2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
25 #define BTRFS_DELAYED_WRITEBACK 512
26 #define BTRFS_DELAYED_BACKGROUND 128
27 #define BTRFS_DELAYED_BATCH 16
29 static struct kmem_cache
*delayed_node_cache
;
31 int __init
btrfs_delayed_inode_init(void)
33 delayed_node_cache
= kmem_cache_create("btrfs_delayed_node",
34 sizeof(struct btrfs_delayed_node
),
36 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
38 if (!delayed_node_cache
)
43 void btrfs_delayed_inode_exit(void)
45 if (delayed_node_cache
)
46 kmem_cache_destroy(delayed_node_cache
);
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node
*delayed_node
,
51 struct btrfs_root
*root
, u64 inode_id
)
53 delayed_node
->root
= root
;
54 delayed_node
->inode_id
= inode_id
;
55 atomic_set(&delayed_node
->refs
, 0);
56 delayed_node
->count
= 0;
57 delayed_node
->in_list
= 0;
58 delayed_node
->inode_dirty
= 0;
59 delayed_node
->ins_root
= RB_ROOT
;
60 delayed_node
->del_root
= RB_ROOT
;
61 mutex_init(&delayed_node
->mutex
);
62 delayed_node
->index_cnt
= 0;
63 INIT_LIST_HEAD(&delayed_node
->n_list
);
64 INIT_LIST_HEAD(&delayed_node
->p_list
);
65 delayed_node
->bytes_reserved
= 0;
66 memset(&delayed_node
->inode_item
, 0, sizeof(delayed_node
->inode_item
));
69 static inline int btrfs_is_continuous_delayed_item(
70 struct btrfs_delayed_item
*item1
,
71 struct btrfs_delayed_item
*item2
)
73 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
74 item1
->key
.objectid
== item2
->key
.objectid
&&
75 item1
->key
.type
== item2
->key
.type
&&
76 item1
->key
.offset
+ 1 == item2
->key
.offset
)
81 static inline struct btrfs_delayed_root
*btrfs_get_delayed_root(
82 struct btrfs_root
*root
)
84 return root
->fs_info
->delayed_root
;
87 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
89 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
90 struct btrfs_root
*root
= btrfs_inode
->root
;
91 u64 ino
= btrfs_ino(inode
);
92 struct btrfs_delayed_node
*node
;
94 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
96 atomic_inc(&node
->refs
);
100 spin_lock(&root
->inode_lock
);
101 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
103 if (btrfs_inode
->delayed_node
) {
104 atomic_inc(&node
->refs
); /* can be accessed */
105 BUG_ON(btrfs_inode
->delayed_node
!= node
);
106 spin_unlock(&root
->inode_lock
);
109 btrfs_inode
->delayed_node
= node
;
110 atomic_inc(&node
->refs
); /* can be accessed */
111 atomic_inc(&node
->refs
); /* cached in the inode */
112 spin_unlock(&root
->inode_lock
);
115 spin_unlock(&root
->inode_lock
);
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
124 struct btrfs_delayed_node
*node
;
125 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
126 struct btrfs_root
*root
= btrfs_inode
->root
;
127 u64 ino
= btrfs_ino(inode
);
131 node
= btrfs_get_delayed_node(inode
);
135 node
= kmem_cache_alloc(delayed_node_cache
, GFP_NOFS
);
137 return ERR_PTR(-ENOMEM
);
138 btrfs_init_delayed_node(node
, root
, ino
);
140 atomic_inc(&node
->refs
); /* cached in the btrfs inode */
141 atomic_inc(&node
->refs
); /* can be accessed */
143 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
145 kmem_cache_free(delayed_node_cache
, node
);
149 spin_lock(&root
->inode_lock
);
150 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
151 if (ret
== -EEXIST
) {
152 kmem_cache_free(delayed_node_cache
, node
);
153 spin_unlock(&root
->inode_lock
);
154 radix_tree_preload_end();
157 btrfs_inode
->delayed_node
= node
;
158 spin_unlock(&root
->inode_lock
);
159 radix_tree_preload_end();
165 * Call it when holding delayed_node->mutex
167 * If mod = 1, add this node into the prepared list.
