xfs: convert l_last_sync_lsn to an atomic variable
[linux-2.6.git] / fs / xfs / xfs_log_recover.c
blob18e1e18d7147173731df2a279f7fd43313016454
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_rw.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
47 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49 #if defined(DEBUG)
50 STATIC void xlog_recover_check_summary(xlog_t *);
51 #else
52 #define xlog_recover_check_summary(log)
53 #endif
56 * This structure is used during recovery to record the buf log items which
57 * have been canceled and should not be replayed.
59 struct xfs_buf_cancel {
60 xfs_daddr_t bc_blkno;
61 uint bc_len;
62 int bc_refcount;
63 struct list_head bc_list;
67 * Sector aligned buffer routines for buffer create/read/write/access
71 * Verify the given count of basic blocks is valid number of blocks
72 * to specify for an operation involving the given XFS log buffer.
73 * Returns nonzero if the count is valid, 0 otherwise.
76 static inline int
77 xlog_buf_bbcount_valid(
78 xlog_t *log,
79 int bbcount)
81 return bbcount > 0 && bbcount <= log->l_logBBsize;
85 * Allocate a buffer to hold log data. The buffer needs to be able
86 * to map to a range of nbblks basic blocks at any valid (basic
87 * block) offset within the log.
89 STATIC xfs_buf_t *
90 xlog_get_bp(
91 xlog_t *log,
92 int nbblks)
94 if (!xlog_buf_bbcount_valid(log, nbblks)) {
95 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
96 nbblks);
97 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
98 return NULL;
102 * We do log I/O in units of log sectors (a power-of-2
103 * multiple of the basic block size), so we round up the
104 * requested size to acommodate the basic blocks required
105 * for complete log sectors.
107 * In addition, the buffer may be used for a non-sector-
108 * aligned block offset, in which case an I/O of the
109 * requested size could extend beyond the end of the
110 * buffer. If the requested size is only 1 basic block it
111 * will never straddle a sector boundary, so this won't be
112 * an issue. Nor will this be a problem if the log I/O is
113 * done in basic blocks (sector size 1). But otherwise we
114 * extend the buffer by one extra log sector to ensure
115 * there's space to accomodate this possiblility.
117 if (nbblks > 1 && log->l_sectBBsize > 1)
118 nbblks += log->l_sectBBsize;
119 nbblks = round_up(nbblks, log->l_sectBBsize);
121 return xfs_buf_get_uncached(log->l_mp->m_logdev_targp,
122 BBTOB(nbblks), 0);
125 STATIC void
126 xlog_put_bp(
127 xfs_buf_t *bp)
129 xfs_buf_free(bp);
133 * Return the address of the start of the given block number's data
134 * in a log buffer. The buffer covers a log sector-aligned region.
136 STATIC xfs_caddr_t
137 xlog_align(
138 xlog_t *log,
139 xfs_daddr_t blk_no,
140 int nbblks,
141 xfs_buf_t *bp)
143 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
145 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
146 return XFS_BUF_PTR(bp) + BBTOB(offset);
151 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
153 STATIC int
154 xlog_bread_noalign(
155 xlog_t *log,
156 xfs_daddr_t blk_no,
157 int nbblks,
158 xfs_buf_t *bp)
160 int error;
162 if (!xlog_buf_bbcount_valid(log, nbblks)) {
163 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
164 nbblks);
165 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
166 return EFSCORRUPTED;
169 blk_no = round_down(blk_no, log->l_sectBBsize);
170 nbblks = round_up(nbblks, log->l_sectBBsize);
172 ASSERT(nbblks > 0);
173 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
175 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
176 XFS_BUF_READ(bp);
177 XFS_BUF_BUSY(bp);
178 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
179 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
181 xfsbdstrat(log->l_mp, bp);
182 error = xfs_buf_iowait(bp);
183 if (error)
184 xfs_ioerror_alert("xlog_bread", log->l_mp,
185 bp, XFS_BUF_ADDR(bp));
186 return error;
189 STATIC int
190 xlog_bread(
191 xlog_t *log,
192 xfs_daddr_t blk_no,
193 int nbblks,
194 xfs_buf_t *bp,
195 xfs_caddr_t *offset)
197 int error;
199 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
200 if (error)
201 return error;
203 *offset = xlog_align(log, blk_no, nbblks, bp);
204 return 0;
208 * Write out the buffer at the given block for the given number of blocks.
209 * The buffer is kept locked across the write and is returned locked.
210 * This can only be used for synchronous log writes.
212 STATIC int
213 xlog_bwrite(
214 xlog_t *log,
215 xfs_daddr_t blk_no,
216 int nbblks,
217 xfs_buf_t *bp)
219 int error;
221 if (!xlog_buf_bbcount_valid(log, nbblks)) {
222 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
223 nbblks);
224 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
225 return EFSCORRUPTED;
228 blk_no = round_down(blk_no, log->l_sectBBsize);
229 nbblks = round_up(nbblks, log->l_sectBBsize);
231 ASSERT(nbblks > 0);
232 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
234 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
235 XFS_BUF_ZEROFLAGS(bp);
236 XFS_BUF_BUSY(bp);
237 XFS_BUF_HOLD(bp);
238 XFS_BUF_PSEMA(bp, PRIBIO);
239 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
240 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
242 if ((error = xfs_bwrite(log->l_mp, bp)))
243 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
244 bp, XFS_BUF_ADDR(bp));
245 return error;
248 #ifdef DEBUG
250 * dump debug superblock and log record information
252 STATIC void
253 xlog_header_check_dump(
254 xfs_mount_t *mp,
255 xlog_rec_header_t *head)
257 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
258 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
259 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
260 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
262 #else
263 #define xlog_header_check_dump(mp, head)
264 #endif
267 * check log record header for recovery
269 STATIC int
270 xlog_header_check_recover(
271 xfs_mount_t *mp,
272 xlog_rec_header_t *head)
274 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
277 * IRIX doesn't write the h_fmt field and leaves it zeroed
278 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
279 * a dirty log created in IRIX.
281 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
282 xlog_warn(
283 "XFS: dirty log written in incompatible format - can't recover");
284 xlog_header_check_dump(mp, head);
285 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
286 XFS_ERRLEVEL_HIGH, mp);
287 return XFS_ERROR(EFSCORRUPTED);
288 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
289 xlog_warn(
290 "XFS: dirty log entry has mismatched uuid - can't recover");
291 xlog_header_check_dump(mp, head);
292 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
293 XFS_ERRLEVEL_HIGH, mp);
294 return XFS_ERROR(EFSCORRUPTED);
296 return 0;
300 * read the head block of the log and check the header
302 STATIC int
303 xlog_header_check_mount(
304 xfs_mount_t *mp,
305 xlog_rec_header_t *head)
307 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
309 if (uuid_is_nil(&head->h_fs_uuid)) {
311 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
312 * h_fs_uuid is nil, we assume this log was last mounted
313 * by IRIX and continue.
315 xlog_warn("XFS: nil uuid in log - IRIX style log");
316 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
317 xlog_warn("XFS: log has mismatched uuid - can't recover");
318 xlog_header_check_dump(mp, head);
319 XFS_ERROR_REPORT("xlog_header_check_mount",
320 XFS_ERRLEVEL_HIGH, mp);
321 return XFS_ERROR(EFSCORRUPTED);
323 return 0;
326 STATIC void
327 xlog_recover_iodone(
328 struct xfs_buf *bp)
330 if (XFS_BUF_GETERROR(bp)) {
332 * We're not going to bother about retrying
333 * this during recovery. One strike!
335 xfs_ioerror_alert("xlog_recover_iodone",
336 bp->b_target->bt_mount, bp,
337 XFS_BUF_ADDR(bp));
338 xfs_force_shutdown(bp->b_target->bt_mount,
339 SHUTDOWN_META_IO_ERROR);
341 XFS_BUF_CLR_IODONE_FUNC(bp);
342 xfs_buf_ioend(bp, 0);
346 * This routine finds (to an approximation) the first block in the physical
347 * log which contains the given cycle. It uses a binary search algorithm.
348 * Note that the algorithm can not be perfect because the disk will not
349 * necessarily be perfect.
351 STATIC int
352 xlog_find_cycle_start(
353 xlog_t *log,
354 xfs_buf_t *bp,
355 xfs_daddr_t first_blk,
356 xfs_daddr_t *last_blk,
357 uint cycle)
359 xfs_caddr_t offset;
360 xfs_daddr_t mid_blk;
361 xfs_daddr_t end_blk;
362 uint mid_cycle;
363 int error;
365 end_blk = *last_blk;
366 mid_blk = BLK_AVG(first_blk, end_blk);
367 while (mid_blk != first_blk && mid_blk != end_blk) {
368 error = xlog_bread(log, mid_blk, 1, bp, &offset);
369 if (error)
370 return error;
371 mid_cycle = xlog_get_cycle(offset);
372 if (mid_cycle == cycle)
373 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
374 else
375 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
376 mid_blk = BLK_AVG(first_blk, end_blk);
378 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
379 (mid_blk == end_blk && mid_blk-1 == first_blk));
381 *last_blk = end_blk;
383 return 0;
387 * Check that a range of blocks does not contain stop_on_cycle_no.
388 * Fill in *new_blk with the block offset where such a block is
389 * found, or with -1 (an invalid block number) if there is no such
390 * block in the range. The scan needs to occur from front to back
391 * and the pointer into the region must be updated since a later
392 * routine will need to perform another test.
394 STATIC int
395 xlog_find_verify_cycle(
396 xlog_t *log,
397 xfs_daddr_t start_blk,
398 int nbblks,
399 uint stop_on_cycle_no,
400 xfs_daddr_t *new_blk)
402 xfs_daddr_t i, j;
403 uint cycle;
404 xfs_buf_t *bp;
405 xfs_daddr_t bufblks;
406 xfs_caddr_t buf = NULL;
407 int error = 0;
410 * Greedily allocate a buffer big enough to handle the full
411 * range of basic blocks we'll be examining. If that fails,
412 * try a smaller size. We need to be able to read at least
413 * a log sector, or we're out of luck.
415 bufblks = 1 << ffs(nbblks);
416 while (!(bp = xlog_get_bp(log, bufblks))) {
417 bufblks >>= 1;
418 if (bufblks < log->l_sectBBsize)
419 return ENOMEM;
422 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
423 int bcount;
425 bcount = min(bufblks, (start_blk + nbblks - i));
427 error = xlog_bread(log, i, bcount, bp, &buf);
428 if (error)
429 goto out;
431 for (j = 0; j < bcount; j++) {
432 cycle = xlog_get_cycle(buf);
433 if (cycle == stop_on_cycle_no) {
434 *new_blk = i+j;
435 goto out;
438 buf += BBSIZE;
442 *new_blk = -1;
444 out:
445 xlog_put_bp(bp);
446 return error;
450 * Potentially backup over partial log record write.
452 * In the typical case, last_blk is the number of the block directly after
453 * a good log record. Therefore, we subtract one to get the block number
454 * of the last block in the given buffer. extra_bblks contains the number
455 * of blocks we would have read on a previous read. This happens when the
456 * last log record is split over the end of the physical log.
458 * extra_bblks is the number of blocks potentially verified on a previous
459 * call to this routine.
461 STATIC int
462 xlog_find_verify_log_record(
463 xlog_t *log,
464 xfs_daddr_t start_blk,
465 xfs_daddr_t *last_blk,
466 int extra_bblks)
468 xfs_daddr_t i;
469 xfs_buf_t *bp;
470 xfs_caddr_t offset = NULL;
471 xlog_rec_header_t *head = NULL;
472 int error = 0;
473 int smallmem = 0;
474 int num_blks = *last_blk - start_blk;
475 int xhdrs;
477 ASSERT(start_blk != 0 || *last_blk != start_blk);
479 if (!(bp = xlog_get_bp(log, num_blks))) {
480 if (!(bp = xlog_get_bp(log, 1)))
481 return ENOMEM;
482 smallmem = 1;
483 } else {
484 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
485 if (error)
486 goto out;
487 offset += ((num_blks - 1) << BBSHIFT);
490 for (i = (*last_blk) - 1; i >= 0; i--) {
491 if (i < start_blk) {
492 /* valid log record not found */
493 xlog_warn(
494 "XFS: Log inconsistent (didn't find previous header)");
495 ASSERT(0);
496 error = XFS_ERROR(EIO);
497 goto out;
500 if (smallmem) {
501 error = xlog_bread(log, i, 1, bp, &offset);
502 if (error)
503 goto out;
506 head = (xlog_rec_header_t *)offset;
508 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
509 break;
511 if (!smallmem)
512 offset -= BBSIZE;
516 * We hit the beginning of the physical log & still no header. Return
517 * to caller. If caller can handle a return of -1, then this routine
518 * will be called again for the end of the physical log.
520 if (i == -1) {
521 error = -1;
522 goto out;
526 * We have the final block of the good log (the first block
527 * of the log record _before_ the head. So we check the uuid.
529 if ((error = xlog_header_check_mount(log->l_mp, head)))
530 goto out;
533 * We may have found a log record header before we expected one.
534 * last_blk will be the 1st block # with a given cycle #. We may end
535 * up reading an entire log record. In this case, we don't want to
536 * reset last_blk. Only when last_blk points in the middle of a log
537 * record do we update last_blk.
539 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
540 uint h_size = be32_to_cpu(head->h_size);
542 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
543 if (h_size % XLOG_HEADER_CYCLE_SIZE)
544 xhdrs++;
545 } else {
546 xhdrs = 1;
549 if (*last_blk - i + extra_bblks !=
550 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
551 *last_blk = i;
553 out:
554 xlog_put_bp(bp);
555 return error;
559 * Head is defined to be the point of the log where the next log write
560 * write could go. This means that incomplete LR writes at the end are
561 * eliminated when calculating the head. We aren't guaranteed that previous
562 * LR have complete transactions. We only know that a cycle number of
563 * current cycle number -1 won't be present in the log if we start writing
564 * from our current block number.
