2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
45 * This macro is used to define some register default values.
46 * reg is masked with mask, the OR:ed with an (again masked)
47 * val shifted sb steps to the left.
49 #define SSP_WRITE_BITS(reg, val, mask, sb) \
50 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
53 * This macro is also used to define some default values.
54 * It will just shift val by sb steps to the left and mask
55 * the result with mask.
57 #define GEN_MASK_BITS(val, mask, sb) \
58 (((val)<<(sb)) & (mask))
61 #define DO_NOT_DRIVE_TX 1
63 #define DO_NOT_QUEUE_DMA 0
70 * Macros to access SSP Registers with their offsets
72 #define SSP_CR0(r) (r + 0x000)
73 #define SSP_CR1(r) (r + 0x004)
74 #define SSP_DR(r) (r + 0x008)
75 #define SSP_SR(r) (r + 0x00C)
76 #define SSP_CPSR(r) (r + 0x010)
77 #define SSP_IMSC(r) (r + 0x014)
78 #define SSP_RIS(r) (r + 0x018)
79 #define SSP_MIS(r) (r + 0x01C)
80 #define SSP_ICR(r) (r + 0x020)
81 #define SSP_DMACR(r) (r + 0x024)
82 #define SSP_ITCR(r) (r + 0x080)
83 #define SSP_ITIP(r) (r + 0x084)
84 #define SSP_ITOP(r) (r + 0x088)
85 #define SSP_TDR(r) (r + 0x08C)
87 #define SSP_PID0(r) (r + 0xFE0)
88 #define SSP_PID1(r) (r + 0xFE4)
89 #define SSP_PID2(r) (r + 0xFE8)
90 #define SSP_PID3(r) (r + 0xFEC)
92 #define SSP_CID0(r) (r + 0xFF0)
93 #define SSP_CID1(r) (r + 0xFF4)
94 #define SSP_CID2(r) (r + 0xFF8)
95 #define SSP_CID3(r) (r + 0xFFC)
98 * SSP Control Register 0 - SSP_CR0
100 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
101 #define SSP_CR0_MASK_FRF (0x3UL << 4)
102 #define SSP_CR0_MASK_SPO (0x1UL << 6)
103 #define SSP_CR0_MASK_SPH (0x1UL << 7)
104 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
107 * The ST version of this block moves som bits
108 * in SSP_CR0 and extends it to 32 bits
110 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
111 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
112 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
113 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
116 * SSP Control Register 0 - SSP_CR1
118 #define SSP_CR1_MASK_LBM (0x1UL << 0)
119 #define SSP_CR1_MASK_SSE (0x1UL << 1)
120 #define SSP_CR1_MASK_MS (0x1UL << 2)
121 #define SSP_CR1_MASK_SOD (0x1UL << 3)
124 * The ST version of this block adds some bits
127 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
128 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
129 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
130 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
131 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
132 /* This one is only in the PL023 variant */
133 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
136 * SSP Status Register - SSP_SR
138 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
139 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
140 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
141 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
142 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
145 * SSP Clock Prescale Register - SSP_CPSR
147 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
150 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
152 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
153 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
154 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
155 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
158 * SSP Raw Interrupt Status Register - SSP_RIS
160 /* Receive Overrun Raw Interrupt status */
161 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
162 /* Receive Timeout Raw Interrupt status */
163 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
164 /* Receive FIFO Raw Interrupt status */
165 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
166 /* Transmit FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
170 * SSP Masked Interrupt Status Register - SSP_MIS
172 /* Receive Overrun Masked Interrupt status */
173 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
174 /* Receive Timeout Masked Interrupt status */
175 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
176 /* Receive FIFO Masked Interrupt status */
177 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
178 /* Transmit FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
182 * SSP Interrupt Clear Register - SSP_ICR
184 /* Receive Overrun Raw Clear Interrupt bit */
185 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
186 /* Receive Timeout Clear Interrupt bit */
187 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
190 * SSP DMA Control Register - SSP_DMACR
192 /* Receive DMA Enable bit */
193 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
194 /* Transmit DMA Enable bit */
195 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
198 * SSP Integration Test control Register - SSP_ITCR
200 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
204 * SSP Integration Test Input Register - SSP_ITIP
206 #define ITIP_MASK_SSPRXD (0x1UL << 0)
207 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209 #define ITIP_MASK_RXDMAC (0x1UL << 3)
210 #define ITIP_MASK_TXDMAC (0x1UL << 4)
211 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
214 * SSP Integration Test output Register - SSP_ITOP
216 #define ITOP_MASK_SSPTXD (0x1UL << 0)
217 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219 #define ITOP_MASK_SSPOEn (0x1UL << 3)
220 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221 #define ITOP_MASK_RORINTR (0x1UL << 5)
222 #define ITOP_MASK_RTINTR (0x1UL << 6)
223 #define ITOP_MASK_RXINTR (0x1UL << 7)
224 #define ITOP_MASK_TXINTR (0x1UL << 8)
225 #define ITOP_MASK_INTR (0x1UL << 9)
226 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
232 * SSP Test Data Register - SSP_TDR
234 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
242 #define STATE_START ((void *) 0)
243 #define STATE_RUNNING ((void *) 1)
244 #define STATE_DONE ((void *) 2)
245 #define STATE_ERROR ((void *) -1)
248 * SSP State - Whether Enabled or Disabled
250 #define SSP_DISABLED (0)
251 #define SSP_ENABLED (1)
254 * SSP DMA State - Whether DMA Enabled or Disabled
256 #define SSP_DMA_DISABLED (0)
257 #define SSP_DMA_ENABLED (1)
262 #define SSP_DEFAULT_CLKRATE 0x2
263 #define SSP_DEFAULT_PRESCALE 0x40
266 * SSP Clock Parameter ranges
268 #define CPSDVR_MIN 0x02
269 #define CPSDVR_MAX 0xFE
274 * SSP Interrupt related Macros
276 #define DEFAULT_SSP_REG_IMSC 0x0UL
277 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
278 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
280 #define CLEAR_ALL_INTERRUPTS 0x3
282 #define SPI_POLLING_TIMEOUT 1000
285 * The type of reading going on on this chip
295 * The type of writing going on on this chip
305 * struct vendor_data - vendor-specific config parameters
306 * for PL022 derivates
307 * @fifodepth: depth of FIFOs (both)
308 * @max_bpw: maximum number of bits per word
309 * @unidir: supports unidirection transfers
310 * @extended_cr: 32 bit wide control register 0 with extra
311 * features and extra features in CR1 as found in the ST variants
312 * @pl023: supports a subset of the ST extensions called "PL023"
324 * struct pl022 - This is the private SSP driver data structure
325 * @adev: AMBA device model hookup
326 * @vendor: vendor data for the IP block
327 * @phybase: the physical memory where the SSP device resides
328 * @virtbase: the virtual memory where the SSP is mapped
329 * @clk: outgoing clock "SPICLK" for the SPI bus
330 * @master: SPI framework hookup
331 * @master_info: controller-specific data from machine setup
332 * @kworker: thread struct for message pump
333 * @kworker_task: pointer to task for message pump kworker thread
334 * @pump_messages: work struct for scheduling work to the message pump
335 * @queue_lock: spinlock to syncronise access to message queue
336 * @queue: message queue
337 * @busy: message pump is busy
338 * @running: message pump is running
339 * @pump_transfers: Tasklet used in Interrupt Transfer mode
340 * @cur_msg: Pointer to current spi_message being processed
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @next_msg_cs_active: the next message in the queue has been examined
344 * and it was found that it uses the same chip select as the previous
345 * message, so we left it active after the previous transfer, and it's
347 * @tx: current position in TX buffer to be read
348 * @tx_end: end position in TX buffer to be read
349 * @rx: current position in RX buffer to be written
350 * @rx_end: end position in RX buffer to be written
351 * @read: the type of read currently going on
352 * @write: the type of write currently going on
353 * @exp_fifo_level: expected FIFO level
354 * @dma_rx_channel: optional channel for RX DMA
