KVM: clean up kvm_(set|get)_apic_base
[linux-2.6.git] / fs / xfs / xfs_buf.c
blobd7a9dd735e1e429a1787d8b0e8e1c9ddde5eff10
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_sb.h"
38 #include "xfs_log.h"
39 #include "xfs_ag.h"
40 #include "xfs_mount.h"
41 #include "xfs_trace.h"
43 static kmem_zone_t *xfs_buf_zone;
45 static struct workqueue_struct *xfslogd_workqueue;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp->b_addr && bp->b_page_count > 1;
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 * xfs_buf_lru_add - add a buffer to the LRU.
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
88 STATIC void
89 xfs_buf_lru_add(
90 struct xfs_buf *bp)
92 struct xfs_buftarg *btp = bp->b_target;
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
100 spin_unlock(&btp->bt_lru_lock);
104 * xfs_buf_lru_del - remove a buffer from the LRU
106 * The unlocked check is safe here because it only occurs when there are not
107 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
108 * to optimise the shrinker removing the buffer from the LRU and calling
109 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
110 * bt_lru_lock.
112 STATIC void
113 xfs_buf_lru_del(
114 struct xfs_buf *bp)
116 struct xfs_buftarg *btp = bp->b_target;
118 if (list_empty(&bp->b_lru))
119 return;
121 spin_lock(&btp->bt_lru_lock);
122 if (!list_empty(&bp->b_lru)) {
123 list_del_init(&bp->b_lru);
124 btp->bt_lru_nr--;
126 spin_unlock(&btp->bt_lru_lock);
130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131 * b_lru_ref count so that the buffer is freed immediately when the buffer
132 * reference count falls to zero. If the buffer is already on the LRU, we need
133 * to remove the reference that LRU holds on the buffer.
135 * This prevents build-up of stale buffers on the LRU.
137 void
138 xfs_buf_stale(
139 struct xfs_buf *bp)
141 ASSERT(xfs_buf_islocked(bp));
143 bp->b_flags |= XBF_STALE;
146 * Clear the delwri status so that a delwri queue walker will not
147 * flush this buffer to disk now that it is stale. The delwri queue has
148 * a reference to the buffer, so this is safe to do.
150 bp->b_flags &= ~_XBF_DELWRI_Q;
152 atomic_set(&(bp)->b_lru_ref, 0);
153 if (!list_empty(&bp->b_lru)) {
154 struct xfs_buftarg *btp = bp->b_target;
156 spin_lock(&btp->bt_lru_lock);
157 if (!list_empty(&bp->b_lru)) {
158 list_del_init(&bp->b_lru);
159 btp->bt_lru_nr--;
160 atomic_dec(&bp->b_hold);
162 spin_unlock(&btp->bt_lru_lock);
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
167 static int
168 xfs_buf_get_maps(
169 struct xfs_buf *bp,
170 int map_count)
172 ASSERT(bp->b_maps == NULL);
173 bp->b_map_count = map_count;
175 if (map_count == 1) {
176 bp->b_maps = &bp->b_map;
177 return 0;
180 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
181 KM_NOFS);
182 if (!bp->b_maps)
183 return ENOMEM;
184 return 0;
188 * Frees b_pages if it was allocated.
190 static void
191 xfs_buf_free_maps(
192 struct xfs_buf *bp)
194 if (bp->b_maps != &bp->b_map) {
195 kmem_free(bp->b_maps);
196 bp->b_maps = NULL;
200 struct xfs_buf *
201 _xfs_buf_alloc(
202 struct xfs_buftarg *target,
203 struct xfs_buf_map *map,
204 int nmaps,
205 xfs_buf_flags_t flags)
207 struct xfs_buf *bp;
208 int error;
209 int i;
211 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
212 if (unlikely(!bp))
213 return NULL;
216 * We don't want certain flags to appear in b_flags unless they are
217 * specifically set by later operations on the buffer.
219 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221 atomic_set(&bp->b_hold, 1);
222 atomic_set(&bp->b_lru_ref, 1);
223 init_completion(&bp->b_iowait);
224 INIT_LIST_HEAD(&bp->b_lru);
225 INIT_LIST_HEAD(&bp->b_list);
226 RB_CLEAR_NODE(&bp->b_rbnode);
227 sema_init(&bp->b_sema, 0); /* held, no waiters */
228 XB_SET_OWNER(bp);
229 bp->b_target = target;
230 bp->b_flags = flags;
233 * Set length and io_length to the same value initially.
234 * I/O routines should use io_length, which will be the same in
235 * most cases but may be reset (e.g. XFS recovery).
237 error = xfs_buf_get_maps(bp, nmaps);
238 if (error) {
239 kmem_zone_free(xfs_buf_zone, bp);
240 return NULL;
243 bp->b_bn = map[0].bm_bn;
244 bp->b_length = 0;
245 for (i = 0; i < nmaps; i++) {
246 bp->b_maps[i].bm_bn = map[i].bm_bn;
247 bp->b_maps[i].bm_len = map[i].bm_len;
248 bp->b_length += map[i].bm_len;
250 bp->b_io_length = bp->b_length;
252 atomic_set(&bp->b_pin_count, 0);
253 init_waitqueue_head(&bp->b_waiters);
255 XFS_STATS_INC(xb_create);
256 trace_xfs_buf_init(bp, _RET_IP_);
258 return bp;
262 * Allocate a page array capable of holding a specified number
263 * of pages, and point the page buf at it.
265 STATIC int
266 _xfs_buf_get_pages(
267 xfs_buf_t *bp,
268 int page_count,
269 xfs_buf_flags_t flags)
271 /* Make sure that we have a page list */
272 if (bp->b_pages == NULL) {
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
276 } else {
277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 page_count, KM_NOFS);
279 if (bp->b_pages == NULL)
280 return -ENOMEM;
282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
284 return 0;
288 * Frees b_pages if it was allocated.
