x86: prepare kprobes code for x86 unification
[linux-2.6.git] / arch / x86 / mm / fault_64.c
blob162050d4e5a36e3b054636b57b9c100a6fbbaf13
1 /*
2 * linux/arch/x86-64/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 */
8 #include <linux/signal.h>
9 #include <linux/sched.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/ptrace.h>
15 #include <linux/mman.h>
16 #include <linux/mm.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/compiler.h>
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
29 #include <asm/system.h>
30 #include <asm/pgalloc.h>
31 #include <asm/smp.h>
32 #include <asm/tlbflush.h>
33 #include <asm/proto.h>
34 #include <asm-generic/sections.h>
36 /* Page fault error code bits */
37 #define PF_PROT (1<<0) /* or no page found */
38 #define PF_WRITE (1<<1)
39 #define PF_USER (1<<2)
40 #define PF_RSVD (1<<3)
41 #define PF_INSTR (1<<4)
43 #ifdef CONFIG_KPROBES
44 static inline int notify_page_fault(struct pt_regs *regs)
46 int ret = 0;
48 /* kprobe_running() needs smp_processor_id() */
49 if (!user_mode(regs)) {
50 preempt_disable();
51 if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 ret = 1;
53 preempt_enable();
56 return ret;
58 #else
59 static inline int notify_page_fault(struct pt_regs *regs)
61 return 0;
63 #endif
65 /* Sometimes the CPU reports invalid exceptions on prefetch.
66 Check that here and ignore.
67 Opcode checker based on code by Richard Brunner */
68 static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
69 unsigned long error_code)
71 unsigned char *instr;
72 int scan_more = 1;
73 int prefetch = 0;
74 unsigned char *max_instr;
76 /* If it was a exec fault ignore */
77 if (error_code & PF_INSTR)
78 return 0;
80 instr = (unsigned char __user *)convert_rip_to_linear(current, regs);
81 max_instr = instr + 15;
83 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
84 return 0;
86 while (scan_more && instr < max_instr) {
87 unsigned char opcode;
88 unsigned char instr_hi;
89 unsigned char instr_lo;
91 if (probe_kernel_address(instr, opcode))
92 break;
94 instr_hi = opcode & 0xf0;
95 instr_lo = opcode & 0x0f;
96 instr++;
98 switch (instr_hi) {
99 case 0x20:
100 case 0x30:
101 /* Values 0x26,0x2E,0x36,0x3E are valid x86
102 prefixes. In long mode, the CPU will signal
103 invalid opcode if some of these prefixes are
104 present so we will never get here anyway */
105 scan_more = ((instr_lo & 7) == 0x6);
106 break;
108 case 0x40:
109 /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
110 Need to figure out under what instruction mode the
111 instruction was issued ... */
112 /* Could check the LDT for lm, but for now it's good
113 enough to assume that long mode only uses well known
114 segments or kernel. */
115 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
116 break;
118 case 0x60:
119 /* 0x64 thru 0x67 are valid prefixes in all modes. */
120 scan_more = (instr_lo & 0xC) == 0x4;
121 break;
122 case 0xF0:
123 /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
124 scan_more = !instr_lo || (instr_lo>>1) == 1;
125 break;
126 case 0x00:
127 /* Prefetch instruction is 0x0F0D or 0x0F18 */
128 scan_more = 0;
129 if (probe_kernel_address(instr, opcode))
130 break;
131 prefetch = (instr_lo == 0xF) &&
132 (opcode == 0x0D || opcode == 0x18);
133 break;
134 default:
135 scan_more = 0;
136 break;
139 return prefetch;
142 static int bad_address(void *p)
144 unsigned long dummy;
145 return probe_kernel_address((unsigned long *)p, dummy);
148 void dump_pagetable(unsigned long address)
150 pgd_t *pgd;
151 pud_t *pud;
152 pmd_t *pmd;
153 pte_t *pte;
155 pgd = (pgd_t *)read_cr3();
157 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
158 pgd += pgd_index(address);
159 if (bad_address(pgd)) goto bad;
160 printk("PGD %lx ", pgd_val(*pgd));
161 if (!pgd_present(*pgd)) goto ret;
163 pud = pud_offset(pgd, address);
164 if (bad_address(pud)) goto bad;
165 printk("PUD %lx ", pud_val(*pud));
166 if (!pud_present(*pud)) goto ret;
168 pmd = pmd_offset(pud, address);
169 if (bad_address(pmd)) goto bad;
170 printk("PMD %lx ", pmd_val(*pmd));
171 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
173 pte = pte_offset_kernel(pmd, address);
174 if (bad_address(pte)) goto bad;
175 printk("PTE %lx", pte_val(*pte));
176 ret:
177 printk("\n");
178 return;
179 bad:
180 printk("BAD\n");
183 static const char errata93_warning[] =
184 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
185 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
186 KERN_ERR "******* Please consider a BIOS update.\n"
187 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
189 /* Workaround for K8 erratum #93 & buggy BIOS.
