ide: remove a ton of pointless #undef REALLY_SLOW_IO
[linux-2.6.git] / drivers / kvm / vmx.c
blobfd4e91734388204a08e52d05fe0900920a48e866
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <asm/io.h>
26 #include <asm/desc.h>
28 #include "segment_descriptor.h"
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
43 static struct vmcs_descriptor {
44 int size;
45 int order;
46 u32 revision_id;
47 } vmcs_descriptor;
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
57 static struct kvm_vmx_segment_field {
58 unsigned selector;
59 unsigned base;
60 unsigned limit;
61 unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63 VMX_SEGMENT_FIELD(CS),
64 VMX_SEGMENT_FIELD(DS),
65 VMX_SEGMENT_FIELD(ES),
66 VMX_SEGMENT_FIELD(FS),
67 VMX_SEGMENT_FIELD(GS),
68 VMX_SEGMENT_FIELD(SS),
69 VMX_SEGMENT_FIELD(TR),
70 VMX_SEGMENT_FIELD(LDTR),
73 static const u32 vmx_msr_index[] = {
74 #ifdef CONFIG_X86_64
75 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77 MSR_EFER, MSR_K6_STAR,
79 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
81 static inline int is_page_fault(u32 intr_info)
83 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
84 INTR_INFO_VALID_MASK)) ==
85 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
88 static inline int is_external_interrupt(u32 intr_info)
90 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
91 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
94 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
96 int i;
98 for (i = 0; i < vcpu->nmsrs; ++i)
99 if (vcpu->guest_msrs[i].index == msr)
100 return &vcpu->guest_msrs[i];
101 return NULL;
104 static void vmcs_clear(struct vmcs *vmcs)
106 u64 phys_addr = __pa(vmcs);
107 u8 error;
109 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
110 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
111 : "cc", "memory");
112 if (error)
113 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
114 vmcs, phys_addr);
117 static void __vcpu_clear(void *arg)
119 struct kvm_vcpu *vcpu = arg;
120 int cpu = raw_smp_processor_id();
122 if (vcpu->cpu == cpu)
123 vmcs_clear(vcpu->vmcs);
124 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
125 per_cpu(current_vmcs, cpu) = NULL;
128 static void vcpu_clear(struct kvm_vcpu *vcpu)
130 if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
131 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
132 else
133 __vcpu_clear(vcpu);
134 vcpu->launched = 0;
137 static unsigned long vmcs_readl(unsigned long field)
139 unsigned long value;
141 asm volatile (ASM_VMX_VMREAD_RDX_RAX
142 : "=a"(value) : "d"(field) : "cc");
143 return value;
146 static u16 vmcs_read16(unsigned long field)
148 return vmcs_readl(field);
151 static u32 vmcs_read32(unsigned long field)
153 return vmcs_readl(field);
156 static u64 vmcs_read64(unsigned long field)
158 #ifdef CONFIG_X86_64
159 return vmcs_readl(field);
160 #else
161 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
162 #endif
165 static noinline void vmwrite_error(unsigned long field, unsigned long value)
167 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
168 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
169 dump_stack();
172 static void vmcs_writel(unsigned long field, unsigned long value)
174 u8 error;
176 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
177 : "=q"(error) : "a"(value), "d"(field) : "cc" );
178 if (unlikely(error))
179 vmwrite_error(field, value);
182 static void vmcs_write16(unsigned long field, u16 value)
184 vmcs_writel(field, value);
187 static void vmcs_write32(unsigned long field, u32 value)
189 vmcs_writel(field, value);
192 static void vmcs_write64(unsigned long field, u64 value)
194 #ifdef CONFIG_X86_64
195 vmcs_writel(field, value);
196 #else
197 vmcs_writel(field, value);
198 asm volatile ("");
199 vmcs_writel(field+1, value >> 32);
200 #endif
204 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
205 * vcpu mutex is already taken.
207 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
209 u64 phys_addr = __pa(vcpu->vmcs);
210 int cpu;
212 cpu = get_cpu();
214 if (vcpu->cpu != cpu)
215 vcpu_clear(vcpu);
217 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
218 u8 error;
220 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
221 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
222 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
223 : "cc");
224 if (error)
225 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
226 vcpu->vmcs, phys_addr);
229 if (vcpu->cpu != cpu) {
230 struct descriptor_table dt;
231 unsigned long sysenter_esp;
233 vcpu->cpu = cpu;
235 * Linux uses per-cpu TSS and GDT, so set these when switching
236 * processors.
238 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
239 get_gdt(&dt);
240 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
242 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
243 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
245 return vcpu;
248 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
250 put_cpu();
253 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
255 vcpu_clear(vcpu);
258 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
260 return vmcs_readl(GUEST_RFLAGS);
263 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
265 vmcs_writel(GUEST_RFLAGS, rflags);
268 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
270 unsigned long rip;
271 u32 interruptibility;
273 rip = vmcs_readl(GUEST_RIP);
274 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
275 vmcs_writel(GUEST_RIP, rip);
278 * We emulated an instruction, so temporary interrupt blocking
279 * should be removed, if set.
281 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
282 if (interruptibility & 3)
283 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
284 interruptibility & ~3);
285 vcpu->interrupt_window_open = 1;
288 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
290 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
291 vmcs_readl(GUEST_RIP));
292 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
293 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
294 GP_VECTOR |
295 INTR_TYPE_EXCEPTION |
296 INTR_INFO_DELIEVER_CODE_MASK |
297 INTR_INFO_VALID_MASK);
301 * reads and returns guest's timestamp counter "register"
302 * guest_tsc = host_tsc + tsc_offset -- 21.3
304 static u64 guest_read_tsc(void)
306 u64 host_tsc, tsc_offset;
308 rdtscll(host_tsc);
309 tsc_offset = vmcs_read64(TSC_OFFSET);
310 return host_tsc + tsc_offset;
314 * writes 'guest_tsc' into guest's timestamp counter "register"
315 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
317 static void guest_write_tsc(u64 guest_tsc)
319 u64 host_tsc;
321 rdtscll(host_tsc);
322 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
325 static void reload_tss(void)
327 #ifndef CONFIG_X86_64
330 * VT restores TR but not its size. Useless.