290 STATIC void
291 _xfs_buf_free_pages(
292 xfs_buf_t *bp)
294 if (bp->b_pages != bp->b_page_array) {
295 kmem_free(bp->b_pages);
296 bp->b_pages = NULL;
301 * Releases the specified buffer.
303 * The modification state of any associated pages is left unchanged.
304 * The buffer most not be on any hash - use xfs_buf_rele instead for
305 * hashed and refcounted buffers
307 void
308 xfs_buf_free(
309 xfs_buf_t *bp)
311 trace_xfs_buf_free(bp, _RET_IP_);
313 ASSERT(list_empty(&bp->b_lru));
315 if (bp->b_flags & _XBF_PAGES) {
316 uint i;
318 if (xfs_buf_is_vmapped(bp))
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
325 __free_page(page);
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
329 _xfs_buf_free_pages(bp);
330 xfs_buf_free_maps(bp);
331 kmem_zone_free(xfs_buf_zone, bp);
335 * Allocates all the pages for buffer in question and builds it's page list.
337 STATIC int
338 xfs_buf_allocate_memory(
339 xfs_buf_t *bp,
340 uint flags)
342 size_t size;
343 size_t nbytes, offset;
344 gfp_t gfp_mask = xb_to_gfp(flags);
345 unsigned short page_count, i;
346 xfs_off_t start, end;
347 int error;
350 * for buffers that are contained within a single page, just allocate
351 * the memory from the heap - there's no need for the complexity of
352 * page arrays to keep allocation down to order 0.
354 size = BBTOB(bp->b_length);
355 if (size < PAGE_SIZE) {
356 bp->b_addr = kmem_alloc(size, KM_NOFS);
357 if (!bp->b_addr) {
358 /* low memory - use alloc_page loop instead */
359 goto use_alloc_page;
362 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
363 ((unsigned long)bp->b_addr & PAGE_MASK)) {
364 /* b_addr spans two pages - use alloc_page instead */
365 kmem_free(bp->b_addr);
366 bp->b_addr = NULL;
367 goto use_alloc_page;
369 bp->b_offset = offset_in_page(bp->b_addr);
370 bp->b_pages = bp->b_page_array;
371 bp->b_pages[0] = virt_to_page(bp->b_addr);
372 bp->b_page_count = 1;
373 bp->b_flags |= _XBF_KMEM;
374 return 0;
377 use_alloc_page:
378 start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT;
379 end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1)
380 >> PAGE_SHIFT;
381 page_count = end - start;
382 error = _xfs_buf_get_pages(bp, page_count, flags);
383 if (unlikely(error))
384 return error;
386 offset = bp->b_offset;
387 bp->b_flags |= _XBF_PAGES;
389 for (i = 0; i < bp->b_page_count; i++) {
390 struct page *page;
391 uint retries = 0;
392 retry:
393 page = alloc_page(gfp_mask);
394 if (unlikely(page == NULL)) {
395 if (flags & XBF_READ_AHEAD) {
396 bp->b_page_count = i;
397 error = ENOMEM;
398 goto out_free_pages;
402 * This could deadlock.
404 * But until all the XFS lowlevel code is revamped to
405 * handle buffer allocation failures we can't do much.
407 if (!(++retries % 100))
408 xfs_err(NULL,
409 "possible memory allocation deadlock in %s (mode:0x%x)",
410 __func__, gfp_mask);
412 XFS_STATS_INC(xb_page_retries);
413 congestion_wait(BLK_RW_ASYNC, HZ/50);
414 goto retry;
417 XFS_STATS_INC(xb_page_found);
419 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
420 size -= nbytes;
421 bp->b_pages[i] = page;
422 offset = 0;
424 return 0;
426 out_free_pages:
427 for (i = 0; i < bp->b_page_count; i++)
428 __free_page(bp->b_pages[i]);
429 return error;
433 * Map buffer into kernel address-space if necessary.
435 STATIC int
436 _xfs_buf_map_pages(
437 xfs_buf_t *bp,
438 uint flags)
440 ASSERT(bp->b_flags & _XBF_PAGES);
441 if (bp->b_page_count == 1) {
442 /* A single page buffer is always mappable */
443 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
444 } else if (flags & XBF_UNMAPPED) {
445 bp->b_addr = NULL;
446 } else {
447 int retried = 0;
449 do {
450 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
451 -1, PAGE_KERNEL);
452 if (bp->b_addr)
453 break;
454 vm_unmap_aliases();
455 } while (retried++ <= 1);
457 if (!bp->b_addr)
458 return -ENOMEM;
459 bp->b_addr += bp->b_offset;
462 return 0;
466 * Finding and Reading Buffers
470 * Look up, and creates if absent, a lockable buffer for
471 * a given range of an inode. The buffer is returned
472 * locked. No I/O is implied by this call.
474 xfs_buf_t *
475 _xfs_buf_find(
476 struct xfs_buftarg *btp,
477 struct xfs_buf_map *map,
478 int nmaps,
479 xfs_buf_flags_t flags,
480 xfs_buf_t *new_bp)
482 size_t numbytes;
483 struct xfs_perag *pag;
484 struct rb_node **rbp;
485 struct rb_node *parent;
486 xfs_buf_t *bp;
487 xfs_daddr_t blkno = map[0].bm_bn;
488 int numblks = 0;
489 int i;
491 for (i = 0; i < nmaps; i++)
492 numblks += map[i].bm_len;
493 numbytes = BBTOB(numblks);
495 /* Check for IOs smaller than the sector size / not sector aligned */
496 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
497 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
499 /* get tree root */
500 pag = xfs_perag_get(btp->bt_mount,
501 xfs_daddr_to_agno(btp->bt_mount, blkno));
503 /* walk tree */
504 spin_lock(&pag->pag_buf_lock);
505 rbp = &pag->pag_buf_tree.rb_node;
506 parent = NULL;
507 bp = NULL;
508 while (*rbp) {
509 parent = *rbp;
510 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
512 if (blkno < bp->b_bn)
513 rbp = &(*rbp)->rb_left;
514 else if (blkno > bp->b_bn)
515 rbp = &(*rbp)->rb_right;
516 else {
518 * found a block number match. If the range doesn't
519 * match, the only way this is allowed is if the buffer
520 * in the cache is stale and the transaction that made
521 * it stale has not yet committed. i.e. we are
522 * reallocating a busy extent. Skip this buffer and
523 * continue searching to the right for an exact match.
