 iclog = iclog->ic_next;
2446 } while (first_iclog != iclog);
2448 if (repeats > 5000) {
2449 flushcnt += repeats;
2450 repeats = 0;
2451 xfs_warn(log->l_mp,
2452 "%s: possible infinite loop (%d iterations)",
2453 __func__, flushcnt);
2455 } while (!ioerrors && loopdidcallbacks);
2458 * make one last gasp attempt to see if iclogs are being left in
2459 * limbo..
2461 #ifdef DEBUG
2462 if (funcdidcallbacks) {
2463 first_iclog = iclog = log->l_iclog;
2464 do {
2465 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2467 * Terminate the loop if iclogs are found in states
2468 * which will cause other threads to clean up iclogs.
2470 * SYNCING - i/o completion will go through logs
2471 * DONE_SYNC - interrupt thread should be waiting for
2472 * l_icloglock
2473 * IOERROR - give up hope all ye who enter here
2475 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2476 iclog->ic_state == XLOG_STATE_SYNCING ||
2477 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2478 iclog->ic_state == XLOG_STATE_IOERROR )
2479 break;
2480 iclog = iclog->ic_next;
2481 } while (first_iclog != iclog);
2483 #endif
2485 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2486 wake = 1;
2487 spin_unlock(&log->l_icloglock);
2489 if (wake)
2490 wake_up_all(&log->l_flush_wait);
2495 * Finish transitioning this iclog to the dirty state.
2497 * Make sure that we completely execute this routine only when this is
2498 * the last call to the iclog. There is a good chance that iclog flushes,
2499 * when we reach the end of the physical log, get turned into 2 separate
2500 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2501 * routine. By using the reference count bwritecnt, we guarantee that only
2502 * the second completion goes through.
2504 * Callbacks could take time, so they are done outside the scope of the
2505 * global state machine log lock.
2507 STATIC void
2508 xlog_state_done_syncing(
2509 xlog_in_core_t *iclog,
2510 int aborted)
2512 struct xlog *log = iclog->ic_log;
2514 spin_lock(&log->l_icloglock);
2516 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2517 iclog->ic_state == XLOG_STATE_IOERROR);
2518 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2519 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2523 * If we got an error, either on the first buffer, or in the case of
2524 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2525 * and none should ever be attempted to be written to disk
2526 * again.
2528 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2529 if (--iclog->ic_bwritecnt == 1) {
2530 spin_unlock(&log->l_icloglock);
2531 return;
2533 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2537 * Someone could be sleeping prior to writing out the next
2538 * iclog buffer, we wake them all, one will get to do the
2539 * I/O, the others get to wait for the result.
2541 wake_up_all(&iclog->ic_write_wait);
2542 spin_unlock(&log->l_icloglock);
2543 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2544 } /* xlog_state_done_syncing */
2548 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2549 * sleep. We wait on the flush queue on the head iclog as that should be
2550 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2551 * we will wait here and all new writes will sleep until a sync completes.
2553 * The in-core logs are used in a circular fashion. They are not used
2554 * out-of-order even when an iclog past the head is free.
2556 * return:
2557 * * log_offset where xlog_write() can start writing into the in-core
2558 * log's data space.
2559 * * in-core log pointer to which xlog_write() should write.
2560 * * boolean indicating this is a continued write to an in-core log.
2561 * If this is the last write, then the in-core log's offset field
2562 * needs to be incremented, depending on the amount of data which
2563 * is copied.
2565 STATIC int
2566 xlog_state_get_iclog_space(
2567 struct xlog *log,
2568 int len,
2569 struct xlog_in_core **iclogp,
2570 struct xlog_ticket *ticket,
2571 int *continued_write,
2572 int *logoffsetp)
2574 int log_offset;
2575 xlog_rec_header_t *head;
2576 xlog_in_core_t *iclog;
2577 int error;
2579 restart:
2580 spin_lock(&log->l_icloglock);
2581 if (XLOG_FORCED_SHUTDOWN(log)) {
2582 spin_unlock(&log->l_icloglock);
2583 return XFS_ERROR(EIO);
2586 iclog = log->l_iclog;
2587 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2588 XFS_STATS_INC(xs_log_noiclogs);
2590 /* Wait for log writes to have flushed */
2591 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2592 goto restart;
2595 head = &iclog->ic_header;
2597 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2598 log_offset = iclog->ic_offset;
2600 /* On the 1st write to an iclog, figure out lsn. This works
2601 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2602 * committing to. If the offset is set, that's how many blocks
2603 * must be written.