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
170 struct btrfs_delayed_node
*node
,
173 spin_lock(&root
->lock
);
175 if (!list_empty(&node
->p_list
))
176 list_move_tail(&node
->p_list
, &root
->prepare_list
);
178 list_add_tail(&node
->p_list
, &root
->prepare_list
);
180 list_add_tail(&node
->n_list
, &root
->node_list
);
181 list_add_tail(&node
->p_list
, &root
->prepare_list
);
182 atomic_inc(&node
->refs
); /* inserted into list */
186 spin_unlock(&root
->lock
);
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
191 struct btrfs_delayed_node
*node
)
193 spin_lock(&root
->lock
);
196 atomic_dec(&node
->refs
); /* not in the list */
197 list_del_init(&node
->n_list
);
198 if (!list_empty(&node
->p_list
))
199 list_del_init(&node
->p_list
);
202 spin_unlock(&root
->lock
);
205 static struct btrfs_delayed_node
*btrfs_first_delayed_node(
206 struct btrfs_delayed_root
*delayed_root
)
209 struct btrfs_delayed_node
*node
= NULL
;
211 spin_lock(&delayed_root
->lock
);
212 if (list_empty(&delayed_root
->node_list
))
215 p
= delayed_root
->node_list
.next
;
216 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
217 atomic_inc(&node
->refs
);
219 spin_unlock(&delayed_root
->lock
);
224 static struct btrfs_delayed_node
*btrfs_next_delayed_node(
225 struct btrfs_delayed_node
*node
)
227 struct btrfs_delayed_root
*delayed_root
;
229 struct btrfs_delayed_node
*next
= NULL
;
231 delayed_root
= node
->root
->fs_info
->delayed_root
;
232 spin_lock(&delayed_root
->lock
);
233 if (!node
->in_list
) { /* not in the list */
234 if (list_empty(&delayed_root
->node_list
))
236 p
= delayed_root
->node_list
.next
;
237 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
240 p
= node
->n_list
.next
;
242 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
243 atomic_inc(&next
->refs
);
245 spin_unlock(&delayed_root
->lock
);
250 static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node
*delayed_node
,
254 struct btrfs_delayed_root
*delayed_root
;
259 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
261 mutex_lock(&delayed_node
->mutex
);
262 if (delayed_node
->count
)
263 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
265 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
266 mutex_unlock(&delayed_node
->mutex
);
268 if (atomic_dec_and_test(&delayed_node
->refs
)) {
269 struct btrfs_root
*root
= delayed_node
->root
;
270 spin_lock(&root
->inode_lock
);
271 if (atomic_read(&delayed_node
->refs
) == 0) {
272 radix_tree_delete(&root
->delayed_nodes_tree
,
273 delayed_node
->inode_id
);
274 kmem_cache_free(delayed_node_cache
, delayed_node
);
276 spin_unlock(&root
->inode_lock
);
280 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
282 __btrfs_release_delayed_node(node
, 0);
285 static struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
286 struct btrfs_delayed_root
*delayed_root
)
289 struct btrfs_delayed_node
*node
= NULL
;
291 spin_lock(&delayed_root
->lock
);
292 if (list_empty(&delayed_root
->prepare_list
))
295 p
= delayed_root
->prepare_list
.next
;
297 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
298 atomic_inc(&node
->refs
);
300 spin_unlock(&delayed_root
->lock
);
305 static inline void btrfs_release_prepared_delayed_node(
306 struct btrfs_delayed_node
*node
)
308 __btrfs_release_delayed_node(node
, 1);
311 static struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
313 struct btrfs_delayed_item
*item
;
314 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
316 item
->data_len
= data_len
;
317 item
->ins_or_del
= 0;
318 item
->bytes_reserved
= 0;
319 item
->delayed_node
= NULL
;
320 atomic_set(&item
->refs
, 1);
326 * __btrfs_lookup_delayed_item - look up the delayed item by key
327 * @delayed_node: pointer to the delayed node
328 * @key: the key to look up
329 * @prev: used to store the prev item if the right item isn't found
330 * @next: used to store the next item if the right item isn't found
332 * Note: if we don't find the right item, we will return the prev item and
335 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
336 struct rb_root
*root
,
337 struct btrfs_key
*key
,
338 struct btrfs_delayed_item
**prev
,
339 struct btrfs_delayed_item
**next
)
341 struct rb_node
*node
, *prev_node
= NULL
;
342 struct btrfs_delayed_item
*delayed_item
= NULL
;
345 node
= root
->rb_node
;
348 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
351 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
353 node
= node
->rb_right
;
355 node
= node
->rb_left
;
364 *prev
= delayed_item
;
365 else if ((node
= rb_prev(prev_node
)) != NULL
) {
366 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
376 *next
= delayed_item
;
377 else if ((node
= rb_next(prev_node
)) != NULL
) {
378 *next
= rb_entry(node
, struct btrfs_delayed_item
,
386 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
387 struct btrfs_delayed_node
*delayed_node
,
388 struct btrfs_key
*key
)
390 struct btrfs_delayed_item
*item
;
392 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
398 struct btrfs_delayed_item
*ins
,
401 struct rb_node
**p
, *node
;
402 struct rb_node
*parent_node
= NULL
;
403 struct rb_root
*root
;
404 struct btrfs_delayed_item
*item
;
407 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
408 root
= &delayed_node
->ins_root
;
409 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
410 root
= &delayed_node
->del_root
;
414 node
= &ins
->rb_node
;
418 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
421 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
430 rb_link_node(node
, parent_node
, p
);
431 rb_insert_color(node
, root
);
432 ins
->delayed_node
= delayed_node
;
433 ins
->ins_or_del
= action
;
435 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
436 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
437 ins
->key
.offset
>= delayed_node
->index_cnt
)
438 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
440 delayed_node
->count
++;
441 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
446 struct btrfs_delayed_item
*item
)
448 return __btrfs_add_delayed_item(node
, item
,
449 BTRFS_DELAYED_INSERTION_ITEM
);
452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
453 struct btrfs_delayed_item
*item
)
455 return __btrfs_add_delayed_item(node
, item
,
456 BTRFS_DELAYED_DELETION_ITEM
);
459 static void finish_one_item(struct btrfs_delayed_root
*delayed_root
)
461 int seq
= atomic_inc_return(&delayed_root
->items_seq
);
462 if ((atomic_dec_return(&delayed_root
->items
) <
463 BTRFS_DELAYED_BACKGROUND
|| seq
% BTRFS_DELAYED_BATCH
== 0) &&
464 waitqueue_active(&delayed_root
->wait
))
465 wake_up(&delayed_root
->wait
);
468 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