525 if (bp->b_length != numblks) {
526 ASSERT(bp->b_flags & XBF_STALE);
527 rbp = &(*rbp)->rb_right;
528 continue;
530 atomic_inc(&bp->b_hold);
531 goto found;
535 /* No match found */
536 if (new_bp) {
537 rb_link_node(&new_bp->b_rbnode, parent, rbp);
538 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
539 /* the buffer keeps the perag reference until it is freed */
540 new_bp->b_pag = pag;
541 spin_unlock(&pag->pag_buf_lock);
542 } else {
543 XFS_STATS_INC(xb_miss_locked);
544 spin_unlock(&pag->pag_buf_lock);
545 xfs_perag_put(pag);
547 return new_bp;
549 found:
550 spin_unlock(&pag->pag_buf_lock);
551 xfs_perag_put(pag);
553 if (!xfs_buf_trylock(bp)) {
554 if (flags & XBF_TRYLOCK) {
555 xfs_buf_rele(bp);
556 XFS_STATS_INC(xb_busy_locked);
557 return NULL;
559 xfs_buf_lock(bp);
560 XFS_STATS_INC(xb_get_locked_waited);
564 * if the buffer is stale, clear all the external state associated with
565 * it. We need to keep flags such as how we allocated the buffer memory
566 * intact here.
568 if (bp->b_flags & XBF_STALE) {
569 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
570 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
573 trace_xfs_buf_find(bp, flags, _RET_IP_);
574 XFS_STATS_INC(xb_get_locked);
575 return bp;
579 * Assembles a buffer covering the specified range. The code is optimised for
580 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
581 * more hits than misses.
583 struct xfs_buf *
584 xfs_buf_get_map(
585 struct xfs_buftarg *target,
586 struct xfs_buf_map *map,
587 int nmaps,
588 xfs_buf_flags_t flags)
590 struct xfs_buf *bp;
591 struct xfs_buf *new_bp;
592 int error = 0;
594 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
595 if (likely(bp))
596 goto found;
598 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
599 if (unlikely(!new_bp))
600 return NULL;
602 error = xfs_buf_allocate_memory(new_bp, flags);
603 if (error) {
604 xfs_buf_free(new_bp);
605 return NULL;
608 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
609 if (!bp) {
610 xfs_buf_free(new_bp);
611 return NULL;
614 if (bp != new_bp)
615 xfs_buf_free(new_bp);
617 found:
618 if (!bp->b_addr) {
619 error = _xfs_buf_map_pages(bp, flags);
620 if (unlikely(error)) {
621 xfs_warn(target->bt_mount,
622 "%s: failed to map pages\n", __func__);
623 xfs_buf_relse(bp);
624 return NULL;
628 XFS_STATS_INC(xb_get);
629 trace_xfs_buf_get(bp, flags, _RET_IP_);
630 return bp;
633 STATIC int
634 _xfs_buf_read(
635 xfs_buf_t *bp,
636 xfs_buf_flags_t flags)
638 ASSERT(!(flags & XBF_WRITE));
639 ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL);
641 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
642 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
644 xfs_buf_iorequest(bp);
645 if (flags & XBF_ASYNC)
646 return 0;
647 return xfs_buf_iowait(bp);
650 xfs_buf_t *
651 xfs_buf_read_map(
652 struct xfs_buftarg *target,
653 struct xfs_buf_map *map,
654 int nmaps,
655 xfs_buf_flags_t flags)
657 struct xfs_buf *bp;
659 flags |= XBF_READ;
661 bp = xfs_buf_get_map(target, map, nmaps, flags);
662 if (bp) {
663 trace_xfs_buf_read(bp, flags, _RET_IP_);
665 if (!XFS_BUF_ISDONE(bp)) {
666 XFS_STATS_INC(xb_get_read);
667 _xfs_buf_read(bp, flags);
668 } else if (flags & XBF_ASYNC) {
670 * Read ahead call which is already satisfied,
671 * drop the buffer
673 xfs_buf_relse(bp);
674 return NULL;
675 } else {
676 /* We do not want read in the flags */
677 bp->b_flags &= ~XBF_READ;
681 return bp;
685 * If we are not low on memory then do the readahead in a deadlock
686 * safe manner.
688 void
689 xfs_buf_readahead_map(
690 struct xfs_buftarg *target,
691 struct xfs_buf_map *map,
692 int nmaps)
694 if (bdi_read_congested(target->bt_bdi))
695 return;
697 xfs_buf_read_map(target, map, nmaps,
698 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
702 * Read an uncached buffer from disk. Allocates and returns a locked
703 * buffer containing the disk contents or nothing.
705 struct xfs_buf *
706 xfs_buf_read_uncached(
707 struct xfs_buftarg *target,
708 xfs_daddr_t daddr,
709 size_t numblks,
710 int flags)
712 xfs_buf_t *bp;
713 int error;
715 bp = xfs_buf_get_uncached(target, numblks, flags);
716 if (!bp)
717 return NULL;
719 /* set up the buffer for a read IO */
720 ASSERT(bp->b_map_count == 1);
721 bp->b_bn = daddr;
722 bp->b_maps[0].bm_bn = daddr;
723 bp->b_flags |= XBF_READ;
725 xfsbdstrat(target->bt_mount, bp);
726 error = xfs_buf_iowait(bp);
727 if (error) {
728 xfs_buf_relse(bp);
729 return NULL;
731 return bp;
735 * Return a buffer allocated as an empty buffer and associated to external
736 * memory via xfs_buf_associate_memory() back to it's empty state.