355 * @dma_tx_channel: optional channel for TX DMA
356 * @sgt_rx: scattertable for the RX transfer
357 * @sgt_tx: scattertable for the TX transfer
358 * @dummypage: a dummy page used for driving data on the bus with DMA
361 struct amba_device
*adev
;
362 struct vendor_data
*vendor
;
363 resource_size_t phybase
;
364 void __iomem
*virtbase
;
366 struct spi_master
*master
;
367 struct pl022_ssp_controller
*master_info
;
368 /* Message per-transfer pump */
369 struct tasklet_struct pump_transfers
;
370 struct spi_message
*cur_msg
;
371 struct spi_transfer
*cur_transfer
;
372 struct chip_data
*cur_chip
;
373 bool next_msg_cs_active
;
378 enum ssp_reading read
;
379 enum ssp_writing write
;
381 enum ssp_rx_level_trig rx_lev_trig
;
382 enum ssp_tx_level_trig tx_lev_trig
;
384 #ifdef CONFIG_DMA_ENGINE
385 struct dma_chan
*dma_rx_channel
;
386 struct dma_chan
*dma_tx_channel
;
387 struct sg_table sgt_rx
;
388 struct sg_table sgt_tx
;
395 * struct chip_data - To maintain runtime state of SSP for each client chip
396 * @cr0: Value of control register CR0 of SSP - on later ST variants this
397 * register is 32 bits wide rather than just 16
398 * @cr1: Value of control register CR1 of SSP
399 * @dmacr: Value of DMA control Register of SSP
400 * @cpsr: Value of Clock prescale register
401 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
402 * @enable_dma: Whether to enable DMA or not
403 * @read: function ptr to be used to read when doing xfer for this chip
404 * @write: function ptr to be used to write when doing xfer for this chip
405 * @cs_control: chip select callback provided by chip
406 * @xfer_type: polling/interrupt/DMA
408 * Runtime state of the SSP controller, maintained per chip,
409 * This would be set according to the current message that would be served
418 enum ssp_reading read
;
419 enum ssp_writing write
;
420 void (*cs_control
) (u32 command
);
425 * null_cs_control - Dummy chip select function
426 * @command: select/delect the chip
428 * If no chip select function is provided by client this is used as dummy
431 static void null_cs_control(u32 command
)
433 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
437 * giveback - current spi_message is over, schedule next message and call
438 * callback of this message. Assumes that caller already
439 * set message->status; dma and pio irqs are blocked
440 * @pl022: SSP driver private data structure
442 static void giveback(struct pl022
*pl022
)
444 struct spi_transfer
*last_transfer
;
445 pl022
->next_msg_cs_active
= false;
447 last_transfer
= list_entry(pl022
->cur_msg
->transfers
.prev
,
451 /* Delay if requested before any change in chip select */
452 if (last_transfer
->delay_usecs
)
454 * FIXME: This runs in interrupt context.
455 * Is this really smart?
457 udelay(last_transfer
->delay_usecs
);
459 if (!last_transfer
->cs_change
) {
460 struct spi_message
*next_msg
;
463 * cs_change was not set. We can keep the chip select
464 * enabled if there is message in the queue and it is
465 * for the same spi device.
467 * We cannot postpone this until pump_messages, because
468 * after calling msg->complete (below) the driver that
469 * sent the current message could be unloaded, which
470 * could invalidate the cs_control() callback...
472 /* get a pointer to the next message, if any */
473 next_msg
= spi_get_next_queued_message(pl022
->master
);
476 * see if the next and current messages point
477 * to the same spi device.
479 if (next_msg
&& next_msg
->spi
!= pl022
->cur_msg
->spi
)
481 if (!next_msg
|| pl022
->cur_msg
->state
== STATE_ERROR
)
482 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
484 pl022
->next_msg_cs_active
= true;
488 pl022
->cur_msg
= NULL
;
489 pl022
->cur_transfer
= NULL
;
490 pl022
->cur_chip
= NULL
;
491 spi_finalize_current_message(pl022
->master
);
495 * flush - flush the FIFO to reach a clean state
496 * @pl022: SSP driver private data structure
498 static int flush(struct pl022
*pl022
)
500 unsigned long limit
= loops_per_jiffy
<< 1;
502 dev_dbg(&pl022
->adev
->dev
, "flush\n");
504 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
505 readw(SSP_DR(pl022
->virtbase
));
506 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
508 pl022
->exp_fifo_level
= 0;
514 * restore_state - Load configuration of current chip
515 * @pl022: SSP driver private data structure
517 static void restore_state(struct pl022
*pl022
)
519 struct chip_data
*chip
= pl022
->cur_chip
;
521 if (pl022
->vendor
->extended_cr
)
522 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
524 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
525 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
526 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
527 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
528 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
529 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
533 * Default SSP Register Values
535 #define DEFAULT_SSP_REG_CR0 ( \
536 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
537 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
538 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
539 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
540 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
543 /* ST versions have slightly different bit layout */
544 #define DEFAULT_SSP_REG_CR0_ST ( \
545 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
546 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
547 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
548 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
549 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
550 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
551 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
554 /* The PL023 version is slightly different again */
555 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
556 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
557 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
558 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
559 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
562 #define DEFAULT_SSP_REG_CR1 ( \
563 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
564 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
565 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
566 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
569 /* ST versions extend this register to use all 16 bits */
570 #define DEFAULT_SSP_REG_CR1_ST ( \
571 DEFAULT_SSP_REG_CR1 | \
572 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
573 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
574 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
575 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
576 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
580 * The PL023 variant has further differences: no loopback mode, no microwire
581 * support, and a new clock feedback delay setting.
583 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
584 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
585 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
586 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
587 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
588 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
589 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
590 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
591 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
594 #define DEFAULT_SSP_REG_CPSR ( \
595 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
598 #define DEFAULT_SSP_REG_DMACR (\
599 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
600 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
604 * load_ssp_default_config - Load default configuration for SSP
605 * @pl022: SSP driver private data structure
607 static void load_ssp_default_config(struct pl022
*pl022
)
609 if (pl022
->vendor
->pl023
) {
610 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
611 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
612 } else if (pl022
->vendor
->extended_cr
) {
613 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
614 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
616 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
617 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
619 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
620 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
621 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
622 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
626 * This will write to TX and read from RX according to the parameters
629 static void readwriter(struct pl022
*pl022
)
633 * The FIFO depth is different between primecell variants.
