btrfs: try harder to allocate raid56 stripe cache
[linux-2.6.git] / fs / ceph / mds_client.c
blob9165eb8309eba442efa237aaa313a43c92641607
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
10 #include "super.h"
11 #include "mds_client.h"
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
21 * A cluster of MDS (metadata server) daemons is responsible for
22 * managing the file system namespace (the directory hierarchy and
23 * inodes) and for coordinating shared access to storage. Metadata is
24 * partitioning hierarchically across a number of servers, and that
25 * partition varies over time as the cluster adjusts the distribution
26 * in order to balance load.
28 * The MDS client is primarily responsible to managing synchronous
29 * metadata requests for operations like open, unlink, and so forth.
30 * If there is a MDS failure, we find out about it when we (possibly
31 * request and) receive a new MDS map, and can resubmit affected
32 * requests.
34 * For the most part, though, we take advantage of a lossless
35 * communications channel to the MDS, and do not need to worry about
36 * timing out or resubmitting requests.
38 * We maintain a stateful "session" with each MDS we interact with.
39 * Within each session, we sent periodic heartbeat messages to ensure
40 * any capabilities or leases we have been issues remain valid. If
41 * the session times out and goes stale, our leases and capabilities
42 * are no longer valid.
45 struct ceph_reconnect_state {
46 struct ceph_pagelist *pagelist;
47 bool flock;
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51 struct list_head *head);
53 static const struct ceph_connection_operations mds_con_ops;
57 * mds reply parsing
61 * parse individual inode info
63 static int parse_reply_info_in(void **p, void *end,
64 struct ceph_mds_reply_info_in *info,
65 int features)
67 int err = -EIO;
69 info->in = *p;
70 *p += sizeof(struct ceph_mds_reply_inode) +
71 sizeof(*info->in->fragtree.splits) *
72 le32_to_cpu(info->in->fragtree.nsplits);
74 ceph_decode_32_safe(p, end, info->symlink_len, bad);
75 ceph_decode_need(p, end, info->symlink_len, bad);
76 info->symlink = *p;
77 *p += info->symlink_len;
79 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80 ceph_decode_copy_safe(p, end, &info->dir_layout,
81 sizeof(info->dir_layout), bad);
82 else
83 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
85 ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 ceph_decode_need(p, end, info->xattr_len, bad);
87 info->xattr_data = *p;
88 *p += info->xattr_len;
89 return 0;
90 bad:
91 return err;
95 * parse a normal reply, which may contain a (dir+)dentry and/or a
96 * target inode.
98 static int parse_reply_info_trace(void **p, void *end,
99 struct ceph_mds_reply_info_parsed *info,
100 int features)
102 int err;
104 if (info->head->is_dentry) {
105 err = parse_reply_info_in(p, end, &info->diri, features);
106 if (err < 0)
107 goto out_bad;
109 if (unlikely(*p + sizeof(*info->dirfrag) > end))
110 goto bad;
111 info->dirfrag = *p;
112 *p += sizeof(*info->dirfrag) +
113 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114 if (unlikely(*p > end))
115 goto bad;
117 ceph_decode_32_safe(p, end, info->dname_len, bad);
118 ceph_decode_need(p, end, info->dname_len, bad);
119 info->dname = *p;
120 *p += info->dname_len;
121 info->dlease = *p;
122 *p += sizeof(*info->dlease);
125 if (info->head->is_target) {
126 err = parse_reply_info_in(p, end, &info->targeti, features);
127 if (err < 0)
128 goto out_bad;
131 if (unlikely(*p != end))
132 goto bad;
133 return 0;
135 bad:
136 err = -EIO;
137 out_bad:
138 pr_err("problem parsing mds trace %d\n", err);
139 return err;
143 * parse readdir results
145 static int parse_reply_info_dir(void **p, void *end,
146 struct ceph_mds_reply_info_parsed *info,