566 * last_blk contains the block number of the first block with a given
567 * cycle number.
569 * Return: zero if normal, non-zero if error.
571 STATIC int
572 xlog_find_head(
573 xlog_t *log,
574 xfs_daddr_t *return_head_blk)
576 xfs_buf_t *bp;
577 xfs_caddr_t offset;
578 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
579 int num_scan_bblks;
580 uint first_half_cycle, last_half_cycle;
581 uint stop_on_cycle;
582 int error, log_bbnum = log->l_logBBsize;
584 /* Is the end of the log device zeroed? */
585 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
586 *return_head_blk = first_blk;
588 /* Is the whole lot zeroed? */
589 if (!first_blk) {
590 /* Linux XFS shouldn't generate totally zeroed logs -
591 * mkfs etc write a dummy unmount record to a fresh
592 * log so we can store the uuid in there
594 xlog_warn("XFS: totally zeroed log");
597 return 0;
598 } else if (error) {
599 xlog_warn("XFS: empty log check failed");
600 return error;
603 first_blk = 0; /* get cycle # of 1st block */
604 bp = xlog_get_bp(log, 1);
605 if (!bp)
606 return ENOMEM;
608 error = xlog_bread(log, 0, 1, bp, &offset);
609 if (error)
610 goto bp_err;
612 first_half_cycle = xlog_get_cycle(offset);
614 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
615 error = xlog_bread(log, last_blk, 1, bp, &offset);
616 if (error)
617 goto bp_err;
619 last_half_cycle = xlog_get_cycle(offset);
620 ASSERT(last_half_cycle != 0);
623 * If the 1st half cycle number is equal to the last half cycle number,
624 * then the entire log is stamped with the same cycle number. In this
625 * case, head_blk can't be set to zero (which makes sense). The below
626 * math doesn't work out properly with head_blk equal to zero. Instead,
627 * we set it to log_bbnum which is an invalid block number, but this
628 * value makes the math correct. If head_blk doesn't changed through
629 * all the tests below, *head_blk is set to zero at the very end rather
630 * than log_bbnum. In a sense, log_bbnum and zero are the same block
631 * in a circular file.
633 if (first_half_cycle == last_half_cycle) {
635 * In this case we believe that the entire log should have
636 * cycle number last_half_cycle. We need to scan backwards
637 * from the end verifying that there are no holes still
638 * containing last_half_cycle - 1. If we find such a hole,
639 * then the start of that hole will be the new head. The
640 * simple case looks like
641 * x | x ... | x - 1 | x
642 * Another case that fits this picture would be
643 * x | x + 1 | x ... | x
644 * In this case the head really is somewhere at the end of the
645 * log, as one of the latest writes at the beginning was
646 * incomplete.
647 * One more case is
648 * x | x + 1 | x ... | x - 1 | x
649 * This is really the combination of the above two cases, and
650 * the head has to end up at the start of the x-1 hole at the
651 * end of the log.
653 * In the 256k log case, we will read from the beginning to the
654 * end of the log and search for cycle numbers equal to x-1.
655 * We don't worry about the x+1 blocks that we encounter,
656 * because we know that they cannot be the head since the log
657 * started with x.
659 head_blk = log_bbnum;
660 stop_on_cycle = last_half_cycle - 1;
661 } else {
663 * In this case we want to find the first block with cycle
664 * number matching last_half_cycle. We expect the log to be
665 * some variation on
666 * x + 1 ... | x ... | x
667 * The first block with cycle number x (last_half_cycle) will
668 * be where the new head belongs. First we do a binary search
669 * for the first occurrence of last_half_cycle. The binary
670 * search may not be totally accurate, so then we scan back
671 * from there looking for occurrences of last_half_cycle before
672 * us. If that backwards scan wraps around the beginning of
673 * the log, then we look for occurrences of last_half_cycle - 1
674 * at the end of the log. The cases we're looking for look
675 * like
676 * v binary search stopped here
677 * x + 1 ... | x | x + 1 | x ... | x
678 * ^ but we want to locate this spot
679 * or
680 * <---------> less than scan distance
681 * x + 1 ... | x ... | x - 1 | x
682 * ^ we want to locate this spot
684 stop_on_cycle = last_half_cycle;
685 if ((error = xlog_find_cycle_start(log, bp, first_blk,
686 &head_blk, last_half_cycle)))
687 goto bp_err;
691 * Now validate the answer. Scan back some number of maximum possible
692 * blocks and make sure each one has the expected cycle number. The
693 * maximum is determined by the total possible amount of buffering
694 * in the in-core log. The following number can be made tighter if
695 * we actually look at the block size of the filesystem.
697 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
698 if (head_blk >= num_scan_bblks) {
700 * We are guaranteed that the entire check can be performed
701 * in one buffer.
703 start_blk = head_blk - num_scan_bblks;
704 if ((error = xlog_find_verify_cycle(log,
705 start_blk, num_scan_bblks,
706 stop_on_cycle, &new_blk)))
707 goto bp_err;
708 if (new_blk != -1)
709 head_blk = new_blk;
710 } else { /* need to read 2 parts of log */
712 * We are going to scan backwards in the log in two parts.
713 * First we scan the physical end of the log. In this part
714 * of the log, we are looking for blocks with cycle number
715 * last_half_cycle - 1.
716 * If we find one, then we know that the log starts there, as
717 * we've found a hole that didn't get written in going around
718 * the end of the physical log. The simple case for this is
719 * x + 1 ... | x ... | x - 1 | x
720 * <---------> less than scan distance
721 * If all of the blocks at the end of the log have cycle number
722 * last_half_cycle, then we check the blocks at the start of
723 * the log looking for occurrences of last_half_cycle. If we
724 * find one, then our current estimate for the location of the
725 * first occurrence of last_half_cycle is wrong and we move
726 * back to the hole we've found. This case looks like
727 * x + 1 ... | x | x + 1 | x ...
728 * ^ binary search stopped here
729 * Another case we need to handle that only occurs in 256k
730 * logs is
731 * x + 1 ... | x ... | x+1 | x ...
732 * ^ binary search stops here
733 * In a 256k log, the scan at the end of the log will see the
734 * x + 1 blocks. We need to skip past those since that is
735 * certainly not the head of the log. By searching for
736 * last_half_cycle-1 we accomplish that.
738 ASSERT(head_blk <= INT_MAX &&
739 (xfs_daddr_t) num_scan_bblks >= head_blk);
740 start_blk = log_bbnum - (num_scan_bblks - head_blk);
741 if ((error = xlog_find_verify_cycle(log, start_blk,
742 num_scan_bblks - (int)head_blk,
743 (stop_on_cycle - 1), &new_blk)))
744 goto bp_err;
745 if (new_blk != -1) {
746 head_blk = new_blk;
747 goto validate_head;
751 * Scan beginning of log now. The last part of the physical
752 * log is good. This scan needs to verify that it doesn't find
753 * the last_half_cycle.
755 start_blk = 0;
756 ASSERT(head_blk <= INT_MAX);
757 if ((error = xlog_find_verify_cycle(log,
758 start_blk, (int)head_blk,
759 stop_on_cycle, &new_blk)))
760 goto bp_err;
761 if (new_blk != -1)
762 head_blk = new_blk;
765 validate_head:
767 * Now we need to make sure head_blk is not pointing to a block in
768 * the middle of a log record.
770 num_scan_bblks = XLOG_REC_SHIFT(log);
771 if (head_blk >= num_scan_bblks) {
772 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
774 /* start ptr at last block ptr before head_blk */
775 if ((error = xlog_find_verify_log_record(log, start_blk,
776 &head_blk, 0)) == -1) {
777 error = XFS_ERROR(EIO);
778 goto bp_err;
779 } else if (error)
780 goto bp_err;
781 } else {
782 start_blk = 0;
783 ASSERT(head_blk <= INT_MAX);
784 if ((error = xlog_find_verify_log_record(log, start_blk,
785 &head_blk, 0)) == -1) {
786 /* We hit the beginning of the log during our search */
787 start_blk = log_bbnum - (num_scan_bblks - head_blk);
788 new_blk = log_bbnum;
789 ASSERT(start_blk <= INT_MAX &&
790 (xfs_daddr_t) log_bbnum-start_blk >= 0);
791 ASSERT(head_blk <= INT_MAX);
792 if ((error = xlog_find_verify_log_record(log,
793 start_blk, &new_blk,
794 (int)head_blk)) == -1) {
795 error = XFS_ERROR(EIO);
796 goto bp_err;
797 } else if (error)
798 goto bp_err;
799 if (new_blk != log_bbnum)
800 head_blk = new_blk;
801 } else if (error)
802 goto bp_err;
805 xlog_put_bp(bp);
806 if (head_blk == log_bbnum)
807 *return_head_blk = 0;
808 else
809 *return_head_blk = head_blk;
811 * When returning here, we have a good block number. Bad block
812 * means that during a previous crash, we didn't have a clean break
813 * from cycle number N to cycle number N-1. In this case, we need
814 * to find the first block with cycle number N-1.
816 return 0;
818 bp_err:
819 xlog_put_bp(bp);
821 if (error)
822 xlog_warn("XFS: failed to find log head");
823 return error;
827 * Find the sync block number or the tail of the log.
829 * This will be the block number of the last record to have its
830 * associated buffers synced to disk. Every log record header has
831 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
832 * to get a sync block number. The only concern is to figure out which
833 * log record header to believe.
835 * The following algorithm uses the log record header with the largest
836 * lsn. The entire log record does not need to be valid. We only care
837 * that the header is valid.
839 * We could speed up search by using current head_blk buffer, but it is not
840 * available.
842 STATIC int
843 xlog_find_tail(
844 xlog_t *log,
845 xfs_daddr_t *head_blk,
846 xfs_daddr_t *tail_blk)
848 xlog_rec_header_t *rhead;
849 xlog_op_header_t *op_head;
850 xfs_caddr_t offset = NULL;
851 xfs_buf_t *bp;
852 int error, i, found;
853 xfs_daddr_t umount_data_blk;
854 xfs_daddr_t after_umount_blk;
855 xfs_lsn_t tail_lsn;
856 int hblks;
858 found = 0;
861 * Find previous log record
863 if ((error = xlog_find_head(log, head_blk)))
864 return error;
866 bp = xlog_get_bp(log, 1);
867 if (!bp)
868 return ENOMEM;
869 if (*head_blk == 0) { /* special case */
870 error = xlog_bread(log, 0, 1, bp, &offset);
871 if (error)
872 goto done;
874 if (xlog_get_cycle(offset) == 0) {
875 *tail_blk = 0;
876 /* leave all other log inited values alone */
877 goto done;
882 * Search backwards looking for log record header block
884 ASSERT(*head_blk < INT_MAX);
885 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
886 error = xlog_bread(log, i, 1, bp, &offset);
887 if (error)
888 goto done;
890 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
891 found = 1;
892 break;
896 * If we haven't found the log record header block, start looking
897 * again from the end of the physical log. XXXmiken: There should be
898 * a check here to make sure we didn't search more than N blocks in
899 * the previous code.
901 if (!found) {
902 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
903 error = xlog_bread(log, i, 1, bp, &offset);
904 if (error)
905 goto done;
907 if (XLOG_HEADER_MAGIC_NUM ==
908 be32_to_cpu(*(__be32 *)offset)) {
909 found = 2;
910 break;
914 if (!found) {
915 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
916 ASSERT(0);
917 return XFS_ERROR(EIO);
920 /* find blk_no of tail of log */
921 rhead = (xlog_rec_header_t *)offset;
922 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
925 * Reset log values according to the state of the log when we
926 * crashed. In the case where head_blk == 0, we bump curr_cycle
927 * one because the next write starts a new cycle rather than
928 * continuing the cycle of the last good log record. At this
929 * point we have guaranteed that all partial log records have been
930 * accounted for. Therefore, we know that the last good log record
931 * written was complete and ended exactly on the end boundary
932 * of the physical log.
934 log->l_prev_block = i;
935 log->l_curr_block = (int)*head_blk;
936 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
937 if (found == 2)
938 log->l_curr_cycle++;
939 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
940 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
941 xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
942 BBTOB(log->l_curr_block));
943 xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
944 BBTOB(log->l_curr_block));
947 * Look for unmount record. If we find it, then we know there
948 * was a clean unmount. Since 'i' could be the last block in
949 * the physical log, we convert to a log block before comparing
950 * to the head_blk.
952 * Save the current tail lsn to use to pass to
953 * xlog_clear_stale_blocks() below. We won't want to clear the
954 * unmount record if there is one, so we pass the lsn of the
955 * unmount record rather than the block after it.
957 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
958 int h_size = be32_to_cpu(rhead->h_size);
959 int h_version = be32_to_cpu(rhead->h_version);
961 if ((h_version & XLOG_VERSION_2) &&
962 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
963 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
964 if (h_size % XLOG_HEADER_CYCLE_SIZE)
965 hblks++;
966 } else {
967 hblks = 1;
969 } else {
970 hblks = 1;
972 after_umount_blk = (i + hblks + (int)
973 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
974 tail_lsn = log->l_tail_lsn;
975 if (*head_blk == after_umount_blk &&
976 be32_to_cpu(rhead->h_num_logops) == 1) {
977 umount_data_blk = (i + hblks) % log->l_logBBsize;
978 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
979 if (error)
980 goto done;
982 op_head = (xlog_op_header_t *)offset;
983 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
985 * Set tail and last sync so that newly written
986 * log records will point recovery to after the
987 * current unmount record.