190 BIOS SMM functions are required to use a specific workaround
191 to avoid corruption of the 64bit RIP register on C stepping K8.
192 A lot of BIOS that didn't get tested properly miss this.
193 The OS sees this as a page fault with the upper 32bits of RIP cleared.
194 Try to work around it here.
195 Note we only handle faults in kernel here. */
197 static int is_errata93(struct pt_regs *regs, unsigned long address)
199 static int warned;
200 if (address != regs->ip)
201 return 0;
202 if ((address >> 32) != 0)
203 return 0;
204 address |= 0xffffffffUL << 32;
205 if ((address >= (u64)_stext && address <= (u64)_etext) ||
206 (address >= MODULES_VADDR && address <= MODULES_END)) {
207 if (!warned) {
208 printk(errata93_warning);
209 warned = 1;
211 regs->ip = address;
212 return 1;
214 return 0;
217 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
218 unsigned long error_code)
220 unsigned long flags = oops_begin();
221 struct task_struct *tsk;
223 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
224 current->comm, address);
225 dump_pagetable(address);
226 tsk = current;
227 tsk->thread.cr2 = address;
228 tsk->thread.trap_no = 14;
229 tsk->thread.error_code = error_code;
230 __die("Bad pagetable", regs, error_code);
231 oops_end(flags);
232 do_exit(SIGKILL);
236 * Handle a fault on the vmalloc area
238 * This assumes no large pages in there.
240 static int vmalloc_fault(unsigned long address)
242 pgd_t *pgd, *pgd_ref;
243 pud_t *pud, *pud_ref;
244 pmd_t *pmd, *pmd_ref;
245 pte_t *pte, *pte_ref;
247 /* Copy kernel mappings over when needed. This can also
248 happen within a race in page table update. In the later
249 case just flush. */
251 pgd = pgd_offset(current->mm ?: &init_mm, address);
252 pgd_ref = pgd_offset_k(address);
253 if (pgd_none(*pgd_ref))
254 return -1;
255 if (pgd_none(*pgd))
256 set_pgd(pgd, *pgd_ref);
257 else
258 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
260 /* Below here mismatches are bugs because these lower tables
261 are shared */
263 pud = pud_offset(pgd, address);
264 pud_ref = pud_offset(pgd_ref, address);
265 if (pud_none(*pud_ref))
266 return -1;
267 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
268 BUG();
269 pmd = pmd_offset(pud, address);
270 pmd_ref = pmd_offset(pud_ref, address);
271 if (pmd_none(*pmd_ref))
272 return -1;
273 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
274 BUG();
275 pte_ref = pte_offset_kernel(pmd_ref, address);
276 if (!pte_present(*pte_ref))
277 return -1;
278 pte = pte_offset_kernel(pmd, address);
279 /* Don't use pte_page here, because the mappings can point
280 outside mem_map, and the NUMA hash lookup cannot handle
281 that. */
282 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
283 BUG();
284 return 0;
287 int show_unhandled_signals = 1;
290 * This routine handles page faults. It determines the address,
291 * and the problem, and then passes it off to one of the appropriate
292 * routines.
294 asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
295 unsigned long error_code)
297 struct task_struct *tsk;
298 struct mm_struct *mm;
299 struct vm_area_struct * vma;
300 unsigned long address;
301 const struct exception_table_entry *fixup;
302 int write, fault;
303 unsigned long flags;
304 siginfo_t info;
307 * We can fault from pretty much anywhere, with unknown IRQ state.
309 trace_hardirqs_fixup();
311 tsk = current;
312 mm = tsk->mm;
313 prefetchw(&mm->mmap_sem);
315 /* get the address */
316 address = read_cr2();
318 info.si_code = SEGV_MAPERR;
322 * We fault-in kernel-space virtual memory on-demand. The
323 * 'reference' page table is init_mm.pgd.