332 struct descriptor_table gdt;
333 struct segment_descriptor *descs;
335 get_gdt(&gdt);
336 descs = (void *)gdt.base;
337 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
338 load_TR_desc();
339 #endif
343 * Reads an msr value (of 'msr_index') into 'pdata'.
344 * Returns 0 on success, non-0 otherwise.
345 * Assumes vcpu_load() was already called.
347 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
349 u64 data;
350 struct vmx_msr_entry *msr;
352 if (!pdata) {
353 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
354 return -EINVAL;
357 switch (msr_index) {
358 #ifdef CONFIG_X86_64
359 case MSR_FS_BASE:
360 data = vmcs_readl(GUEST_FS_BASE);
361 break;
362 case MSR_GS_BASE:
363 data = vmcs_readl(GUEST_GS_BASE);
364 break;
365 case MSR_EFER:
366 return kvm_get_msr_common(vcpu, msr_index, pdata);
367 #endif
368 case MSR_IA32_TIME_STAMP_COUNTER:
369 data = guest_read_tsc();
370 break;
371 case MSR_IA32_SYSENTER_CS:
372 data = vmcs_read32(GUEST_SYSENTER_CS);
373 break;
374 case MSR_IA32_SYSENTER_EIP:
375 data = vmcs_read32(GUEST_SYSENTER_EIP);
376 break;
377 case MSR_IA32_SYSENTER_ESP:
378 data = vmcs_read32(GUEST_SYSENTER_ESP);
379 break;
380 default:
381 msr = find_msr_entry(vcpu, msr_index);
382 if (msr) {
383 data = msr->data;
384 break;
386 return kvm_get_msr_common(vcpu, msr_index, pdata);
389 *pdata = data;
390 return 0;
394 * Writes msr value into into the appropriate "register".
395 * Returns 0 on success, non-0 otherwise.
396 * Assumes vcpu_load() was already called.
398 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
400 struct vmx_msr_entry *msr;
401 switch (msr_index) {
402 #ifdef CONFIG_X86_64
403 case MSR_EFER:
404 return kvm_set_msr_common(vcpu, msr_index, data);
405 case MSR_FS_BASE:
406 vmcs_writel(GUEST_FS_BASE, data);
407 break;
408 case MSR_GS_BASE:
409 vmcs_writel(GUEST_GS_BASE, data);
410 break;
411 #endif
412 case MSR_IA32_SYSENTER_CS:
413 vmcs_write32(GUEST_SYSENTER_CS, data);
414 break;
415 case MSR_IA32_SYSENTER_EIP:
416 vmcs_write32(GUEST_SYSENTER_EIP, data);
417 break;
418 case MSR_IA32_SYSENTER_ESP:
419 vmcs_write32(GUEST_SYSENTER_ESP, data);
420 break;
421 case MSR_IA32_TIME_STAMP_COUNTER: {
422 guest_write_tsc(data);
423 break;
425 default:
426 msr = find_msr_entry(vcpu, msr_index);
427 if (msr) {
428 msr->data = data;
429 break;
431 return kvm_set_msr_common(vcpu, msr_index, data);
432 msr->data = data;
433 break;
436 return 0;
440 * Sync the rsp and rip registers into the vcpu structure. This allows
441 * registers to be accessed by indexing vcpu->regs.
443 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
445 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
446 vcpu->rip = vmcs_readl(GUEST_RIP);
450 * Syncs rsp and rip back into the vmcs. Should be called after possible
451 * modification.
453 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
455 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
456 vmcs_writel(GUEST_RIP, vcpu->rip);
459 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
461 unsigned long dr7 = 0x400;
462 u32 exception_bitmap;
463 int old_singlestep;
465 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
466 old_singlestep = vcpu->guest_debug.singlestep;
468 vcpu->guest_debug.enabled = dbg->enabled;
469 if (vcpu->guest_debug.enabled) {
470 int i;
472 dr7 |= 0x200; /* exact */
473 for (i = 0; i < 4; ++i) {
474 if (!dbg->breakpoints[i].enabled)
475 continue;
476 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
477 dr7 |= 2 << (i*2); /* global enable */
478 dr7 |= 0 << (i*4+16); /* execution breakpoint */
481 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
483 vcpu->guest_debug.singlestep = dbg->singlestep;
484 } else {
485 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
486 vcpu->guest_debug.singlestep = 0;
489 if (old_singlestep && !vcpu->guest_debug.singlestep) {
490 unsigned long flags;
492 flags = vmcs_readl(GUEST_RFLAGS);
493 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
494 vmcs_writel(GUEST_RFLAGS, flags);
497 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
498 vmcs_writel(GUEST_DR7, dr7);
500 return 0;
503 static __init int cpu_has_kvm_support(void)
505 unsigned long ecx = cpuid_ecx(1);
506 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
509 static __init int vmx_disabled_by_bios(void)
511 u64 msr;
513 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
514 return (msr & 5) == 1; /* locked but not enabled */
517 static void hardware_enable(void *garbage)
519 int cpu = raw_smp_processor_id();
520 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
521 u64 old;
523 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
524 if ((old & 5) != 5)
525 /* enable and lock */
526 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
527 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
528 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
529 : "memory", "cc");
532 static void hardware_disable(void *garbage)
534 asm volatile (ASM_VMX_VMXOFF : : : "cc");
537 static __init void setup_vmcs_descriptor(void)
539 u32 vmx_msr_low, vmx_msr_high;
541 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
542 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
543 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
544 vmcs_descriptor.revision_id = vmx_msr_low;
547 static struct vmcs *alloc_vmcs_cpu(int cpu)
549 int node = cpu_to_node(cpu);
550 struct page *pages;
551 struct vmcs *vmcs;
553 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
554 if (!pages)
555 return NULL;
556 vmcs = page_address(pages);
557 memset(vmcs, 0, vmcs_descriptor.size);
558 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
559 return vmcs;
562 static struct vmcs *alloc_vmcs(void)
564 return alloc_vmcs_cpu(raw_smp_processor_id());
567 static void free_vmcs(struct vmcs *vmcs)
569 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
572 static __exit void free_kvm_area(void)
574 int cpu;
576 for_each_online_cpu(cpu)
577 free_vmcs(per_cpu(vmxarea, cpu));
580 extern struct vmcs *alloc_vmcs_cpu(int cpu);
582 static __init int alloc_kvm_area(void)
584 int cpu;
586 for_each_online_cpu(cpu) {
587 struct vmcs *vmcs;
589 vmcs = alloc_vmcs_cpu(cpu);
590 if (!vmcs) {
591 free_kvm_area();
592 return -ENOMEM;
595 per_cpu(vmxarea, cpu) = vmcs;
597 return 0;
600 static __init int hardware_setup(void)
602 setup_vmcs_descriptor();
603 return alloc_kvm_area();
606 static __exit void hardware_unsetup(void)
608 free_kvm_area();
611 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
613 if (vcpu->rmode.active)
614 vmcs_write32(EXCEPTION_BITMAP, ~0);
615 else
616 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
619 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
621 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
623 if (vmcs_readl(sf->base) == save->base) {
624 vmcs_write16(sf->selector, save->selector);
625 vmcs_writel(sf->base, save->base);
626 vmcs_write32(sf->limit, save->limit);
627 vmcs_write32(sf->ar_bytes, save->ar);
628 } else {
629 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
630 << AR_DPL_SHIFT;
631 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
635 static void enter_pmode(struct kvm_vcpu *vcpu)
637 unsigned long flags;
639 vcpu->rmode.active = 0;