2605 if (log_offset == 0) {
2606 ticket->t_curr_res -= log->l_iclog_hsize;
2607 xlog_tic_add_region(ticket,
2608 log->l_iclog_hsize,
2609 XLOG_REG_TYPE_LRHEADER);
2610 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2611 head->h_lsn = cpu_to_be64(
2612 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2613 ASSERT(log->l_curr_block >= 0);
2616 /* If there is enough room to write everything, then do it. Otherwise,
2617 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2618 * bit is on, so this will get flushed out. Don't update ic_offset
2619 * until you know exactly how many bytes get copied. Therefore, wait
2620 * until later to update ic_offset.
2622 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2623 * can fit into remaining data section.
2625 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2626 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2629 * If I'm the only one writing to this iclog, sync it to disk.
2630 * We need to do an atomic compare and decrement here to avoid
2631 * racing with concurrent atomic_dec_and_lock() calls in
2632 * xlog_state_release_iclog() when there is more than one
2633 * reference to the iclog.
2635 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2636 /* we are the only one */
2637 spin_unlock(&log->l_icloglock);
2638 error = xlog_state_release_iclog(log, iclog);
2639 if (error)
2640 return error;
2641 } else {
2642 spin_unlock(&log->l_icloglock);
2644 goto restart;
2647 /* Do we have enough room to write the full amount in the remainder
2648 * of this iclog? Or must we continue a write on the next iclog and
2649 * mark this iclog as completely taken? In the case where we switch
2650 * iclogs (to mark it taken), this particular iclog will release/sync
2651 * to disk in xlog_write().
2653 if (len <= iclog->ic_size - iclog->ic_offset) {
2654 *continued_write = 0;
2655 iclog->ic_offset += len;
2656 } else {
2657 *continued_write = 1;
2658 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2660 *iclogp = iclog;
2662 ASSERT(iclog->ic_offset <= iclog->ic_size);
2663 spin_unlock(&log->l_icloglock);
2665 *logoffsetp = log_offset;
2666 return 0;
2667 } /* xlog_state_get_iclog_space */
2669 /* The first cnt-1 times through here we don't need to
2670 * move the grant write head because the permanent
2671 * reservation has reserved cnt times the unit amount.
2672 * Release part of current permanent unit reservation and
2673 * reset current reservation to be one units worth. Also
2674 * move grant reservation head forward.
2676 STATIC void
2677 xlog_regrant_reserve_log_space(
2678 struct xlog *log,
2679 struct xlog_ticket *ticket)
2681 trace_xfs_log_regrant_reserve_enter(log, ticket);
2683 if (ticket->t_cnt > 0)
2684 ticket->t_cnt--;
2686 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2687 ticket->t_curr_res);
2688 xlog_grant_sub_space(log, &log->l_write_head.grant,
2689 ticket->t_curr_res);
2690 ticket->t_curr_res = ticket->t_unit_res;
2691 xlog_tic_reset_res(ticket);
2693 trace_xfs_log_regrant_reserve_sub(log, ticket);
2695 /* just return if we still have some of the pre-reserved space */
2696 if (ticket->t_cnt > 0)
2697 return;
2699 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2700 ticket->t_unit_res);
2702 trace_xfs_log_regrant_reserve_exit(log, ticket);
2704 ticket->t_curr_res = ticket->t_unit_res;
2705 xlog_tic_reset_res(ticket);
2706 } /* xlog_regrant_reserve_log_space */
2710 * Give back the space left from a reservation.
2712 * All the information we need to make a correct determination of space left
2713 * is present. For non-permanent reservations, things are quite easy. The
2714 * count should have been decremented to zero. We only need to deal with the
2715 * space remaining in the current reservation part of the ticket. If the
2716 * ticket contains a permanent reservation, there may be left over space which
2717 * needs to be released. A count of N means that N-1 refills of the current
2718 * reservation can be done before we need to ask for more space. The first
2719 * one goes to fill up the first current reservation. Once we run out of
2720 * space, the count will stay at zero and the only space remaining will be
2721 * in the current reservation field.
2723 STATIC void
2724 xlog_ungrant_log_space(
2725 struct xlog *log,
2726 struct xlog_ticket *ticket)
2728 int bytes;
2730 if (ticket->t_cnt > 0)
2731 ticket->t_cnt--;
2733 trace_xfs_log_ungrant_enter(log, ticket);
2734 trace_xfs_log_ungrant_sub(log, ticket);
2737 * If this is a permanent reservation ticket, we may be able to free
2738 * up more space based on the remaining count.