470 struct rb_root
*root
;
471 struct btrfs_delayed_root
*delayed_root
;
473 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
475 BUG_ON(!delayed_root
);
476 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
477 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
479 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
480 root
= &delayed_item
->delayed_node
->ins_root
;
482 root
= &delayed_item
->delayed_node
->del_root
;
484 rb_erase(&delayed_item
->rb_node
, root
);
485 delayed_item
->delayed_node
->count
--;
487 finish_one_item(delayed_root
);
490 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
493 __btrfs_remove_delayed_item(item
);
494 if (atomic_dec_and_test(&item
->refs
))
499 static struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
500 struct btrfs_delayed_node
*delayed_node
)
503 struct btrfs_delayed_item
*item
= NULL
;
505 p
= rb_first(&delayed_node
->ins_root
);
507 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
512 static struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
513 struct btrfs_delayed_node
*delayed_node
)
516 struct btrfs_delayed_item
*item
= NULL
;
518 p
= rb_first(&delayed_node
->del_root
);
520 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
525 static struct btrfs_delayed_item
*__btrfs_next_delayed_item(
526 struct btrfs_delayed_item
*item
)
529 struct btrfs_delayed_item
*next
= NULL
;
531 p
= rb_next(&item
->rb_node
);
533 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
538 static inline struct btrfs_root
*btrfs_get_fs_root(struct btrfs_root
*root
,
541 struct btrfs_key root_key
;
543 if (root
->objectid
== root_id
)
546 root_key
.objectid
= root_id
;
547 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
548 root_key
.offset
= (u64
)-1;
549 return btrfs_read_fs_root_no_name(root
->fs_info
, &root_key
);
552 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
553 struct btrfs_root
*root
,
554 struct btrfs_delayed_item
*item
)
556 struct btrfs_block_rsv
*src_rsv
;
557 struct btrfs_block_rsv
*dst_rsv
;
561 if (!trans
->bytes_reserved
)
564 src_rsv
= trans
->block_rsv
;
565 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
567 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
568 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
570 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
573 item
->bytes_reserved
= num_bytes
;
579 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
580 struct btrfs_delayed_item
*item
)
582 struct btrfs_block_rsv
*rsv
;
584 if (!item
->bytes_reserved
)
587 rsv
= &root
->fs_info
->delayed_block_rsv
;
588 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
589 item
->key
.objectid
, item
->bytes_reserved
,
591 btrfs_block_rsv_release(root
, rsv
,
592 item
->bytes_reserved
);
595 static int btrfs_delayed_inode_reserve_metadata(
596 struct btrfs_trans_handle
*trans
,
597 struct btrfs_root
*root
,
599 struct btrfs_delayed_node
*node
)
601 struct btrfs_block_rsv
*src_rsv
;
602 struct btrfs_block_rsv
*dst_rsv
;
605 bool release
= false;
607 src_rsv
= trans
->block_rsv
;
608 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
610 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
613 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
614 * which doesn't reserve space for speed. This is a problem since we
615 * still need to reserve space for this update, so try to reserve the
618 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
619 * we're accounted for.
621 if (!src_rsv
|| (!trans
->bytes_reserved
&&
622 src_rsv
->type
!= BTRFS_BLOCK_RSV_DELALLOC
)) {
623 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
624 BTRFS_RESERVE_NO_FLUSH
);
626 * Since we're under a transaction reserve_metadata_bytes could
627 * try to commit the transaction which will make it return
628 * EAGAIN to make us stop the transaction we have, so return
629 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
634 node
->bytes_reserved
= num_bytes
;
635 trace_btrfs_space_reservation(root
->fs_info
,
641 } else if (src_rsv
->type
== BTRFS_BLOCK_RSV_DELALLOC
) {
642 spin_lock(&BTRFS_I(inode
)->lock
);
643 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
644 &BTRFS_I(inode
)->runtime_flags
)) {
645 spin_unlock(&BTRFS_I(inode
)->lock
);
649 spin_unlock(&BTRFS_I(inode
)->lock
);
651 /* Ok we didn't have space pre-reserved. This shouldn't happen
652 * too often but it can happen if we do delalloc to an existing
653 * inode which gets dirtied because of the time update, and then
654 * isn't touched again until after the transaction commits and
655 * then we try to write out the data. First try to be nice and
656 * reserve something strictly for us. If not be a pain and try
657 * to steal from the delalloc block rsv.
659 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
660 BTRFS_RESERVE_NO_FLUSH
);
664 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
669 * Ok this is a problem, let's just steal from the global rsv
670 * since this really shouldn't happen that often.
673 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->global_block_rsv
,
679 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
683 * Migrate only takes a reservation, it doesn't touch the size of the
684 * block_rsv. This is to simplify people who don't normally have things
685 * migrated from their block rsv. If they go to release their
686 * reservation, that will decrease the size as well, so if migrate
687 * reduced size we'd end up with a negative size. But for the
688 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
689 * but we could in fact do this reserve/migrate dance several times
690 * between the time we did the original reservation and we'd clean it
691 * up. So to take care of this, release the space for the meta
692 * reservation here. I think it may be time for a documentation page on
693 * how block rsvs. work.
696 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
697 btrfs_ino(inode
), num_bytes
, 1);
698 node
->bytes_reserved
= num_bytes
;
702 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
703 btrfs_ino(inode
), num_bytes
, 0);
704 btrfs_block_rsv_release(root
, src_rsv
, num_bytes
);
710 static void btrfs_delayed_inode_release_metadata(struct btrfs_root
*root
,
711 struct btrfs_delayed_node
*node
)
713 struct btrfs_block_rsv
*rsv
;
715 if (!node
->bytes_reserved
)
718 rsv
= &root
->fs_info
->delayed_block_rsv
;
719 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
720 node
->inode_id
, node
->bytes_reserved
, 0);
721 btrfs_block_rsv_release(root
, rsv
,
722 node
->bytes_reserved
);
723 node
->bytes_reserved
= 0;
727 * This helper will insert some continuous items into the same leaf according
728 * to the free space of the leaf.