641 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
642 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
643 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
645 flags = vmcs_readl(GUEST_RFLAGS);
646 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
647 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
648 vmcs_writel(GUEST_RFLAGS, flags);
650 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
651 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
653 update_exception_bitmap(vcpu);
655 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
656 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
657 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
658 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
660 vmcs_write16(GUEST_SS_SELECTOR, 0);
661 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
663 vmcs_write16(GUEST_CS_SELECTOR,
664 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
665 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
668 static int rmode_tss_base(struct kvm* kvm)
670 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
671 return base_gfn << PAGE_SHIFT;
674 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
676 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
678 save->selector = vmcs_read16(sf->selector);
679 save->base = vmcs_readl(sf->base);
680 save->limit = vmcs_read32(sf->limit);
681 save->ar = vmcs_read32(sf->ar_bytes);
682 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
683 vmcs_write32(sf->limit, 0xffff);
684 vmcs_write32(sf->ar_bytes, 0xf3);
687 static void enter_rmode(struct kvm_vcpu *vcpu)
689 unsigned long flags;
691 vcpu->rmode.active = 1;
693 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
694 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
696 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
697 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
699 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
700 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
702 flags = vmcs_readl(GUEST_RFLAGS);
703 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
705 flags |= IOPL_MASK | X86_EFLAGS_VM;
707 vmcs_writel(GUEST_RFLAGS, flags);
708 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
709 update_exception_bitmap(vcpu);
711 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
712 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
713 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
715 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
716 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
717 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
719 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
720 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
721 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
722 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
725 #ifdef CONFIG_X86_64
727 static void enter_lmode(struct kvm_vcpu *vcpu)
729 u32 guest_tr_ar;
731 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
732 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
733 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
734 __FUNCTION__);
735 vmcs_write32(GUEST_TR_AR_BYTES,
736 (guest_tr_ar & ~AR_TYPE_MASK)
737 | AR_TYPE_BUSY_64_TSS);
740 vcpu->shadow_efer |= EFER_LMA;
742 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
743 vmcs_write32(VM_ENTRY_CONTROLS,
744 vmcs_read32(VM_ENTRY_CONTROLS)
745 | VM_ENTRY_CONTROLS_IA32E_MASK);
748 static void exit_lmode(struct kvm_vcpu *vcpu)
750 vcpu->shadow_efer &= ~EFER_LMA;
752 vmcs_write32(VM_ENTRY_CONTROLS,
753 vmcs_read32(VM_ENTRY_CONTROLS)
754 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
757 #endif
759 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
761 vcpu->cr0 &= KVM_GUEST_CR0_MASK;
762 vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
764 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
765 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
768 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
770 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
771 enter_pmode(vcpu);
773 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
774 enter_rmode(vcpu);
776 #ifdef CONFIG_X86_64
777 if (vcpu->shadow_efer & EFER_LME) {
778 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
779 enter_lmode(vcpu);
780 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
781 exit_lmode(vcpu);
783 #endif
785 vmcs_writel(CR0_READ_SHADOW, cr0);
786 vmcs_writel(GUEST_CR0,
787 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
788 vcpu->cr0 = cr0;
792 * Used when restoring the VM to avoid corrupting segment registers
794 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
796 vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
797 update_exception_bitmap(vcpu);
798 vmcs_writel(CR0_READ_SHADOW, cr0);
799 vmcs_writel(GUEST_CR0,
800 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
801 vcpu->cr0 = cr0;
804 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
806 vmcs_writel(GUEST_CR3, cr3);
809 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
811 vmcs_writel(CR4_READ_SHADOW, cr4);
812 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
813 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
814 vcpu->cr4 = cr4;
817 #ifdef CONFIG_X86_64
819 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
821 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
823 vcpu->shadow_efer = efer;
824 if (efer & EFER_LMA) {
825 vmcs_write32(VM_ENTRY_CONTROLS,
826 vmcs_read32(VM_ENTRY_CONTROLS) |
827 VM_ENTRY_CONTROLS_IA32E_MASK);
828 msr->data = efer;
830 } else {
831 vmcs_write32(VM_ENTRY_CONTROLS,
832 vmcs_read32(VM_ENTRY_CONTROLS) &
833 ~VM_ENTRY_CONTROLS_IA32E_MASK);
835 msr->data = efer & ~EFER_LME;
839 #endif
841 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
843 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
845 return vmcs_readl(sf->base);
848 static void vmx_get_segment(struct kvm_vcpu *vcpu,
849 struct kvm_segment *var, int seg)
851 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
852 u32 ar;
854 var->base = vmcs_readl(sf->base);
855 var->limit = vmcs_read32(sf->limit);
856 var->selector = vmcs_read16(sf->selector);
857 ar = vmcs_read32(sf->ar_bytes);
858 if (ar & AR_UNUSABLE_MASK)
859 ar = 0;
860 var->type = ar & 15;
861 var->s = (ar >> 4) & 1;
862 var->dpl = (ar >> 5) & 3;
863 var->present = (ar >> 7) & 1;
864 var->avl = (ar >> 12) & 1;
865 var->l = (ar >> 13) & 1;
866 var->db = (ar >> 14) & 1;
867 var->g = (ar >> 15) & 1;
868 var->unusable = (ar >> 16) & 1;
871 static void vmx_set_segment(struct kvm_vcpu *vcpu,
872 struct kvm_segment *var, int seg)
874 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
875 u32 ar;
877 vmcs_writel(sf->base, var->base);
878 vmcs_write32(sf->limit, var->limit);
879 vmcs_write16(sf->selector, var->selector);
880 if (var->unusable)
881 ar = 1 << 16;
882 else {
883 ar = var->type & 15;
884 ar |= (var->s & 1) << 4;
885 ar |= (var->dpl & 3) << 5;
886 ar |= (var->present & 1) << 7;
887 ar |= (var->avl & 1) << 12;
888 ar |= (var->l & 1) << 13;
889 ar |= (var->db & 1) << 14;
890 ar |= (var->g & 1) << 15;
892 if (ar == 0) /* a 0 value means unusable */
893 ar = AR_UNUSABLE_MASK;
894 vmcs_write32(sf->ar_bytes, ar);
897 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