147 int features)
149 u32 num, i = 0;
150 int err;
152 info->dir_dir = *p;
153 if (*p + sizeof(*info->dir_dir) > end)
154 goto bad;
155 *p += sizeof(*info->dir_dir) +
156 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157 if (*p > end)
158 goto bad;
160 ceph_decode_need(p, end, sizeof(num) + 2, bad);
161 num = ceph_decode_32(p);
162 info->dir_end = ceph_decode_8(p);
163 info->dir_complete = ceph_decode_8(p);
164 if (num == 0)
165 goto done;
167 /* alloc large array */
168 info->dir_nr = num;
169 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170 sizeof(*info->dir_dname) +
171 sizeof(*info->dir_dname_len) +
172 sizeof(*info->dir_dlease),
173 GFP_NOFS);
174 if (info->dir_in == NULL) {
175 err = -ENOMEM;
176 goto out_bad;
178 info->dir_dname = (void *)(info->dir_in + num);
179 info->dir_dname_len = (void *)(info->dir_dname + num);
180 info->dir_dlease = (void *)(info->dir_dname_len + num);
182 while (num) {
183 /* dentry */
184 ceph_decode_need(p, end, sizeof(u32)*2, bad);
185 info->dir_dname_len[i] = ceph_decode_32(p);
186 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187 info->dir_dname[i] = *p;
188 *p += info->dir_dname_len[i];
189 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190 info->dir_dname[i]);
191 info->dir_dlease[i] = *p;
192 *p += sizeof(struct ceph_mds_reply_lease);
194 /* inode */
195 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196 if (err < 0)
197 goto out_bad;
198 i++;
199 num--;
202 done:
203 if (*p != end)
204 goto bad;
205 return 0;
207 bad:
208 err = -EIO;
209 out_bad:
210 pr_err("problem parsing dir contents %d\n", err);
211 return err;
215 * parse fcntl F_GETLK results
217 static int parse_reply_info_filelock(void **p, void *end,
218 struct ceph_mds_reply_info_parsed *info,
219 int features)
221 if (*p + sizeof(*info->filelock_reply) > end)
222 goto bad;
224 info->filelock_reply = *p;
225 *p += sizeof(*info->filelock_reply);
227 if (unlikely(*p != end))
228 goto bad;
229 return 0;
231 bad:
232 return -EIO;
236 * parse extra results
238 static int parse_reply_info_extra(void **p, void *end,
239 struct ceph_mds_reply_info_parsed *info,
240 int features)
242 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
243 return parse_reply_info_filelock(p, end, info, features);
244 else
245 return parse_reply_info_dir(p, end, info, features);
249 * parse entire mds reply
251 static int parse_reply_info(struct ceph_msg *msg,
252 struct ceph_mds_reply_info_parsed *info,
253 int features)
255 void *p, *end;
256 u32 len;
257 int err;
259 info->head = msg->front.iov_base;
260 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
261 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
263 /* trace */
264 ceph_decode_32_safe(&p, end, len, bad);
265 if (len > 0) {
266 ceph_decode_need(&p, end, len, bad);
267 err = parse_reply_info_trace(&p, p+len, info, features);
268 if (err < 0)
269 goto out_bad;
272 /* extra */
273 ceph_decode_32_safe(&p, end, len, bad);
274 if (len > 0) {
275 ceph_decode_need(&p, end, len, bad);
276 err = parse_reply_info_extra(&p, p+len, info, features);
277 if (err < 0)
278 goto out_bad;
281 /* snap blob */
282 ceph_decode_32_safe(&p, end, len, bad);
283 info->snapblob_len = len;
284 info->snapblob = p;
285 p += len;
287 if (p != end)
288 goto bad;
289 return 0;
291 bad:
292 err = -EIO;
293 out_bad:
294 pr_err("mds parse_reply err %d\n", err);
295 return err;
298 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
300 kfree(info->dir_in);
305 * sessions
307 static const char *session_state_name(int s)
309 switch (s) {
310 case CEPH_MDS_SESSION_NEW: return "new";
311 case CEPH_MDS_SESSION_OPENING: return "opening";
312 case CEPH_MDS_SESSION_OPEN: return "open";
313 case CEPH_MDS_SESSION_HUNG: return "hung";
314 case CEPH_MDS_SESSION_CLOSING: return "closing";