989 log->l_tail_lsn =
990 xlog_assign_lsn(log->l_curr_cycle,
991 after_umount_blk);
992 atomic64_set(&log->l_last_sync_lsn,
993 xlog_assign_lsn(log->l_curr_cycle,
994 after_umount_blk));
995 *tail_blk = after_umount_blk;
998 * Note that the unmount was clean. If the unmount
999 * was not clean, we need to know this to rebuild the
1000 * superblock counters from the perag headers if we
1001 * have a filesystem using non-persistent counters.
1003 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1008 * Make sure that there are no blocks in front of the head
1009 * with the same cycle number as the head. This can happen
1010 * because we allow multiple outstanding log writes concurrently,
1011 * and the later writes might make it out before earlier ones.
1013 * We use the lsn from before modifying it so that we'll never
1014 * overwrite the unmount record after a clean unmount.
1016 * Do this only if we are going to recover the filesystem
1018 * NOTE: This used to say "if (!readonly)"
1019 * However on Linux, we can & do recover a read-only filesystem.
1020 * We only skip recovery if NORECOVERY is specified on mount,
1021 * in which case we would not be here.
1023 * But... if the -device- itself is readonly, just skip this.
1024 * We can't recover this device anyway, so it won't matter.
1026 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1027 error = xlog_clear_stale_blocks(log, tail_lsn);
1029 done:
1030 xlog_put_bp(bp);
1032 if (error)
1033 xlog_warn("XFS: failed to locate log tail");
1034 return error;
1038 * Is the log zeroed at all?
1040 * The last binary search should be changed to perform an X block read
1041 * once X becomes small enough. You can then search linearly through
1042 * the X blocks. This will cut down on the number of reads we need to do.
1044 * If the log is partially zeroed, this routine will pass back the blkno
1045 * of the first block with cycle number 0. It won't have a complete LR
1046 * preceding it.
1048 * Return:
1049 * 0 => the log is completely written to
1050 * -1 => use *blk_no as the first block of the log
1051 * >0 => error has occurred
1053 STATIC int
1054 xlog_find_zeroed(
1055 xlog_t *log,
1056 xfs_daddr_t *blk_no)
1058 xfs_buf_t *bp;
1059 xfs_caddr_t offset;
1060 uint first_cycle, last_cycle;
1061 xfs_daddr_t new_blk, last_blk, start_blk;
1062 xfs_daddr_t num_scan_bblks;
1063 int error, log_bbnum = log->l_logBBsize;
1065 *blk_no = 0;
1067 /* check totally zeroed log */
1068 bp = xlog_get_bp(log, 1);
1069 if (!bp)
1070 return ENOMEM;
1071 error = xlog_bread(log, 0, 1, bp, &offset);
1072 if (error)
1073 goto bp_err;
1075 first_cycle = xlog_get_cycle(offset);
1076 if (first_cycle == 0) { /* completely zeroed log */
1077 *blk_no = 0;
1078 xlog_put_bp(bp);
1079 return -1;
1082 /* check partially zeroed log */
1083 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1084 if (error)
1085 goto bp_err;
1087 last_cycle = xlog_get_cycle(offset);
1088 if (last_cycle != 0) { /* log completely written to */
1089 xlog_put_bp(bp);
1090 return 0;
1091 } else if (first_cycle != 1) {
1093 * If the cycle of the last block is zero, the cycle of
1094 * the first block must be 1. If it's not, maybe we're
1095 * not looking at a log... Bail out.
1097 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1098 return XFS_ERROR(EINVAL);
1101 /* we have a partially zeroed log */
1102 last_blk = log_bbnum-1;
1103 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1104 goto bp_err;
1107 * Validate the answer. Because there is no way to guarantee that
1108 * the entire log is made up of log records which are the same size,
1109 * we scan over the defined maximum blocks. At this point, the maximum
1110 * is not chosen to mean anything special. XXXmiken
1112 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1113 ASSERT(num_scan_bblks <= INT_MAX);
1115 if (last_blk < num_scan_bblks)
1116 num_scan_bblks = last_blk;
1117 start_blk = last_blk - num_scan_bblks;
1120 * We search for any instances of cycle number 0 that occur before
1121 * our current estimate of the head. What we're trying to detect is
1122 * 1 ... | 0 | 1 | 0...
1123 * ^ binary search ends here
1125 if ((error = xlog_find_verify_cycle(log, start_blk,
1126 (int)num_scan_bblks, 0, &new_blk)))
1127 goto bp_err;
1128 if (new_blk != -1)
1129 last_blk = new_blk;
1132 * Potentially backup over partial log record write. We don't need
1133 * to search the end of the log because we know it is zero.
1135 if ((error = xlog_find_verify_log_record(log, start_blk,
1136 &last_blk, 0)) == -1) {
1137 error = XFS_ERROR(EIO);
1138 goto bp_err;
1139 } else if (error)
1140 goto bp_err;
1142 *blk_no = last_blk;
1143 bp_err:
1144 xlog_put_bp(bp);
1145 if (error)
1146 return error;
1147 return -1;
1151 * These are simple subroutines used by xlog_clear_stale_blocks() below
1152 * to initialize a buffer full of empty log record headers and write
1153 * them into the log.
1155 STATIC void
1156 xlog_add_record(
1157 xlog_t *log,
1158 xfs_caddr_t buf,
1159 int cycle,
1160 int block,
1161 int tail_cycle,
1162 int tail_block)
1164 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1166 memset(buf, 0, BBSIZE);
1167 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1168 recp->h_cycle = cpu_to_be32(cycle);
1169 recp->h_version = cpu_to_be32(
1170 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1171 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1172 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1173 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1174 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1177 STATIC int
1178 xlog_write_log_records(
1179 xlog_t *log,
1180 int cycle,
1181 int start_block,
1182 int blocks,
1183 int tail_cycle,
1184 int tail_block)
1186 xfs_caddr_t offset;
1187 xfs_buf_t *bp;
1188 int balign, ealign;
1189 int sectbb = log->l_sectBBsize;
1190 int end_block = start_block + blocks;
1191 int bufblks;
1192 int error = 0;
1193 int i, j = 0;
1196 * Greedily allocate a buffer big enough to handle the full
1197 * range of basic blocks to be written. If that fails, try
1198 * a smaller size. We need to be able to write at least a
1199 * log sector, or we're out of luck.
1201 bufblks = 1 << ffs(blocks);
1202 while (!(bp = xlog_get_bp(log, bufblks))) {
1203 bufblks >>= 1;
1204 if (bufblks < sectbb)
1205 return ENOMEM;
1208 /* We may need to do a read at the start to fill in part of
1209 * the buffer in the starting sector not covered by the first
1210 * write below.
1212 balign = round_down(start_block, sectbb);
1213 if (balign != start_block) {
1214 error = xlog_bread_noalign(log, start_block, 1, bp);
1215 if (error)
1216 goto out_put_bp;
1218 j = start_block - balign;
1221 for (i = start_block; i < end_block; i += bufblks) {
1222 int bcount, endcount;
1224 bcount = min(bufblks, end_block - start_block);
1225 endcount = bcount - j;
1227 /* We may need to do a read at the end to fill in part of
1228 * the buffer in the final sector not covered by the write.
1229 * If this is the same sector as the above read, skip it.
1231 ealign = round_down(end_block, sectbb);
1232 if (j == 0 && (start_block + endcount > ealign)) {
1233 offset = XFS_BUF_PTR(bp);
1234 balign = BBTOB(ealign - start_block);
1235 error = XFS_BUF_SET_PTR(bp, offset + balign,
1236 BBTOB(sectbb));
1237 if (error)
1238 break;
1240 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1241 if (error)
1242 break;
1244 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1245 if (error)
1246 break;
1249 offset = xlog_align(log, start_block, endcount, bp);
1250 for (; j < endcount; j++) {
1251 xlog_add_record(log, offset, cycle, i+j,
1252 tail_cycle, tail_block);
1253 offset += BBSIZE;
1255 error = xlog_bwrite(log, start_block, endcount, bp);
1256 if (error)
1257 break;
1258 start_block += endcount;
1259 j = 0;
1262 out_put_bp:
1263 xlog_put_bp(bp);
1264 return error;
1268 * This routine is called to blow away any incomplete log writes out
1269 * in front of the log head. We do this so that we won't become confused
1270 * if we come up, write only a little bit more, and then crash again.
1271 * If we leave the partial log records out there, this situation could
1272 * cause us to think those partial writes are valid blocks since they
1273 * have the current cycle number. We get rid of them by overwriting them
1274 * with empty log records with the old cycle number rather than the
1275 * current one.
1277 * The tail lsn is passed in rather than taken from
1278 * the log so that we will not write over the unmount record after a
1279 * clean unmount in a 512 block log. Doing so would leave the log without
1280 * any valid log records in it until a new one was written. If we crashed
1281 * during that time we would not be able to recover.
1283 STATIC int
1284 xlog_clear_stale_blocks(
1285 xlog_t *log,
1286 xfs_lsn_t tail_lsn)
1288 int tail_cycle, head_cycle;
1289 int tail_block, head_block;
1290 int tail_distance, max_distance;
1291 int distance;
1292 int error;
1294 tail_cycle = CYCLE_LSN(tail_lsn);
1295 tail_block = BLOCK_LSN(tail_lsn);
1296 head_cycle = log->l_curr_cycle;
1297 head_block = log->l_curr_block;
1300 * Figure out the distance between the new head of the log
1301 * and the tail. We want to write over any blocks beyond the
1302 * head that we may have written just before the crash, but
1303 * we don't want to overwrite the tail of the log.
1305 if (head_cycle == tail_cycle) {
1307 * The tail is behind the head in the physical log,
1308 * so the distance from the head to the tail is the
1309 * distance from the head to the end of the log plus
1310 * the distance from the beginning of the log to the
1311 * tail.
1313 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1314 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1315 XFS_ERRLEVEL_LOW, log->l_mp);
1316 return XFS_ERROR(EFSCORRUPTED);
1318 tail_distance = tail_block + (log->l_logBBsize - head_block);
1319 } else {
1321 * The head is behind the tail in the physical log,
1322 * so the distance from the head to the tail is just
1323 * the tail block minus the head block.
1325 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1326 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1327 XFS_ERRLEVEL_LOW, log->l_mp);
1328 return XFS_ERROR(EFSCORRUPTED);
1330 tail_distance = tail_block - head_block;
1334 * If the head is right up against the tail, we can't clear
1335 * anything.
1337 if (tail_distance <= 0) {
1338 ASSERT(tail_distance == 0);
1339 return 0;
1342 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1344 * Take the smaller of the maximum amount of outstanding I/O
1345 * we could have and the distance to the tail to clear out.
1346 * We take the smaller so that we don't overwrite the tail and
1347 * we don't waste all day writing from the head to the tail
1348 * for no reason.
1350 max_distance = MIN(max_distance, tail_distance);
1352 if ((head_block + max_distance) <= log->l_logBBsize) {
1354 * We can stomp all the blocks we need to without
1355 * wrapping around the end of the log. Just do it
1356 * in a single write. Use the cycle number of the
1357 * current cycle minus one so that the log will look like:
1358 * n ... | n - 1 ...
1360 error = xlog_write_log_records(log, (head_cycle - 1),
1361 head_block, max_distance, tail_cycle,
1362 tail_block);
1363 if (error)
1364 return error;
1365 } else {
1367 * We need to wrap around the end of the physical log in
1368 * order to clear all the blocks. Do it in two separate
1369 * I/Os. The first write should be from the head to the
1370 * end of the physical log, and it should use the current
1371 * cycle number minus one just like above.
1373 distance = log->l_logBBsize - head_block;
1374 error = xlog_write_log_records(log, (head_cycle - 1),
1375 head_block, distance, tail_cycle,
1376 tail_block);
1378 if (error)
1379 return error;
1382 * Now write the blocks at the start of the physical log.
1383 * This writes the remainder of the blocks we want to clear.
1384 * It uses the current cycle number since we're now on the
1385 * same cycle as the head so that we get:
1386 * n ... n ... | n - 1 ...
1387 * ^^^^^ blocks we're writing
1389 distance = max_distance - (log->l_logBBsize - head_block);
1390 error = xlog_write_log_records(log, head_cycle, 0, distance,
1391 tail_cycle, tail_block);
1392 if (error)
1393 return error;
1396 return 0;
1399 /******************************************************************************
1401 * Log recover routines
1403 ******************************************************************************
1406 STATIC xlog_recover_t *
1407 xlog_recover_find_tid(
1408 struct hlist_head *head,
1409 xlog_tid_t tid)
1411 xlog_recover_t *trans;
1412 struct hlist_node *n;
1414 hlist_for_each_entry(trans, n, head, r_list) {
1415 if (trans->r_log_tid == tid)
1416 return trans;
1418 return NULL;
1421 STATIC void
1422 xlog_recover_new_tid(
1423 struct hlist_head *head,
1424 xlog_tid_t tid,
1425 xfs_lsn_t lsn)
1427 xlog_recover_t *trans;
1429 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1430 trans->r_log_tid = tid;
1431 trans->r_lsn = lsn;
1432 INIT_LIST_HEAD(&trans->r_itemq);
1434 INIT_HLIST_NODE(&trans->r_list);
1435 hlist_add_head(&trans->r_list, head);
1438 STATIC void
1439 xlog_recover_add_item(
1440 struct list_head *head)
1442 xlog_recover_item_t *item;
1444 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1445 INIT_LIST_HEAD(&item->ri_list);
1446 list_add_tail(&item->ri_list, head);
1449 STATIC int
1450 xlog_recover_add_to_cont_trans(
1451 struct log *log,
1452 xlog_recover_t *trans,
1453 xfs_caddr_t dp,
1454 int len)
1456 xlog_recover_item_t *item;
1457 xfs_caddr_t ptr, old_ptr;
1458 int old_len;
1460 if (list_empty(&trans->r_itemq)) {
1461 /* finish copying rest of trans header */
1462 xlog_recover_add_item(&trans->r_itemq);
1463 ptr = (xfs_caddr_t) &trans->r_theader +
1464 sizeof(xfs_trans_header_t) - len;
1465 memcpy(ptr, dp, len); /* d, s, l */
1466 return 0;
1468 /* take the tail entry */
1469 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1471 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1472 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1474 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1475 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1476 item->ri_buf[item->ri_cnt-1].i_len += len;
1477 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1478 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1479 return 0;
1483 * The next region to add is the start of a new region. It could be
1484 * a whole region or it could be the first part of a new region. Because
1485 * of this, the assumption here is that the type and size fields of all
1486 * format structures fit into the first 32 bits of the structure.