634 * I believe filling in too much in the FIFO might cause
635 * errons in 8bit wide transfers on ARM variants (just 8 words
636 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
638 * To prevent this issue, the TX FIFO is only filled to the
639 * unused RX FIFO fill length, regardless of what the TX
640 * FIFO status flag indicates.
642 dev_dbg(&pl022
->adev
->dev
,
643 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
644 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
646 /* Read as much as you can */
647 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
648 && (pl022
->rx
< pl022
->rx_end
)) {
649 switch (pl022
->read
) {
651 readw(SSP_DR(pl022
->virtbase
));
654 *(u8
*) (pl022
->rx
) =
655 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
658 *(u16
*) (pl022
->rx
) =
659 (u16
) readw(SSP_DR(pl022
->virtbase
));
662 *(u32
*) (pl022
->rx
) =
663 readl(SSP_DR(pl022
->virtbase
));
666 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
667 pl022
->exp_fifo_level
--;
670 * Write as much as possible up to the RX FIFO size
672 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
673 && (pl022
->tx
< pl022
->tx_end
)) {
674 switch (pl022
->write
) {
676 writew(0x0, SSP_DR(pl022
->virtbase
));
679 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
682 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
685 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
688 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
689 pl022
->exp_fifo_level
++;
691 * This inner reader takes care of things appearing in the RX
692 * FIFO as we're transmitting. This will happen a lot since the
693 * clock starts running when you put things into the TX FIFO,
694 * and then things are continuously clocked into the RX FIFO.
696 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
697 && (pl022
->rx
< pl022
->rx_end
)) {
698 switch (pl022
->read
) {
700 readw(SSP_DR(pl022
->virtbase
));
703 *(u8
*) (pl022
->rx
) =
704 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
707 *(u16
*) (pl022
->rx
) =
708 (u16
) readw(SSP_DR(pl022
->virtbase
));
711 *(u32
*) (pl022
->rx
) =
712 readl(SSP_DR(pl022
->virtbase
));
715 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
716 pl022
->exp_fifo_level
--;
720 * When we exit here the TX FIFO should be full and the RX FIFO
726 * next_transfer - Move to the Next transfer in the current spi message
727 * @pl022: SSP driver private data structure
729 * This function moves though the linked list of spi transfers in the
730 * current spi message and returns with the state of current spi
731 * message i.e whether its last transfer is done(STATE_DONE) or
732 * Next transfer is ready(STATE_RUNNING)
734 static void *next_transfer(struct pl022
*pl022
)
736 struct spi_message
*msg
= pl022
->cur_msg
;
737 struct spi_transfer
*trans
= pl022
->cur_transfer
;
739 /* Move to next transfer */
740 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
741 pl022
->cur_transfer
=
742 list_entry(trans
->transfer_list
.next
,
743 struct spi_transfer
, transfer_list
);
744 return STATE_RUNNING
;
750 * This DMA functionality is only compiled in if we have
751 * access to the generic DMA devices/DMA engine.
753 #ifdef CONFIG_DMA_ENGINE
754 static void unmap_free_dma_scatter(struct pl022
*pl022
)
756 /* Unmap and free the SG tables */
757 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
758 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
759 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
760 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
761 sg_free_table(&pl022
->sgt_rx
);
762 sg_free_table(&pl022
->sgt_tx
);
765 static void dma_callback(void *data
)
767 struct pl022
*pl022
= data
;
768 struct spi_message
*msg
= pl022
->cur_msg
;
770 BUG_ON(!pl022
->sgt_rx
.sgl
);
774 * Optionally dump out buffers to inspect contents, this is
775 * good if you want to convince yourself that the loopback
776 * read/write contents are the same, when adopting to a new
780 struct scatterlist
*sg
;
783 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
788 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
789 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
790 print_hex_dump(KERN_ERR
, "SPI RX: ",
798 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
799 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
800 print_hex_dump(KERN_ERR
, "SPI TX: ",
811 unmap_free_dma_scatter(pl022
);
813 /* Update total bytes transferred */
814 msg
->actual_length
+= pl022
->cur_transfer
->len
;
815 if (pl022
->cur_transfer
->cs_change
)
817 cs_control(SSP_CHIP_DESELECT
);
819 /* Move to next transfer */
820 msg
->state
= next_transfer(pl022
);
821 tasklet_schedule(&pl022
->pump_transfers
);
824 static void setup_dma_scatter(struct pl022
*pl022
,
827 struct sg_table
*sgtab
)
829 struct scatterlist
*sg
;
830 int bytesleft
= length
;
836 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
838 * If there are less bytes left than what fits
839 * in the current page (plus page alignment offset)
840 * we just feed in this, else we stuff in as much
843 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
844 mapbytes
= bytesleft
;
846 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
847 sg_set_page(sg
, virt_to_page(bufp
),
848 mapbytes
, offset_in_page(bufp
));
850 bytesleft
-= mapbytes
;
851 dev_dbg(&pl022
->adev
->dev
,
852 "set RX/TX target page @ %p, %d bytes, %d left\n",
853 bufp
, mapbytes
, bytesleft
);
856 /* Map the dummy buffer on every page */
857 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
858 if (bytesleft
< PAGE_SIZE
)
859 mapbytes
= bytesleft
;
861 mapbytes
= PAGE_SIZE
;
862 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
864 bytesleft
-= mapbytes
;
865 dev_dbg(&pl022
->adev
->dev
,
866 "set RX/TX to dummy page %d bytes, %d left\n",
867 mapbytes
, bytesleft
);
875 * configure_dma - configures the channels for the next transfer
876 * @pl022: SSP driver's private data structure
878 static int configure_dma(struct pl022
*pl022
)
880 struct dma_slave_config rx_conf
= {
881 .src_addr
= SSP_DR(pl022
->phybase
),
882 .direction
= DMA_DEV_TO_MEM
,
885 struct dma_slave_config tx_conf
= {
886 .dst_addr
= SSP_DR(pl022
->phybase
),
887 .direction
= DMA_MEM_TO_DEV
,
892 int rx_sglen
, tx_sglen
;
893 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
894 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
895 struct dma_async_tx_descriptor
*rxdesc
;
896 struct dma_async_tx_descriptor
*txdesc
;
898 /* Check that the channels are available */
899 if (!rxchan
|| !txchan
)
903 * If supplied, the DMA burstsize should equal the FIFO trigger level.