315 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
316 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
317 default: return "???";
321 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
323 if (atomic_inc_not_zero(&s->s_ref)) {
324 dout("mdsc get_session %p %d -> %d\n", s,
325 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
326 return s;
327 } else {
328 dout("mdsc get_session %p 0 -- FAIL", s);
329 return NULL;
333 void ceph_put_mds_session(struct ceph_mds_session *s)
335 dout("mdsc put_session %p %d -> %d\n", s,
336 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
337 if (atomic_dec_and_test(&s->s_ref)) {
338 if (s->s_auth.authorizer)
339 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
340 s->s_mdsc->fsc->client->monc.auth,
341 s->s_auth.authorizer);
342 kfree(s);
347 * called under mdsc->mutex
349 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
350 int mds)
352 struct ceph_mds_session *session;
354 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
355 return NULL;
356 session = mdsc->sessions[mds];
357 dout("lookup_mds_session %p %d\n", session,
358 atomic_read(&session->s_ref));
359 get_session(session);
360 return session;
363 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
365 if (mds >= mdsc->max_sessions)
366 return false;
367 return mdsc->sessions[mds];
370 static int __verify_registered_session(struct ceph_mds_client *mdsc,
371 struct ceph_mds_session *s)
373 if (s->s_mds >= mdsc->max_sessions ||
374 mdsc->sessions[s->s_mds] != s)
375 return -ENOENT;
376 return 0;
380 * create+register a new session for given mds.
381 * called under mdsc->mutex.
383 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
384 int mds)
386 struct ceph_mds_session *s;
388 s = kzalloc(sizeof(*s), GFP_NOFS);
389 if (!s)
390 return ERR_PTR(-ENOMEM);
391 s->s_mdsc = mdsc;
392 s->s_mds = mds;
393 s->s_state = CEPH_MDS_SESSION_NEW;
394 s->s_ttl = 0;
395 s->s_seq = 0;
396 mutex_init(&s->s_mutex);
398 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
400 spin_lock_init(&s->s_gen_ttl_lock);
401 s->s_cap_gen = 0;
402 s->s_cap_ttl = jiffies - 1;
404 spin_lock_init(&s->s_cap_lock);
405 s->s_renew_requested = 0;
406 s->s_renew_seq = 0;
407 INIT_LIST_HEAD(&s->s_caps);
408 s->s_nr_caps = 0;
409 s->s_trim_caps = 0;
410 atomic_set(&s->s_ref, 1);
411 INIT_LIST_HEAD(&s->s_waiting);
412 INIT_LIST_HEAD(&s->s_unsafe);
413 s->s_num_cap_releases = 0;
414 s->s_cap_iterator = NULL;
415 INIT_LIST_HEAD(&s->s_cap_releases);
416 INIT_LIST_HEAD(&s->s_cap_releases_done);
417 INIT_LIST_HEAD(&s->s_cap_flushing);
418 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
420 dout("register_session mds%d\n", mds);
421 if (mds >= mdsc->max_sessions) {
422 int newmax = 1 << get_count_order(mds+1);
423 struct ceph_mds_session **sa;
425 dout("register_session realloc to %d\n", newmax);
426 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
427 if (sa == NULL)
428 goto fail_realloc;
429 if (mdsc->sessions) {
430 memcpy(sa, mdsc->sessions,
431 mdsc->max_sessions * sizeof(void *));
432 kfree(mdsc->sessions);
434 mdsc->sessions = sa;
435 mdsc->max_sessions = newmax;
437 mdsc->sessions[mds] = s;
438 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
440 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
441 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
443 return s;
445 fail_realloc:
446 kfree(s);
447 return ERR_PTR(-ENOMEM);
451 * called under mdsc->mutex
453 static void __unregister_session(struct ceph_mds_client *mdsc,
454 struct ceph_mds_session *s)
456 dout("__unregister_session mds%d %p\n", s->s_mds, s);
457 BUG_ON(mdsc->sessions[s->s_mds] != s);
458 mdsc->sessions[s->s_mds] = NULL;
459 ceph_con_close(&s->s_con);
460 ceph_put_mds_session(s);
464 * drop session refs in request.