899 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
901 *db = (ar >> 14) & 1;
902 *l = (ar >> 13) & 1;
905 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
907 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
908 dt->base = vmcs_readl(GUEST_IDTR_BASE);
911 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
913 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
914 vmcs_writel(GUEST_IDTR_BASE, dt->base);
917 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
919 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
920 dt->base = vmcs_readl(GUEST_GDTR_BASE);
923 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
925 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
926 vmcs_writel(GUEST_GDTR_BASE, dt->base);
929 static int init_rmode_tss(struct kvm* kvm)
931 struct page *p1, *p2, *p3;
932 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
933 char *page;
935 p1 = _gfn_to_page(kvm, fn++);
936 p2 = _gfn_to_page(kvm, fn++);
937 p3 = _gfn_to_page(kvm, fn);
939 if (!p1 || !p2 || !p3) {
940 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
941 return 0;
944 page = kmap_atomic(p1, KM_USER0);
945 memset(page, 0, PAGE_SIZE);
946 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
947 kunmap_atomic(page, KM_USER0);
949 page = kmap_atomic(p2, KM_USER0);
950 memset(page, 0, PAGE_SIZE);
951 kunmap_atomic(page, KM_USER0);
953 page = kmap_atomic(p3, KM_USER0);
954 memset(page, 0, PAGE_SIZE);
955 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
956 kunmap_atomic(page, KM_USER0);
958 return 1;
961 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
963 u32 msr_high, msr_low;
965 rdmsr(msr, msr_low, msr_high);
967 val &= msr_high;
968 val |= msr_low;
969 vmcs_write32(vmcs_field, val);
972 static void seg_setup(int seg)
974 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
976 vmcs_write16(sf->selector, 0);
977 vmcs_writel(sf->base, 0);
978 vmcs_write32(sf->limit, 0xffff);
979 vmcs_write32(sf->ar_bytes, 0x93);
983 * Sets up the vmcs for emulated real mode.
985 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
987 u32 host_sysenter_cs;
988 u32 junk;
989 unsigned long a;
990 struct descriptor_table dt;
991 int i;
992 int ret = 0;
993 int nr_good_msrs;
994 extern asmlinkage void kvm_vmx_return(void);
996 if (!init_rmode_tss(vcpu->kvm)) {
997 ret = -ENOMEM;
998 goto out;
1001 memset(vcpu->regs, 0, sizeof(vcpu->regs));
1002 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1003 vcpu->cr8 = 0;
1004 vcpu->apic_base = 0xfee00000 |
1005 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1006 MSR_IA32_APICBASE_ENABLE;
1008 fx_init(vcpu);
1011 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1012 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1014 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1015 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1016 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1017 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1019 seg_setup(VCPU_SREG_DS);
1020 seg_setup(VCPU_SREG_ES);
1021 seg_setup(VCPU_SREG_FS);
1022 seg_setup(VCPU_SREG_GS);
1023 seg_setup(VCPU_SREG_SS);
1025 vmcs_write16(GUEST_TR_SELECTOR, 0);
1026 vmcs_writel(GUEST_TR_BASE, 0);
1027 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1028 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1030 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1031 vmcs_writel(GUEST_LDTR_BASE, 0);
1032 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1033 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1035 vmcs_write32(GUEST_SYSENTER_CS, 0);
1036 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1037 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1039 vmcs_writel(GUEST_RFLAGS, 0x02);
1040 vmcs_writel(GUEST_RIP, 0xfff0);
1041 vmcs_writel(GUEST_RSP, 0);
1043 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1044 vmcs_writel(GUEST_DR7, 0x400);
1046 vmcs_writel(GUEST_GDTR_BASE, 0);
1047 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1049 vmcs_writel(GUEST_IDTR_BASE, 0);
1050 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1052 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1053 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1054 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1056 /* I/O */
1057 vmcs_write64(IO_BITMAP_A, 0);
1058 vmcs_write64(IO_BITMAP_B, 0);
1060 guest_write_tsc(0);
1062 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1064 /* Special registers */
1065 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1067 /* Control */
1068 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1069 PIN_BASED_VM_EXEC_CONTROL,
1070 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1071 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1073 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1074 CPU_BASED_VM_EXEC_CONTROL,
1075 CPU_BASED_HLT_EXITING /* 20.6.2 */
1076 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1077 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1078 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1079 | CPU_BASED_MOV_DR_EXITING
1080 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1083 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1084 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1085 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1086 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1088 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1089 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1090 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1092 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1093 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1094 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1095 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1096 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1097 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1098 #ifdef CONFIG_X86_64
1099 rdmsrl(MSR_FS_BASE, a);
1100 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1101 rdmsrl(MSR_GS_BASE, a);
1102 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1103 #else
1104 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1105 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1106 #endif
1108 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1110 get_idt(&dt);
1111 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1114 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1116 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1117 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1118 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1119 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1120 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1121 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1123 for (i = 0; i < NR_VMX_MSR; ++i) {
1124 u32 index = vmx_msr_index[i];
1125 u32 data_low, data_high;
1126 u64 data;
1127 int j = vcpu->nmsrs;
1129 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1130 continue;
1131 if (wrmsr_safe(index, data_low, data_high) < 0)
1132 continue;
1133 data = data_low | ((u64)data_high << 32);
1134 vcpu->host_msrs[j].index = index;
1135 vcpu->host_msrs[j].reserved = 0;
1136 vcpu->host_msrs[j].data = data;