2740 bytes = ticket->t_curr_res;
2741 if (ticket->t_cnt > 0) {
2742 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2743 bytes += ticket->t_unit_res*ticket->t_cnt;
2746 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2747 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2749 trace_xfs_log_ungrant_exit(log, ticket);
2751 xfs_log_space_wake(log->l_mp);
2755 * Flush iclog to disk if this is the last reference to the given iclog and
2756 * the WANT_SYNC bit is set.
2758 * When this function is entered, the iclog is not necessarily in the
2759 * WANT_SYNC state. It may be sitting around waiting to get filled.
2763 STATIC int
2764 xlog_state_release_iclog(
2765 struct xlog *log,
2766 struct xlog_in_core *iclog)
2768 int sync = 0; /* do we sync? */
2770 if (iclog->ic_state & XLOG_STATE_IOERROR)
2771 return XFS_ERROR(EIO);
2773 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2774 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2775 return 0;
2777 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2778 spin_unlock(&log->l_icloglock);
2779 return XFS_ERROR(EIO);
2781 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2782 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2784 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2785 /* update tail before writing to iclog */
2786 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2787 sync++;
2788 iclog->ic_state = XLOG_STATE_SYNCING;
2789 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2790 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2791 /* cycle incremented when incrementing curr_block */
2793 spin_unlock(&log->l_icloglock);
2796 * We let the log lock go, so it's possible that we hit a log I/O
2797 * error or some other SHUTDOWN condition that marks the iclog
2798 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2799 * this iclog has consistent data, so we ignore IOERROR
2800 * flags after this point.
2802 if (sync)
2803 return xlog_sync(log, iclog);
2804 return 0;
2805 } /* xlog_state_release_iclog */
2809 * This routine will mark the current iclog in the ring as WANT_SYNC
2810 * and move the current iclog pointer to the next iclog in the ring.
2811 * When this routine is called from xlog_state_get_iclog_space(), the
2812 * exact size of the iclog has not yet been determined. All we know is
2813 * that every data block. We have run out of space in this log record.
2815 STATIC void
2816 xlog_state_switch_iclogs(
2817 struct xlog *log,
2818 struct xlog_in_core *iclog,
2819 int eventual_size)
2821 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2822 if (!eventual_size)
2823 eventual_size = iclog->ic_offset;
2824 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2825 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2826 log->l_prev_block = log->l_curr_block;
2827 log->l_prev_cycle = log->l_curr_cycle;
2829 /* roll log?: ic_offset changed later */
2830 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2832 /* Round up to next log-sunit */
2833 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2834 log->l_mp->m_sb.sb_logsunit > 1) {
2835 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2836 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2839 if (log->l_curr_block >= log->l_logBBsize) {
2840 log->l_curr_cycle++;
2841 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2842 log->l_curr_cycle++;
2843 log->l_curr_block -= log->l_logBBsize;
2844 ASSERT(log->l_curr_block >= 0);
2846 ASSERT(iclog == log->l_iclog);
2847 log->l_iclog = iclog->ic_next;
2848 } /* xlog_state_switch_iclogs */
2851 * Write out all data in the in-core log as of this exact moment in time.
2853 * Data may be written to the in-core log during this call. However,
2854 * we don't guarantee this data will be written out. A change from past
2855 * implementation means this routine will *not* write out zero length LRs.
2857 * Basically, we try and perform an intelligent scan of the in-core logs.
2858 * If we determine there is no flushable data, we just return. There is no
2859 * flushable data if:
2861 * 1. the current iclog is active and has no data; the previous iclog
2862 * is in the active or dirty state.
2863 * 2. the current iclog is drity, and the previous iclog is in the
2864 * active or dirty state.
2866 * We may sleep if:
2868 * 1. the current iclog is not in the active nor dirty state.
2869 * 2. the current iclog dirty, and the previous iclog is not in the
2870 * active nor dirty state.
2871 * 3. the current iclog is active, and there is another thread writing
2872 * to this particular iclog.
2873 * 4. a) the current iclog is active and has no other writers
2874 * b) when we return from flushing out this iclog, it is still
2875 * not in the active nor dirty state.
2878 _xfs_log_force(
2879 struct xfs_mount *mp,
2880 uint flags,
2881 int *log_flushed)
2883 struct xlog *log = mp->m_log;
2884 struct xlog_in_core *iclog;
2885 xfs_lsn_t lsn;
2887 XFS_STATS_INC(xs_log_force);
2889 xlog_cil_force(log);
2891 spin_lock(&log->l_icloglock);
2893 iclog = log->l_iclog;
2894 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2895 spin_unlock(&log->l_icloglock);
2896 return XFS_ERROR(EIO);
2899 /* If the head iclog is not active nor dirty, we just attach
2900 * ourselves to the head and go to sleep.