904 * Notice that the DMA engine uses one-to-one mapping. Since we can
905 * not trigger on 2 elements this needs explicit mapping rather than
908 switch (pl022
->rx_lev_trig
) {
909 case SSP_RX_1_OR_MORE_ELEM
:
910 rx_conf
.src_maxburst
= 1;
912 case SSP_RX_4_OR_MORE_ELEM
:
913 rx_conf
.src_maxburst
= 4;
915 case SSP_RX_8_OR_MORE_ELEM
:
916 rx_conf
.src_maxburst
= 8;
918 case SSP_RX_16_OR_MORE_ELEM
:
919 rx_conf
.src_maxburst
= 16;
921 case SSP_RX_32_OR_MORE_ELEM
:
922 rx_conf
.src_maxburst
= 32;
925 rx_conf
.src_maxburst
= pl022
->vendor
->fifodepth
>> 1;
929 switch (pl022
->tx_lev_trig
) {
930 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
931 tx_conf
.dst_maxburst
= 1;
933 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
934 tx_conf
.dst_maxburst
= 4;
936 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
937 tx_conf
.dst_maxburst
= 8;
939 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
940 tx_conf
.dst_maxburst
= 16;
942 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
943 tx_conf
.dst_maxburst
= 32;
946 tx_conf
.dst_maxburst
= pl022
->vendor
->fifodepth
>> 1;
950 switch (pl022
->read
) {
952 /* Use the same as for writing */
953 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
956 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
959 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
962 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
966 switch (pl022
->write
) {
968 /* Use the same as for reading */
969 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
972 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
975 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
978 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
982 /* SPI pecularity: we need to read and write the same width */
983 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
984 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
985 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
986 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
987 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
989 dmaengine_slave_config(rxchan
, &rx_conf
);
990 dmaengine_slave_config(txchan
, &tx_conf
);
992 /* Create sglists for the transfers */
993 pages
= DIV_ROUND_UP(pl022
->cur_transfer
->len
, PAGE_SIZE
);
994 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
996 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_ATOMIC
);
998 goto err_alloc_rx_sg
;
1000 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_ATOMIC
);
1002 goto err_alloc_tx_sg
;
1004 /* Fill in the scatterlists for the RX+TX buffers */
1005 setup_dma_scatter(pl022
, pl022
->rx
,
1006 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
1007 setup_dma_scatter(pl022
, pl022
->tx
,
1008 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
1010 /* Map DMA buffers */
1011 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1012 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1016 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1017 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1021 /* Send both scatterlists */
1022 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
1026 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1030 txdesc
= dmaengine_prep_slave_sg(txchan
,
1034 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1038 /* Put the callback on the RX transfer only, that should finish last */
1039 rxdesc
->callback
= dma_callback
;
1040 rxdesc
->callback_param
= pl022
;
1042 /* Submit and fire RX and TX with TX last so we're ready to read! */
1043 dmaengine_submit(rxdesc
);
1044 dmaengine_submit(txdesc
);
1045 dma_async_issue_pending(rxchan
);
1046 dma_async_issue_pending(txchan
);
1047 pl022
->dma_running
= true;
1052 dmaengine_terminate_all(txchan
);
1054 dmaengine_terminate_all(rxchan
);
1055 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1056 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1058 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1059 pl022
->sgt_tx
.nents
, DMA_FROM_DEVICE
);
1061 sg_free_table(&pl022
->sgt_tx
);
1063 sg_free_table(&pl022
->sgt_rx
);
1068 static int __devinit
pl022_dma_probe(struct pl022
*pl022
)
1070 dma_cap_mask_t mask
;
1072 /* Try to acquire a generic DMA engine slave channel */
1074 dma_cap_set(DMA_SLAVE
, mask
);
1076 * We need both RX and TX channels to do DMA, else do none
1079 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1080 pl022
->master_info
->dma_filter
,
1081 pl022
->master_info
->dma_rx_param
);
1082 if (!pl022
->dma_rx_channel
) {
1083 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1087 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1088 pl022
->master_info
->dma_filter
,
1089 pl022
->master_info
->dma_tx_param
);
1090 if (!pl022
->dma_tx_channel
) {
1091 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1095 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1096 if (!pl022
->dummypage
) {
1097 dev_dbg(&pl022
->adev
->dev
, "no DMA dummypage!\n");
1098 goto err_no_dummypage
;
1101 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1102 dma_chan_name(pl022
->dma_rx_channel
),
1103 dma_chan_name(pl022
->dma_tx_channel
));
1108 dma_release_channel(pl022
->dma_tx_channel
);
1110 dma_release_channel(pl022
->dma_rx_channel
);
1111 pl022
->dma_rx_channel
= NULL
;
1113 dev_err(&pl022
->adev
->dev
,
1114 "Failed to work in dma mode, work without dma!\n");
1118 static void terminate_dma(struct pl022
*pl022
)
1120 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1121 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1123 dmaengine_terminate_all(rxchan
);
1124 dmaengine_terminate_all(txchan
);
1125 unmap_free_dma_scatter(pl022
);
1126 pl022
->dma_running
= false;
1129 static void pl022_dma_remove(struct pl022
*pl022
)
1131 if (pl022
->dma_running
)
1132 terminate_dma(pl022
);
1133 if (pl022
->dma_tx_channel
)
1134 dma_release_channel(pl022
->dma_tx_channel
);
1135 if (pl022
->dma_rx_channel
)
1136 dma_release_channel(pl022
->dma_rx_channel
);
1137 kfree(pl022
->dummypage
);
1141 static inline int configure_dma(struct pl022
*pl022
)
1146 static inline int pl022_dma_probe(struct pl022
*pl022
)
1151 static inline void pl022_dma_remove(struct pl022
*pl022
)
1157 * pl022_interrupt_handler - Interrupt handler for SSP controller
1159 * This function handles interrupts generated for an interrupt based transfer.
1160 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1161 * current message's state as STATE_ERROR and schedule the tasklet
1162 * pump_transfers which will do the postprocessing of the current message by
1163 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1164 * more data, and writes data in TX FIFO till it is not full. If we complete
1165 * the transfer we move to the next transfer and schedule the tasklet.
1167 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1169 struct pl022
*pl022
= dev_id
;
1170 struct spi_message
*msg
= pl022
->cur_msg
;
1174 if (unlikely(!msg
)) {
1175 dev_err(&pl022
->adev
->dev
,
1176 "bad message state in interrupt handler");
1181 /* Read the Interrupt Status Register */
1182 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1184 if (unlikely(!irq_status
))
1188 * This handles the FIFO interrupts, the timeout
1189 * interrupts are flatly ignored, they cannot be
1192 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1194 * Overrun interrupt - bail out since our Data has been
1197 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1198 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1199 dev_err(&pl022
->adev
->dev
,
1200 "RXFIFO is full\n");
1201 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
1202 dev_err(&pl022
->adev
->dev
,
1203 "TXFIFO is full\n");
1206 * Disable and clear interrupts, disable SSP,
1207 * mark message with bad status so it can be
1210 writew(DISABLE_ALL_INTERRUPTS
,
1211 SSP_IMSC(pl022
->virtbase
));
1212 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1213 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1214 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1215 msg
->state
= STATE_ERROR
;
1217 /* Schedule message queue handler */
1218 tasklet_schedule(&pl022
->pump_transfers
);
1224 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
1226 /* Disable Transmit interrupt, enable receive interrupt */
1227 writew((readw(SSP_IMSC(pl022
->virtbase
)) &
1228 ~SSP_IMSC_MASK_TXIM
) | SSP_IMSC_MASK_RXIM
,
1229 SSP_IMSC(pl022
->virtbase
));
1233 * Since all transactions must write as much as shall be read,
1234 * we can conclude the entire transaction once RX is complete.
1235 * At this point, all TX will always be finished.