738 void
739 xfs_buf_set_empty(
740 struct xfs_buf *bp,
741 size_t numblks)
743 if (bp->b_pages)
744 _xfs_buf_free_pages(bp);
746 bp->b_pages = NULL;
747 bp->b_page_count = 0;
748 bp->b_addr = NULL;
749 bp->b_length = numblks;
750 bp->b_io_length = numblks;
752 ASSERT(bp->b_map_count == 1);
753 bp->b_bn = XFS_BUF_DADDR_NULL;
754 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
755 bp->b_maps[0].bm_len = bp->b_length;
758 static inline struct page *
759 mem_to_page(
760 void *addr)
762 if ((!is_vmalloc_addr(addr))) {
763 return virt_to_page(addr);
764 } else {
765 return vmalloc_to_page(addr);
770 xfs_buf_associate_memory(
771 xfs_buf_t *bp,
772 void *mem,
773 size_t len)
775 int rval;
776 int i = 0;
777 unsigned long pageaddr;
778 unsigned long offset;
779 size_t buflen;
780 int page_count;
782 pageaddr = (unsigned long)mem & PAGE_MASK;
783 offset = (unsigned long)mem - pageaddr;
784 buflen = PAGE_ALIGN(len + offset);
785 page_count = buflen >> PAGE_SHIFT;
787 /* Free any previous set of page pointers */
788 if (bp->b_pages)
789 _xfs_buf_free_pages(bp);
791 bp->b_pages = NULL;
792 bp->b_addr = mem;
794 rval = _xfs_buf_get_pages(bp, page_count, 0);
795 if (rval)
796 return rval;
798 bp->b_offset = offset;
800 for (i = 0; i < bp->b_page_count; i++) {
801 bp->b_pages[i] = mem_to_page((void *)pageaddr);
802 pageaddr += PAGE_SIZE;
805 bp->b_io_length = BTOBB(len);
806 bp->b_length = BTOBB(buflen);
808 return 0;
811 xfs_buf_t *
812 xfs_buf_get_uncached(
813 struct xfs_buftarg *target,
814 size_t numblks,
815 int flags)
817 unsigned long page_count;
818 int error, i;
819 struct xfs_buf *bp;
820 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
822 bp = _xfs_buf_alloc(target, &map, 1, 0);
823 if (unlikely(bp == NULL))
824 goto fail;
826 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
827 error = _xfs_buf_get_pages(bp, page_count, 0);
828 if (error)
829 goto fail_free_buf;
831 for (i = 0; i < page_count; i++) {
832 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
833 if (!bp->b_pages[i])
834 goto fail_free_mem;
836 bp->b_flags |= _XBF_PAGES;
838 error = _xfs_buf_map_pages(bp, 0);
839 if (unlikely(error)) {
840 xfs_warn(target->bt_mount,
841 "%s: failed to map pages\n", __func__);
842 goto fail_free_mem;
845 trace_xfs_buf_get_uncached(bp, _RET_IP_);
846 return bp;
848 fail_free_mem:
849 while (--i >= 0)
850 __free_page(bp->b_pages[i]);
851 _xfs_buf_free_pages(bp);
852 fail_free_buf:
853 xfs_buf_free_maps(bp);
854 kmem_zone_free(xfs_buf_zone, bp);
855 fail:
856 return NULL;
860 * Increment reference count on buffer, to hold the buffer concurrently
861 * with another thread which may release (free) the buffer asynchronously.
862 * Must hold the buffer already to call this function.
864 void
865 xfs_buf_hold(
866 xfs_buf_t *bp)
868 trace_xfs_buf_hold(bp, _RET_IP_);
869 atomic_inc(&bp->b_hold);
873 * Releases a hold on the specified buffer. If the
874 * the hold count is 1, calls xfs_buf_free.
876 void
877 xfs_buf_rele(
878 xfs_buf_t *bp)
880 struct xfs_perag *pag = bp->b_pag;
882 trace_xfs_buf_rele(bp, _RET_IP_);
884 if (!pag) {
885 ASSERT(list_empty(&bp->b_lru));
886 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
887 if (atomic_dec_and_test(&bp->b_hold))
888 xfs_buf_free(bp);
889 return;
892 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
894 ASSERT(atomic_read(&bp->b_hold) > 0);
895 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
896 if (!(bp->b_flags & XBF_STALE) &&
897 atomic_read(&bp->b_lru_ref)) {
898 xfs_buf_lru_add(bp);
899 spin_unlock(&pag->pag_buf_lock);
900 } else {
901 xfs_buf_lru_del(bp);
902 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
903 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
904 spin_unlock(&pag->pag_buf_lock);
905 xfs_perag_put(pag);
906 xfs_buf_free(bp);
913 * Lock a buffer object, if it is not already locked.
915 * If we come across a stale, pinned, locked buffer, we know that we are
916 * being asked to lock a buffer that has been reallocated. Because it is
917 * pinned, we know that the log has not been pushed to disk and hence it
918 * will still be locked. Rather than continuing to have trylock attempts
919 * fail until someone else pushes the log, push it ourselves before
920 * returning. This means that the xfsaild will not get stuck trying
921 * to push on stale inode buffers.
924 xfs_buf_trylock(
925 struct xfs_buf *bp)
927 int locked;
929 locked = down_trylock(&bp->b_sema) == 0;
930 if (locked)
931 XB_SET_OWNER(bp);
932 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
933 xfs_log_force(bp->b_target->bt_mount, 0);
935 trace_xfs_buf_trylock(bp, _RET_IP_);
936 return locked;
940 * Lock a buffer object.