2902 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2903 iclog->ic_state == XLOG_STATE_DIRTY) {
2905 * If the head is dirty or (active and empty), then
2906 * we need to look at the previous iclog. If the previous
2907 * iclog is active or dirty we are done. There is nothing
2908 * to sync out. Otherwise, we attach ourselves to the
2909 * previous iclog and go to sleep.
2911 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2912 (atomic_read(&iclog->ic_refcnt) == 0
2913 && iclog->ic_offset == 0)) {
2914 iclog = iclog->ic_prev;
2915 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2916 iclog->ic_state == XLOG_STATE_DIRTY)
2917 goto no_sleep;
2918 else
2919 goto maybe_sleep;
2920 } else {
2921 if (atomic_read(&iclog->ic_refcnt) == 0) {
2922 /* We are the only one with access to this
2923 * iclog. Flush it out now. There should
2924 * be a roundoff of zero to show that someone
2925 * has already taken care of the roundoff from
2926 * the previous sync.
2928 atomic_inc(&iclog->ic_refcnt);
2929 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2930 xlog_state_switch_iclogs(log, iclog, 0);
2931 spin_unlock(&log->l_icloglock);
2933 if (xlog_state_release_iclog(log, iclog))
2934 return XFS_ERROR(EIO);
2936 if (log_flushed)
2937 *log_flushed = 1;
2938 spin_lock(&log->l_icloglock);
2939 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2940 iclog->ic_state != XLOG_STATE_DIRTY)
2941 goto maybe_sleep;
2942 else
2943 goto no_sleep;
2944 } else {
2945 /* Someone else is writing to this iclog.
2946 * Use its call to flush out the data. However,
2947 * the other thread may not force out this LR,
2948 * so we mark it WANT_SYNC.
2950 xlog_state_switch_iclogs(log, iclog, 0);
2951 goto maybe_sleep;
2956 /* By the time we come around again, the iclog could've been filled
2957 * which would give it another lsn. If we have a new lsn, just
2958 * return because the relevant data has been flushed.
2960 maybe_sleep:
2961 if (flags & XFS_LOG_SYNC) {
2963 * We must check if we're shutting down here, before
2964 * we wait, while we're holding the l_icloglock.
2965 * Then we check again after waking up, in case our
2966 * sleep was disturbed by a bad news.
2968 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2969 spin_unlock(&log->l_icloglock);
2970 return XFS_ERROR(EIO);
2972 XFS_STATS_INC(xs_log_force_sleep);
2973 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2975 * No need to grab the log lock here since we're
2976 * only deciding whether or not to return EIO
2977 * and the memory read should be atomic.
2979 if (iclog->ic_state & XLOG_STATE_IOERROR)
2980 return XFS_ERROR(EIO);
2981 if (log_flushed)
2982 *log_flushed = 1;
2983 } else {
2985 no_sleep:
2986 spin_unlock(&log->l_icloglock);
2988 return 0;
2992 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
2993 * about errors or whether the log was flushed or not. This is the normal
2994 * interface to use when trying to unpin items or move the log forward.
2996 void
2997 xfs_log_force(
2998 xfs_mount_t *mp,
2999 uint flags)
3001 int error;
3003 trace_xfs_log_force(mp, 0);
3004 error = _xfs_log_force(mp, flags, NULL);
3005 if (error)
3006 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3010 * Force the in-core log to disk for a specific LSN.
3012 * Find in-core log with lsn.
3013 * If it is in the DIRTY state, just return.
3014 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3015 * state and go to sleep or return.
3016 * If it is in any other state, go to sleep or return.
3018 * Synchronous forces are implemented with a signal variable. All callers
3019 * to force a given lsn to disk will wait on a the sv attached to the
3020 * specific in-core log. When given in-core log finally completes its
3021 * write to disk, that thread will wake up all threads waiting on the
3022 * sv.
3025 _xfs_log_force_lsn(
3026 struct xfs_mount *mp,
3027 xfs_lsn_t lsn,
3028 uint flags,
3029 int *log_flushed)
3031 struct xlog *log = mp->m_log;
3032 struct xlog_in_core *iclog;
3033 int already_slept = 0;
3035 ASSERT(lsn != 0);
3037 XFS_STATS_INC(xs_log_force);
3039 lsn = xlog_cil_force_lsn(log, lsn);
3040 if (lsn == NULLCOMMITLSN)
3041 return 0;
3043 try_again:
3044 spin_lock(&log->l_icloglock);
3045 iclog = log->l_iclog;
3046 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3047 spin_unlock(&log->l_icloglock);
3048 return XFS_ERROR(EIO);
3051 do {
3052 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3053 iclog = iclog->ic_next;
3054 continue;
3057 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3058 spin_unlock(&log->l_icloglock);
3059 return 0;
3062 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3064 * We sleep here if we haven't already slept (e.g.