466 * should be last request ref, or hold mdsc->mutex
468 static void put_request_session(struct ceph_mds_request *req)
470 if (req->r_session) {
471 ceph_put_mds_session(req->r_session);
472 req->r_session = NULL;
476 void ceph_mdsc_release_request(struct kref *kref)
478 struct ceph_mds_request *req = container_of(kref,
479 struct ceph_mds_request,
480 r_kref);
481 if (req->r_request)
482 ceph_msg_put(req->r_request);
483 if (req->r_reply) {
484 ceph_msg_put(req->r_reply);
485 destroy_reply_info(&req->r_reply_info);
487 if (req->r_inode) {
488 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
489 iput(req->r_inode);
491 if (req->r_locked_dir)
492 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
493 if (req->r_target_inode)
494 iput(req->r_target_inode);
495 if (req->r_dentry)
496 dput(req->r_dentry);
497 if (req->r_old_dentry) {
499 * track (and drop pins for) r_old_dentry_dir
500 * separately, since r_old_dentry's d_parent may have
501 * changed between the dir mutex being dropped and
502 * this request being freed.
504 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
505 CEPH_CAP_PIN);
506 dput(req->r_old_dentry);
507 iput(req->r_old_dentry_dir);
509 kfree(req->r_path1);
510 kfree(req->r_path2);
511 put_request_session(req);
512 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
513 kfree(req);
517 * lookup session, bump ref if found.
519 * called under mdsc->mutex.
521 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
522 u64 tid)
524 struct ceph_mds_request *req;
525 struct rb_node *n = mdsc->request_tree.rb_node;
527 while (n) {
528 req = rb_entry(n, struct ceph_mds_request, r_node);
529 if (tid < req->r_tid)
530 n = n->rb_left;
531 else if (tid > req->r_tid)
532 n = n->rb_right;
533 else {
534 ceph_mdsc_get_request(req);
535 return req;
538 return NULL;
541 static void __insert_request(struct ceph_mds_client *mdsc,
542 struct ceph_mds_request *new)
544 struct rb_node **p = &mdsc->request_tree.rb_node;
545 struct rb_node *parent = NULL;
546 struct ceph_mds_request *req = NULL;
548 while (*p) {
549 parent = *p;
550 req = rb_entry(parent, struct ceph_mds_request, r_node);
551 if (new->r_tid < req->r_tid)
552 p = &(*p)->rb_left;
553 else if (new->r_tid > req->r_tid)
554 p = &(*p)->rb_right;
555 else
556 BUG();
559 rb_link_node(&new->r_node, parent, p);
560 rb_insert_color(&new->r_node, &mdsc->request_tree);
564 * Register an in-flight request, and assign a tid. Link to directory
565 * are modifying (if any).
567 * Called under mdsc->mutex.