942 * If we come across a stale, pinned, locked buffer, we know that we
943 * are being asked to lock a buffer that has been reallocated. Because
944 * it is pinned, we know that the log has not been pushed to disk and
945 * hence it will still be locked. Rather than sleeping until someone
946 * else pushes the log, push it ourselves before trying to get the lock.
948 void
949 xfs_buf_lock(
950 struct xfs_buf *bp)
952 trace_xfs_buf_lock(bp, _RET_IP_);
954 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
955 xfs_log_force(bp->b_target->bt_mount, 0);
956 down(&bp->b_sema);
957 XB_SET_OWNER(bp);
959 trace_xfs_buf_lock_done(bp, _RET_IP_);
962 void
963 xfs_buf_unlock(
964 struct xfs_buf *bp)
966 XB_CLEAR_OWNER(bp);
967 up(&bp->b_sema);
969 trace_xfs_buf_unlock(bp, _RET_IP_);
972 STATIC void
973 xfs_buf_wait_unpin(
974 xfs_buf_t *bp)
976 DECLARE_WAITQUEUE (wait, current);
978 if (atomic_read(&bp->b_pin_count) == 0)
979 return;
981 add_wait_queue(&bp->b_waiters, &wait);
982 for (;;) {
983 set_current_state(TASK_UNINTERRUPTIBLE);
984 if (atomic_read(&bp->b_pin_count) == 0)
985 break;
986 io_schedule();
988 remove_wait_queue(&bp->b_waiters, &wait);
989 set_current_state(TASK_RUNNING);
993 * Buffer Utility Routines
996 STATIC void
997 xfs_buf_iodone_work(
998 struct work_struct *work)
1000 xfs_buf_t *bp =
1001 container_of(work, xfs_buf_t, b_iodone_work);
1003 if (bp->b_iodone)
1004 (*(bp->b_iodone))(bp);
1005 else if (bp->b_flags & XBF_ASYNC)
1006 xfs_buf_relse(bp);
1009 void
1010 xfs_buf_ioend(
1011 xfs_buf_t *bp,
1012 int schedule)
1014 trace_xfs_buf_iodone(bp, _RET_IP_);
1016 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1017 if (bp->b_error == 0)
1018 bp->b_flags |= XBF_DONE;
1020 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1021 if (schedule) {
1022 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1023 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1024 } else {
1025 xfs_buf_iodone_work(&bp->b_iodone_work);
1027 } else {
1028 complete(&bp->b_iowait);
1032 void
1033 xfs_buf_ioerror(
1034 xfs_buf_t *bp,
1035 int error)
1037 ASSERT(error >= 0 && error <= 0xffff);
1038 bp->b_error = (unsigned short)error;
1039 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1042 void
1043 xfs_buf_ioerror_alert(
1044 struct xfs_buf *bp,
1045 const char *func)
1047 xfs_alert(bp->b_target->bt_mount,
1048 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1049 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1053 * Called when we want to stop a buffer from getting written or read.
1054 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1055 * so that the proper iodone callbacks get called.
1057 STATIC int
1058 xfs_bioerror(
1059 xfs_buf_t *bp)
1061 #ifdef XFSERRORDEBUG
1062 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1063 #endif
1066 * No need to wait until the buffer is unpinned, we aren't flushing it.
1068 xfs_buf_ioerror(bp, EIO);
1071 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1073 XFS_BUF_UNREAD(bp);
1074 XFS_BUF_UNDONE(bp);
1075 xfs_buf_stale(bp);
1077 xfs_buf_ioend(bp, 0);
1079 return EIO;
1083 * Same as xfs_bioerror, except that we are releasing the buffer
1084 * here ourselves, and avoiding the xfs_buf_ioend call.
1085 * This is meant for userdata errors; metadata bufs come with
1086 * iodone functions attached, so that we can track down errors.
1088 STATIC int
1089 xfs_bioerror_relse(
1090 struct xfs_buf *bp)
1092 int64_t fl = bp->b_flags;
1094 * No need to wait until the buffer is unpinned.
1095 * We aren't flushing it.
1097 * chunkhold expects B_DONE to be set, whether
1098 * we actually finish the I/O or not. We don't want to
1099 * change that interface.
1101 XFS_BUF_UNREAD(bp);
1102 XFS_BUF_DONE(bp);
1103 xfs_buf_stale(bp);
1104 bp->b_iodone = NULL;
1105 if (!(fl & XBF_ASYNC)) {
1107 * Mark b_error and B_ERROR _both_.
1108 * Lot's of chunkcache code assumes that.
1109 * There's no reason to mark error for
1110 * ASYNC buffers.
1112 xfs_buf_ioerror(bp, EIO);
1113 complete(&bp->b_iowait);
1114 } else {
1115 xfs_buf_relse(bp);
1118 return EIO;
1121 STATIC int
1122 xfs_bdstrat_cb(
1123 struct xfs_buf *bp)
1125 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1126 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1128 * Metadata write that didn't get logged but
1129 * written delayed anyway. These aren't associated
1130 * with a transaction, and can be ignored.
1132 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1133 return xfs_bioerror_relse(bp);
1134 else
1135 return xfs_bioerror(bp);
1138 xfs_buf_iorequest(bp);
1139 return 0;
1143 xfs_bwrite(
1144 struct xfs_buf *bp)
1146 int error;
1148 ASSERT(xfs_buf_islocked(bp));
1150 bp->b_flags |= XBF_WRITE;
1151 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1153 xfs_bdstrat_cb(bp);
1155 error = xfs_buf_iowait(bp);
1156 if (error) {
1157 xfs_force_shutdown(bp->b_target->bt_mount,
1158 SHUTDOWN_META_IO_ERROR);
1160 return error;
1164 * Wrapper around bdstrat so that we can stop data from going to disk in case
1165 * we are shutting down the filesystem. Typically user data goes thru this
1166 * path; one of the exceptions is the superblock.