730 static int btrfs_batch_insert_items(struct btrfs_root
*root
,
731 struct btrfs_path
*path
,
732 struct btrfs_delayed_item
*item
)
734 struct btrfs_delayed_item
*curr
, *next
;
736 int total_data_size
= 0, total_size
= 0;
737 struct extent_buffer
*leaf
;
739 struct btrfs_key
*keys
;
741 struct list_head head
;
747 BUG_ON(!path
->nodes
[0]);
749 leaf
= path
->nodes
[0];
750 free_space
= btrfs_leaf_free_space(root
, leaf
);
751 INIT_LIST_HEAD(&head
);
757 * count the number of the continuous items that we can insert in batch
759 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
761 total_data_size
+= next
->data_len
;
762 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
763 list_add_tail(&next
->tree_list
, &head
);
767 next
= __btrfs_next_delayed_item(curr
);
771 if (!btrfs_is_continuous_delayed_item(curr
, next
))
781 * we need allocate some memory space, but it might cause the task
782 * to sleep, so we set all locked nodes in the path to blocking locks
785 btrfs_set_path_blocking(path
);
787 keys
= kmalloc(sizeof(struct btrfs_key
) * nitems
, GFP_NOFS
);
793 data_size
= kmalloc(sizeof(u32
) * nitems
, GFP_NOFS
);
799 /* get keys of all the delayed items */
801 list_for_each_entry(next
, &head
, tree_list
) {
803 data_size
[i
] = next
->data_len
;
807 /* reset all the locked nodes in the patch to spinning locks. */
808 btrfs_clear_path_blocking(path
, NULL
, 0);
810 /* insert the keys of the items */
811 setup_items_for_insert(root
, path
, keys
, data_size
,
812 total_data_size
, total_size
, nitems
);
814 /* insert the dir index items */
815 slot
= path
->slots
[0];
816 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
817 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
818 write_extent_buffer(leaf
, &curr
->data
,
819 (unsigned long)data_ptr
,
823 btrfs_delayed_item_release_metadata(root
, curr
);
825 list_del(&curr
->tree_list
);
826 btrfs_release_delayed_item(curr
);
837 * This helper can just do simple insertion that needn't extend item for new
838 * data, such as directory name index insertion, inode insertion.
840 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
841 struct btrfs_root
*root
,
842 struct btrfs_path
*path
,
843 struct btrfs_delayed_item
*delayed_item
)
845 struct extent_buffer
*leaf
;
849 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
850 delayed_item
->data_len
);
851 if (ret
< 0 && ret
!= -EEXIST
)
854 leaf
= path
->nodes
[0];
856 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
858 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
859 delayed_item
->data_len
);
860 btrfs_mark_buffer_dirty(leaf
);
862 btrfs_delayed_item_release_metadata(root
, delayed_item
);
867 * we insert an item first, then if there are some continuous items, we try
868 * to insert those items into the same leaf.
870 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
871 struct btrfs_path
*path
,
872 struct btrfs_root
*root
,
873 struct btrfs_delayed_node
*node
)
875 struct btrfs_delayed_item
*curr
, *prev
;
879 mutex_lock(&node
->mutex
);
880 curr
= __btrfs_first_delayed_insertion_item(node
);
884 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
886 btrfs_release_path(path
);
891 curr
= __btrfs_next_delayed_item(prev
);
892 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
893 /* insert the continuous items into the same leaf */
895 btrfs_batch_insert_items(root
, path
, curr
);
897 btrfs_release_delayed_item(prev
);
898 btrfs_mark_buffer_dirty(path
->nodes
[0]);
900 btrfs_release_path(path
);
901 mutex_unlock(&node
->mutex
);
905 mutex_unlock(&node
->mutex
);
909 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
910 struct btrfs_root
*root
,
911 struct btrfs_path
*path
,
912 struct btrfs_delayed_item
*item
)
914 struct btrfs_delayed_item
*curr
, *next
;
915 struct extent_buffer
*leaf
;
916 struct btrfs_key key
;
917 struct list_head head
;
918 int nitems
, i
, last_item
;
921 BUG_ON(!path
->nodes
[0]);
923 leaf
= path
->nodes
[0];
926 last_item
= btrfs_header_nritems(leaf
) - 1;
928 return -ENOENT
; /* FIXME: Is errno suitable? */
931 INIT_LIST_HEAD(&head
);
932 btrfs_item_key_to_cpu(leaf
, &key
, i
);
935 * count the number of the dir index items that we can delete in batch
937 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
938 list_add_tail(&next
->tree_list
, &head
);
942 next
= __btrfs_next_delayed_item(curr
);
946 if (!btrfs_is_continuous_delayed_item(curr
, next
))
952 btrfs_item_key_to_cpu(leaf
, &key
, i
);
958 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
962 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
963 btrfs_delayed_item_release_metadata(root
, curr
);
964 list_del(&curr
->tree_list
);
965 btrfs_release_delayed_item(curr
);
972 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
973 struct btrfs_path
*path
,
974 struct btrfs_root
*root
,
975 struct btrfs_delayed_node
*node
)
977 struct btrfs_delayed_item
*curr
, *prev
;
981 mutex_lock(&node
->mutex
);
982 curr
= __btrfs_first_delayed_deletion_item(node
);
986 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
991 * can't find the item which the node points to, so this node
992 * is invalid, just drop it.
995 curr
= __btrfs_next_delayed_item(prev
);
996 btrfs_release_delayed_item(prev
);
998 btrfs_release_path(path
);
1000 mutex_unlock(&node
->mutex
);
1006 btrfs_batch_delete_items(trans
, root
, path
, curr
);
1007 btrfs_release_path(path
);
1008 mutex_unlock(&node
->mutex
);
1012 btrfs_release_path(path
);
1013 mutex_unlock(&node
->mutex
);
1017 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
1019 struct btrfs_delayed_root
*delayed_root
;
1021 if (delayed_node
&& delayed_node
->inode_dirty
) {
1022 BUG_ON(!delayed_node
->root
);
1023 delayed_node
->inode_dirty
= 0;
1024 delayed_node
->count
--;
1026 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1027 finish_one_item(delayed_root
);
1031 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1032 struct btrfs_root
*root
,
1033 struct btrfs_path
*path
,
1034 struct btrfs_delayed_node
*node
)
1036 struct btrfs_key key
;
1037 struct btrfs_inode_item
*inode_item
;
1038 struct extent_buffer
*leaf
;
1041 key
.objectid
= node
->inode_id
;
1042 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
1045 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, 1);
1047 btrfs_release_path(path
);
1049 } else if (ret
< 0) {
1053 btrfs_unlock_up_safe(path
, 1);
1054 leaf
= path
->nodes
[0];
1055 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1056 struct btrfs_inode_item
);
1057 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1058 sizeof(struct btrfs_inode_item
));
1059 btrfs_mark_buffer_dirty(leaf
);
1060 btrfs_release_path(path
);
1062 btrfs_delayed_inode_release_metadata(root
, node
);
1063 btrfs_release_delayed_inode(node
);
1068 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1069 struct btrfs_root
*root
,
1070 struct btrfs_path
*path
,
1071 struct btrfs_delayed_node
*node
)
1075 mutex_lock(&node
->mutex
);
1076 if (!node
->inode_dirty
) {
1077 mutex_unlock(&node
->mutex
);
1081 ret
= __btrfs_update_delayed_inode(trans
, root
, path
, node
);
1082 mutex_unlock(&node
->mutex
);
1087 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1088 struct btrfs_path
*path
,
1089 struct btrfs_delayed_node
*node
)
1093 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1097 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1101 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1106 * Called when committing the transaction.