1237 if (pl022
->rx
>= pl022
->rx_end
) {
1238 writew(DISABLE_ALL_INTERRUPTS
,
1239 SSP_IMSC(pl022
->virtbase
));
1240 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1241 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1242 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1243 "bytes (did you request an odd "
1244 "number of bytes on a 16bit bus?)\n",
1245 (u32
) (pl022
->rx
- pl022
->rx_end
));
1247 /* Update total bytes transferred */
1248 msg
->actual_length
+= pl022
->cur_transfer
->len
;
1249 if (pl022
->cur_transfer
->cs_change
)
1251 cs_control(SSP_CHIP_DESELECT
);
1252 /* Move to next transfer */
1253 msg
->state
= next_transfer(pl022
);
1254 tasklet_schedule(&pl022
->pump_transfers
);
1262 * This sets up the pointers to memory for the next message to
1263 * send out on the SPI bus.
1265 static int set_up_next_transfer(struct pl022
*pl022
,
1266 struct spi_transfer
*transfer
)
1270 /* Sanity check the message for this bus width */
1271 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1272 if (unlikely(residue
!= 0)) {
1273 dev_err(&pl022
->adev
->dev
,
1274 "message of %u bytes to transmit but the current "
1275 "chip bus has a data width of %u bytes!\n",
1276 pl022
->cur_transfer
->len
,
1277 pl022
->cur_chip
->n_bytes
);
1278 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1281 pl022
->tx
= (void *)transfer
->tx_buf
;
1282 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1283 pl022
->rx
= (void *)transfer
->rx_buf
;
1284 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1286 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1287 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1292 * pump_transfers - Tasklet function which schedules next transfer
1293 * when running in interrupt or DMA transfer mode.
1294 * @data: SSP driver private data structure
1297 static void pump_transfers(unsigned long data
)
1299 struct pl022
*pl022
= (struct pl022
*) data
;
1300 struct spi_message
*message
= NULL
;
1301 struct spi_transfer
*transfer
= NULL
;
1302 struct spi_transfer
*previous
= NULL
;
1304 /* Get current state information */
1305 message
= pl022
->cur_msg
;
1306 transfer
= pl022
->cur_transfer
;
1308 /* Handle for abort */
1309 if (message
->state
== STATE_ERROR
) {
1310 message
->status
= -EIO
;
1315 /* Handle end of message */
1316 if (message
->state
== STATE_DONE
) {
1317 message
->status
= 0;
1322 /* Delay if requested at end of transfer before CS change */
1323 if (message
->state
== STATE_RUNNING
) {
1324 previous
= list_entry(transfer
->transfer_list
.prev
,
1325 struct spi_transfer
,
1327 if (previous
->delay_usecs
)
1329 * FIXME: This runs in interrupt context.
1330 * Is this really smart?
1332 udelay(previous
->delay_usecs
);
1334 /* Reselect chip select only if cs_change was requested */
1335 if (previous
->cs_change
)
1336 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1339 message
->state
= STATE_RUNNING
;
1342 if (set_up_next_transfer(pl022
, transfer
)) {
1343 message
->state
= STATE_ERROR
;
1344 message
->status
= -EIO
;
1348 /* Flush the FIFOs and let's go! */
1351 if (pl022
->cur_chip
->enable_dma
) {
1352 if (configure_dma(pl022
)) {
1353 dev_dbg(&pl022
->adev
->dev
,
1354 "configuration of DMA failed, fall back to interrupt mode\n");
1355 goto err_config_dma
;
1361 /* enable all interrupts except RX */
1362 writew(ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
, SSP_IMSC(pl022
->virtbase
));
1365 static void do_interrupt_dma_transfer(struct pl022
*pl022
)
1368 * Default is to enable all interrupts except RX -
1369 * this will be enabled once TX is complete
1371 u32 irqflags
= ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
;
1373 /* Enable target chip, if not already active */
1374 if (!pl022
->next_msg_cs_active
)
1375 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1377 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
1379 pl022
->cur_msg
->state
= STATE_ERROR
;
1380 pl022
->cur_msg
->status
= -EIO
;
1384 /* If we're using DMA, set up DMA here */
1385 if (pl022
->cur_chip
->enable_dma
) {
1386 /* Configure DMA transfer */
1387 if (configure_dma(pl022
)) {
1388 dev_dbg(&pl022
->adev
->dev
,
1389 "configuration of DMA failed, fall back to interrupt mode\n");
1390 goto err_config_dma
;
1392 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1393 irqflags
= DISABLE_ALL_INTERRUPTS
;
1396 /* Enable SSP, turn on interrupts */
1397 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1398 SSP_CR1(pl022
->virtbase
));
1399 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1402 static void do_polling_transfer(struct pl022
*pl022
)
1404 struct spi_message
*message
= NULL
;
1405 struct spi_transfer
*transfer
= NULL
;
1406 struct spi_transfer
*previous
= NULL
;
1407 struct chip_data
*chip
;
1408 unsigned long time
, timeout
;
1410 chip
= pl022
->cur_chip
;
1411 message
= pl022
->cur_msg
;
1413 while (message
->state
!= STATE_DONE
) {
1414 /* Handle for abort */
1415 if (message
->state
== STATE_ERROR
)
1417 transfer
= pl022
->cur_transfer
;
1419 /* Delay if requested at end of transfer */
1420 if (message
->state
== STATE_RUNNING
) {
1422 list_entry(transfer
->transfer_list
.prev
,
1423 struct spi_transfer
, transfer_list
);
1424 if (previous
->delay_usecs
)
1425 udelay(previous
->delay_usecs
);
1426 if (previous
->cs_change
)
1427 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1430 message
->state
= STATE_RUNNING
;
1431 if (!pl022
->next_msg_cs_active
)
1432 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1435 /* Configuration Changing Per Transfer */
1436 if (set_up_next_transfer(pl022
, transfer
)) {
1438 message
->state
= STATE_ERROR
;
1441 /* Flush FIFOs and enable SSP */
1443 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1444 SSP_CR1(pl022
->virtbase
));
1446 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1448 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1449 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1452 if (time_after(time
, timeout
)) {
1453 dev_warn(&pl022
->adev
->dev
,
1454 "%s: timeout!\n", __func__
);
1455 message
->state
= STATE_ERROR
;
1461 /* Update total byte transferred */
1462 message
->actual_length
+= pl022
->cur_transfer
->len
;
1463 if (pl022
->cur_transfer
->cs_change
)
1464 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1465 /* Move to next transfer */
1466 message
->state
= next_transfer(pl022
);
1469 /* Handle end of message */
1470 if (message
->state
== STATE_DONE
)
1471 message
->status
= 0;
1473 message
->status
= -EIO
;
1479 static int pl022_transfer_one_message(struct spi_master
*master
,
1480 struct spi_message
*msg
)
1482 struct pl022
*pl022
= spi_master_get_devdata(master
);
1484 /* Initial message state */
1485 pl022
->cur_msg
= msg
;
1486 msg
->state
= STATE_START
;
1488 pl022
->cur_transfer
= list_entry(msg
->transfers
.next
,
1489 struct spi_transfer
, transfer_list
);
1491 /* Setup the SPI using the per chip configuration */
1492 pl022
->cur_chip
= spi_get_ctldata(msg
->spi
);
1494 restore_state(pl022
);
1497 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1498 do_polling_transfer(pl022
);
1500 do_interrupt_dma_transfer(pl022
);
1505 static int pl022_prepare_transfer_hardware(struct spi_master
*master
)
1507 struct pl022
*pl022
= spi_master_get_devdata(master
);
1510 * Just make sure we have all we need to run the transfer by syncing
1511 * with the runtime PM framework.