1168 void
1169 xfsbdstrat(
1170 struct xfs_mount *mp,
1171 struct xfs_buf *bp)
1173 if (XFS_FORCED_SHUTDOWN(mp)) {
1174 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1175 xfs_bioerror_relse(bp);
1176 return;
1179 xfs_buf_iorequest(bp);
1182 STATIC void
1183 _xfs_buf_ioend(
1184 xfs_buf_t *bp,
1185 int schedule)
1187 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1188 xfs_buf_ioend(bp, schedule);
1191 STATIC void
1192 xfs_buf_bio_end_io(
1193 struct bio *bio,
1194 int error)
1196 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1198 xfs_buf_ioerror(bp, -error);
1200 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1201 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1203 _xfs_buf_ioend(bp, 1);
1204 bio_put(bio);
1207 static void
1208 xfs_buf_ioapply_map(
1209 struct xfs_buf *bp,
1210 int map,
1211 int *buf_offset,
1212 int *count,
1213 int rw)
1215 int page_index;
1216 int total_nr_pages = bp->b_page_count;
1217 int nr_pages;
1218 struct bio *bio;
1219 sector_t sector = bp->b_maps[map].bm_bn;
1220 int size;
1221 int offset;
1223 total_nr_pages = bp->b_page_count;
1225 /* skip the pages in the buffer before the start offset */
1226 page_index = 0;
1227 offset = *buf_offset;
1228 while (offset >= PAGE_SIZE) {
1229 page_index++;
1230 offset -= PAGE_SIZE;
1234 * Limit the IO size to the length of the current vector, and update the
1235 * remaining IO count for the next time around.
1237 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1238 *count -= size;
1239 *buf_offset += size;
1241 next_chunk:
1242 atomic_inc(&bp->b_io_remaining);
1243 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1244 if (nr_pages > total_nr_pages)
1245 nr_pages = total_nr_pages;
1247 bio = bio_alloc(GFP_NOIO, nr_pages);
1248 bio->bi_bdev = bp->b_target->bt_bdev;
1249 bio->bi_sector = sector;
1250 bio->bi_end_io = xfs_buf_bio_end_io;
1251 bio->bi_private = bp;
1254 for (; size && nr_pages; nr_pages--, page_index++) {
1255 int rbytes, nbytes = PAGE_SIZE - offset;
1257 if (nbytes > size)
1258 nbytes = size;
1260 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1261 offset);
1262 if (rbytes < nbytes)
1263 break;
1265 offset = 0;
1266 sector += BTOBB(nbytes);
1267 size -= nbytes;
1268 total_nr_pages--;
1271 if (likely(bio->bi_size)) {
1272 if (xfs_buf_is_vmapped(bp)) {
1273 flush_kernel_vmap_range(bp->b_addr,
1274 xfs_buf_vmap_len(bp));
1276 submit_bio(rw, bio);
1277 if (size)
1278 goto next_chunk;
1279 } else {
1280 xfs_buf_ioerror(bp, EIO);
1281 bio_put(bio);
1286 STATIC void
1287 _xfs_buf_ioapply(
1288 struct xfs_buf *bp)
1290 struct blk_plug plug;
1291 int rw;
1292 int offset;
1293 int size;
1294 int i;
1296 if (bp->b_flags & XBF_WRITE) {
1297 if (bp->b_flags & XBF_SYNCIO)
1298 rw = WRITE_SYNC;
1299 else
1300 rw = WRITE;
1301 if (bp->b_flags & XBF_FUA)
1302 rw |= REQ_FUA;
1303 if (bp->b_flags & XBF_FLUSH)
1304 rw |= REQ_FLUSH;
1305 } else if (bp->b_flags & XBF_READ_AHEAD) {
1306 rw = READA;
1307 } else {
1308 rw = READ;
1311 /* we only use the buffer cache for meta-data */
1312 rw |= REQ_META;
1315 * Walk all the vectors issuing IO on them. Set up the initial offset
1316 * into the buffer and the desired IO size before we start -
1317 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1318 * subsequent call.
1320 offset = bp->b_offset;
1321 size = BBTOB(bp->b_io_length);
1322 blk_start_plug(&plug);
1323 for (i = 0; i < bp->b_map_count; i++) {
1324 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1325 if (bp->b_error)
1326 break;
1327 if (size <= 0)
1328 break; /* all done */
1330 blk_finish_plug(&plug);
1333 void
1334 xfs_buf_iorequest(
1335 xfs_buf_t *bp)
1337 trace_xfs_buf_iorequest(bp, _RET_IP_);
1339 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1341 if (bp->b_flags & XBF_WRITE)
1342 xfs_buf_wait_unpin(bp);
1343 xfs_buf_hold(bp);
1345 /* Set the count to 1 initially, this will stop an I/O
1346 * completion callout which happens before we have started
1347 * all the I/O from calling xfs_buf_ioend too early.
1349 atomic_set(&bp->b_io_remaining, 1);
1350 _xfs_buf_ioapply(bp);
1351 _xfs_buf_ioend(bp, 1);
1353 xfs_buf_rele(bp);
1357 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1358 * no I/O is pending or there is already a pending error on the buffer. It
1359 * returns the I/O error code, if any, or 0 if there was no error.