3065 * this is the first time we've looked at the correct
3066 * iclog buf) and the buffer before us is going to
3067 * be sync'ed. The reason for this is that if we
3068 * are doing sync transactions here, by waiting for
3069 * the previous I/O to complete, we can allow a few
3070 * more transactions into this iclog before we close
3071 * it down.
3073 * Otherwise, we mark the buffer WANT_SYNC, and bump
3074 * up the refcnt so we can release the log (which
3075 * drops the ref count). The state switch keeps new
3076 * transaction commits from using this buffer. When
3077 * the current commits finish writing into the buffer,
3078 * the refcount will drop to zero and the buffer will
3079 * go out then.
3081 if (!already_slept &&
3082 (iclog->ic_prev->ic_state &
3083 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3084 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3086 XFS_STATS_INC(xs_log_force_sleep);
3088 xlog_wait(&iclog->ic_prev->ic_write_wait,
3089 &log->l_icloglock);
3090 if (log_flushed)
3091 *log_flushed = 1;
3092 already_slept = 1;
3093 goto try_again;
3095 atomic_inc(&iclog->ic_refcnt);
3096 xlog_state_switch_iclogs(log, iclog, 0);
3097 spin_unlock(&log->l_icloglock);
3098 if (xlog_state_release_iclog(log, iclog))
3099 return XFS_ERROR(EIO);
3100 if (log_flushed)
3101 *log_flushed = 1;
3102 spin_lock(&log->l_icloglock);
3105 if ((flags & XFS_LOG_SYNC) && /* sleep */
3106 !(iclog->ic_state &
3107 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3109 * Don't wait on completion if we know that we've
3110 * gotten a log write error.
3112 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3113 spin_unlock(&log->l_icloglock);
3114 return XFS_ERROR(EIO);
3116 XFS_STATS_INC(xs_log_force_sleep);
3117 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3119 * No need to grab the log lock here since we're
3120 * only deciding whether or not to return EIO
3121 * and the memory read should be atomic.
3123 if (iclog->ic_state & XLOG_STATE_IOERROR)
3124 return XFS_ERROR(EIO);
3126 if (log_flushed)
3127 *log_flushed = 1;
3128 } else { /* just return */
3129 spin_unlock(&log->l_icloglock);
3132 return 0;
3133 } while (iclog != log->l_iclog);
3135 spin_unlock(&log->l_icloglock);
3136 return 0;
3140 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3141 * about errors or whether the log was flushed or not. This is the normal
3142 * interface to use when trying to unpin items or move the log forward.
3144 void
3145 xfs_log_force_lsn(
3146 xfs_mount_t *mp,
3147 xfs_lsn_t lsn,
3148 uint flags)
3150 int error;
3152 trace_xfs_log_force(mp, lsn);
3153 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3154 if (error)
3155 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3159 * Called when we want to mark the current iclog as being ready to sync to
3160 * disk.
3162 STATIC void
3163 xlog_state_want_sync(
3164 struct xlog *log,
3165 struct xlog_in_core *iclog)
3167 assert_spin_locked(&log->l_icloglock);
3169 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3170 xlog_state_switch_iclogs(log, iclog, 0);
3171 } else {
3172 ASSERT(iclog->ic_state &
3173 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3178 /*****************************************************************************
3180 * TICKET functions
3182 *****************************************************************************
3186 * Free a used ticket when its refcount falls to zero.
3188 void
3189 xfs_log_ticket_put(
3190 xlog_ticket_t *ticket)
3192 ASSERT(atomic_read(&ticket->t_ref) > 0);
3193 if (atomic_dec_and_test(&ticket->t_ref))
3194 kmem_zone_free(xfs_log_ticket_zone, ticket);
3197 xlog_ticket_t *
3198 xfs_log_ticket_get(
3199 xlog_ticket_t *ticket)
3201 ASSERT(atomic_read(&ticket->t_ref) > 0);
3202 atomic_inc(&ticket->t_ref);
3203 return ticket;
3207 * Allocate and initialise a new log ticket.
3209 struct xlog_ticket *
3210 xlog_ticket_alloc(
3211 struct xlog *log,
3212 int unit_bytes,
3213 int cnt,
3214 char client,
3215 bool permanent,
3216 xfs_km_flags_t alloc_flags)
3218 struct xlog_ticket *tic;
3219 uint num_headers;
3220 int iclog_space;
3222 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3223 if (!tic)
3224 return NULL;
3227 * Permanent reservations have up to 'cnt'-1 active log operations
3228 * in the log. A unit in this case is the amount of space for one
3229 * of these log operations. Normal reservations have a cnt of 1
3230 * and their unit amount is the total amount of space required.