1513 pm_runtime_get_sync(&pl022
->adev
->dev
);
1517 static int pl022_unprepare_transfer_hardware(struct spi_master
*master
)
1519 struct pl022
*pl022
= spi_master_get_devdata(master
);
1521 /* nothing more to do - disable spi/ssp and power off */
1522 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1523 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1525 if (pl022
->master_info
->autosuspend_delay
> 0) {
1526 pm_runtime_mark_last_busy(&pl022
->adev
->dev
);
1527 pm_runtime_put_autosuspend(&pl022
->adev
->dev
);
1529 pm_runtime_put(&pl022
->adev
->dev
);
1535 static int verify_controller_parameters(struct pl022
*pl022
,
1536 struct pl022_config_chip
const *chip_info
)
1538 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1539 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1540 dev_err(&pl022
->adev
->dev
,
1541 "interface is configured incorrectly\n");
1544 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1545 (!pl022
->vendor
->unidir
)) {
1546 dev_err(&pl022
->adev
->dev
,
1547 "unidirectional mode not supported in this "
1548 "hardware version\n");
1551 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1552 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1553 dev_err(&pl022
->adev
->dev
,
1554 "hierarchy is configured incorrectly\n");
1557 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1558 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1559 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1560 dev_err(&pl022
->adev
->dev
,
1561 "Communication mode is configured incorrectly\n");
1564 switch (chip_info
->rx_lev_trig
) {
1565 case SSP_RX_1_OR_MORE_ELEM
:
1566 case SSP_RX_4_OR_MORE_ELEM
:
1567 case SSP_RX_8_OR_MORE_ELEM
:
1568 /* These are always OK, all variants can handle this */
1570 case SSP_RX_16_OR_MORE_ELEM
:
1571 if (pl022
->vendor
->fifodepth
< 16) {
1572 dev_err(&pl022
->adev
->dev
,
1573 "RX FIFO Trigger Level is configured incorrectly\n");
1577 case SSP_RX_32_OR_MORE_ELEM
:
1578 if (pl022
->vendor
->fifodepth
< 32) {
1579 dev_err(&pl022
->adev
->dev
,
1580 "RX FIFO Trigger Level is configured incorrectly\n");
1585 dev_err(&pl022
->adev
->dev
,
1586 "RX FIFO Trigger Level is configured incorrectly\n");
1590 switch (chip_info
->tx_lev_trig
) {
1591 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
1592 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
1593 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
1594 /* These are always OK, all variants can handle this */
1596 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
1597 if (pl022
->vendor
->fifodepth
< 16) {
1598 dev_err(&pl022
->adev
->dev
,
1599 "TX FIFO Trigger Level is configured incorrectly\n");
1603 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
1604 if (pl022
->vendor
->fifodepth
< 32) {
1605 dev_err(&pl022
->adev
->dev
,
1606 "TX FIFO Trigger Level is configured incorrectly\n");
1611 dev_err(&pl022
->adev
->dev
,
1612 "TX FIFO Trigger Level is configured incorrectly\n");
1616 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1617 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1618 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1619 dev_err(&pl022
->adev
->dev
,
1620 "CTRL LEN is configured incorrectly\n");
1623 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1624 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1625 dev_err(&pl022
->adev
->dev
,
1626 "Wait State is configured incorrectly\n");
1629 /* Half duplex is only available in the ST Micro version */
1630 if (pl022
->vendor
->extended_cr
) {
1631 if ((chip_info
->duplex
!=
1632 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1633 && (chip_info
->duplex
!=
1634 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1635 dev_err(&pl022
->adev
->dev
,
1636 "Microwire duplex mode is configured incorrectly\n");
1640 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1641 dev_err(&pl022
->adev
->dev
,
1642 "Microwire half duplex mode requested,"
1643 " but this is only available in the"
1644 " ST version of PL022\n");
1651 static inline u32
spi_rate(u32 rate
, u16 cpsdvsr
, u16 scr
)
1653 return rate
/ (cpsdvsr
* (1 + scr
));
1656 static int calculate_effective_freq(struct pl022
*pl022
, int freq
, struct
1657 ssp_clock_params
* clk_freq
)
1659 /* Lets calculate the frequency parameters */
1660 u16 cpsdvsr
= CPSDVR_MIN
, scr
= SCR_MIN
;
1661 u32 rate
, max_tclk
, min_tclk
, best_freq
= 0, best_cpsdvsr
= 0,
1662 best_scr
= 0, tmp
, found
= 0;
1664 rate
= clk_get_rate(pl022
->clk
);
1665 /* cpsdvscr = 2 & scr 0 */
1666 max_tclk
= spi_rate(rate
, CPSDVR_MIN
, SCR_MIN
);
1667 /* cpsdvsr = 254 & scr = 255 */
1668 min_tclk
= spi_rate(rate
, CPSDVR_MAX
, SCR_MAX
);
1670 if (freq
> max_tclk
)
1671 dev_warn(&pl022
->adev
->dev
,
1672 "Max speed that can be programmed is %d Hz, you requested %d\n",
1675 if (freq
< min_tclk
) {
1676 dev_err(&pl022
->adev
->dev
,
1677 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1683 * best_freq will give closest possible available rate (<= requested
1684 * freq) for all values of scr & cpsdvsr.
1686 while ((cpsdvsr
<= CPSDVR_MAX
) && !found
) {
1687 while (scr
<= SCR_MAX
) {
1688 tmp
= spi_rate(rate
, cpsdvsr
, scr
);
1691 /* we need lower freq */
1697 * If found exact value, mark found and break.
1698 * If found more closer value, update and break.