1362 xfs_buf_iowait(
1363 xfs_buf_t *bp)
1365 trace_xfs_buf_iowait(bp, _RET_IP_);
1367 if (!bp->b_error)
1368 wait_for_completion(&bp->b_iowait);
1370 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1371 return bp->b_error;
1374 xfs_caddr_t
1375 xfs_buf_offset(
1376 xfs_buf_t *bp,
1377 size_t offset)
1379 struct page *page;
1381 if (bp->b_addr)
1382 return bp->b_addr + offset;
1384 offset += bp->b_offset;
1385 page = bp->b_pages[offset >> PAGE_SHIFT];
1386 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1390 * Move data into or out of a buffer.
1392 void
1393 xfs_buf_iomove(
1394 xfs_buf_t *bp, /* buffer to process */
1395 size_t boff, /* starting buffer offset */
1396 size_t bsize, /* length to copy */
1397 void *data, /* data address */
1398 xfs_buf_rw_t mode) /* read/write/zero flag */
1400 size_t bend;
1402 bend = boff + bsize;
1403 while (boff < bend) {
1404 struct page *page;
1405 int page_index, page_offset, csize;
1407 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1408 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1409 page = bp->b_pages[page_index];
1410 csize = min_t(size_t, PAGE_SIZE - page_offset,
1411 BBTOB(bp->b_io_length) - boff);
1413 ASSERT((csize + page_offset) <= PAGE_SIZE);
1415 switch (mode) {
1416 case XBRW_ZERO:
1417 memset(page_address(page) + page_offset, 0, csize);
1418 break;
1419 case XBRW_READ:
1420 memcpy(data, page_address(page) + page_offset, csize);
1421 break;
1422 case XBRW_WRITE:
1423 memcpy(page_address(page) + page_offset, data, csize);
1426 boff += csize;
1427 data += csize;
1432 * Handling of buffer targets (buftargs).
1436 * Wait for any bufs with callbacks that have been submitted but have not yet
1437 * returned. These buffers will have an elevated hold count, so wait on those
1438 * while freeing all the buffers only held by the LRU.
1440 void
1441 xfs_wait_buftarg(
1442 struct xfs_buftarg *btp)
1444 struct xfs_buf *bp;
1446 restart:
1447 spin_lock(&btp->bt_lru_lock);
1448 while (!list_empty(&btp->bt_lru)) {
1449 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1450 if (atomic_read(&bp->b_hold) > 1) {
1451 spin_unlock(&btp->bt_lru_lock);
1452 delay(100);
1453 goto restart;
1456 * clear the LRU reference count so the buffer doesn't get
1457 * ignored in xfs_buf_rele().
1459 atomic_set(&bp->b_lru_ref, 0);
1460 spin_unlock(&btp->bt_lru_lock);
1461 xfs_buf_rele(bp);
1462 spin_lock(&btp->bt_lru_lock);
1464 spin_unlock(&btp->bt_lru_lock);
1468 xfs_buftarg_shrink(
1469 struct shrinker *shrink,
1470 struct shrink_control *sc)
1472 struct xfs_buftarg *btp = container_of(shrink,
1473 struct xfs_buftarg, bt_shrinker);
1474 struct xfs_buf *bp;
1475 int nr_to_scan = sc->nr_to_scan;
1476 LIST_HEAD(dispose);
1478 if (!nr_to_scan)
1479 return btp->bt_lru_nr;
1481 spin_lock(&btp->bt_lru_lock);
1482 while (!list_empty(&btp->bt_lru)) {
1483 if (nr_to_scan-- <= 0)
1484 break;
1486 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1489 * Decrement the b_lru_ref count unless the value is already
1490 * zero. If the value is already zero, we need to reclaim the
1491 * buffer, otherwise it gets another trip through the LRU.
1493 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1494 list_move_tail(&bp->b_lru, &btp->bt_lru);
1495 continue;
1499 * remove the buffer from the LRU now to avoid needing another
1500 * lock round trip inside xfs_buf_rele().
1502 list_move(&bp->b_lru, &dispose);
1503 btp->bt_lru_nr--;
1505 spin_unlock(&btp->bt_lru_lock);
1507 while (!list_empty(&dispose)) {
1508 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1509 list_del_init(&bp->b_lru);
1510 xfs_buf_rele(bp);
1513 return btp->bt_lru_nr;
1516 void
1517 xfs_free_buftarg(
1518 struct xfs_mount *mp,
1519 struct xfs_buftarg *btp)
1521 unregister_shrinker(&btp->bt_shrinker);
1523 if (mp->m_flags & XFS_MOUNT_BARRIER)
1524 xfs_blkdev_issue_flush(btp);
1526 kmem_free(btp);
1529 STATIC int
1530 xfs_setsize_buftarg_flags(
1531 xfs_buftarg_t *btp,
1532 unsigned int blocksize,
1533 unsigned int sectorsize,
1534 int verbose)
1536 btp->bt_bsize = blocksize;
1537 btp->bt_sshift = ffs(sectorsize) - 1;
1538 btp->bt_smask = sectorsize - 1;
1540 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1541 char name[BDEVNAME_SIZE];
1543 bdevname(btp->bt_bdev, name);
1545 xfs_warn(btp->bt_mount,
1546 "Cannot set_blocksize to %u on device %s\n",
1547 sectorsize, name);
1548 return EINVAL;
1551 return 0;
1555 * When allocating the initial buffer target we have not yet
1556 * read in the superblock, so don't know what sized sectors
1557 * are being used is at this early stage. Play safe.