3232 * The following lines of code account for non-transaction data
3233 * which occupy space in the on-disk log.
3235 * Normal form of a transaction is:
3236 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3237 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3239 * We need to account for all the leadup data and trailer data
3240 * around the transaction data.
3241 * And then we need to account for the worst case in terms of using
3242 * more space.
3243 * The worst case will happen if:
3244 * - the placement of the transaction happens to be such that the
3245 * roundoff is at its maximum
3246 * - the transaction data is synced before the commit record is synced
3247 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3248 * Therefore the commit record is in its own Log Record.
3249 * This can happen as the commit record is called with its
3250 * own region to xlog_write().
3251 * This then means that in the worst case, roundoff can happen for
3252 * the commit-rec as well.
3253 * The commit-rec is smaller than padding in this scenario and so it is
3254 * not added separately.
3257 /* for trans header */
3258 unit_bytes += sizeof(xlog_op_header_t);
3259 unit_bytes += sizeof(xfs_trans_header_t);
3261 /* for start-rec */
3262 unit_bytes += sizeof(xlog_op_header_t);
3265 * for LR headers - the space for data in an iclog is the size minus
3266 * the space used for the headers. If we use the iclog size, then we
3267 * undercalculate the number of headers required.
3269 * Furthermore - the addition of op headers for split-recs might
3270 * increase the space required enough to require more log and op
3271 * headers, so take that into account too.
3273 * IMPORTANT: This reservation makes the assumption that if this
3274 * transaction is the first in an iclog and hence has the LR headers
3275 * accounted to it, then the remaining space in the iclog is
3276 * exclusively for this transaction. i.e. if the transaction is larger
3277 * than the iclog, it will be the only thing in that iclog.
3278 * Fundamentally, this means we must pass the entire log vector to
3279 * xlog_write to guarantee this.
3281 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3282 num_headers = howmany(unit_bytes, iclog_space);
3284 /* for split-recs - ophdrs added when data split over LRs */
3285 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3287 /* add extra header reservations if we overrun */
3288 while (!num_headers ||
3289 howmany(unit_bytes, iclog_space) > num_headers) {
3290 unit_bytes += sizeof(xlog_op_header_t);
3291 num_headers++;
3293 unit_bytes += log->l_iclog_hsize * num_headers;
3295 /* for commit-rec LR header - note: padding will subsume the ophdr */
3296 unit_bytes += log->l_iclog_hsize;
3298 /* for roundoff padding for transaction data and one for commit record */
3299 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3300 log->l_mp->m_sb.sb_logsunit > 1) {
3301 /* log su roundoff */
3302 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3303 } else {
3304 /* BB roundoff */
3305 unit_bytes += 2*BBSIZE;
3308 atomic_set(&tic->t_ref, 1);
3309 tic->t_task = current;
3310 INIT_LIST_HEAD(&tic->t_queue);
3311 tic->t_unit_res = unit_bytes;
3312 tic->t_curr_res = unit_bytes;
3313 tic->t_cnt = cnt;
3314 tic->t_ocnt = cnt;
3315 tic->t_tid = random32();
3316 tic->t_clientid = client;
3317 tic->t_flags = XLOG_TIC_INITED;
3318 tic->t_trans_type = 0;
3319 if (permanent)
3320 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3322 xlog_tic_reset_res(tic);
3324 return tic;
3328 /******************************************************************************
3330 * Log debug routines
3332 ******************************************************************************
3334 #if defined(DEBUG)
3336 * Make sure that the destination ptr is within the valid data region of
3337 * one of the iclogs. This uses backup pointers stored in a different
3338 * part of the log in case we trash the log structure.
3340 void
3341 xlog_verify_dest_ptr(
3342 struct xlog *log,
3343 char *ptr)
3345 int i;
3346 int good_ptr = 0;
3348 for (i = 0; i < log->l_iclog_bufs; i++) {
3349 if (ptr >= log->l_iclog_bak[i] &&
3350 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3351 good_ptr++;
3354 if (!good_ptr)
3355 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3359 * Check to make sure the grant write head didn't just over lap the tail. If
3360 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3361 * the cycles differ by exactly one and check the byte count.
3363 * This check is run unlocked, so can give false positives. Rather than assert
3364 * on failures, use a warn-once flag and a panic tag to allow the admin to
3365 * determine if they want to panic the machine when such an error occurs. For
3366 * debug kernels this will have the same effect as using an assert but, unlinke
3367 * an assert, it can be turned off at runtime.