1137 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1138 ++vcpu->nmsrs;
1140 printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1142 nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1143 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1144 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1145 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1146 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1147 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1148 virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1149 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1150 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1151 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1152 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1153 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1156 /* 22.2.1, 20.8.1 */
1157 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1158 VM_ENTRY_CONTROLS, 0);
1159 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1161 #ifdef CONFIG_X86_64
1162 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1163 vmcs_writel(TPR_THRESHOLD, 0);
1164 #endif
1166 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1167 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1169 vcpu->cr0 = 0x60000010;
1170 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1171 vmx_set_cr4(vcpu, 0);
1172 #ifdef CONFIG_X86_64
1173 vmx_set_efer(vcpu, 0);
1174 #endif
1176 return 0;
1178 out:
1179 return ret;
1182 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1184 u16 ent[2];
1185 u16 cs;
1186 u16 ip;
1187 unsigned long flags;
1188 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1189 u16 sp = vmcs_readl(GUEST_RSP);
1190 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1192 if (sp > ss_limit || sp - 6 > sp) {
1193 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1194 __FUNCTION__,
1195 vmcs_readl(GUEST_RSP),
1196 vmcs_readl(GUEST_SS_BASE),
1197 vmcs_read32(GUEST_SS_LIMIT));
1198 return;
1201 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1202 sizeof(ent)) {
1203 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1204 return;
1207 flags = vmcs_readl(GUEST_RFLAGS);
1208 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1209 ip = vmcs_readl(GUEST_RIP);
1212 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1213 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1214 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1215 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1216 return;
1219 vmcs_writel(GUEST_RFLAGS, flags &
1220 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1221 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1222 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1223 vmcs_writel(GUEST_RIP, ent[0]);
1224 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1227 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1229 int word_index = __ffs(vcpu->irq_summary);
1230 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1231 int irq = word_index * BITS_PER_LONG + bit_index;
1233 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1234 if (!vcpu->irq_pending[word_index])
1235 clear_bit(word_index, &vcpu->irq_summary);
1237 if (vcpu->rmode.active) {
1238 inject_rmode_irq(vcpu, irq);
1239 return;
1241 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1242 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1246 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1247 struct kvm_run *kvm_run)
1249 u32 cpu_based_vm_exec_control;
1251 vcpu->interrupt_window_open =
1252 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1253 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1255 if (vcpu->interrupt_window_open &&
1256 vcpu->irq_summary &&
1257 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1259 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1261 kvm_do_inject_irq(vcpu);
1263 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1264 if (!vcpu->interrupt_window_open &&
1265 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1267 * Interrupts blocked. Wait for unblock.
1269 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1270 else
1271 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1272 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1275 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1277 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1279 set_debugreg(dbg->bp[0], 0);
1280 set_debugreg(dbg->bp[1], 1);
1281 set_debugreg(dbg->bp[2], 2);
1282 set_debugreg(dbg->bp[3], 3);
1284 if (dbg->singlestep) {
1285 unsigned long flags;
1287 flags = vmcs_readl(GUEST_RFLAGS);
1288 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1289 vmcs_writel(GUEST_RFLAGS, flags);
1293 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1294 int vec, u32 err_code)
1296 if (!vcpu->rmode.active)
1297 return 0;
1299 if (vec == GP_VECTOR && err_code == 0)
1300 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1301 return 1;
1302 return 0;
1305 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1307 u32 intr_info, error_code;
1308 unsigned long cr2, rip;
1309 u32 vect_info;
1310 enum emulation_result er;
1311 int r;
1313 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1314 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1316 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1317 !is_page_fault(intr_info)) {
1318 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1319 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1322 if (is_external_interrupt(vect_info)) {
1323 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1324 set_bit(irq, vcpu->irq_pending);
1325 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1328 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1329 asm ("int $2");
1330 return 1;
1332 error_code = 0;
1333 rip = vmcs_readl(GUEST_RIP);
1334 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1335 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1336 if (is_page_fault(intr_info)) {
1337 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1339 spin_lock(&vcpu->kvm->lock);
1340 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1341 if (r < 0) {
1342 spin_unlock(&vcpu->kvm->lock);
1343 return r;
1345 if (!r) {
1346 spin_unlock(&vcpu->kvm->lock);
1347 return 1;
1350 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1351 spin_unlock(&vcpu->kvm->lock);
1353 switch (er) {
1354 case EMULATE_DONE:
1355 return 1;
1356 case EMULATE_DO_MMIO:
1357 ++kvm_stat.mmio_exits;
1358 kvm_run->exit_reason = KVM_EXIT_MMIO;
1359 return 0;
1360 case EMULATE_FAIL:
1361 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1362 break;
1363 default:
1364 BUG();
1368 if (vcpu->rmode.active &&
1369 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1370 error_code))
1371 return 1;
1373 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1374 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1375 return 0;
1377 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1378 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1379 kvm_run->ex.error_code = error_code;
1380 return 0;
1383 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1384 struct kvm_run *kvm_run)
1386 ++kvm_stat.irq_exits;
1387 return 1;
1390 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1392 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1393 return 0;