1488 * This works because all regions must be 32 bit aligned. Therefore, we
1489 * either have both fields or we have neither field. In the case we have
1490 * neither field, the data part of the region is zero length. We only have
1491 * a log_op_header and can throw away the header since a new one will appear
1492 * later. If we have at least 4 bytes, then we can determine how many regions
1493 * will appear in the current log item.
1495 STATIC int
1496 xlog_recover_add_to_trans(
1497 struct log *log,
1498 xlog_recover_t *trans,
1499 xfs_caddr_t dp,
1500 int len)
1502 xfs_inode_log_format_t *in_f; /* any will do */
1503 xlog_recover_item_t *item;
1504 xfs_caddr_t ptr;
1506 if (!len)
1507 return 0;
1508 if (list_empty(&trans->r_itemq)) {
1509 /* we need to catch log corruptions here */
1510 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1511 xlog_warn("XFS: xlog_recover_add_to_trans: "
1512 "bad header magic number");
1513 ASSERT(0);
1514 return XFS_ERROR(EIO);
1516 if (len == sizeof(xfs_trans_header_t))
1517 xlog_recover_add_item(&trans->r_itemq);
1518 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1519 return 0;
1522 ptr = kmem_alloc(len, KM_SLEEP);
1523 memcpy(ptr, dp, len);
1524 in_f = (xfs_inode_log_format_t *)ptr;
1526 /* take the tail entry */
1527 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1528 if (item->ri_total != 0 &&
1529 item->ri_total == item->ri_cnt) {
1530 /* tail item is in use, get a new one */
1531 xlog_recover_add_item(&trans->r_itemq);
1532 item = list_entry(trans->r_itemq.prev,
1533 xlog_recover_item_t, ri_list);
1536 if (item->ri_total == 0) { /* first region to be added */
1537 if (in_f->ilf_size == 0 ||
1538 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1539 xlog_warn(
1540 "XFS: bad number of regions (%d) in inode log format",
1541 in_f->ilf_size);
1542 ASSERT(0);
1543 return XFS_ERROR(EIO);
1546 item->ri_total = in_f->ilf_size;
1547 item->ri_buf =
1548 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1549 KM_SLEEP);
1551 ASSERT(item->ri_total > item->ri_cnt);
1552 /* Description region is ri_buf[0] */
1553 item->ri_buf[item->ri_cnt].i_addr = ptr;
1554 item->ri_buf[item->ri_cnt].i_len = len;
1555 item->ri_cnt++;
1556 trace_xfs_log_recover_item_add(log, trans, item, 0);
1557 return 0;
1561 * Sort the log items in the transaction. Cancelled buffers need
1562 * to be put first so they are processed before any items that might
1563 * modify the buffers. If they are cancelled, then the modifications
1564 * don't need to be replayed.
1566 STATIC int
1567 xlog_recover_reorder_trans(
1568 struct log *log,
1569 xlog_recover_t *trans,
1570 int pass)
1572 xlog_recover_item_t *item, *n;
1573 LIST_HEAD(sort_list);
1575 list_splice_init(&trans->r_itemq, &sort_list);
1576 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1577 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1579 switch (ITEM_TYPE(item)) {
1580 case XFS_LI_BUF:
1581 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1582 trace_xfs_log_recover_item_reorder_head(log,
1583 trans, item, pass);
1584 list_move(&item->ri_list, &trans->r_itemq);
1585 break;
1587 case XFS_LI_INODE:
1588 case XFS_LI_DQUOT:
1589 case XFS_LI_QUOTAOFF:
1590 case XFS_LI_EFD:
1591 case XFS_LI_EFI:
1592 trace_xfs_log_recover_item_reorder_tail(log,
1593 trans, item, pass);
1594 list_move_tail(&item->ri_list, &trans->r_itemq);
1595 break;
1596 default:
1597 xlog_warn(
1598 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1599 ASSERT(0);
1600 return XFS_ERROR(EIO);
1603 ASSERT(list_empty(&sort_list));
1604 return 0;
1608 * Build up the table of buf cancel records so that we don't replay
1609 * cancelled data in the second pass. For buffer records that are
1610 * not cancel records, there is nothing to do here so we just return.
1612 * If we get a cancel record which is already in the table, this indicates
1613 * that the buffer was cancelled multiple times. In order to ensure
1614 * that during pass 2 we keep the record in the table until we reach its
1615 * last occurrence in the log, we keep a reference count in the cancel
1616 * record in the table to tell us how many times we expect to see this
1617 * record during the second pass.
1619 STATIC int
1620 xlog_recover_buffer_pass1(
1621 struct log *log,
1622 xlog_recover_item_t *item)
1624 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1625 struct list_head *bucket;
1626 struct xfs_buf_cancel *bcp;
1629 * If this isn't a cancel buffer item, then just return.
1631 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1632 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1633 return 0;
1637 * Insert an xfs_buf_cancel record into the hash table of them.
1638 * If there is already an identical record, bump its reference count.
1640 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1641 list_for_each_entry(bcp, bucket, bc_list) {
1642 if (bcp->bc_blkno == buf_f->blf_blkno &&
1643 bcp->bc_len == buf_f->blf_len) {
1644 bcp->bc_refcount++;
1645 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1646 return 0;
1650 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1651 bcp->bc_blkno = buf_f->blf_blkno;
1652 bcp->bc_len = buf_f->blf_len;
1653 bcp->bc_refcount = 1;
1654 list_add_tail(&bcp->bc_list, bucket);
1656 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1657 return 0;
1661 * Check to see whether the buffer being recovered has a corresponding
1662 * entry in the buffer cancel record table. If it does then return 1
1663 * so that it will be cancelled, otherwise return 0. If the buffer is
1664 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1665 * the refcount on the entry in the table and remove it from the table
1666 * if this is the last reference.
1668 * We remove the cancel record from the table when we encounter its
1669 * last occurrence in the log so that if the same buffer is re-used
1670 * again after its last cancellation we actually replay the changes
1671 * made at that point.
1673 STATIC int
1674 xlog_check_buffer_cancelled(
1675 struct log *log,
1676 xfs_daddr_t blkno,
1677 uint len,
1678 ushort flags)
1680 struct list_head *bucket;
1681 struct xfs_buf_cancel *bcp;
1683 if (log->l_buf_cancel_table == NULL) {
1685 * There is nothing in the table built in pass one,
1686 * so this buffer must not be cancelled.
1688 ASSERT(!(flags & XFS_BLF_CANCEL));
1689 return 0;
1693 * Search for an entry in the cancel table that matches our buffer.
1695 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1696 list_for_each_entry(bcp, bucket, bc_list) {
1697 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1698 goto found;
1702 * We didn't find a corresponding entry in the table, so return 0 so
1703 * that the buffer is NOT cancelled.
1705 ASSERT(!(flags & XFS_BLF_CANCEL));
1706 return 0;
1708 found:
1710 * We've go a match, so return 1 so that the recovery of this buffer
1711 * is cancelled. If this buffer is actually a buffer cancel log
1712 * item, then decrement the refcount on the one in the table and
1713 * remove it if this is the last reference.
1715 if (flags & XFS_BLF_CANCEL) {
1716 if (--bcp->bc_refcount == 0) {
1717 list_del(&bcp->bc_list);
1718 kmem_free(bcp);
1721 return 1;
1725 * Perform recovery for a buffer full of inodes. In these buffers, the only
1726 * data which should be recovered is that which corresponds to the
1727 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1728 * data for the inodes is always logged through the inodes themselves rather
1729 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1731 * The only time when buffers full of inodes are fully recovered is when the
1732 * buffer is full of newly allocated inodes. In this case the buffer will
1733 * not be marked as an inode buffer and so will be sent to
1734 * xlog_recover_do_reg_buffer() below during recovery.
1736 STATIC int
1737 xlog_recover_do_inode_buffer(
1738 struct xfs_mount *mp,
1739 xlog_recover_item_t *item,
1740 struct xfs_buf *bp,
1741 xfs_buf_log_format_t *buf_f)
1743 int i;
1744 int item_index = 0;
1745 int bit = 0;
1746 int nbits = 0;
1747 int reg_buf_offset = 0;
1748 int reg_buf_bytes = 0;
1749 int next_unlinked_offset;
1750 int inodes_per_buf;
1751 xfs_agino_t *logged_nextp;
1752 xfs_agino_t *buffer_nextp;
1754 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1756 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1757 for (i = 0; i < inodes_per_buf; i++) {
1758 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1759 offsetof(xfs_dinode_t, di_next_unlinked);
1761 while (next_unlinked_offset >=
1762 (reg_buf_offset + reg_buf_bytes)) {
1764 * The next di_next_unlinked field is beyond
1765 * the current logged region. Find the next
1766 * logged region that contains or is beyond
1767 * the current di_next_unlinked field.
1769 bit += nbits;
1770 bit = xfs_next_bit(buf_f->blf_data_map,
1771 buf_f->blf_map_size, bit);
1774 * If there are no more logged regions in the
1775 * buffer, then we're done.
1777 if (bit == -1)
1778 return 0;
1780 nbits = xfs_contig_bits(buf_f->blf_data_map,
1781 buf_f->blf_map_size, bit);
1782 ASSERT(nbits > 0);
1783 reg_buf_offset = bit << XFS_BLF_SHIFT;
1784 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1785 item_index++;
1789 * If the current logged region starts after the current
1790 * di_next_unlinked field, then move on to the next
1791 * di_next_unlinked field.
1793 if (next_unlinked_offset < reg_buf_offset)
1794 continue;
1796 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1797 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1798 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1801 * The current logged region contains a copy of the
1802 * current di_next_unlinked field. Extract its value
1803 * and copy it to the buffer copy.
1805 logged_nextp = item->ri_buf[item_index].i_addr +
1806 next_unlinked_offset - reg_buf_offset;
1807 if (unlikely(*logged_nextp == 0)) {
1808 xfs_fs_cmn_err(CE_ALERT, mp,
1809 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1810 item, bp);
1811 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1812 XFS_ERRLEVEL_LOW, mp);
1813 return XFS_ERROR(EFSCORRUPTED);
1816 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1817 next_unlinked_offset);
1818 *buffer_nextp = *logged_nextp;
1821 return 0;
1825 * Perform a 'normal' buffer recovery. Each logged region of the
1826 * buffer should be copied over the corresponding region in the
1827 * given buffer. The bitmap in the buf log format structure indicates
1828 * where to place the logged data.
1830 STATIC void
1831 xlog_recover_do_reg_buffer(
1832 struct xfs_mount *mp,
1833 xlog_recover_item_t *item,
1834 struct xfs_buf *bp,
1835 xfs_buf_log_format_t *buf_f)
1837 int i;
1838 int bit;
1839 int nbits;
1840 int error;
1842 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1844 bit = 0;
1845 i = 1; /* 0 is the buf format structure */
1846 while (1) {
1847 bit = xfs_next_bit(buf_f->blf_data_map,
1848 buf_f->blf_map_size, bit);
1849 if (bit == -1)
1850 break;
1851 nbits = xfs_contig_bits(buf_f->blf_data_map,
1852 buf_f->blf_map_size, bit);
1853 ASSERT(nbits > 0);
1854 ASSERT(item->ri_buf[i].i_addr != NULL);
1855 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1856 ASSERT(XFS_BUF_COUNT(bp) >=
1857 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1860 * Do a sanity check if this is a dquot buffer. Just checking
1861 * the first dquot in the buffer should do. XXXThis is
1862 * probably a good thing to do for other buf types also.
1864 error = 0;
1865 if (buf_f->blf_flags &
1866 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1867 if (item->ri_buf[i].i_addr == NULL) {
1868 cmn_err(CE_ALERT,
1869 "XFS: NULL dquot in %s.", __func__);
1870 goto next;
1872 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1873 cmn_err(CE_ALERT,
1874 "XFS: dquot too small (%d) in %s.",
1875 item->ri_buf[i].i_len, __func__);
1876 goto next;
1878 error = xfs_qm_dqcheck(item->ri_buf[i].i_addr,
1879 -1, 0, XFS_QMOPT_DOWARN,
1880 "dquot_buf_recover");
1881 if (error)
1882 goto next;
1885 memcpy(xfs_buf_offset(bp,
1886 (uint)bit << XFS_BLF_SHIFT), /* dest */
1887 item->ri_buf[i].i_addr, /* source */
1888 nbits<<XFS_BLF_SHIFT); /* length */
1889 next:
1890 i++;
1891 bit += nbits;
1894 /* Shouldn't be any more regions */
1895 ASSERT(i == item->ri_total);
1899 * Do some primitive error checking on ondisk dquot data structures.
1902 xfs_qm_dqcheck(
1903 xfs_disk_dquot_t *ddq,
1904 xfs_dqid_t id,
1905 uint type, /* used only when IO_dorepair is true */
1906 uint flags,
1907 char *str)
1909 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1910 int errs = 0;
1913 * We can encounter an uninitialized dquot buffer for 2 reasons:
1914 * 1. If we crash while deleting the quotainode(s), and those blks got
1915 * used for user data. This is because we take the path of regular
1916 * file deletion; however, the size field of quotainodes is never
1917 * updated, so all the tricks that we play in itruncate_finish
1918 * don't quite matter.