3369 STATIC void
3370 xlog_verify_grant_tail(
3371 struct xlog *log)
3373 int tail_cycle, tail_blocks;
3374 int cycle, space;
3376 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3377 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3378 if (tail_cycle != cycle) {
3379 if (cycle - 1 != tail_cycle &&
3380 !(log->l_flags & XLOG_TAIL_WARN)) {
3381 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3382 "%s: cycle - 1 != tail_cycle", __func__);
3383 log->l_flags |= XLOG_TAIL_WARN;
3386 if (space > BBTOB(tail_blocks) &&
3387 !(log->l_flags & XLOG_TAIL_WARN)) {
3388 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3389 "%s: space > BBTOB(tail_blocks)", __func__);
3390 log->l_flags |= XLOG_TAIL_WARN;
3395 /* check if it will fit */
3396 STATIC void
3397 xlog_verify_tail_lsn(
3398 struct xlog *log,
3399 struct xlog_in_core *iclog,
3400 xfs_lsn_t tail_lsn)
3402 int blocks;
3404 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3405 blocks =
3406 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3407 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3408 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3409 } else {
3410 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3412 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3413 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3415 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3416 if (blocks < BTOBB(iclog->ic_offset) + 1)
3417 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3419 } /* xlog_verify_tail_lsn */
3422 * Perform a number of checks on the iclog before writing to disk.
3424 * 1. Make sure the iclogs are still circular
3425 * 2. Make sure we have a good magic number
3426 * 3. Make sure we don't have magic numbers in the data
3427 * 4. Check fields of each log operation header for:
3428 * A. Valid client identifier
3429 * B. tid ptr value falls in valid ptr space (user space code)
3430 * C. Length in log record header is correct according to the
3431 * individual operation headers within record.
3432 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3433 * log, check the preceding blocks of the physical log to make sure all
3434 * the cycle numbers agree with the current cycle number.
3436 STATIC void
3437 xlog_verify_iclog(
3438 struct xlog *log,
3439 struct xlog_in_core *iclog,
3440 int count,
3441 boolean_t syncing)
3443 xlog_op_header_t *ophead;
3444 xlog_in_core_t *icptr;
3445 xlog_in_core_2_t *xhdr;
3446 xfs_caddr_t ptr;
3447 xfs_caddr_t base_ptr;
3448 __psint_t field_offset;
3449 __uint8_t clientid;
3450 int len, i, j, k, op_len;
3451 int idx;
3453 /* check validity of iclog pointers */
3454 spin_lock(&log->l_icloglock);
3455 icptr = log->l_iclog;
3456 for (i=0; i < log->l_iclog_bufs; i++) {
3457 if (icptr == NULL)
3458 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3459 icptr = icptr->ic_next;
3461 if (icptr != log->l_iclog)
3462 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3463 spin_unlock(&log->l_icloglock);
3465 /* check log magic numbers */
3466 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3467 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3469 ptr = (xfs_caddr_t) &iclog->ic_header;
3470 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3471 ptr += BBSIZE) {
3472 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3473 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3474 __func__);
3477 /* check fields */
3478 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3479 ptr = iclog->ic_datap;
3480 base_ptr = ptr;
3481 ophead = (xlog_op_header_t *)ptr;
3482 xhdr = iclog->ic_data;
3483 for (i = 0; i < len; i++) {
3484 ophead = (xlog_op_header_t *)ptr;
3486 /* clientid is only 1 byte */
3487 field_offset = (__psint_t)
3488 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3489 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3490 clientid = ophead->oh_clientid;
3491 } else {
3492 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3493 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3494 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3495 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3496 clientid = xlog_get_client_id(
3497 xhdr[j].hic_xheader.xh_cycle_data[k]);
3498 } else {
3499 clientid = xlog_get_client_id(
3500 iclog->ic_header.h_cycle_data[idx]);
3503 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3504 xfs_warn(log->l_mp,
3505 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3506 __func__, clientid, ophead,
3507 (unsigned long)field_offset);
3509 /* check length */
3510 field_offset = (__psint_t)
3511 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3512 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3513 op_len = be32_to_cpu(ophead->oh_len);
3514 } else {
3515 idx = BTOBBT((__psint_t)&ophead->oh_len -
3516 (__psint_t)iclog->ic_datap);
3517 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3518 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3519 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3520 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3521 } else {
3522 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3525 ptr += sizeof(xlog_op_header_t) + op_len;
3527 } /* xlog_verify_iclog */
3528 #endif
3531 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3533 STATIC int
3534 xlog_state_ioerror(
3535 struct xlog *log)
3537 xlog_in_core_t *iclog, *ic;
3539 iclog = log->l_iclog;
3540 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3542 * Mark all the incore logs IOERROR.