1396 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1398 u64 inst;
1399 gva_t rip;
1400 int countr_size;
1401 int i, n;
1403 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1404 countr_size = 2;
1405 } else {
1406 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1408 countr_size = (cs_ar & AR_L_MASK) ? 8:
1409 (cs_ar & AR_DB_MASK) ? 4: 2;
1412 rip = vmcs_readl(GUEST_RIP);
1413 if (countr_size != 8)
1414 rip += vmcs_readl(GUEST_CS_BASE);
1416 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1418 for (i = 0; i < n; i++) {
1419 switch (((u8*)&inst)[i]) {
1420 case 0xf0:
1421 case 0xf2:
1422 case 0xf3:
1423 case 0x2e:
1424 case 0x36:
1425 case 0x3e:
1426 case 0x26:
1427 case 0x64:
1428 case 0x65:
1429 case 0x66:
1430 break;
1431 case 0x67:
1432 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1433 default:
1434 goto done;
1437 return 0;
1438 done:
1439 countr_size *= 8;
1440 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1441 return 1;
1444 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1446 u64 exit_qualification;
1448 ++kvm_stat.io_exits;
1449 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1450 kvm_run->exit_reason = KVM_EXIT_IO;
1451 if (exit_qualification & 8)
1452 kvm_run->io.direction = KVM_EXIT_IO_IN;
1453 else
1454 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1455 kvm_run->io.size = (exit_qualification & 7) + 1;
1456 kvm_run->io.string = (exit_qualification & 16) != 0;
1457 kvm_run->io.string_down
1458 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1459 kvm_run->io.rep = (exit_qualification & 32) != 0;
1460 kvm_run->io.port = exit_qualification >> 16;
1461 if (kvm_run->io.string) {
1462 if (!get_io_count(vcpu, &kvm_run->io.count))
1463 return 1;
1464 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1465 } else
1466 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1467 return 0;
1470 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1472 u64 exit_qualification;
1473 int cr;
1474 int reg;
1476 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1477 cr = exit_qualification & 15;
1478 reg = (exit_qualification >> 8) & 15;
1479 switch ((exit_qualification >> 4) & 3) {
1480 case 0: /* mov to cr */
1481 switch (cr) {
1482 case 0:
1483 vcpu_load_rsp_rip(vcpu);
1484 set_cr0(vcpu, vcpu->regs[reg]);
1485 skip_emulated_instruction(vcpu);
1486 return 1;
1487 case 3:
1488 vcpu_load_rsp_rip(vcpu);
1489 set_cr3(vcpu, vcpu->regs[reg]);
1490 skip_emulated_instruction(vcpu);
1491 return 1;
1492 case 4:
1493 vcpu_load_rsp_rip(vcpu);
1494 set_cr4(vcpu, vcpu->regs[reg]);
1495 skip_emulated_instruction(vcpu);
1496 return 1;
1497 case 8:
1498 vcpu_load_rsp_rip(vcpu);
1499 set_cr8(vcpu, vcpu->regs[reg]);
1500 skip_emulated_instruction(vcpu);
1501 return 1;
1503 break;
1504 case 1: /*mov from cr*/
1505 switch (cr) {
1506 case 3:
1507 vcpu_load_rsp_rip(vcpu);
1508 vcpu->regs[reg] = vcpu->cr3;
1509 vcpu_put_rsp_rip(vcpu);
1510 skip_emulated_instruction(vcpu);
1511 return 1;
1512 case 8:
1513 printk(KERN_DEBUG "handle_cr: read CR8 "
1514 "cpu erratum AA15\n");
1515 vcpu_load_rsp_rip(vcpu);
1516 vcpu->regs[reg] = vcpu->cr8;
1517 vcpu_put_rsp_rip(vcpu);
1518 skip_emulated_instruction(vcpu);
1519 return 1;
1521 break;
1522 case 3: /* lmsw */
1523 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1525 skip_emulated_instruction(vcpu);
1526 return 1;
1527 default:
1528 break;
1530 kvm_run->exit_reason = 0;
1531 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1532 (int)(exit_qualification >> 4) & 3, cr);
1533 return 0;
1536 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1538 u64 exit_qualification;
1539 unsigned long val;
1540 int dr, reg;
1543 * FIXME: this code assumes the host is debugging the guest.
1544 * need to deal with guest debugging itself too.
1546 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1547 dr = exit_qualification & 7;
1548 reg = (exit_qualification >> 8) & 15;
1549 vcpu_load_rsp_rip(vcpu);
1550 if (exit_qualification & 16) {
1551 /* mov from dr */
1552 switch (dr) {
1553 case 6:
1554 val = 0xffff0ff0;
1555 break;
1556 case 7:
1557 val = 0x400;
1558 break;
1559 default:
1560 val = 0;
1562 vcpu->regs[reg] = val;
1563 } else {
1564 /* mov to dr */
1566 vcpu_put_rsp_rip(vcpu);
1567 skip_emulated_instruction(vcpu);
1568 return 1;
1571 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1573 kvm_run->exit_reason = KVM_EXIT_CPUID;
1574 return 0;
1577 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1579 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1580 u64 data;
1582 if (vmx_get_msr(vcpu, ecx, &data)) {
1583 vmx_inject_gp(vcpu, 0);
1584 return 1;
1587 /* FIXME: handling of bits 32:63 of rax, rdx */
1588 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1589 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1590 skip_emulated_instruction(vcpu);
1591 return 1;
1594 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1596 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1597 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1598 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1600 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1601 vmx_inject_gp(vcpu, 0);
1602 return 1;
1605 skip_emulated_instruction(vcpu);
1606 return 1;
1609 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1610 struct kvm_run *kvm_run)
1612 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1613 kvm_run->cr8 = vcpu->cr8;
1614 kvm_run->apic_base = vcpu->apic_base;
1615 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1616 vcpu->irq_summary == 0);
1619 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1620 struct kvm_run *kvm_run)
1623 * If the user space waits to inject interrupts, exit as soon as
1624 * possible
1626 if (kvm_run->request_interrupt_window &&
1627 !vcpu->irq_summary) {
1628 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1629 ++kvm_stat.irq_window_exits;
1630 return 0;
1632 return 1;
1635 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1637 skip_emulated_instruction(vcpu);
1638 if (vcpu->irq_summary)
1639 return 1;
1641 kvm_run->exit_reason = KVM_EXIT_HLT;
1642 ++kvm_stat.halt_exits;
1643 return 0;
1647 * The exit handlers return 1 if the exit was handled fully and guest execution
1648 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1649 * to be done to userspace and return 0.
1651 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1652 struct kvm_run *kvm_run) = {
1653 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1654 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1655 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
1656 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1657 [EXIT_REASON_CR_ACCESS] = handle_cr,
1658 [EXIT_REASON_DR_ACCESS] = handle_dr,
1659 [EXIT_REASON_CPUID] = handle_cpuid,
1660 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1661 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1662 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1663 [EXIT_REASON_HLT] = handle_halt,
1666 static const int kvm_vmx_max_exit_handlers =
1667 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1670 * The guest has exited. See if we can fix it or if we need userspace
1671 * assistance.