1920 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1921 * But the allocation will be replayed so we'll end up with an
1922 * uninitialized quota block.
1924 * This is all fine; things are still consistent, and we haven't lost
1925 * any quota information. Just don't complain about bad dquot blks.
1927 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1928 if (flags & XFS_QMOPT_DOWARN)
1929 cmn_err(CE_ALERT,
1930 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1931 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1932 errs++;
1934 if (ddq->d_version != XFS_DQUOT_VERSION) {
1935 if (flags & XFS_QMOPT_DOWARN)
1936 cmn_err(CE_ALERT,
1937 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1938 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1939 errs++;
1942 if (ddq->d_flags != XFS_DQ_USER &&
1943 ddq->d_flags != XFS_DQ_PROJ &&
1944 ddq->d_flags != XFS_DQ_GROUP) {
1945 if (flags & XFS_QMOPT_DOWARN)
1946 cmn_err(CE_ALERT,
1947 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1948 str, id, ddq->d_flags);
1949 errs++;
1952 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1953 if (flags & XFS_QMOPT_DOWARN)
1954 cmn_err(CE_ALERT,
1955 "%s : ondisk-dquot 0x%p, ID mismatch: "
1956 "0x%x expected, found id 0x%x",
1957 str, ddq, id, be32_to_cpu(ddq->d_id));
1958 errs++;
1961 if (!errs && ddq->d_id) {
1962 if (ddq->d_blk_softlimit &&
1963 be64_to_cpu(ddq->d_bcount) >=
1964 be64_to_cpu(ddq->d_blk_softlimit)) {
1965 if (!ddq->d_btimer) {
1966 if (flags & XFS_QMOPT_DOWARN)
1967 cmn_err(CE_ALERT,
1968 "%s : Dquot ID 0x%x (0x%p) "
1969 "BLK TIMER NOT STARTED",
1970 str, (int)be32_to_cpu(ddq->d_id), ddq);
1971 errs++;
1974 if (ddq->d_ino_softlimit &&
1975 be64_to_cpu(ddq->d_icount) >=
1976 be64_to_cpu(ddq->d_ino_softlimit)) {
1977 if (!ddq->d_itimer) {
1978 if (flags & XFS_QMOPT_DOWARN)
1979 cmn_err(CE_ALERT,
1980 "%s : Dquot ID 0x%x (0x%p) "
1981 "INODE TIMER NOT STARTED",
1982 str, (int)be32_to_cpu(ddq->d_id), ddq);
1983 errs++;
1986 if (ddq->d_rtb_softlimit &&
1987 be64_to_cpu(ddq->d_rtbcount) >=
1988 be64_to_cpu(ddq->d_rtb_softlimit)) {
1989 if (!ddq->d_rtbtimer) {
1990 if (flags & XFS_QMOPT_DOWARN)
1991 cmn_err(CE_ALERT,
1992 "%s : Dquot ID 0x%x (0x%p) "
1993 "RTBLK TIMER NOT STARTED",
1994 str, (int)be32_to_cpu(ddq->d_id), ddq);
1995 errs++;
2000 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2001 return errs;
2003 if (flags & XFS_QMOPT_DOWARN)
2004 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2007 * Typically, a repair is only requested by quotacheck.
2009 ASSERT(id != -1);
2010 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2011 memset(d, 0, sizeof(xfs_dqblk_t));
2013 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2014 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2015 d->dd_diskdq.d_flags = type;
2016 d->dd_diskdq.d_id = cpu_to_be32(id);
2018 return errs;
2022 * Perform a dquot buffer recovery.
2023 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2024 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2025 * Else, treat it as a regular buffer and do recovery.
2027 STATIC void
2028 xlog_recover_do_dquot_buffer(
2029 xfs_mount_t *mp,
2030 xlog_t *log,
2031 xlog_recover_item_t *item,
2032 xfs_buf_t *bp,
2033 xfs_buf_log_format_t *buf_f)
2035 uint type;
2037 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2040 * Filesystems are required to send in quota flags at mount time.
2042 if (mp->m_qflags == 0) {
2043 return;
2046 type = 0;
2047 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2048 type |= XFS_DQ_USER;
2049 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2050 type |= XFS_DQ_PROJ;
2051 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2052 type |= XFS_DQ_GROUP;
2054 * This type of quotas was turned off, so ignore this buffer
2056 if (log->l_quotaoffs_flag & type)
2057 return;
2059 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2063 * This routine replays a modification made to a buffer at runtime.
2064 * There are actually two types of buffer, regular and inode, which
2065 * are handled differently. Inode buffers are handled differently
2066 * in that we only recover a specific set of data from them, namely
2067 * the inode di_next_unlinked fields. This is because all other inode
2068 * data is actually logged via inode records and any data we replay
2069 * here which overlaps that may be stale.
2071 * When meta-data buffers are freed at run time we log a buffer item
2072 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2073 * of the buffer in the log should not be replayed at recovery time.
2074 * This is so that if the blocks covered by the buffer are reused for
2075 * file data before we crash we don't end up replaying old, freed
2076 * meta-data into a user's file.
2078 * To handle the cancellation of buffer log items, we make two passes
2079 * over the log during recovery. During the first we build a table of
2080 * those buffers which have been cancelled, and during the second we
2081 * only replay those buffers which do not have corresponding cancel
2082 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2083 * for more details on the implementation of the table of cancel records.
2085 STATIC int
2086 xlog_recover_buffer_pass2(
2087 xlog_t *log,
2088 xlog_recover_item_t *item)
2090 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2091 xfs_mount_t *mp = log->l_mp;
2092 xfs_buf_t *bp;
2093 int error;
2094 uint buf_flags;
2097 * In this pass we only want to recover all the buffers which have
2098 * not been cancelled and are not cancellation buffers themselves.
2100 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2101 buf_f->blf_len, buf_f->blf_flags)) {
2102 trace_xfs_log_recover_buf_cancel(log, buf_f);
2103 return 0;
2106 trace_xfs_log_recover_buf_recover(log, buf_f);
2108 buf_flags = XBF_LOCK;
2109 if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2110 buf_flags |= XBF_MAPPED;
2112 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2113 buf_flags);
2114 if (XFS_BUF_ISERROR(bp)) {
2115 xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2116 bp, buf_f->blf_blkno);
2117 error = XFS_BUF_GETERROR(bp);
2118 xfs_buf_relse(bp);
2119 return error;
2122 error = 0;
2123 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2124 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2125 } else if (buf_f->blf_flags &
2126 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2127 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2128 } else {
2129 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2131 if (error)
2132 return XFS_ERROR(error);
2135 * Perform delayed write on the buffer. Asynchronous writes will be
2136 * slower when taking into account all the buffers to be flushed.
2138 * Also make sure that only inode buffers with good sizes stay in
2139 * the buffer cache. The kernel moves inodes in buffers of 1 block
2140 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2141 * buffers in the log can be a different size if the log was generated
2142 * by an older kernel using unclustered inode buffers or a newer kernel
2143 * running with a different inode cluster size. Regardless, if the
2144 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2145 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2146 * the buffer out of the buffer cache so that the buffer won't
2147 * overlap with future reads of those inodes.
2149 if (XFS_DINODE_MAGIC ==
2150 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2151 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2152 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2153 XFS_BUF_STALE(bp);
2154 error = xfs_bwrite(mp, bp);
2155 } else {
2156 ASSERT(bp->b_target->bt_mount == mp);
2157 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2158 xfs_bdwrite(mp, bp);
2161 return (error);
2164 STATIC int
2165 xlog_recover_inode_pass2(
2166 xlog_t *log,
2167 xlog_recover_item_t *item)
2169 xfs_inode_log_format_t *in_f;
2170 xfs_mount_t *mp = log->l_mp;
2171 xfs_buf_t *bp;
2172 xfs_dinode_t *dip;
2173 int len;
2174 xfs_caddr_t src;
2175 xfs_caddr_t dest;
2176 int error;
2177 int attr_index;
2178 uint fields;
2179 xfs_icdinode_t *dicp;
2180 int need_free = 0;
2182 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2183 in_f = item->ri_buf[0].i_addr;
2184 } else {
2185 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2186 need_free = 1;
2187 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2188 if (error)
2189 goto error;
2193 * Inode buffers can be freed, look out for it,
2194 * and do not replay the inode.
2196 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2197 in_f->ilf_len, 0)) {
2198 error = 0;
2199 trace_xfs_log_recover_inode_cancel(log, in_f);
2200 goto error;
2202 trace_xfs_log_recover_inode_recover(log, in_f);
2204 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2205 XBF_LOCK);
2206 if (XFS_BUF_ISERROR(bp)) {
2207 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2208 bp, in_f->ilf_blkno);
2209 error = XFS_BUF_GETERROR(bp);
2210 xfs_buf_relse(bp);
2211 goto error;
2213 error = 0;
2214 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2215 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2218 * Make sure the place we're flushing out to really looks
2219 * like an inode!
2221 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2222 xfs_buf_relse(bp);
2223 xfs_fs_cmn_err(CE_ALERT, mp,
2224 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2225 dip, bp, in_f->ilf_ino);
2226 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2227 XFS_ERRLEVEL_LOW, mp);
2228 error = EFSCORRUPTED;
2229 goto error;
2231 dicp = item->ri_buf[1].i_addr;
2232 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2233 xfs_buf_relse(bp);
2234 xfs_fs_cmn_err(CE_ALERT, mp,
2235 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2236 item, in_f->ilf_ino);
2237 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2238 XFS_ERRLEVEL_LOW, mp);
2239 error = EFSCORRUPTED;
2240 goto error;
2243 /* Skip replay when the on disk inode is newer than the log one */
2244 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2246 * Deal with the wrap case, DI_MAX_FLUSH is less
2247 * than smaller numbers
2249 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2250 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2251 /* do nothing */
2252 } else {
2253 xfs_buf_relse(bp);
2254 trace_xfs_log_recover_inode_skip(log, in_f);
2255 error = 0;
2256 goto error;
2259 /* Take the opportunity to reset the flush iteration count */
2260 dicp->di_flushiter = 0;
2262 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2263 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2264 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2265 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2266 XFS_ERRLEVEL_LOW, mp, dicp);
2267 xfs_buf_relse(bp);
2268 xfs_fs_cmn_err(CE_ALERT, mp,
2269 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2270 item, dip, bp, in_f->ilf_ino);
2271 error = EFSCORRUPTED;
2272 goto error;
2274 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2275 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2276 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2277 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2278 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2279 XFS_ERRLEVEL_LOW, mp, dicp);
2280 xfs_buf_relse(bp);
2281 xfs_fs_cmn_err(CE_ALERT, mp,
2282 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2283 item, dip, bp, in_f->ilf_ino);
2284 error = EFSCORRUPTED;
2285 goto error;
2288 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2289 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2290 XFS_ERRLEVEL_LOW, mp, dicp);
2291 xfs_buf_relse(bp);
2292 xfs_fs_cmn_err(CE_ALERT, mp,
2293 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2294 item, dip, bp, in_f->ilf_ino,
2295 dicp->di_nextents + dicp->di_anextents,
2296 dicp->di_nblocks);
2297 error = EFSCORRUPTED;
2298 goto error;
2300 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2301 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2302 XFS_ERRLEVEL_LOW, mp, dicp);
2303 xfs_buf_relse(bp);
2304 xfs_fs_cmn_err(CE_ALERT, mp,
2305 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2306 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2307 error = EFSCORRUPTED;
2308 goto error;
2310 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2311 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2312 XFS_ERRLEVEL_LOW, mp, dicp);
2313 xfs_buf_relse(bp);
2314 xfs_fs_cmn_err(CE_ALERT, mp,
2315 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2316 item->ri_buf[1].i_len, item);
2317 error = EFSCORRUPTED;
2318 goto error;
2321 /* The core is in in-core format */
2322 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2324 /* the rest is in on-disk format */
2325 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2326 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2327 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2328 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2331 fields = in_f->ilf_fields;
2332 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2333 case XFS_ILOG_DEV:
2334 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2335 break;
2336 case XFS_ILOG_UUID:
2337 memcpy(XFS_DFORK_DPTR(dip),
2338 &in_f->ilf_u.ilfu_uuid,
2339 sizeof(uuid_t));
2340 break;
2343 if (in_f->ilf_size == 2)
2344 goto write_inode_buffer;
2345 len = item->ri_buf[2].i_len;
2346 src = item->ri_buf[2].i_addr;
2347 ASSERT(in_f->ilf_size <= 4);
2348 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2349 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2350 (len == in_f->ilf_dsize));
2352 switch (fields & XFS_ILOG_DFORK) {
2353 case XFS_ILOG_DDATA:
2354 case XFS_ILOG_DEXT:
2355 memcpy(XFS_DFORK_DPTR(dip), src, len);
2356 break;
2358 case XFS_ILOG_DBROOT:
2359 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2360 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2361 XFS_DFORK_DSIZE(dip, mp));
2362 break;
2364 default:
2366 * There are no data fork flags set.
2368 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2369 break;
2373 * If we logged any attribute data, recover it. There may or
2374 * may not have been any other non-core data logged in this
2375 * transaction.