3543 * From now on, no log flushes will result.
3545 ic = iclog;
3546 do {
3547 ic->ic_state = XLOG_STATE_IOERROR;
3548 ic = ic->ic_next;
3549 } while (ic != iclog);
3550 return 0;
3553 * Return non-zero, if state transition has already happened.
3555 return 1;
3559 * This is called from xfs_force_shutdown, when we're forcibly
3560 * shutting down the filesystem, typically because of an IO error.
3561 * Our main objectives here are to make sure that:
3562 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3563 * parties to find out, 'atomically'.
3564 * b. those who're sleeping on log reservations, pinned objects and
3565 * other resources get woken up, and be told the bad news.
3566 * c. nothing new gets queued up after (a) and (b) are done.
3567 * d. if !logerror, flush the iclogs to disk, then seal them off
3568 * for business.
3570 * Note: for delayed logging the !logerror case needs to flush the regions
3571 * held in memory out to the iclogs before flushing them to disk. This needs
3572 * to be done before the log is marked as shutdown, otherwise the flush to the
3573 * iclogs will fail.
3576 xfs_log_force_umount(
3577 struct xfs_mount *mp,
3578 int logerror)
3580 struct xlog *log;
3581 int retval;
3583 log = mp->m_log;
3586 * If this happens during log recovery, don't worry about
3587 * locking; the log isn't open for business yet.
3589 if (!log ||
3590 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3591 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3592 if (mp->m_sb_bp)
3593 XFS_BUF_DONE(mp->m_sb_bp);
3594 return 0;
3598 * Somebody could've already done the hard work for us.
3599 * No need to get locks for this.
3601 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3602 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3603 return 1;
3605 retval = 0;
3608 * Flush the in memory commit item list before marking the log as
3609 * being shut down. We need to do it in this order to ensure all the
3610 * completed transactions are flushed to disk with the xfs_log_force()
3611 * call below.
3613 if (!logerror)
3614 xlog_cil_force(log);
3617 * mark the filesystem and the as in a shutdown state and wake
3618 * everybody up to tell them the bad news.
3620 spin_lock(&log->l_icloglock);
3621 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3622 if (mp->m_sb_bp)
3623 XFS_BUF_DONE(mp->m_sb_bp);
3626 * This flag is sort of redundant because of the mount flag, but
3627 * it's good to maintain the separation between the log and the rest
3628 * of XFS.
3630 log->l_flags |= XLOG_IO_ERROR;
3633 * If we hit a log error, we want to mark all the iclogs IOERROR
3634 * while we're still holding the loglock.
3636 if (logerror)
3637 retval = xlog_state_ioerror(log);
3638 spin_unlock(&log->l_icloglock);
3641 * We don't want anybody waiting for log reservations after this. That
3642 * means we have to wake up everybody queued up on reserveq as well as
3643 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3644 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3645 * action is protected by the grant locks.
3647 xlog_grant_head_wake_all(&log->l_reserve_head);
3648 xlog_grant_head_wake_all(&log->l_write_head);
3650 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3651 ASSERT(!logerror);
3653 * Force the incore logs to disk before shutting the
3654 * log down completely.
3656 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3658 spin_lock(&log->l_icloglock);
3659 retval = xlog_state_ioerror(log);
3660 spin_unlock(&log->l_icloglock);
3663 * Wake up everybody waiting on xfs_log_force.
3664 * Callback all log item committed functions as if the
3665 * log writes were completed.
3667 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3669 #ifdef XFSERRORDEBUG
3671 xlog_in_core_t *iclog;
3673 spin_lock(&log->l_icloglock);
3674 iclog = log->l_iclog;
3675 do {
3676 ASSERT(iclog->ic_callback == 0);
3677 iclog = iclog->ic_next;
3678 } while (iclog != log->l_iclog);
3679 spin_unlock(&log->l_icloglock);
3681 #endif
3682 /* return non-zero if log IOERROR transition had already happened */
3683 return retval;
3686 STATIC int
3687 xlog_iclogs_empty(
3688 struct xlog *log)
3690 xlog_in_core_t *iclog;
3692 iclog = log->l_iclog;
3693 do {
3694 /* endianness does not matter here, zero is zero in
3695 * any language.
3697 if (iclog->ic_header.h_num_logops)
3698 return 0;
3699 iclog = iclog->ic_next;
3700 } while (iclog != log->l_iclog);
3701 return 1;