1673 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1675 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1676 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1678 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1679 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1680 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1681 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1682 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1683 if (exit_reason < kvm_vmx_max_exit_handlers
1684 && kvm_vmx_exit_handlers[exit_reason])
1685 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1686 else {
1687 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1688 kvm_run->hw.hardware_exit_reason = exit_reason;
1690 return 0;
1694 * Check if userspace requested an interrupt window, and that the
1695 * interrupt window is open.
1697 * No need to exit to userspace if we already have an interrupt queued.
1699 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1700 struct kvm_run *kvm_run)
1702 return (!vcpu->irq_summary &&
1703 kvm_run->request_interrupt_window &&
1704 vcpu->interrupt_window_open &&
1705 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1708 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1710 u8 fail;
1711 u16 fs_sel, gs_sel, ldt_sel;
1712 int fs_gs_ldt_reload_needed;
1713 int r;
1715 again:
1717 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1718 * allow segment selectors with cpl > 0 or ti == 1.
1720 fs_sel = read_fs();
1721 gs_sel = read_gs();
1722 ldt_sel = read_ldt();
1723 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1724 if (!fs_gs_ldt_reload_needed) {
1725 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1726 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1727 } else {
1728 vmcs_write16(HOST_FS_SELECTOR, 0);
1729 vmcs_write16(HOST_GS_SELECTOR, 0);
1732 #ifdef CONFIG_X86_64
1733 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1734 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1735 #else
1736 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1737 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1738 #endif
1740 if (!vcpu->mmio_read_completed)
1741 do_interrupt_requests(vcpu, kvm_run);
1743 if (vcpu->guest_debug.enabled)
1744 kvm_guest_debug_pre(vcpu);
1746 fx_save(vcpu->host_fx_image);
1747 fx_restore(vcpu->guest_fx_image);
1749 save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1750 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1752 asm (
1753 /* Store host registers */
1754 "pushf \n\t"
1755 #ifdef CONFIG_X86_64
1756 "push %%rax; push %%rbx; push %%rdx;"
1757 "push %%rsi; push %%rdi; push %%rbp;"
1758 "push %%r8; push %%r9; push %%r10; push %%r11;"
1759 "push %%r12; push %%r13; push %%r14; push %%r15;"
1760 "push %%rcx \n\t"
1761 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1762 #else
1763 "pusha; push %%ecx \n\t"
1764 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1765 #endif
1766 /* Check if vmlaunch of vmresume is needed */
1767 "cmp $0, %1 \n\t"
1768 /* Load guest registers. Don't clobber flags. */
1769 #ifdef CONFIG_X86_64
1770 "mov %c[cr2](%3), %%rax \n\t"
1771 "mov %%rax, %%cr2 \n\t"
1772 "mov %c[rax](%3), %%rax \n\t"
1773 "mov %c[rbx](%3), %%rbx \n\t"
1774 "mov %c[rdx](%3), %%rdx \n\t"
1775 "mov %c[rsi](%3), %%rsi \n\t"
1776 "mov %c[rdi](%3), %%rdi \n\t"
1777 "mov %c[rbp](%3), %%rbp \n\t"
1778 "mov %c[r8](%3), %%r8 \n\t"
1779 "mov %c[r9](%3), %%r9 \n\t"
1780 "mov %c[r10](%3), %%r10 \n\t"
1781 "mov %c[r11](%3), %%r11 \n\t"
1782 "mov %c[r12](%3), %%r12 \n\t"
1783 "mov %c[r13](%3), %%r13 \n\t"
1784 "mov %c[r14](%3), %%r14 \n\t"
1785 "mov %c[r15](%3), %%r15 \n\t"
1786 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1787 #else
1788 "mov %c[cr2](%3), %%eax \n\t"
1789 "mov %%eax, %%cr2 \n\t"
1790 "mov %c[rax](%3), %%eax \n\t"
1791 "mov %c[rbx](%3), %%ebx \n\t"
1792 "mov %c[rdx](%3), %%edx \n\t"
1793 "mov %c[rsi](%3), %%esi \n\t"
1794 "mov %c[rdi](%3), %%edi \n\t"
1795 "mov %c[rbp](%3), %%ebp \n\t"
1796 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1797 #endif
1798 /* Enter guest mode */
1799 "jne launched \n\t"
1800 ASM_VMX_VMLAUNCH "\n\t"
1801 "jmp kvm_vmx_return \n\t"
1802 "launched: " ASM_VMX_VMRESUME "\n\t"
1803 ".globl kvm_vmx_return \n\t"
1804 "kvm_vmx_return: "
1805 /* Save guest registers, load host registers, keep flags */
1806 #ifdef CONFIG_X86_64
1807 "xchg %3, (%%rsp) \n\t"
1808 "mov %%rax, %c[rax](%3) \n\t"
1809 "mov %%rbx, %c[rbx](%3) \n\t"
1810 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1811 "mov %%rdx, %c[rdx](%3) \n\t"
1812 "mov %%rsi, %c[rsi](%3) \n\t"
1813 "mov %%rdi, %c[rdi](%3) \n\t"
1814 "mov %%rbp, %c[rbp](%3) \n\t"
1815 "mov %%r8, %c[r8](%3) \n\t"
1816 "mov %%r9, %c[r9](%3) \n\t"
1817 "mov %%r10, %c[r10](%3) \n\t"
1818 "mov %%r11, %c[r11](%3) \n\t"
1819 "mov %%r12, %c[r12](%3) \n\t"
1820 "mov %%r13, %c[r13](%3) \n\t"
1821 "mov %%r14, %c[r14](%3) \n\t"
1822 "mov %%r15, %c[r15](%3) \n\t"
1823 "mov %%cr2, %%rax \n\t"
1824 "mov %%rax, %c[cr2](%3) \n\t"
1825 "mov (%%rsp), %3 \n\t"
1827 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1828 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1829 "pop %%rbp; pop %%rdi; pop %%rsi;"
1830 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1831 #else
1832 "xchg %3, (%%esp) \n\t"
1833 "mov %%eax, %c[rax](%3) \n\t"
1834 "mov %%ebx, %c[rbx](%3) \n\t"
1835 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1836 "mov %%edx, %c[rdx](%3) \n\t"
1837 "mov %%esi, %c[rsi](%3) \n\t"
1838 "mov %%edi, %c[rdi](%3) \n\t"
1839 "mov %%ebp, %c[rbp](%3) \n\t"
1840 "mov %%cr2, %%eax \n\t"
1841 "mov %%eax, %c[cr2](%3) \n\t"
1842 "mov (%%esp), %3 \n\t"
1844 "pop %%ecx; popa \n\t"
1845 #endif
1846 "setbe %0 \n\t"
1847 "popf \n\t"
1848 : "=q" (fail)
1849 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1850 "c"(vcpu),
1851 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1852 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1853 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1854 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1855 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1856 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1857 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1858 #ifdef CONFIG_X86_64
1859 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1860 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1861 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1862 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1863 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1864 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1865 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1866 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1867 #endif
1868 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1869 : "cc", "memory" );
1871 ++kvm_stat.exits;
1873 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1874 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1876 fx_save(vcpu->guest_fx_image);
1877 fx_restore(vcpu->host_fx_image);
1878 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1880 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1882 kvm_run->exit_type = 0;
1883 if (fail) {
1884 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1885 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1886 r = 0;
1887 } else {
1888 if (fs_gs_ldt_reload_needed) {
1889 load_ldt(ldt_sel);
1890 load_fs(fs_sel);
1892 * If we have to reload gs, we must take care to
1893 * preserve our gs base.