2377 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2378 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2379 attr_index = 3;
2380 } else {
2381 attr_index = 2;
2383 len = item->ri_buf[attr_index].i_len;
2384 src = item->ri_buf[attr_index].i_addr;
2385 ASSERT(len == in_f->ilf_asize);
2387 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2388 case XFS_ILOG_ADATA:
2389 case XFS_ILOG_AEXT:
2390 dest = XFS_DFORK_APTR(dip);
2391 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2392 memcpy(dest, src, len);
2393 break;
2395 case XFS_ILOG_ABROOT:
2396 dest = XFS_DFORK_APTR(dip);
2397 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2398 len, (xfs_bmdr_block_t*)dest,
2399 XFS_DFORK_ASIZE(dip, mp));
2400 break;
2402 default:
2403 xlog_warn("XFS: xlog_recover_inode_pass2: Invalid flag");
2404 ASSERT(0);
2405 xfs_buf_relse(bp);
2406 error = EIO;
2407 goto error;
2411 write_inode_buffer:
2412 ASSERT(bp->b_target->bt_mount == mp);
2413 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2414 xfs_bdwrite(mp, bp);
2415 error:
2416 if (need_free)
2417 kmem_free(in_f);
2418 return XFS_ERROR(error);
2422 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2423 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2424 * of that type.
2426 STATIC int
2427 xlog_recover_quotaoff_pass1(
2428 xlog_t *log,
2429 xlog_recover_item_t *item)
2431 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2432 ASSERT(qoff_f);
2435 * The logitem format's flag tells us if this was user quotaoff,
2436 * group/project quotaoff or both.
2438 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2439 log->l_quotaoffs_flag |= XFS_DQ_USER;
2440 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2441 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2442 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2443 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2445 return (0);
2449 * Recover a dquot record
2451 STATIC int
2452 xlog_recover_dquot_pass2(
2453 xlog_t *log,
2454 xlog_recover_item_t *item)
2456 xfs_mount_t *mp = log->l_mp;
2457 xfs_buf_t *bp;
2458 struct xfs_disk_dquot *ddq, *recddq;
2459 int error;
2460 xfs_dq_logformat_t *dq_f;
2461 uint type;
2465 * Filesystems are required to send in quota flags at mount time.
2467 if (mp->m_qflags == 0)
2468 return (0);
2470 recddq = item->ri_buf[1].i_addr;
2471 if (recddq == NULL) {
2472 cmn_err(CE_ALERT,
2473 "XFS: NULL dquot in %s.", __func__);
2474 return XFS_ERROR(EIO);
2476 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2477 cmn_err(CE_ALERT,
2478 "XFS: dquot too small (%d) in %s.",
2479 item->ri_buf[1].i_len, __func__);
2480 return XFS_ERROR(EIO);
2484 * This type of quotas was turned off, so ignore this record.
2486 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2487 ASSERT(type);
2488 if (log->l_quotaoffs_flag & type)
2489 return (0);
2492 * At this point we know that quota was _not_ turned off.
2493 * Since the mount flags are not indicating to us otherwise, this
2494 * must mean that quota is on, and the dquot needs to be replayed.
2495 * Remember that we may not have fully recovered the superblock yet,
2496 * so we can't do the usual trick of looking at the SB quota bits.
2498 * The other possibility, of course, is that the quota subsystem was
2499 * removed since the last mount - ENOSYS.
2501 dq_f = item->ri_buf[0].i_addr;
2502 ASSERT(dq_f);
2503 if ((error = xfs_qm_dqcheck(recddq,
2504 dq_f->qlf_id,
2505 0, XFS_QMOPT_DOWARN,
2506 "xlog_recover_dquot_pass2 (log copy)"))) {
2507 return XFS_ERROR(EIO);
2509 ASSERT(dq_f->qlf_len == 1);
2511 error = xfs_read_buf(mp, mp->m_ddev_targp,
2512 dq_f->qlf_blkno,
2513 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2514 0, &bp);
2515 if (error) {
2516 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2517 bp, dq_f->qlf_blkno);
2518 return error;
2520 ASSERT(bp);
2521 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2524 * At least the magic num portion should be on disk because this
2525 * was among a chunk of dquots created earlier, and we did some
2526 * minimal initialization then.
2528 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2529 "xlog_recover_dquot_pass2")) {
2530 xfs_buf_relse(bp);
2531 return XFS_ERROR(EIO);
2534 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2536 ASSERT(dq_f->qlf_size == 2);
2537 ASSERT(bp->b_target->bt_mount == mp);
2538 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2539 xfs_bdwrite(mp, bp);
2541 return (0);
2545 * This routine is called to create an in-core extent free intent
2546 * item from the efi format structure which was logged on disk.
2547 * It allocates an in-core efi, copies the extents from the format
2548 * structure into it, and adds the efi to the AIL with the given
2549 * LSN.
2551 STATIC int
2552 xlog_recover_efi_pass2(
2553 xlog_t *log,
2554 xlog_recover_item_t *item,
2555 xfs_lsn_t lsn)
2557 int error;
2558 xfs_mount_t *mp = log->l_mp;
2559 xfs_efi_log_item_t *efip;
2560 xfs_efi_log_format_t *efi_formatp;
2562 efi_formatp = item->ri_buf[0].i_addr;
2564 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2565 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2566 &(efip->efi_format)))) {
2567 xfs_efi_item_free(efip);
2568 return error;
2570 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2572 spin_lock(&log->l_ailp->xa_lock);
2574 * xfs_trans_ail_update() drops the AIL lock.
2576 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2577 return 0;
2582 * This routine is called when an efd format structure is found in
2583 * a committed transaction in the log. It's purpose is to cancel
2584 * the corresponding efi if it was still in the log. To do this
2585 * it searches the AIL for the efi with an id equal to that in the
2586 * efd format structure. If we find it, we remove the efi from the
2587 * AIL and free it.
2589 STATIC int
2590 xlog_recover_efd_pass2(
2591 xlog_t *log,
2592 xlog_recover_item_t *item)
2594 xfs_efd_log_format_t *efd_formatp;
2595 xfs_efi_log_item_t *efip = NULL;
2596 xfs_log_item_t *lip;
2597 __uint64_t efi_id;
2598 struct xfs_ail_cursor cur;
2599 struct xfs_ail *ailp = log->l_ailp;
2601 efd_formatp = item->ri_buf[0].i_addr;
2602 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2603 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2604 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2605 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2606 efi_id = efd_formatp->efd_efi_id;
2609 * Search for the efi with the id in the efd format structure
2610 * in the AIL.
2612 spin_lock(&ailp->xa_lock);
2613 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2614 while (lip != NULL) {
2615 if (lip->li_type == XFS_LI_EFI) {
2616 efip = (xfs_efi_log_item_t *)lip;
2617 if (efip->efi_format.efi_id == efi_id) {
2619 * xfs_trans_ail_delete() drops the
2620 * AIL lock.
2622 xfs_trans_ail_delete(ailp, lip);
2623 xfs_efi_item_free(efip);
2624 spin_lock(&ailp->xa_lock);
2625 break;
2628 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2630 xfs_trans_ail_cursor_done(ailp, &cur);
2631 spin_unlock(&ailp->xa_lock);
2633 return 0;
2637 * Free up any resources allocated by the transaction
2639 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2641 STATIC void
2642 xlog_recover_free_trans(
2643 struct xlog_recover *trans)
2645 xlog_recover_item_t *item, *n;
2646 int i;
2648 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2649 /* Free the regions in the item. */
2650 list_del(&item->ri_list);
2651 for (i = 0; i < item->ri_cnt; i++)
2652 kmem_free(item->ri_buf[i].i_addr);
2653 /* Free the item itself */
2654 kmem_free(item->ri_buf);
2655 kmem_free(item);
2657 /* Free the transaction recover structure */
2658 kmem_free(trans);
2661 STATIC int
2662 xlog_recover_commit_pass1(
2663 struct log *log,
2664 struct xlog_recover *trans,
2665 xlog_recover_item_t *item)
2667 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2669 switch (ITEM_TYPE(item)) {
2670 case XFS_LI_BUF:
2671 return xlog_recover_buffer_pass1(log, item);
2672 case XFS_LI_QUOTAOFF:
2673 return xlog_recover_quotaoff_pass1(log, item);
2674 case XFS_LI_INODE:
2675 case XFS_LI_EFI:
2676 case XFS_LI_EFD:
2677 case XFS_LI_DQUOT:
2678 /* nothing to do in pass 1 */
2679 return 0;
2680 default:
2681 xlog_warn(
2682 "XFS: invalid item type (%d) xlog_recover_commit_pass1",
2683 ITEM_TYPE(item));
2684 ASSERT(0);
2685 return XFS_ERROR(EIO);
2689 STATIC int
2690 xlog_recover_commit_pass2(
2691 struct log *log,
2692 struct xlog_recover *trans,
2693 xlog_recover_item_t *item)
2695 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2697 switch (ITEM_TYPE(item)) {
2698 case XFS_LI_BUF:
2699 return xlog_recover_buffer_pass2(log, item);
2700 case XFS_LI_INODE:
2701 return xlog_recover_inode_pass2(log, item);
2702 case XFS_LI_EFI:
2703 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2704 case XFS_LI_EFD:
2705 return xlog_recover_efd_pass2(log, item);
2706 case XFS_LI_DQUOT:
2707 return xlog_recover_dquot_pass2(log, item);
2708 case XFS_LI_QUOTAOFF:
2709 /* nothing to do in pass2 */
2710 return 0;
2711 default:
2712 xlog_warn(
2713 "XFS: invalid item type (%d) xlog_recover_commit_pass2",
2714 ITEM_TYPE(item));
2715 ASSERT(0);
2716 return XFS_ERROR(EIO);
2721 * Perform the transaction.
2723 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2724 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2726 STATIC int
2727 xlog_recover_commit_trans(
2728 struct log *log,
2729 struct xlog_recover *trans,
2730 int pass)
2732 int error = 0;
2733 xlog_recover_item_t *item;
2735 hlist_del(&trans->r_list);
2737 error = xlog_recover_reorder_trans(log, trans, pass);
2738 if (error)
2739 return error;
2741 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2742 if (pass == XLOG_RECOVER_PASS1)
2743 error = xlog_recover_commit_pass1(log, trans, item);
2744 else
2745 error = xlog_recover_commit_pass2(log, trans, item);
2746 if (error)
2747 return error;
2750 xlog_recover_free_trans(trans);
2751 return 0;
2754 STATIC int
2755 xlog_recover_unmount_trans(
2756 xlog_recover_t *trans)
2758 /* Do nothing now */
2759 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2760 return 0;
2764 * There are two valid states of the r_state field. 0 indicates that the
2765 * transaction structure is in a normal state. We have either seen the
2766 * start of the transaction or the last operation we added was not a partial
2767 * operation. If the last operation we added to the transaction was a
2768 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2770 * NOTE: skip LRs with 0 data length.
2772 STATIC int
2773 xlog_recover_process_data(
2774 xlog_t *log,
2775 struct hlist_head rhash[],
2776 xlog_rec_header_t *rhead,
2777 xfs_caddr_t dp,
2778 int pass)
2780 xfs_caddr_t lp;
2781 int num_logops;
2782 xlog_op_header_t *ohead;
2783 xlog_recover_t *trans;
2784 xlog_tid_t tid;
2785 int error;
2786 unsigned long hash;
2787 uint flags;
2789 lp = dp + be32_to_cpu(rhead->h_len);
2790 num_logops = be32_to_cpu(rhead->h_num_logops);
2792 /* check the log format matches our own - else we can't recover */
2793 if (xlog_header_check_recover(log->l_mp, rhead))
2794 return (XFS_ERROR(EIO));
2796 while ((dp < lp) && num_logops) {
2797 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2798 ohead = (xlog_op_header_t *)dp;
2799 dp += sizeof(xlog_op_header_t);
2800 if (ohead->oh_clientid != XFS_TRANSACTION &&
2801 ohead->oh_clientid != XFS_LOG) {
2802 xlog_warn(
2803 "XFS: xlog_recover_process_data: bad clientid");
2804 ASSERT(0);
2805 return (XFS_ERROR(EIO));
2807 tid = be32_to_cpu(ohead->oh_tid);
2808 hash = XLOG_RHASH(tid);
2809 trans = xlog_recover_find_tid(&rhash[hash], tid);
2810 if (trans == NULL) { /* not found; add new tid */
2811 if (ohead->oh_flags & XLOG_START_TRANS)
2812 xlog_recover_new_tid(&rhash[hash], tid,
2813 be64_to_cpu(rhead->h_lsn));
2814 } else {
2815 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2816 xlog_warn(
2817 "XFS: xlog_recover_process_data: bad length");
2818 WARN_ON(1);
2819 return (XFS_ERROR(EIO));
2821 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2822 if (flags & XLOG_WAS_CONT_TRANS)
2823 flags &= ~XLOG_CONTINUE_TRANS;
2824 switch (flags) {
2825 case XLOG_COMMIT_TRANS:
2826 error = xlog_recover_commit_trans(log,
2827 trans, pass);
2828 break;
2829 case XLOG_UNMOUNT_TRANS:
2830 error = xlog_recover_unmount_trans(trans);
2831 break;
2832 case XLOG_WAS_CONT_TRANS:
2833 error = xlog_recover_add_to_cont_trans(log,
2834 trans, dp,
2835 be32_to_cpu(ohead->oh_len));
2836 break;
2837 case XLOG_START_TRANS:
2838 xlog_warn(
2839 "XFS: xlog_recover_process_data: bad transaction");
2840 ASSERT(0);
2841 error = XFS_ERROR(EIO);
2842 break;
2843 case 0:
2844 case XLOG_CONTINUE_TRANS:
2845 error = xlog_recover_add_to_trans(log, trans,
2846 dp, be32_to_cpu(ohead->oh_len));
2847 break;
2848 default:
2849 xlog_warn(
2850 "XFS: xlog_recover_process_data: bad flag");
2851 ASSERT(0);
2852 error = XFS_ERROR(EIO);
2853 break;
2855 if (error)
2856 return error;
2858 dp += be32_to_cpu(ohead->oh_len);
2859 num_logops--;
2861 return 0;
2865 * Process an extent free intent item that was recovered from
2866 * the log. We need to free the extents that it describes.