1107 * Returns 0 on success.
1108 * Returns < 0 on error and returns with an aborted transaction with any
1109 * outstanding delayed items cleaned up.
1111 static int __btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1112 struct btrfs_root
*root
, int nr
)
1114 struct btrfs_delayed_root
*delayed_root
;
1115 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1116 struct btrfs_path
*path
;
1117 struct btrfs_block_rsv
*block_rsv
;
1119 bool count
= (nr
> 0);
1124 path
= btrfs_alloc_path();
1127 path
->leave_spinning
= 1;
1129 block_rsv
= trans
->block_rsv
;
1130 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1132 delayed_root
= btrfs_get_delayed_root(root
);
1134 curr_node
= btrfs_first_delayed_node(delayed_root
);
1135 while (curr_node
&& (!count
|| (count
&& nr
--))) {
1136 ret
= __btrfs_commit_inode_delayed_items(trans
, path
,
1139 btrfs_release_delayed_node(curr_node
);
1141 btrfs_abort_transaction(trans
, root
, ret
);
1145 prev_node
= curr_node
;
1146 curr_node
= btrfs_next_delayed_node(curr_node
);
1147 btrfs_release_delayed_node(prev_node
);
1151 btrfs_release_delayed_node(curr_node
);
1152 btrfs_free_path(path
);
1153 trans
->block_rsv
= block_rsv
;
1158 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1159 struct btrfs_root
*root
)
1161 return __btrfs_run_delayed_items(trans
, root
, -1);
1164 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle
*trans
,
1165 struct btrfs_root
*root
, int nr
)
1167 return __btrfs_run_delayed_items(trans
, root
, nr
);
1170 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1171 struct inode
*inode
)
1173 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1174 struct btrfs_path
*path
;
1175 struct btrfs_block_rsv
*block_rsv
;
1181 mutex_lock(&delayed_node
->mutex
);
1182 if (!delayed_node
->count
) {
1183 mutex_unlock(&delayed_node
->mutex
);
1184 btrfs_release_delayed_node(delayed_node
);
1187 mutex_unlock(&delayed_node
->mutex
);
1189 path
= btrfs_alloc_path();
1192 path
->leave_spinning
= 1;
1194 block_rsv
= trans
->block_rsv
;
1195 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1197 ret
= __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1199 btrfs_release_delayed_node(delayed_node
);
1200 btrfs_free_path(path
);
1201 trans
->block_rsv
= block_rsv
;
1206 int btrfs_commit_inode_delayed_inode(struct inode
*inode
)
1208 struct btrfs_trans_handle
*trans
;
1209 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1210 struct btrfs_path
*path
;
1211 struct btrfs_block_rsv
*block_rsv
;
1217 mutex_lock(&delayed_node
->mutex
);
1218 if (!delayed_node
->inode_dirty
) {
1219 mutex_unlock(&delayed_node
->mutex
);
1220 btrfs_release_delayed_node(delayed_node
);
1223 mutex_unlock(&delayed_node
->mutex
);
1225 trans
= btrfs_join_transaction(delayed_node
->root
);
1226 if (IS_ERR(trans
)) {
1227 ret
= PTR_ERR(trans
);
1231 path
= btrfs_alloc_path();
1236 path
->leave_spinning
= 1;
1238 block_rsv
= trans
->block_rsv
;
1239 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1241 mutex_lock(&delayed_node
->mutex
);
1242 if (delayed_node
->inode_dirty
)
1243 ret
= __btrfs_update_delayed_inode(trans
, delayed_node
->root
,
1244 path
, delayed_node
);
1247 mutex_unlock(&delayed_node
->mutex
);
1249 btrfs_free_path(path
);
1250 trans
->block_rsv
= block_rsv
;
1252 btrfs_end_transaction(trans
, delayed_node
->root
);
1253 btrfs_btree_balance_dirty(delayed_node
->root
);
1255 btrfs_release_delayed_node(delayed_node
);
1260 void btrfs_remove_delayed_node(struct inode
*inode
)
1262 struct btrfs_delayed_node
*delayed_node
;
1264 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1268 BTRFS_I(inode
)->delayed_node
= NULL
;
1269 btrfs_release_delayed_node(delayed_node
);
1272 struct btrfs_async_delayed_work
{
1273 struct btrfs_delayed_root
*delayed_root
;
1275 struct btrfs_work work
;
1278 static void btrfs_async_run_delayed_root(struct btrfs_work
*work
)
1280 struct btrfs_async_delayed_work
*async_work
;
1281 struct btrfs_delayed_root
*delayed_root
;
1282 struct btrfs_trans_handle
*trans
;
1283 struct btrfs_path
*path
;
1284 struct btrfs_delayed_node
*delayed_node
= NULL
;
1285 struct btrfs_root
*root
;
1286 struct btrfs_block_rsv
*block_rsv
;
1289 async_work
= container_of(work
, struct btrfs_async_delayed_work
, work
);
1290 delayed_root
= async_work
->delayed_root
;
1292 path
= btrfs_alloc_path();
1297 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
/ 2)
1300 delayed_node
= btrfs_first_prepared_delayed_node(delayed_root
);
1304 path
->leave_spinning
= 1;
1305 root
= delayed_node
->root
;
1307 trans
= btrfs_join_transaction(root
);
1311 block_rsv
= trans
->block_rsv
;
1312 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1314 __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1316 * Maybe new delayed items have been inserted, so we need requeue
1317 * the work. Besides that, we must dequeue the empty delayed nodes
1318 * to avoid the race between delayed items balance and the worker.