1559 STATIC int
1560 xfs_setsize_buftarg_early(
1561 xfs_buftarg_t *btp,
1562 struct block_device *bdev)
1564 return xfs_setsize_buftarg_flags(btp,
1565 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1569 xfs_setsize_buftarg(
1570 xfs_buftarg_t *btp,
1571 unsigned int blocksize,
1572 unsigned int sectorsize)
1574 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1577 xfs_buftarg_t *
1578 xfs_alloc_buftarg(
1579 struct xfs_mount *mp,
1580 struct block_device *bdev,
1581 int external,
1582 const char *fsname)
1584 xfs_buftarg_t *btp;
1586 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1588 btp->bt_mount = mp;
1589 btp->bt_dev = bdev->bd_dev;
1590 btp->bt_bdev = bdev;
1591 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1592 if (!btp->bt_bdi)
1593 goto error;
1595 INIT_LIST_HEAD(&btp->bt_lru);
1596 spin_lock_init(&btp->bt_lru_lock);
1597 if (xfs_setsize_buftarg_early(btp, bdev))
1598 goto error;
1599 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1600 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1601 register_shrinker(&btp->bt_shrinker);
1602 return btp;
1604 error:
1605 kmem_free(btp);
1606 return NULL;
1610 * Add a buffer to the delayed write list.
1612 * This queues a buffer for writeout if it hasn't already been. Note that
1613 * neither this routine nor the buffer list submission functions perform
1614 * any internal synchronization. It is expected that the lists are thread-local
1615 * to the callers.
1617 * Returns true if we queued up the buffer, or false if it already had
1618 * been on the buffer list.
1620 bool
1621 xfs_buf_delwri_queue(
1622 struct xfs_buf *bp,
1623 struct list_head *list)
1625 ASSERT(xfs_buf_islocked(bp));
1626 ASSERT(!(bp->b_flags & XBF_READ));
1629 * If the buffer is already marked delwri it already is queued up
1630 * by someone else for imediate writeout. Just ignore it in that
1631 * case.
1633 if (bp->b_flags & _XBF_DELWRI_Q) {
1634 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1635 return false;
1638 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1641 * If a buffer gets written out synchronously or marked stale while it
1642 * is on a delwri list we lazily remove it. To do this, the other party
1643 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1644 * It remains referenced and on the list. In a rare corner case it
1645 * might get readded to a delwri list after the synchronous writeout, in
1646 * which case we need just need to re-add the flag here.
1648 bp->b_flags |= _XBF_DELWRI_Q;
1649 if (list_empty(&bp->b_list)) {
1650 atomic_inc(&bp->b_hold);
1651 list_add_tail(&bp->b_list, list);
1654 return true;
1658 * Compare function is more complex than it needs to be because
1659 * the return value is only 32 bits and we are doing comparisons
1660 * on 64 bit values
1662 static int
1663 xfs_buf_cmp(
1664 void *priv,
1665 struct list_head *a,
1666 struct list_head *b)
1668 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1669 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1670 xfs_daddr_t diff;
1672 diff = ap->b_map.bm_bn - bp->b_map.bm_bn;
1673 if (diff < 0)
1674 return -1;
1675 if (diff > 0)
1676 return 1;
1677 return 0;
1680 static int
1681 __xfs_buf_delwri_submit(
1682 struct list_head *buffer_list,
1683 struct list_head *io_list,
1684 bool wait)
1686 struct blk_plug plug;
1687 struct xfs_buf *bp, *n;
1688 int pinned = 0;
1690 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1691 if (!wait) {
1692 if (xfs_buf_ispinned(bp)) {
1693 pinned++;
1694 continue;
1696 if (!xfs_buf_trylock(bp))
1697 continue;
1698 } else {
1699 xfs_buf_lock(bp);
1703 * Someone else might have written the buffer synchronously or
1704 * marked it stale in the meantime. In that case only the
1705 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1706 * reference and remove it from the list here.
1708 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1709 list_del_init(&bp->b_list);
1710 xfs_buf_relse(bp);
1711 continue;
1714 list_move_tail(&bp->b_list, io_list);
1715 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1718 list_sort(NULL, io_list, xfs_buf_cmp);
1720 blk_start_plug(&plug);
1721 list_for_each_entry_safe(bp, n, io_list, b_list) {
1722 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1723 bp->b_flags |= XBF_WRITE;
1725 if (!wait) {
1726 bp->b_flags |= XBF_ASYNC;
1727 list_del_init(&bp->b_list);
1729 xfs_bdstrat_cb(bp);
1731 blk_finish_plug(&plug);
1733 return pinned;
1737 * Write out a buffer list asynchronously.
1739 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1740 * out and not wait for I/O completion on any of the buffers. This interface
1741 * is only safely useable for callers that can track I/O completion by higher
1742 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1743 * function.
1746 xfs_buf_delwri_submit_nowait(
1747 struct list_head *buffer_list)
1749 LIST_HEAD (io_list);
1750 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1754 * Write out a buffer list synchronously.
1756 * This will take the @buffer_list, write all buffers out and wait for I/O
1757 * completion on all of the buffers. @buffer_list is consumed by the function,
1758 * so callers must have some other way of tracking buffers if they require such
1759 * functionality.
1762 xfs_buf_delwri_submit(
1763 struct list_head *buffer_list)
1765 LIST_HEAD (io_list);
1766 int error = 0, error2;
1767 struct xfs_buf *bp;
1769 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1771 /* Wait for IO to complete. */
1772 while (!list_empty(&io_list)) {
1773 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1775 list_del_init(&bp->b_list);
1776 error2 = xfs_buf_iowait(bp);
1777 xfs_buf_relse(bp);
1778 if (!error)
1779 error = error2;
1782 return error;
1785 int __init
1786 xfs_buf_init(void)
1788 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1789 KM_ZONE_HWALIGN, NULL);
1790 if (!xfs_buf_zone)
1791 goto out;
1793 xfslogd_workqueue = alloc_workqueue("xfslogd",
1794 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1795 if (!xfslogd_workqueue)
1796 goto out_free_buf_zone;
1798 return 0;
1800 out_free_buf_zone:
1801 kmem_zone_destroy(xfs_buf_zone);
1802 out:
1803 return -ENOMEM;
1806 void
1807 xfs_buf_terminate(void)
1809 destroy_workqueue(xfslogd_workqueue);
1810 kmem_zone_destroy(xfs_buf_zone);