2868 STATIC int
2869 xlog_recover_process_efi(
2870 xfs_mount_t *mp,
2871 xfs_efi_log_item_t *efip)
2873 xfs_efd_log_item_t *efdp;
2874 xfs_trans_t *tp;
2875 int i;
2876 int error = 0;
2877 xfs_extent_t *extp;
2878 xfs_fsblock_t startblock_fsb;
2880 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2883 * First check the validity of the extents described by the
2884 * EFI. If any are bad, then assume that all are bad and
2885 * just toss the EFI.
2887 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2888 extp = &(efip->efi_format.efi_extents[i]);
2889 startblock_fsb = XFS_BB_TO_FSB(mp,
2890 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2891 if ((startblock_fsb == 0) ||
2892 (extp->ext_len == 0) ||
2893 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2894 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2896 * This will pull the EFI from the AIL and
2897 * free the memory associated with it.
2899 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2900 return XFS_ERROR(EIO);
2904 tp = xfs_trans_alloc(mp, 0);
2905 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2906 if (error)
2907 goto abort_error;
2908 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2910 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2911 extp = &(efip->efi_format.efi_extents[i]);
2912 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2913 if (error)
2914 goto abort_error;
2915 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2916 extp->ext_len);
2919 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2920 error = xfs_trans_commit(tp, 0);
2921 return error;
2923 abort_error:
2924 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2925 return error;
2929 * When this is called, all of the EFIs which did not have
2930 * corresponding EFDs should be in the AIL. What we do now
2931 * is free the extents associated with each one.
2933 * Since we process the EFIs in normal transactions, they
2934 * will be removed at some point after the commit. This prevents
2935 * us from just walking down the list processing each one.
2936 * We'll use a flag in the EFI to skip those that we've already
2937 * processed and use the AIL iteration mechanism's generation
2938 * count to try to speed this up at least a bit.
2940 * When we start, we know that the EFIs are the only things in
2941 * the AIL. As we process them, however, other items are added
2942 * to the AIL. Since everything added to the AIL must come after
2943 * everything already in the AIL, we stop processing as soon as
2944 * we see something other than an EFI in the AIL.
2946 STATIC int
2947 xlog_recover_process_efis(
2948 xlog_t *log)
2950 xfs_log_item_t *lip;
2951 xfs_efi_log_item_t *efip;
2952 int error = 0;
2953 struct xfs_ail_cursor cur;
2954 struct xfs_ail *ailp;
2956 ailp = log->l_ailp;
2957 spin_lock(&ailp->xa_lock);
2958 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2959 while (lip != NULL) {
2961 * We're done when we see something other than an EFI.
2962 * There should be no EFIs left in the AIL now.
2964 if (lip->li_type != XFS_LI_EFI) {
2965 #ifdef DEBUG
2966 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2967 ASSERT(lip->li_type != XFS_LI_EFI);
2968 #endif
2969 break;
2973 * Skip EFIs that we've already processed.
2975 efip = (xfs_efi_log_item_t *)lip;
2976 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
2977 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2978 continue;
2981 spin_unlock(&ailp->xa_lock);
2982 error = xlog_recover_process_efi(log->l_mp, efip);
2983 spin_lock(&ailp->xa_lock);
2984 if (error)
2985 goto out;
2986 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2988 out:
2989 xfs_trans_ail_cursor_done(ailp, &cur);
2990 spin_unlock(&ailp->xa_lock);
2991 return error;
2995 * This routine performs a transaction to null out a bad inode pointer
2996 * in an agi unlinked inode hash bucket.
2998 STATIC void
2999 xlog_recover_clear_agi_bucket(
3000 xfs_mount_t *mp,
3001 xfs_agnumber_t agno,
3002 int bucket)
3004 xfs_trans_t *tp;
3005 xfs_agi_t *agi;
3006 xfs_buf_t *agibp;
3007 int offset;
3008 int error;
3010 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3011 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3012 0, 0, 0);
3013 if (error)
3014 goto out_abort;
3016 error = xfs_read_agi(mp, tp, agno, &agibp);
3017 if (error)
3018 goto out_abort;
3020 agi = XFS_BUF_TO_AGI(agibp);
3021 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3022 offset = offsetof(xfs_agi_t, agi_unlinked) +
3023 (sizeof(xfs_agino_t) * bucket);
3024 xfs_trans_log_buf(tp, agibp, offset,
3025 (offset + sizeof(xfs_agino_t) - 1));
3027 error = xfs_trans_commit(tp, 0);
3028 if (error)
3029 goto out_error;
3030 return;
3032 out_abort:
3033 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3034 out_error:
3035 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3036 "failed to clear agi %d. Continuing.", agno);
3037 return;
3040 STATIC xfs_agino_t
3041 xlog_recover_process_one_iunlink(
3042 struct xfs_mount *mp,
3043 xfs_agnumber_t agno,
3044 xfs_agino_t agino,
3045 int bucket)
3047 struct xfs_buf *ibp;
3048 struct xfs_dinode *dip;
3049 struct xfs_inode *ip;
3050 xfs_ino_t ino;
3051 int error;
3053 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3054 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3055 if (error)
3056 goto fail;
3059 * Get the on disk inode to find the next inode in the bucket.
3061 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3062 if (error)
3063 goto fail_iput;
3065 ASSERT(ip->i_d.di_nlink == 0);
3066 ASSERT(ip->i_d.di_mode != 0);
3068 /* setup for the next pass */
3069 agino = be32_to_cpu(dip->di_next_unlinked);
3070 xfs_buf_relse(ibp);
3073 * Prevent any DMAPI event from being sent when the reference on
3074 * the inode is dropped.
3076 ip->i_d.di_dmevmask = 0;
3078 IRELE(ip);
3079 return agino;
3081 fail_iput:
3082 IRELE(ip);
3083 fail:
3085 * We can't read in the inode this bucket points to, or this inode
3086 * is messed up. Just ditch this bucket of inodes. We will lose
3087 * some inodes and space, but at least we won't hang.
3089 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3090 * clear the inode pointer in the bucket.
3092 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3093 return NULLAGINO;
3097 * xlog_iunlink_recover
3099 * This is called during recovery to process any inodes which
3100 * we unlinked but not freed when the system crashed. These
3101 * inodes will be on the lists in the AGI blocks. What we do
3102 * here is scan all the AGIs and fully truncate and free any
3103 * inodes found on the lists. Each inode is removed from the
3104 * lists when it has been fully truncated and is freed. The
3105 * freeing of the inode and its removal from the list must be
3106 * atomic.
3108 STATIC void
3109 xlog_recover_process_iunlinks(
3110 xlog_t *log)
3112 xfs_mount_t *mp;
3113 xfs_agnumber_t agno;
3114 xfs_agi_t *agi;
3115 xfs_buf_t *agibp;
3116 xfs_agino_t agino;
3117 int bucket;
3118 int error;
3119 uint mp_dmevmask;
3121 mp = log->l_mp;
3124 * Prevent any DMAPI event from being sent while in this function.
3126 mp_dmevmask = mp->m_dmevmask;
3127 mp->m_dmevmask = 0;
3129 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3131 * Find the agi for this ag.
3133 error = xfs_read_agi(mp, NULL, agno, &agibp);
3134 if (error) {
3136 * AGI is b0rked. Don't process it.
3138 * We should probably mark the filesystem as corrupt
3139 * after we've recovered all the ag's we can....
3141 continue;
3143 agi = XFS_BUF_TO_AGI(agibp);
3145 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3146 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3147 while (agino != NULLAGINO) {
3149 * Release the agi buffer so that it can
3150 * be acquired in the normal course of the
3151 * transaction to truncate and free the inode.
3153 xfs_buf_relse(agibp);
3155 agino = xlog_recover_process_one_iunlink(mp,
3156 agno, agino, bucket);
3159 * Reacquire the agibuffer and continue around
3160 * the loop. This should never fail as we know
3161 * the buffer was good earlier on.
3163 error = xfs_read_agi(mp, NULL, agno, &agibp);
3164 ASSERT(error == 0);
3165 agi = XFS_BUF_TO_AGI(agibp);
3170 * Release the buffer for the current agi so we can
3171 * go on to the next one.
3173 xfs_buf_relse(agibp);
3176 mp->m_dmevmask = mp_dmevmask;
3180 #ifdef DEBUG
3181 STATIC void
3182 xlog_pack_data_checksum(
3183 xlog_t *log,
3184 xlog_in_core_t *iclog,
3185 int size)
3187 int i;
3188 __be32 *up;
3189 uint chksum = 0;
3191 up = (__be32 *)iclog->ic_datap;
3192 /* divide length by 4 to get # words */
3193 for (i = 0; i < (size >> 2); i++) {
3194 chksum ^= be32_to_cpu(*up);
3195 up++;
3197 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3199 #else
3200 #define xlog_pack_data_checksum(log, iclog, size)
3201 #endif
3204 * Stamp cycle number in every block
3206 void
3207 xlog_pack_data(
3208 xlog_t *log,
3209 xlog_in_core_t *iclog,
3210 int roundoff)
3212 int i, j, k;
3213 int size = iclog->ic_offset + roundoff;
3214 __be32 cycle_lsn;
3215 xfs_caddr_t dp;
3217 xlog_pack_data_checksum(log, iclog, size);
3219 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3221 dp = iclog->ic_datap;
3222 for (i = 0; i < BTOBB(size) &&
3223 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3224 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3225 *(__be32 *)dp = cycle_lsn;
3226 dp += BBSIZE;
3229 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3230 xlog_in_core_2_t *xhdr = iclog->ic_data;
3232 for ( ; i < BTOBB(size); i++) {
3233 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3234 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3235 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3236 *(__be32 *)dp = cycle_lsn;
3237 dp += BBSIZE;
3240 for (i = 1; i < log->l_iclog_heads; i++) {
3241 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3246 STATIC void
3247 xlog_unpack_data(
3248 xlog_rec_header_t *rhead,
3249 xfs_caddr_t dp,
3250 xlog_t *log)
3252 int i, j, k;
3254 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3255 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3256 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3257 dp += BBSIZE;
3260 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3261 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3262 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3263 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3264 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3265 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3266 dp += BBSIZE;
3271 STATIC int
3272 xlog_valid_rec_header(
3273 xlog_t *log,
3274 xlog_rec_header_t *rhead,
3275 xfs_daddr_t blkno)
3277 int hlen;
3279 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3280 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3281 XFS_ERRLEVEL_LOW, log->l_mp);
3282 return XFS_ERROR(EFSCORRUPTED);
3284 if (unlikely(
3285 (!rhead->h_version ||
3286 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3287 xlog_warn("XFS: %s: unrecognised log version (%d).",
3288 __func__, be32_to_cpu(rhead->h_version));
3289 return XFS_ERROR(EIO);
3292 /* LR body must have data or it wouldn't have been written */
3293 hlen = be32_to_cpu(rhead->h_len);
3294 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3295 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3296 XFS_ERRLEVEL_LOW, log->l_mp);
3297 return XFS_ERROR(EFSCORRUPTED);
3299 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3300 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3301 XFS_ERRLEVEL_LOW, log->l_mp);
3302 return XFS_ERROR(EFSCORRUPTED);
3304 return 0;
3308 * Read the log from tail to head and process the log records found.
3309 * Handle the two cases where the tail and head are in the same cycle
3310 * and where the active portion of the log wraps around the end of
3311 * the physical log separately. The pass parameter is passed through
3312 * to the routines called to process the data and is not looked at
3313 * here.
3315 STATIC int
3316 xlog_do_recovery_pass(
3317 xlog_t *log,
3318 xfs_daddr_t head_blk,
3319 xfs_daddr_t tail_blk,
3320 int pass)
3322 xlog_rec_header_t *rhead;
3323 xfs_daddr_t blk_no;
3324 xfs_caddr_t offset;
3325 xfs_buf_t *hbp, *dbp;
3326 int error = 0, h_size;
3327 int bblks, split_bblks;
3328 int hblks, split_hblks, wrapped_hblks;
3329 struct hlist_head rhash[XLOG_RHASH_SIZE];
3331 ASSERT(head_blk != tail_blk);
3334 * Read the header of the tail block and get the iclog buffer size from
3335 * h_size. Use this to tell how many sectors make up the log header.
3337 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3339 * When using variable length iclogs, read first sector of
3340 * iclog header and extract the header size from it. Get a
3341 * new hbp that is the correct size.
3343 hbp = xlog_get_bp(log, 1);
3344 if (!hbp)
3345 return ENOMEM;
3347 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3348 if (error)
3349 goto bread_err1;
3351 rhead = (xlog_rec_header_t *)offset;
3352 error = xlog_valid_rec_header(log, rhead, tail_blk);
3353 if (error)
3354 goto bread_err1;
3355 h_size = be32_to_cpu(rhead->h_size);
3356 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3357 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3358 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3359 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3360 hblks++;
3361 xlog_put_bp(hbp);
3362 hbp = xlog_get_bp(log, hblks);
3363 } else {
3364 hblks = 1;
3366 } else {
3367 ASSERT(log->l_sectBBsize == 1);
3368 hblks = 1;
3369 hbp = xlog_get_bp(log, 1);
3370 h_size = XLOG_BIG_RECORD_BSIZE;
3373 if (!hbp)
3374 return ENOMEM;
3375 dbp = xlog_get_bp(log, BTOBB(h_size));
3376 if (!dbp) {
3377 xlog_put_bp(hbp);
3378 return ENOMEM;
3381 memset(rhash, 0, sizeof(rhash));
3382 if (tail_blk <= head_blk) {
3383 for (blk_no = tail_blk; blk_no < head_blk; ) {
3384 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3385 if (error)
3386 goto bread_err2;
3388 rhead = (xlog_rec_header_t *)offset;
3389 error = xlog_valid_rec_header(log, rhead, blk_no);
3390 if (error)
3391 goto bread_err2;
3393 /* blocks in data section */
3394 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3395 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3396 &offset);
3397 if (error)
3398 goto bread_err2;
3400 xlog_unpack_data(rhead, offset, log);
3401 if ((error = xlog_recover_process_data(log,
3402 rhash, rhead, offset, pass)))
3403 goto bread_err2;
3404 blk_no += bblks + hblks;
3406 } else {
3408 * Perform recovery around the end of the physical log.