325 * NOTE! We MUST NOT take any locks for this case. We may
326 * be in an interrupt or a critical region, and should
327 * only copy the information from the master page table,
328 * nothing more.
330 * This verifies that the fault happens in kernel space
331 * (error_code & 4) == 0, and that the fault was not a
332 * protection error (error_code & 9) == 0.
334 if (unlikely(address >= TASK_SIZE64)) {
336 * Don't check for the module range here: its PML4
337 * is always initialized because it's shared with the main
338 * kernel text. Only vmalloc may need PML4 syncups.
340 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
341 ((address >= VMALLOC_START && address < VMALLOC_END))) {
342 if (vmalloc_fault(address) >= 0)
343 return;
345 if (notify_page_fault(regs))
346 return;
348 * Don't take the mm semaphore here. If we fixup a prefetch
349 * fault we could otherwise deadlock.
351 goto bad_area_nosemaphore;
354 if (notify_page_fault(regs))
355 return;
357 if (likely(regs->flags & X86_EFLAGS_IF))
358 local_irq_enable();
360 if (unlikely(error_code & PF_RSVD))
361 pgtable_bad(address, regs, error_code);
364 * If we're in an interrupt or have no user
365 * context, we must not take the fault..
367 if (unlikely(in_atomic() || !mm))
368 goto bad_area_nosemaphore;
371 * User-mode registers count as a user access even for any
372 * potential system fault or CPU buglet.
374 if (user_mode_vm(regs))
375 error_code |= PF_USER;
377 again:
378 /* When running in the kernel we expect faults to occur only to
379 * addresses in user space. All other faults represent errors in the
380 * kernel and should generate an OOPS. Unfortunately, in the case of an
381 * erroneous fault occurring in a code path which already holds mmap_sem
382 * we will deadlock attempting to validate the fault against the
383 * address space. Luckily the kernel only validly references user
384 * space from well defined areas of code, which are listed in the
385 * exceptions table.
387 * As the vast majority of faults will be valid we will only perform
388 * the source reference check when there is a possibility of a deadlock.
389 * Attempt to lock the address space, if we cannot we then validate the
390 * source. If this is invalid we can skip the address space check,
391 * thus avoiding the deadlock.
393 if (!down_read_trylock(&mm->mmap_sem)) {
394 if ((error_code & PF_USER) == 0 &&
395 !search_exception_tables(regs->ip))
396 goto bad_area_nosemaphore;
397 down_read(&mm->mmap_sem);
400 vma = find_vma(mm, address);
401 if (!vma)
402 goto bad_area;
403 if (likely(vma->vm_start <= address))
404 goto good_area;
405 if (!(vma->vm_flags & VM_GROWSDOWN))
406 goto bad_area;
407 if (error_code & 4) {
408 /* Allow userspace just enough access below the stack pointer
409 * to let the 'enter' instruction work.
411 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
412 goto bad_area;
414 if (expand_stack(vma, address))
415 goto bad_area;
417 * Ok, we have a good vm_area for this memory access, so
418 * we can handle it..
420 good_area:
421 info.si_code = SEGV_ACCERR;
422 write = 0;
423 switch (error_code & (PF_PROT|PF_WRITE)) {
424 default: /* 3: write, present */
425 /* fall through */
426 case PF_WRITE: /* write, not present */
427 if (!(vma->vm_flags & VM_WRITE))
428 goto bad_area;
429 write++;
430 break;
431 case PF_PROT: /* read, present */
432 goto bad_area;
433 case 0: /* read, not present */
434 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
435 goto bad_area;
439 * If for any reason at all we couldn't handle the fault,
440 * make sure we exit gracefully rather than endlessly redo
441 * the fault.
443 fault = handle_mm_fault(mm, vma, address, write);
444 if (unlikely(fault & VM_FAULT_ERROR)) {
445 if (fault & VM_FAULT_OOM)
446 goto out_of_memory;
447 else if (fault & VM_FAULT_SIGBUS)
448 goto do_sigbus;
449 BUG();
451 if (fault & VM_FAULT_MAJOR)
452 tsk->maj_flt++;
453 else
454 tsk->min_flt++;
455 up_read(&mm->mmap_sem);
456 return;
459 * Something tried to access memory that isn't in our memory map..
460 * Fix it, but check if it's kernel or user first..
462 bad_area:
463 up_read(&mm->mmap_sem);
465 bad_area_nosemaphore:
466 /* User mode accesses just cause a SIGSEGV */
467 if (error_code & PF_USER) {
470 * It's possible to have interrupts off here.