1895 local_irq_disable();
1896 load_gs(gs_sel);
1897 #ifdef CONFIG_X86_64
1898 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1899 #endif
1900 local_irq_enable();
1902 reload_tss();
1905 * Profile KVM exit RIPs:
1907 if (unlikely(prof_on == KVM_PROFILING))
1908 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
1910 vcpu->launched = 1;
1911 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1912 r = kvm_handle_exit(kvm_run, vcpu);
1913 if (r > 0) {
1914 /* Give scheduler a change to reschedule. */
1915 if (signal_pending(current)) {
1916 ++kvm_stat.signal_exits;
1917 post_kvm_run_save(vcpu, kvm_run);
1918 return -EINTR;
1921 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1922 ++kvm_stat.request_irq_exits;
1923 post_kvm_run_save(vcpu, kvm_run);
1924 return -EINTR;
1927 kvm_resched(vcpu);
1928 goto again;
1932 post_kvm_run_save(vcpu, kvm_run);
1933 return r;
1936 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1938 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1941 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1942 unsigned long addr,
1943 u32 err_code)
1945 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1947 ++kvm_stat.pf_guest;
1949 if (is_page_fault(vect_info)) {
1950 printk(KERN_DEBUG "inject_page_fault: "
1951 "double fault 0x%lx @ 0x%lx\n",
1952 addr, vmcs_readl(GUEST_RIP));
1953 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1954 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1955 DF_VECTOR |
1956 INTR_TYPE_EXCEPTION |
1957 INTR_INFO_DELIEVER_CODE_MASK |
1958 INTR_INFO_VALID_MASK);
1959 return;
1961 vcpu->cr2 = addr;
1962 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1963 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1964 PF_VECTOR |
1965 INTR_TYPE_EXCEPTION |
1966 INTR_INFO_DELIEVER_CODE_MASK |
1967 INTR_INFO_VALID_MASK);
1971 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1973 if (vcpu->vmcs) {
1974 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1975 free_vmcs(vcpu->vmcs);
1976 vcpu->vmcs = NULL;
1980 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1982 vmx_free_vmcs(vcpu);
1985 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1987 struct vmcs *vmcs;
1989 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1990 if (!vcpu->guest_msrs)
1991 return -ENOMEM;
1993 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1994 if (!vcpu->host_msrs)
1995 goto out_free_guest_msrs;
1997 vmcs = alloc_vmcs();
1998 if (!vmcs)
1999 goto out_free_msrs;
2001 vmcs_clear(vmcs);
2002 vcpu->vmcs = vmcs;
2003 vcpu->launched = 0;
2005 return 0;
2007 out_free_msrs:
2008 kfree(vcpu->host_msrs);
2009 vcpu->host_msrs = NULL;
2011 out_free_guest_msrs:
2012 kfree(vcpu->guest_msrs);
2013 vcpu->guest_msrs = NULL;
2015 return -ENOMEM;
2018 static struct kvm_arch_ops vmx_arch_ops = {
2019 .cpu_has_kvm_support = cpu_has_kvm_support,
2020 .disabled_by_bios = vmx_disabled_by_bios,
2021 .hardware_setup = hardware_setup,
2022 .hardware_unsetup = hardware_unsetup,
2023 .hardware_enable = hardware_enable,
2024 .hardware_disable = hardware_disable,
2026 .vcpu_create = vmx_create_vcpu,
2027 .vcpu_free = vmx_free_vcpu,
2029 .vcpu_load = vmx_vcpu_load,
2030 .vcpu_put = vmx_vcpu_put,
2031 .vcpu_decache = vmx_vcpu_decache,
2033 .set_guest_debug = set_guest_debug,
2034 .get_msr = vmx_get_msr,
2035 .set_msr = vmx_set_msr,
2036 .get_segment_base = vmx_get_segment_base,
2037 .get_segment = vmx_get_segment,
2038 .set_segment = vmx_set_segment,
2039 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2040 .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2041 .set_cr0 = vmx_set_cr0,
2042 .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
2043 .set_cr3 = vmx_set_cr3,
2044 .set_cr4 = vmx_set_cr4,
2045 #ifdef CONFIG_X86_64
2046 .set_efer = vmx_set_efer,
2047 #endif
2048 .get_idt = vmx_get_idt,
2049 .set_idt = vmx_set_idt,
2050 .get_gdt = vmx_get_gdt,
2051 .set_gdt = vmx_set_gdt,
2052 .cache_regs = vcpu_load_rsp_rip,
2053 .decache_regs = vcpu_put_rsp_rip,
2054 .get_rflags = vmx_get_rflags,
2055 .set_rflags = vmx_set_rflags,
2057 .tlb_flush = vmx_flush_tlb,
2058 .inject_page_fault = vmx_inject_page_fault,
2060 .inject_gp = vmx_inject_gp,
2062 .run = vmx_vcpu_run,
2063 .skip_emulated_instruction = skip_emulated_instruction,
2064 .vcpu_setup = vmx_vcpu_setup,
2067 static int __init vmx_init(void)
2069 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2072 static void __exit vmx_exit(void)
2074 kvm_exit_arch();
2077 module_init(vmx_init)
2078 module_exit(vmx_exit)