1319 * The race like this:
1320 * Task1 Worker thread
1321 * count == 0, needn't requeue
1322 * also needn't insert the
1323 * delayed node into prepare
1325 * add lots of delayed items
1326 * queue the delayed node
1327 * already in the list,
1328 * and not in the prepare
1329 * list, it means the delayed
1330 * node is being dealt with
1332 * do delayed items balance
1333 * the delayed node is being
1334 * dealt with by the worker
1336 * the worker goto idle.
1337 * Task1 will sleep until the transaction is commited.
1339 mutex_lock(&delayed_node
->mutex
);
1340 btrfs_dequeue_delayed_node(root
->fs_info
->delayed_root
, delayed_node
);
1341 mutex_unlock(&delayed_node
->mutex
);
1343 trans
->block_rsv
= block_rsv
;
1344 btrfs_end_transaction_dmeta(trans
, root
);
1345 btrfs_btree_balance_dirty_nodelay(root
);
1348 btrfs_release_path(path
);
1351 btrfs_release_prepared_delayed_node(delayed_node
);
1352 if (async_work
->nr
== 0 || total_done
< async_work
->nr
)
1356 btrfs_free_path(path
);
1358 wake_up(&delayed_root
->wait
);
1363 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1364 struct btrfs_root
*root
, int nr
)
1366 struct btrfs_async_delayed_work
*async_work
;
1368 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1371 async_work
= kmalloc(sizeof(*async_work
), GFP_NOFS
);
1375 async_work
->delayed_root
= delayed_root
;
1376 async_work
->work
.func
= btrfs_async_run_delayed_root
;
1377 async_work
->work
.flags
= 0;
1378 async_work
->nr
= nr
;
1380 btrfs_queue_worker(&root
->fs_info
->delayed_workers
, &async_work
->work
);
1384 void btrfs_assert_delayed_root_empty(struct btrfs_root
*root
)
1386 struct btrfs_delayed_root
*delayed_root
;
1387 delayed_root
= btrfs_get_delayed_root(root
);
1388 WARN_ON(btrfs_first_delayed_node(delayed_root
));
1391 static int refs_newer(struct btrfs_delayed_root
*delayed_root
,
1394 int val
= atomic_read(&delayed_root
->items_seq
);
1396 if (val
< seq
|| val
>= seq
+ count
)
1401 void btrfs_balance_delayed_items(struct btrfs_root
*root
)
1403 struct btrfs_delayed_root
*delayed_root
;
1406 delayed_root
= btrfs_get_delayed_root(root
);
1408 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1411 seq
= atomic_read(&delayed_root
->items_seq
);
1413 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1415 DEFINE_WAIT(__wait
);
1417 ret
= btrfs_wq_run_delayed_node(delayed_root
, root
, 0);
1422 prepare_to_wait(&delayed_root
->wait
, &__wait
,
1423 TASK_INTERRUPTIBLE
);
1425 if (refs_newer(delayed_root
, seq
,
1426 BTRFS_DELAYED_BATCH
) ||
1427 atomic_read(&delayed_root
->items
) <
1428 BTRFS_DELAYED_BACKGROUND
) {
1431 if (!signal_pending(current
))
1436 finish_wait(&delayed_root
->wait
, &__wait
);
1439 btrfs_wq_run_delayed_node(delayed_root
, root
, BTRFS_DELAYED_BATCH
);
1442 /* Will return 0 or -ENOMEM */
1443 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1444 struct btrfs_root
*root
, const char *name
,
1445 int name_len
, struct inode
*dir
,
1446 struct btrfs_disk_key
*disk_key
, u8 type
,
1449 struct btrfs_delayed_node
*delayed_node
;
1450 struct btrfs_delayed_item
*delayed_item
;
1451 struct btrfs_dir_item
*dir_item
;
1454 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1455 if (IS_ERR(delayed_node
))
1456 return PTR_ERR(delayed_node
);
1458 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1459 if (!delayed_item
) {
1464 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1465 btrfs_set_key_type(&delayed_item
->key
, BTRFS_DIR_INDEX_KEY
);
1466 delayed_item
->key
.offset
= index
;
1468 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1469 dir_item
->location
= *disk_key
;
1470 dir_item
->transid
= cpu_to_le64(trans
->transid
);
1471 dir_item
->data_len
= 0;
1472 dir_item
->name_len
= cpu_to_le16(name_len
);
1473 dir_item
->type
= type
;
1474 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1476 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, delayed_item
);
1478 * we have reserved enough space when we start a new transaction,
1479 * so reserving metadata failure is impossible
1484 mutex_lock(&delayed_node
->mutex
);
1485 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1486 if (unlikely(ret
)) {
1487 printk(KERN_ERR
"err add delayed dir index item(name: %s) into "
1488 "the insertion tree of the delayed node"
1489 "(root id: %llu, inode id: %llu, errno: %d)\n",
1491 (unsigned long long)delayed_node
->root
->objectid
,
1492 (unsigned long long)delayed_node
->inode_id
,
1496 mutex_unlock(&delayed_node
->mutex
);
1499 btrfs_release_delayed_node(delayed_node
);
1503 static int btrfs_delete_delayed_insertion_item(struct btrfs_root
*root
,
1504 struct btrfs_delayed_node
*node
,
1505 struct btrfs_key
*key
)
1507 struct btrfs_delayed_item
*item
;
1509 mutex_lock(&node
->mutex
);
1510 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1512 mutex_unlock(&node
->mutex
);
1516 btrfs_delayed_item_release_metadata(root
, item
);
1517 btrfs_release_delayed_item(item
);
1518 mutex_unlock(&node
->mutex
);
1522 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1523 struct btrfs_root
*root
, struct inode
*dir
,
1526 struct btrfs_delayed_node
*node
;
1527 struct btrfs_delayed_item
*item
;
1528 struct btrfs_key item_key
;
1531 node
= btrfs_get_or_create_delayed_node(dir
);
1533 return PTR_ERR(node
);
1535 item_key
.objectid
= btrfs_ino(dir
);
1536 btrfs_set_key_type(&item_key
, BTRFS_DIR_INDEX_KEY
);
1537 item_key
.offset
= index
;
1539 ret
= btrfs_delete_delayed_insertion_item(root
, node
, &item_key
);
1543 item
= btrfs_alloc_delayed_item(0);
1549 item
->key
= item_key
;
1551 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, item
);
1553 * we have reserved enough space when we start a new transaction,
1554 * so reserving metadata failure is impossible.