569 static void __register_request(struct ceph_mds_client *mdsc,
570 struct ceph_mds_request *req,
571 struct inode *dir)
573 req->r_tid = ++mdsc->last_tid;
574 if (req->r_num_caps)
575 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
576 req->r_num_caps);
577 dout("__register_request %p tid %lld\n", req, req->r_tid);
578 ceph_mdsc_get_request(req);
579 __insert_request(mdsc, req);
581 req->r_uid = current_fsuid();
582 req->r_gid = current_fsgid();
584 if (dir) {
585 struct ceph_inode_info *ci = ceph_inode(dir);
587 ihold(dir);
588 spin_lock(&ci->i_unsafe_lock);
589 req->r_unsafe_dir = dir;
590 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
591 spin_unlock(&ci->i_unsafe_lock);
595 static void __unregister_request(struct ceph_mds_client *mdsc,
596 struct ceph_mds_request *req)
598 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
599 rb_erase(&req->r_node, &mdsc->request_tree);
600 RB_CLEAR_NODE(&req->r_node);
602 if (req->r_unsafe_dir) {
603 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
605 spin_lock(&ci->i_unsafe_lock);
606 list_del_init(&req->r_unsafe_dir_item);
607 spin_unlock(&ci->i_unsafe_lock);
609 iput(req->r_unsafe_dir);
610 req->r_unsafe_dir = NULL;
613 ceph_mdsc_put_request(req);
617 * Choose mds to send request to next. If there is a hint set in the
618 * request (e.g., due to a prior forward hint from the mds), use that.
619 * Otherwise, consult frag tree and/or caps to identify the
620 * appropriate mds. If all else fails, choose randomly.
622 * Called under mdsc->mutex.
624 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
627 * we don't need to worry about protecting the d_parent access
628 * here because we never renaming inside the snapped namespace
629 * except to resplice to another snapdir, and either the old or new
630 * result is a valid result.
632 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
633 dentry = dentry->d_parent;
634 return dentry;
637 static int __choose_mds(struct ceph_mds_client *mdsc,
638 struct ceph_mds_request *req)
640 struct inode *inode;
641 struct ceph_inode_info *ci;
642 struct ceph_cap *cap;
643 int mode = req->r_direct_mode;
644 int mds = -1;
645 u32 hash = req->r_direct_hash;
646 bool is_hash = req->r_direct_is_hash;
649 * is there a specific mds we should try? ignore hint if we have
650 * no session and the mds is not up (active or recovering).
652 if (req->r_resend_mds >= 0 &&
653 (__have_session(mdsc, req->r_resend_mds) ||
654 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
655 dout("choose_mds using resend_mds mds%d\n",
656 req->r_resend_mds);
657 return req->r_resend_mds;
660 if (mode == USE_RANDOM_MDS)
661 goto random;
663 inode = NULL;
664 if (req->r_inode) {
665 inode = req->r_inode;
666 } else if (req->r_dentry) {
667 /* ignore race with rename; old or new d_parent is okay */
668 struct dentry *parent = req->r_dentry->d_parent;
669 struct inode *dir = parent->d_inode;
671 if (dir->i_sb != mdsc->fsc->sb) {
672 /* not this fs! */
673 inode = req->r_dentry->d_inode;
674 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
675 /* direct snapped/virtual snapdir requests
676 * based on parent dir inode */
677 struct dentry *dn = get_nonsnap_parent(parent);
678 inode = dn->d_inode;
679 dout("__choose_mds using nonsnap parent %p\n", inode);
680 } else if (req->r_dentry->d_inode) {
681 /* dentry target */
682 inode = req->r_dentry->d_inode;
683 } else {
684 /* dir + name */
685 inode = dir;
686 hash = ceph_dentry_hash(dir, req->r_dentry);
687 is_hash = true;
691 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
692 (int)hash, mode);
693 if (!inode)
694 goto random;
695 ci = ceph_inode(inode);
697 if (is_hash && S_ISDIR(inode->i_mode)) {
698 struct ceph_inode_frag frag;
699 int found;
701 ceph_choose_frag(ci, hash, &frag, &found);