3409 * When the head is not on the same cycle number as the tail,
3410 * we can't do a sequential recovery as above.
3412 blk_no = tail_blk;
3413 while (blk_no < log->l_logBBsize) {
3415 * Check for header wrapping around physical end-of-log
3417 offset = XFS_BUF_PTR(hbp);
3418 split_hblks = 0;
3419 wrapped_hblks = 0;
3420 if (blk_no + hblks <= log->l_logBBsize) {
3421 /* Read header in one read */
3422 error = xlog_bread(log, blk_no, hblks, hbp,
3423 &offset);
3424 if (error)
3425 goto bread_err2;
3426 } else {
3427 /* This LR is split across physical log end */
3428 if (blk_no != log->l_logBBsize) {
3429 /* some data before physical log end */
3430 ASSERT(blk_no <= INT_MAX);
3431 split_hblks = log->l_logBBsize - (int)blk_no;
3432 ASSERT(split_hblks > 0);
3433 error = xlog_bread(log, blk_no,
3434 split_hblks, hbp,
3435 &offset);
3436 if (error)
3437 goto bread_err2;
3441 * Note: this black magic still works with
3442 * large sector sizes (non-512) only because:
3443 * - we increased the buffer size originally
3444 * by 1 sector giving us enough extra space
3445 * for the second read;
3446 * - the log start is guaranteed to be sector
3447 * aligned;
3448 * - we read the log end (LR header start)
3449 * _first_, then the log start (LR header end)
3450 * - order is important.
3452 wrapped_hblks = hblks - split_hblks;
3453 error = XFS_BUF_SET_PTR(hbp,
3454 offset + BBTOB(split_hblks),
3455 BBTOB(hblks - split_hblks));
3456 if (error)
3457 goto bread_err2;
3459 error = xlog_bread_noalign(log, 0,
3460 wrapped_hblks, hbp);
3461 if (error)
3462 goto bread_err2;
3464 error = XFS_BUF_SET_PTR(hbp, offset,
3465 BBTOB(hblks));
3466 if (error)
3467 goto bread_err2;
3469 rhead = (xlog_rec_header_t *)offset;
3470 error = xlog_valid_rec_header(log, rhead,
3471 split_hblks ? blk_no : 0);
3472 if (error)
3473 goto bread_err2;
3475 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3476 blk_no += hblks;
3478 /* Read in data for log record */
3479 if (blk_no + bblks <= log->l_logBBsize) {
3480 error = xlog_bread(log, blk_no, bblks, dbp,
3481 &offset);
3482 if (error)
3483 goto bread_err2;
3484 } else {
3485 /* This log record is split across the
3486 * physical end of log */
3487 offset = XFS_BUF_PTR(dbp);
3488 split_bblks = 0;
3489 if (blk_no != log->l_logBBsize) {
3490 /* some data is before the physical
3491 * end of log */
3492 ASSERT(!wrapped_hblks);
3493 ASSERT(blk_no <= INT_MAX);
3494 split_bblks =
3495 log->l_logBBsize - (int)blk_no;
3496 ASSERT(split_bblks > 0);
3497 error = xlog_bread(log, blk_no,
3498 split_bblks, dbp,
3499 &offset);
3500 if (error)
3501 goto bread_err2;
3505 * Note: this black magic still works with
3506 * large sector sizes (non-512) only because:
3507 * - we increased the buffer size originally
3508 * by 1 sector giving us enough extra space
3509 * for the second read;
3510 * - the log start is guaranteed to be sector
3511 * aligned;
3512 * - we read the log end (LR header start)
3513 * _first_, then the log start (LR header end)
3514 * - order is important.
3516 error = XFS_BUF_SET_PTR(dbp,
3517 offset + BBTOB(split_bblks),
3518 BBTOB(bblks - split_bblks));
3519 if (error)
3520 goto bread_err2;
3522 error = xlog_bread_noalign(log, wrapped_hblks,
3523 bblks - split_bblks,
3524 dbp);
3525 if (error)
3526 goto bread_err2;
3528 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3529 if (error)
3530 goto bread_err2;
3532 xlog_unpack_data(rhead, offset, log);
3533 if ((error = xlog_recover_process_data(log, rhash,
3534 rhead, offset, pass)))
3535 goto bread_err2;
3536 blk_no += bblks;
3539 ASSERT(blk_no >= log->l_logBBsize);
3540 blk_no -= log->l_logBBsize;
3542 /* read first part of physical log */
3543 while (blk_no < head_blk) {
3544 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3545 if (error)
3546 goto bread_err2;
3548 rhead = (xlog_rec_header_t *)offset;
3549 error = xlog_valid_rec_header(log, rhead, blk_no);
3550 if (error)
3551 goto bread_err2;
3553 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3554 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3555 &offset);
3556 if (error)
3557 goto bread_err2;
3559 xlog_unpack_data(rhead, offset, log);
3560 if ((error = xlog_recover_process_data(log, rhash,
3561 rhead, offset, pass)))
3562 goto bread_err2;
3563 blk_no += bblks + hblks;
3567 bread_err2:
3568 xlog_put_bp(dbp);
3569 bread_err1:
3570 xlog_put_bp(hbp);
3571 return error;
3575 * Do the recovery of the log. We actually do this in two phases.
3576 * The two passes are necessary in order to implement the function
3577 * of cancelling a record written into the log. The first pass
3578 * determines those things which have been cancelled, and the
3579 * second pass replays log items normally except for those which
3580 * have been cancelled. The handling of the replay and cancellations
3581 * takes place in the log item type specific routines.
3583 * The table of items which have cancel records in the log is allocated
3584 * and freed at this level, since only here do we know when all of
3585 * the log recovery has been completed.
3587 STATIC int
3588 xlog_do_log_recovery(
3589 xlog_t *log,
3590 xfs_daddr_t head_blk,
3591 xfs_daddr_t tail_blk)
3593 int error, i;
3595 ASSERT(head_blk != tail_blk);
3598 * First do a pass to find all of the cancelled buf log items.
3599 * Store them in the buf_cancel_table for use in the second pass.
3601 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3602 sizeof(struct list_head),
3603 KM_SLEEP);
3604 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3605 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3607 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3608 XLOG_RECOVER_PASS1);
3609 if (error != 0) {
3610 kmem_free(log->l_buf_cancel_table);
3611 log->l_buf_cancel_table = NULL;
3612 return error;
3615 * Then do a second pass to actually recover the items in the log.
3616 * When it is complete free the table of buf cancel items.
3618 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3619 XLOG_RECOVER_PASS2);
3620 #ifdef DEBUG
3621 if (!error) {
3622 int i;
3624 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3625 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3627 #endif /* DEBUG */
3629 kmem_free(log->l_buf_cancel_table);
3630 log->l_buf_cancel_table = NULL;
3632 return error;
3636 * Do the actual recovery
3638 STATIC int
3639 xlog_do_recover(
3640 xlog_t *log,
3641 xfs_daddr_t head_blk,
3642 xfs_daddr_t tail_blk)
3644 int error;
3645 xfs_buf_t *bp;
3646 xfs_sb_t *sbp;
3649 * First replay the images in the log.
3651 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3652 if (error) {
3653 return error;
3656 XFS_bflush(log->l_mp->m_ddev_targp);
3659 * If IO errors happened during recovery, bail out.
3661 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3662 return (EIO);
3666 * We now update the tail_lsn since much of the recovery has completed
3667 * and there may be space available to use. If there were no extent
3668 * or iunlinks, we can free up the entire log and set the tail_lsn to
3669 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3670 * lsn of the last known good LR on disk. If there are extent frees
3671 * or iunlinks they will have some entries in the AIL; so we look at
3672 * the AIL to determine how to set the tail_lsn.
3674 xlog_assign_tail_lsn(log->l_mp);
3677 * Now that we've finished replaying all buffer and inode
3678 * updates, re-read in the superblock.
3680 bp = xfs_getsb(log->l_mp, 0);
3681 XFS_BUF_UNDONE(bp);
3682 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3683 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3684 XFS_BUF_READ(bp);
3685 XFS_BUF_UNASYNC(bp);
3686 xfsbdstrat(log->l_mp, bp);
3687 error = xfs_buf_iowait(bp);
3688 if (error) {
3689 xfs_ioerror_alert("xlog_do_recover",
3690 log->l_mp, bp, XFS_BUF_ADDR(bp));
3691 ASSERT(0);
3692 xfs_buf_relse(bp);
3693 return error;
3696 /* Convert superblock from on-disk format */
3697 sbp = &log->l_mp->m_sb;
3698 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3699 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3700 ASSERT(xfs_sb_good_version(sbp));
3701 xfs_buf_relse(bp);
3703 /* We've re-read the superblock so re-initialize per-cpu counters */
3704 xfs_icsb_reinit_counters(log->l_mp);
3706 xlog_recover_check_summary(log);
3708 /* Normal transactions can now occur */
3709 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3710 return 0;
3714 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3716 * Return error or zero.
3719 xlog_recover(
3720 xlog_t *log)
3722 xfs_daddr_t head_blk, tail_blk;
3723 int error;
3725 /* find the tail of the log */
3726 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3727 return error;
3729 if (tail_blk != head_blk) {
3730 /* There used to be a comment here:
3732 * disallow recovery on read-only mounts. note -- mount
3733 * checks for ENOSPC and turns it into an intelligent
3734 * error message.
3735 * ...but this is no longer true. Now, unless you specify
3736 * NORECOVERY (in which case this function would never be
3737 * called), we just go ahead and recover. We do this all
3738 * under the vfs layer, so we can get away with it unless
3739 * the device itself is read-only, in which case we fail.
3741 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3742 return error;
3745 cmn_err(CE_NOTE,
3746 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3747 log->l_mp->m_fsname, log->l_mp->m_logname ?
3748 log->l_mp->m_logname : "internal");
3750 error = xlog_do_recover(log, head_blk, tail_blk);
3751 log->l_flags |= XLOG_RECOVERY_NEEDED;
3753 return error;
3757 * In the first part of recovery we replay inodes and buffers and build
3758 * up the list of extent free items which need to be processed. Here
3759 * we process the extent free items and clean up the on disk unlinked
3760 * inode lists. This is separated from the first part of recovery so
3761 * that the root and real-time bitmap inodes can be read in from disk in
3762 * between the two stages. This is necessary so that we can free space
3763 * in the real-time portion of the file system.
3766 xlog_recover_finish(
3767 xlog_t *log)
3770 * Now we're ready to do the transactions needed for the
3771 * rest of recovery. Start with completing all the extent
3772 * free intent records and then process the unlinked inode
3773 * lists. At this point, we essentially run in normal mode
3774 * except that we're still performing recovery actions
3775 * rather than accepting new requests.
3777 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3778 int error;
3779 error = xlog_recover_process_efis(log);
3780 if (error) {
3781 cmn_err(CE_ALERT,
3782 "Failed to recover EFIs on filesystem: %s",
3783 log->l_mp->m_fsname);
3784 return error;
3787 * Sync the log to get all the EFIs out of the AIL.
3788 * This isn't absolutely necessary, but it helps in
3789 * case the unlink transactions would have problems
3790 * pushing the EFIs out of the way.
3792 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3794 xlog_recover_process_iunlinks(log);
3796 xlog_recover_check_summary(log);
3798 cmn_err(CE_NOTE,
3799 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3800 log->l_mp->m_fsname, log->l_mp->m_logname ?
3801 log->l_mp->m_logname : "internal");
3802 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3803 } else {
3804 cmn_err(CE_DEBUG,
3805 "!Ending clean XFS mount for filesystem: %s\n",
3806 log->l_mp->m_fsname);
3808 return 0;
3812 #if defined(DEBUG)
3814 * Read all of the agf and agi counters and check that they
3815 * are consistent with the superblock counters.
3817 void
3818 xlog_recover_check_summary(
3819 xlog_t *log)
3821 xfs_mount_t *mp;
3822 xfs_agf_t *agfp;
3823 xfs_buf_t *agfbp;
3824 xfs_buf_t *agibp;
3825 xfs_agnumber_t agno;
3826 __uint64_t freeblks;
3827 __uint64_t itotal;
3828 __uint64_t ifree;
3829 int error;
3831 mp = log->l_mp;
3833 freeblks = 0LL;
3834 itotal = 0LL;
3835 ifree = 0LL;
3836 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3837 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3838 if (error) {
3839 xfs_fs_cmn_err(CE_ALERT, mp,
3840 "xlog_recover_check_summary(agf)"
3841 "agf read failed agno %d error %d",
3842 agno, error);
3843 } else {
3844 agfp = XFS_BUF_TO_AGF(agfbp);
3845 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3846 be32_to_cpu(agfp->agf_flcount);
3847 xfs_buf_relse(agfbp);
3850 error = xfs_read_agi(mp, NULL, agno, &agibp);
3851 if (!error) {
3852 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3854 itotal += be32_to_cpu(agi->agi_count);
3855 ifree += be32_to_cpu(agi->agi_freecount);
3856 xfs_buf_relse(agibp);
3860 #endif /* DEBUG */