1558 mutex_lock(&node
->mutex
);
1559 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1560 if (unlikely(ret
)) {
1561 printk(KERN_ERR
"err add delayed dir index item(index: %llu) "
1562 "into the deletion tree of the delayed node"
1563 "(root id: %llu, inode id: %llu, errno: %d)\n",
1564 (unsigned long long)index
,
1565 (unsigned long long)node
->root
->objectid
,
1566 (unsigned long long)node
->inode_id
,
1570 mutex_unlock(&node
->mutex
);
1572 btrfs_release_delayed_node(node
);
1576 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1578 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1584 * Since we have held i_mutex of this directory, it is impossible that
1585 * a new directory index is added into the delayed node and index_cnt
1586 * is updated now. So we needn't lock the delayed node.
1588 if (!delayed_node
->index_cnt
) {
1589 btrfs_release_delayed_node(delayed_node
);
1593 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1594 btrfs_release_delayed_node(delayed_node
);
1598 void btrfs_get_delayed_items(struct inode
*inode
, struct list_head
*ins_list
,
1599 struct list_head
*del_list
)
1601 struct btrfs_delayed_node
*delayed_node
;
1602 struct btrfs_delayed_item
*item
;
1604 delayed_node
= btrfs_get_delayed_node(inode
);
1608 mutex_lock(&delayed_node
->mutex
);
1609 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1611 atomic_inc(&item
->refs
);
1612 list_add_tail(&item
->readdir_list
, ins_list
);
1613 item
= __btrfs_next_delayed_item(item
);
1616 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1618 atomic_inc(&item
->refs
);
1619 list_add_tail(&item
->readdir_list
, del_list
);
1620 item
= __btrfs_next_delayed_item(item
);
1622 mutex_unlock(&delayed_node
->mutex
);
1624 * This delayed node is still cached in the btrfs inode, so refs
1625 * must be > 1 now, and we needn't check it is going to be freed
1628 * Besides that, this function is used to read dir, we do not
1629 * insert/delete delayed items in this period. So we also needn't
1630 * requeue or dequeue this delayed node.
1632 atomic_dec(&delayed_node
->refs
);
1635 void btrfs_put_delayed_items(struct list_head
*ins_list
,
1636 struct list_head
*del_list
)
1638 struct btrfs_delayed_item
*curr
, *next
;
1640 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1641 list_del(&curr
->readdir_list
);
1642 if (atomic_dec_and_test(&curr
->refs
))
1646 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1647 list_del(&curr
->readdir_list
);
1648 if (atomic_dec_and_test(&curr
->refs
))
1653 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1656 struct btrfs_delayed_item
*curr
, *next
;
1659 if (list_empty(del_list
))
1662 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1663 if (curr
->key
.offset
> index
)
1666 list_del(&curr
->readdir_list
);
1667 ret
= (curr
->key
.offset
== index
);
1669 if (atomic_dec_and_test(&curr
->refs
))
1681 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1684 int btrfs_readdir_delayed_dir_index(struct file
*filp
, void *dirent
,
1686 struct list_head
*ins_list
)
1688 struct btrfs_dir_item
*di
;
1689 struct btrfs_delayed_item
*curr
, *next
;
1690 struct btrfs_key location
;
1694 unsigned char d_type
;
1696 if (list_empty(ins_list
))
1700 * Changing the data of the delayed item is impossible. So
1701 * we needn't lock them. And we have held i_mutex of the
1702 * directory, nobody can delete any directory indexes now.