472 local_irq_enable();
474 if (is_prefetch(regs, address, error_code))
475 return;
477 /* Work around K8 erratum #100 K8 in compat mode
478 occasionally jumps to illegal addresses >4GB. We
479 catch this here in the page fault handler because
480 these addresses are not reachable. Just detect this
481 case and return. Any code segment in LDT is
482 compatibility mode. */
483 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
484 (address >> 32))
485 return;
487 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
488 printk_ratelimit()) {
489 printk(
490 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx\n",
491 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
492 tsk->comm, tsk->pid, address, regs->ip,
493 regs->sp, error_code);
496 tsk->thread.cr2 = address;
497 /* Kernel addresses are always protection faults */
498 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
499 tsk->thread.trap_no = 14;
500 info.si_signo = SIGSEGV;
501 info.si_errno = 0;
502 /* info.si_code has been set above */
503 info.si_addr = (void __user *)address;
504 force_sig_info(SIGSEGV, &info, tsk);
505 return;
508 no_context:
510 /* Are we prepared to handle this kernel fault? */
511 fixup = search_exception_tables(regs->ip);
512 if (fixup) {
513 regs->ip = fixup->fixup;
514 return;
518 * Hall of shame of CPU/BIOS bugs.
521 if (is_prefetch(regs, address, error_code))
522 return;
524 if (is_errata93(regs, address))
525 return;
528 * Oops. The kernel tried to access some bad page. We'll have to
529 * terminate things with extreme prejudice.
532 flags = oops_begin();
534 if (address < PAGE_SIZE)
535 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
536 else
537 printk(KERN_ALERT "Unable to handle kernel paging request");
538 printk(" at %016lx RIP: \n" KERN_ALERT,address);
539 printk_address(regs->ip);
540 dump_pagetable(address);
541 tsk->thread.cr2 = address;
542 tsk->thread.trap_no = 14;
543 tsk->thread.error_code = error_code;
544 __die("Oops", regs, error_code);
545 /* Executive summary in case the body of the oops scrolled away */
546 printk(KERN_EMERG "CR2: %016lx\n", address);
547 oops_end(flags);
548 do_exit(SIGKILL);
551 * We ran out of memory, or some other thing happened to us that made
552 * us unable to handle the page fault gracefully.
554 out_of_memory:
555 up_read(&mm->mmap_sem);
556 if (is_global_init(current)) {
557 yield();
558 goto again;
560 printk("VM: killing process %s\n", tsk->comm);
561 if (error_code & 4)
562 do_group_exit(SIGKILL);
563 goto no_context;
565 do_sigbus:
566 up_read(&mm->mmap_sem);
568 /* Kernel mode? Handle exceptions or die */
569 if (!(error_code & PF_USER))
570 goto no_context;
572 tsk->thread.cr2 = address;
573 tsk->thread.error_code = error_code;
574 tsk->thread.trap_no = 14;
575 info.si_signo = SIGBUS;
576 info.si_errno = 0;
577 info.si_code = BUS_ADRERR;
578 info.si_addr = (void __user *)address;
579 force_sig_info(SIGBUS, &info, tsk);
580 return;
583 DEFINE_SPINLOCK(pgd_lock);
584 LIST_HEAD(pgd_list);
586 void vmalloc_sync_all(void)
588 /* Note that races in the updates of insync and start aren't
589 problematic:
590 insync can only get set bits added, and updates to start are only
591 improving performance (without affecting correctness if undone). */
592 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
593 static unsigned long start = VMALLOC_START & PGDIR_MASK;
594 unsigned long address;
596 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
597 if (!test_bit(pgd_index(address), insync)) {
598 const pgd_t *pgd_ref = pgd_offset_k(address);
599 struct page *page;
601 if (pgd_none(*pgd_ref))
602 continue;
603 spin_lock(&pgd_lock);
604 list_for_each_entry(page, &pgd_list, lru) {
605 pgd_t *pgd;
606 pgd = (pgd_t *)page_address(page) + pgd_index(address);
607 if (pgd_none(*pgd))
608 set_pgd(pgd, *pgd_ref);
609 else
610 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
612 spin_unlock(&pgd_lock);
613 set_bit(pgd_index(address), insync);
615 if (address == start)
616 start = address + PGDIR_SIZE;
618 /* Check that there is no need to do the same for the modules area. */
619 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
620 BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
621 (__START_KERNEL & PGDIR_MASK)));