1700 if (tmp
> best_freq
) {
1702 best_cpsdvsr
= cpsdvsr
;
1709 * increased scr will give lower rates, which are not
1718 WARN(!best_freq
, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1721 clk_freq
->cpsdvsr
= (u8
) (best_cpsdvsr
& 0xFF);
1722 clk_freq
->scr
= (u8
) (best_scr
& 0xFF);
1723 dev_dbg(&pl022
->adev
->dev
,
1724 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1726 dev_dbg(&pl022
->adev
->dev
, "SSP cpsdvsr = %d, scr = %d\n",
1727 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1733 * A piece of default chip info unless the platform
1736 static const struct pl022_config_chip pl022_default_chip_info
= {
1737 .com_mode
= POLLING_TRANSFER
,
1738 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1739 .hierarchy
= SSP_SLAVE
,
1740 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1741 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1742 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1743 .ctrl_len
= SSP_BITS_8
,
1744 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1745 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1746 .cs_control
= null_cs_control
,
1750 * pl022_setup - setup function registered to SPI master framework
1751 * @spi: spi device which is requesting setup
1753 * This function is registered to the SPI framework for this SPI master
1754 * controller. If it is the first time when setup is called by this device,
1755 * this function will initialize the runtime state for this chip and save
1756 * the same in the device structure. Else it will update the runtime info
1757 * with the updated chip info. Nothing is really being written to the
1758 * controller hardware here, that is not done until the actual transfer
1761 static int pl022_setup(struct spi_device
*spi
)
1763 struct pl022_config_chip
const *chip_info
;
1764 struct chip_data
*chip
;
1765 struct ssp_clock_params clk_freq
= { .cpsdvsr
= 0, .scr
= 0};
1767 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1768 unsigned int bits
= spi
->bits_per_word
;
1771 if (!spi
->max_speed_hz
)
1774 /* Get controller_state if one is supplied */
1775 chip
= spi_get_ctldata(spi
);
1778 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1781 "cannot allocate controller state\n");
1785 "allocated memory for controller's runtime state\n");
1788 /* Get controller data if one is supplied */
1789 chip_info
= spi
->controller_data
;
1791 if (chip_info
== NULL
) {
1792 chip_info
= &pl022_default_chip_info
;
1793 /* spi_board_info.controller_data not is supplied */
1795 "using default controller_data settings\n");
1798 "using user supplied controller_data settings\n");
1801 * We can override with custom divisors, else we use the board
1804 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1805 && (0 == chip_info
->clk_freq
.scr
)) {
1806 status
= calculate_effective_freq(pl022
,
1810 goto err_config_params
;
1812 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1813 if ((clk_freq
.cpsdvsr
% 2) != 0)
1815 clk_freq
.cpsdvsr
- 1;
1817 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1818 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1821 "cpsdvsr is configured incorrectly\n");
1822 goto err_config_params
;
1825 status
= verify_controller_parameters(pl022
, chip_info
);
1827 dev_err(&spi
->dev
, "controller data is incorrect");
1828 goto err_config_params
;
1831 pl022
->rx_lev_trig
= chip_info
->rx_lev_trig
;
1832 pl022
->tx_lev_trig
= chip_info
->tx_lev_trig
;
1834 /* Now set controller state based on controller data */
1835 chip
->xfer_type
= chip_info
->com_mode
;
1836 if (!chip_info
->cs_control
) {
1837 chip
->cs_control
= null_cs_control
;
1839 "chip select function is NULL for this chip\n");
1841 chip
->cs_control
= chip_info
->cs_control
;
1843 /* Check bits per word with vendor specific range */
1844 if ((bits
<= 3) || (bits
> pl022
->vendor
->max_bpw
)) {
1846 dev_err(&spi
->dev
, "illegal data size for this controller!\n");
1847 dev_err(&spi
->dev
, "This controller can only handle 4 <= n <= %d bit words\n",
1848 pl022
->vendor
->max_bpw
);
1849 goto err_config_params
;
1850 } else if (bits
<= 8) {
1851 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1853 chip
->read
= READING_U8
;
1854 chip
->write
= WRITING_U8
;
1855 } else if (bits
<= 16) {
1856 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1858 chip
->read
= READING_U16
;
1859 chip
->write
= WRITING_U16
;
1861 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1863 chip
->read
= READING_U32
;
1864 chip
->write
= WRITING_U32
;
1867 /* Now Initialize all register settings required for this chip */
1872 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1873 && ((pl022
->master_info
)->enable_dma
)) {
1874 chip
->enable_dma
= true;
1875 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1876 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1877 SSP_DMACR_MASK_RXDMAE
, 0);
1878 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1879 SSP_DMACR_MASK_TXDMAE
, 1);
1881 chip
->enable_dma
= false;
1882 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1883 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1884 SSP_DMACR_MASK_RXDMAE
, 0);
1885 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1886 SSP_DMACR_MASK_TXDMAE
, 1);
1889 chip
->cpsr
= clk_freq
.cpsdvsr
;
1891 /* Special setup for the ST micro extended control registers */
1892 if (pl022
->vendor
->extended_cr
) {
1895 if (pl022
->vendor
->pl023
) {
1896 /* These bits are only in the PL023 */
1897 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
1898 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
1900 /* These bits are in the PL022 but not PL023 */
1901 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
1902 SSP_CR0_MASK_HALFDUP_ST
, 5);
1903 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
1904 SSP_CR0_MASK_CSS_ST
, 16);
1905 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
1906 SSP_CR0_MASK_FRF_ST
, 21);
1907 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
1908 SSP_CR1_MASK_MWAIT_ST
, 6);
1910 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
1911 SSP_CR0_MASK_DSS_ST
, 0);
1913 if (spi
->mode
& SPI_LSB_FIRST
) {
1920 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
1921 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
1922 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
1923 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
1924 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
1925 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
1927 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
1928 SSP_CR0_MASK_DSS
, 0);
1929 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
1930 SSP_CR0_MASK_FRF
, 4);
1933 /* Stuff that is common for all versions */
1934 if (spi
->mode
& SPI_CPOL
)
1935 tmp
= SSP_CLK_POL_IDLE_HIGH
;
1937 tmp
= SSP_CLK_POL_IDLE_LOW
;
1938 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
1940 if (spi
->mode
& SPI_CPHA
)
1941 tmp
= SSP_CLK_SECOND_EDGE
;
1943 tmp
= SSP_CLK_FIRST_EDGE
;
1944 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
1946 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
1947 /* Loopback is available on all versions except PL023 */
1948 if (pl022
->vendor
->loopback
) {
1949 if (spi
->mode
& SPI_LOOP
)
1950 tmp
= LOOPBACK_ENABLED
;
1952 tmp
= LOOPBACK_DISABLED
;
1953 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
1955 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
1956 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
1957 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
,
1960 /* Save controller_state */
1961 spi_set_ctldata(spi
, chip
);
1964 spi_set_ctldata(spi
, NULL
);
1970 * pl022_cleanup - cleanup function registered to SPI master framework
1971 * @spi: spi device which is requesting cleanup
1973 * This function is registered to the SPI framework for this SPI master
1974 * controller. It will free the runtime state of chip.
1976 static void pl022_cleanup(struct spi_device
*spi
)
1978 struct chip_data
*chip
= spi_get_ctldata(spi
);
1980 spi_set_ctldata(spi
, NULL
);
1984 static int __devinit
1985 pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
1987 struct device
*dev
= &adev
->dev
;
1988 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
1989 struct spi_master
*master
;
1990 struct pl022
*pl022
= NULL
; /*Data for this driver */
1993 dev_info(&adev
->dev
,
1994 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
1995 if (platform_info
== NULL
) {
1996 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
2001 /* Allocate master with space for data */
2002 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
2003 if (master
== NULL
) {
2004 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
2009 pl022
= spi_master_get_devdata(master
);
2010 pl022
->master
= master
;
2011 pl022
->master_info
= platform_info
;
2013 pl022
->vendor
= id
->data
;
2016 * Bus Number Which has been Assigned to this SSP controller
2019 master
->bus_num
= platform_info
->bus_id
;
2020 master
->num_chipselect
= platform_info
->num_chipselect
;
2021 master
->cleanup
= pl022_cleanup
;
2022 master
->setup
= pl022_setup
;
2023 master
->prepare_transfer_hardware
= pl022_prepare_transfer_hardware
;
2024 master
->transfer_one_message
= pl022_transfer_one_message
;
2025 master
->unprepare_transfer_hardware
= pl022_unprepare_transfer_hardware
;
2026 master
->rt
= platform_info
->rt
;
2029 * Supports mode 0-3, loopback, and active low CS. Transfers are
2030 * always MS bit first on the original pl022.