1704 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1705 list_del(&curr
->readdir_list
);
1707 if (curr
->key
.offset
< filp
->f_pos
) {
1708 if (atomic_dec_and_test(&curr
->refs
))
1713 filp
->f_pos
= curr
->key
.offset
;
1715 di
= (struct btrfs_dir_item
*)curr
->data
;
1716 name
= (char *)(di
+ 1);
1717 name_len
= le16_to_cpu(di
->name_len
);
1719 d_type
= btrfs_filetype_table
[di
->type
];
1720 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1722 over
= filldir(dirent
, name
, name_len
, curr
->key
.offset
,
1723 location
.objectid
, d_type
);
1725 if (atomic_dec_and_test(&curr
->refs
))
1734 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation
, struct btrfs_inode_item
,
1736 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence
, struct btrfs_inode_item
,
1738 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid
, struct btrfs_inode_item
,
1740 BTRFS_SETGET_STACK_FUNCS(stack_inode_size
, struct btrfs_inode_item
, size
, 64);
1741 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes
, struct btrfs_inode_item
,
1743 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group
, struct btrfs_inode_item
,
1745 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink
, struct btrfs_inode_item
, nlink
, 32);
1746 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid
, struct btrfs_inode_item
, uid
, 32);
1747 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid
, struct btrfs_inode_item
, gid
, 32);
1748 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode
, struct btrfs_inode_item
, mode
, 32);
1749 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev
, struct btrfs_inode_item
, rdev
, 64);
1750 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags
, struct btrfs_inode_item
, flags
, 64);
1752 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec
, struct btrfs_timespec
, sec
, 64);
1753 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec
, struct btrfs_timespec
, nsec
, 32);
1755 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1756 struct btrfs_inode_item
*inode_item
,
1757 struct inode
*inode
)
1759 btrfs_set_stack_inode_uid(inode_item
, i_uid_read(inode
));
1760 btrfs_set_stack_inode_gid(inode_item
, i_gid_read(inode
));
1761 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1762 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1763 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1764 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1765 btrfs_set_stack_inode_generation(inode_item
,
1766 BTRFS_I(inode
)->generation
);
1767 btrfs_set_stack_inode_sequence(inode_item
, inode
->i_version
);
1768 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1769 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1770 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1771 btrfs_set_stack_inode_block_group(inode_item
, 0);
1773 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item
),
1774 inode
->i_atime
.tv_sec
);
1775 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item
),
1776 inode
->i_atime
.tv_nsec
);
1778 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item
),
1779 inode
->i_mtime
.tv_sec
);
1780 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item
),
1781 inode
->i_mtime
.tv_nsec
);
1783 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item
),
1784 inode
->i_ctime
.tv_sec
);
1785 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item
),
1786 inode
->i_ctime
.tv_nsec
);
1789 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1791 struct btrfs_delayed_node
*delayed_node
;
1792 struct btrfs_inode_item
*inode_item
;
1793 struct btrfs_timespec
*tspec
;
1795 delayed_node
= btrfs_get_delayed_node(inode
);
1799 mutex_lock(&delayed_node
->mutex
);
1800 if (!delayed_node
->inode_dirty
) {
1801 mutex_unlock(&delayed_node
->mutex
);
1802 btrfs_release_delayed_node(delayed_node
);
1806 inode_item
= &delayed_node
->inode_item
;
1808 i_uid_write(inode
, btrfs_stack_inode_uid(inode_item
));
1809 i_gid_write(inode
, btrfs_stack_inode_gid(inode_item
));
1810 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1811 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1812 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1813 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1814 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1815 inode
->i_version
= btrfs_stack_inode_sequence(inode_item
);
1817 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1818 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1820 tspec
= btrfs_inode_atime(inode_item
);
1821 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1822 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1824 tspec
= btrfs_inode_mtime(inode_item
);
1825 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1826 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1828 tspec
= btrfs_inode_ctime(inode_item
);
1829 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1830 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1832 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1833 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1835 mutex_unlock(&delayed_node
->mutex
);
1836 btrfs_release_delayed_node(delayed_node
);
1840 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1841 struct btrfs_root
*root
, struct inode
*inode
)
1843 struct btrfs_delayed_node
*delayed_node
;
1846 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1847 if (IS_ERR(delayed_node
))
1848 return PTR_ERR(delayed_node
);
1850 mutex_lock(&delayed_node
->mutex
);
1851 if (delayed_node
->inode_dirty
) {
1852 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1856 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1861 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1862 delayed_node
->inode_dirty
= 1;
1863 delayed_node
->count
++;
1864 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1866 mutex_unlock(&delayed_node
->mutex
);
1867 btrfs_release_delayed_node(delayed_node
);
1871 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1873 struct btrfs_root
*root
= delayed_node
->root
;
1874 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1876 mutex_lock(&delayed_node
->mutex
);
1877 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1879 btrfs_delayed_item_release_metadata(root
, curr_item
);
1880 prev_item
= curr_item
;
1881 curr_item
= __btrfs_next_delayed_item(prev_item
);
1882 btrfs_release_delayed_item(prev_item
);
1885 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1887 btrfs_delayed_item_release_metadata(root
, curr_item
);
1888 prev_item
= curr_item
;
1889 curr_item
= __btrfs_next_delayed_item(prev_item
);
1890 btrfs_release_delayed_item(prev_item
);
1893 if (delayed_node
->inode_dirty
) {
1894 btrfs_delayed_inode_release_metadata(root
, delayed_node
);
1895 btrfs_release_delayed_inode(delayed_node
);
1897 mutex_unlock(&delayed_node
->mutex
);
1900 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1902 struct btrfs_delayed_node
*delayed_node
;
1904 delayed_node
= btrfs_get_delayed_node(inode
);
1908 __btrfs_kill_delayed_node(delayed_node
);
1909 btrfs_release_delayed_node(delayed_node
);
1912 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1915 struct btrfs_delayed_node
*delayed_nodes
[8];
1919 spin_lock(&root
->inode_lock
);
1920 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1921 (void **)delayed_nodes
, inode_id
,
1922 ARRAY_SIZE(delayed_nodes
));
1924 spin_unlock(&root
->inode_lock
);
1928 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1930 for (i
= 0; i
< n
; i
++)
1931 atomic_inc(&delayed_nodes
[i
]->refs
);
1932 spin_unlock(&root
->inode_lock
);
1934 for (i
= 0; i
< n
; i
++) {
1935 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1936 btrfs_release_delayed_node(delayed_nodes
[i
]);
1941 void btrfs_destroy_delayed_inodes(struct btrfs_root
*root
)
1943 struct btrfs_delayed_root
*delayed_root
;
1944 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1946 delayed_root
= btrfs_get_delayed_root(root
);
1948 curr_node
= btrfs_first_delayed_node(delayed_root
);
1950 __btrfs_kill_delayed_node(curr_node
);
1952 prev_node
= curr_node
;
1953 curr_node
= btrfs_next_delayed_node(curr_node
);
1954 btrfs_release_delayed_node(prev_node
);