2032 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
2033 if (pl022
->vendor
->extended_cr
)
2034 master
->mode_bits
|= SPI_LSB_FIRST
;
2036 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
2038 status
= amba_request_regions(adev
, NULL
);
2040 goto err_no_ioregion
;
2042 pl022
->phybase
= adev
->res
.start
;
2043 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2044 if (pl022
->virtbase
== NULL
) {
2046 goto err_no_ioremap
;
2048 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
2049 adev
->res
.start
, pl022
->virtbase
);
2051 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
2052 if (IS_ERR(pl022
->clk
)) {
2053 status
= PTR_ERR(pl022
->clk
);
2054 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
2058 status
= clk_prepare(pl022
->clk
);
2060 dev_err(&adev
->dev
, "could not prepare SSP/SPI bus clock\n");
2064 status
= clk_enable(pl022
->clk
);
2066 dev_err(&adev
->dev
, "could not enable SSP/SPI bus clock\n");
2070 /* Initialize transfer pump */
2071 tasklet_init(&pl022
->pump_transfers
, pump_transfers
,
2072 (unsigned long)pl022
);
2075 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
2076 SSP_CR1(pl022
->virtbase
));
2077 load_ssp_default_config(pl022
);
2079 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
2082 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
2086 /* Get DMA channels */
2087 if (platform_info
->enable_dma
) {
2088 status
= pl022_dma_probe(pl022
);
2090 platform_info
->enable_dma
= 0;
2093 /* Register with the SPI framework */
2094 amba_set_drvdata(adev
, pl022
);
2095 status
= spi_register_master(master
);
2098 "probe - problem registering spi master\n");
2099 goto err_spi_register
;
2101 dev_dbg(dev
, "probe succeeded\n");
2103 /* let runtime pm put suspend */
2104 if (platform_info
->autosuspend_delay
> 0) {
2105 dev_info(&adev
->dev
,
2106 "will use autosuspend for runtime pm, delay %dms\n",
2107 platform_info
->autosuspend_delay
);
2108 pm_runtime_set_autosuspend_delay(dev
,
2109 platform_info
->autosuspend_delay
);
2110 pm_runtime_use_autosuspend(dev
);
2111 pm_runtime_put_autosuspend(dev
);
2113 pm_runtime_put(dev
);
2118 if (platform_info
->enable_dma
)
2119 pl022_dma_remove(pl022
);
2121 free_irq(adev
->irq
[0], pl022
);
2123 clk_disable(pl022
->clk
);
2125 clk_unprepare(pl022
->clk
);
2127 clk_put(pl022
->clk
);
2129 iounmap(pl022
->virtbase
);
2131 amba_release_regions(adev
);
2133 spi_master_put(master
);
2139 static int __devexit
2140 pl022_remove(struct amba_device
*adev
)
2142 struct pl022
*pl022
= amba_get_drvdata(adev
);
2148 * undo pm_runtime_put() in probe. I assume that we're not
2149 * accessing the primecell here.
2151 pm_runtime_get_noresume(&adev
->dev
);
2153 load_ssp_default_config(pl022
);
2154 if (pl022
->master_info
->enable_dma
)
2155 pl022_dma_remove(pl022
);
2157 free_irq(adev
->irq
[0], pl022
);
2158 clk_disable(pl022
->clk
);
2159 clk_unprepare(pl022
->clk
);
2160 clk_put(pl022
->clk
);
2161 iounmap(pl022
->virtbase
);
2162 amba_release_regions(adev
);
2163 tasklet_disable(&pl022
->pump_transfers
);
2164 spi_unregister_master(pl022
->master
);
2165 spi_master_put(pl022
->master
);
2166 amba_set_drvdata(adev
, NULL
);
2170 #ifdef CONFIG_SUSPEND
2171 static int pl022_suspend(struct device
*dev
)
2173 struct pl022
*pl022
= dev_get_drvdata(dev
);
2176 ret
= spi_master_suspend(pl022
->master
);
2178 dev_warn(dev
, "cannot suspend master\n");
2182 dev_dbg(dev
, "suspended\n");
2186 static int pl022_resume(struct device
*dev
)
2188 struct pl022
*pl022
= dev_get_drvdata(dev
);
2191 /* Start the queue running */
2192 ret
= spi_master_resume(pl022
->master
);
2194 dev_err(dev
, "problem starting queue (%d)\n", ret
);
2196 dev_dbg(dev
, "resumed\n");
2200 #endif /* CONFIG_PM */
2202 #ifdef CONFIG_PM_RUNTIME
2203 static int pl022_runtime_suspend(struct device
*dev
)
2205 struct pl022
*pl022
= dev_get_drvdata(dev
);
2207 clk_disable(pl022
->clk
);
2212 static int pl022_runtime_resume(struct device
*dev
)
2214 struct pl022
*pl022
= dev_get_drvdata(dev
);
2216 clk_enable(pl022
->clk
);
2222 static const struct dev_pm_ops pl022_dev_pm_ops
= {
2223 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend
, pl022_resume
)
2224 SET_RUNTIME_PM_OPS(pl022_runtime_suspend
, pl022_runtime_resume
, NULL
)
2227 static struct vendor_data vendor_arm
= {
2231 .extended_cr
= false,
2236 static struct vendor_data vendor_st
= {
2240 .extended_cr
= true,
2245 static struct vendor_data vendor_st_pl023
= {
2249 .extended_cr
= true,
2254 static struct vendor_data vendor_db5500_pl023
= {
2258 .extended_cr
= true,
2263 static struct amba_id pl022_ids
[] = {
2266 * ARM PL022 variant, this has a 16bit wide
2267 * and 8 locations deep TX/RX FIFO
2271 .data
= &vendor_arm
,
2275 * ST Micro derivative, this has 32bit wide
2276 * and 32 locations deep TX/RX FIFO
2284 * ST-Ericsson derivative "PL023" (this is not
2285 * an official ARM number), this is a PL022 SSP block
2286 * stripped to SPI mode only, it has 32bit wide
2287 * and 32 locations deep TX/RX FIFO but no extended
2292 .data
= &vendor_st_pl023
,
2297 .data
= &vendor_db5500_pl023
,
2302 MODULE_DEVICE_TABLE(amba
, pl022_ids
);
2304 static struct amba_driver pl022_driver
= {
2306 .name
= "ssp-pl022",
2307 .pm
= &pl022_dev_pm_ops
,
2309 .id_table
= pl022_ids
,
2310 .probe
= pl022_probe
,
2311 .remove
= __devexit_p(pl022_remove
),
2314 static int __init
pl022_init(void)
2316 return amba_driver_register(&pl022_driver
);
2318 subsys_initcall(pl022_init
);
2320 static void __exit
pl022_exit(void)
2322 amba_driver_unregister(&pl022_driver
);
2324 module_exit(pl022_exit
);
2326 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2327 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2328 MODULE_LICENSE("GPL");