702 if (found) {
703 if (mode == USE_ANY_MDS && frag.ndist > 0) {
704 u8 r;
706 /* choose a random replica */
707 get_random_bytes(&r, 1);
708 r %= frag.ndist;
709 mds = frag.dist[r];
710 dout("choose_mds %p %llx.%llx "
711 "frag %u mds%d (%d/%d)\n",
712 inode, ceph_vinop(inode),
713 frag.frag, mds,
714 (int)r, frag.ndist);
715 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
716 CEPH_MDS_STATE_ACTIVE)
717 return mds;
720 /* since this file/dir wasn't known to be
721 * replicated, then we want to look for the
722 * authoritative mds. */
723 mode = USE_AUTH_MDS;
724 if (frag.mds >= 0) {
725 /* choose auth mds */
726 mds = frag.mds;
727 dout("choose_mds %p %llx.%llx "
728 "frag %u mds%d (auth)\n",
729 inode, ceph_vinop(inode), frag.frag, mds);
730 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
731 CEPH_MDS_STATE_ACTIVE)
732 return mds;
737 spin_lock(&ci->i_ceph_lock);
738 cap = NULL;
739 if (mode == USE_AUTH_MDS)
740 cap = ci->i_auth_cap;
741 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
742 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
743 if (!cap) {
744 spin_unlock(&ci->i_ceph_lock);
745 goto random;
747 mds = cap->session->s_mds;
748 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
749 inode, ceph_vinop(inode), mds,
750 cap == ci->i_auth_cap ? "auth " : "", cap);
751 spin_unlock(&ci->i_ceph_lock);
752 return mds;
754 random:
755 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
756 dout("choose_mds chose random mds%d\n", mds);
757 return mds;
762 * session messages
764 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
766 struct ceph_msg *msg;
767 struct ceph_mds_session_head *h;
769 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
770 false);
771 if (!msg) {
772 pr_err("create_session_msg ENOMEM creating msg\n");
773 return NULL;
775 h = msg->front.iov_base;
776 h->op = cpu_to_le32(op);
777 h->seq = cpu_to_le64(seq);
778 return msg;
782 * send session open request.
784 * called under mdsc->mutex
786 static int __open_session(struct ceph_mds_client *mdsc,
787 struct ceph_mds_session *session)
789 struct ceph_msg *msg;
790 int mstate;
791 int mds = session->s_mds;
793 /* wait for mds to go active? */
794 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
795 dout("open_session to mds%d (%s)\n", mds,
796 ceph_mds_state_name(mstate));
797 session->s_state = CEPH_MDS_SESSION_OPENING;
798 session->s_renew_requested = jiffies;
800 /* send connect message */
801 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
802 if (!msg)
803 return -ENOMEM;
804 ceph_con_send(&session->s_con, msg);
805 return 0;
809 * open sessions for any export targets for the given mds
811 * called under mdsc->mutex
813 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
814 struct ceph_mds_session *session)
816 struct ceph_mds_info *mi;
817 struct ceph_mds_session *ts;
818 int i, mds = session->s_mds;
819 int target;
821 if (mds >= mdsc->mdsmap->m_max_mds)
822 return;
823 mi = &mdsc->mdsmap->m_info[mds];
824 dout("open_export_target_sessions for mds%d (%d targets)\n",
825 session->s_mds, mi->num_export_targets);
827 for (i = 0; i < mi->num_export_targets; i++) {
828 target = mi->export_targets[i];
829 ts = __ceph_lookup_mds_session(mdsc, target);
830 if (!ts) {
831 ts = register_session(mdsc, target);
832 if (IS_ERR(ts))
833 return;
835 if (session->s_state == CEPH_MDS_SESSION_NEW ||
836 session->s_state == CEPH_MDS_SESSION_CLOSING)
837 __open_session(mdsc, session);
838 else
839 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
840 i, ts, session_state_name(ts->s_state));
841 ceph_put_mds_session(ts);
845 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
846 struct ceph_mds_session *session)
848 mutex_lock(&mdsc->mutex);
849 __open_export_target_sessions(mdsc, session);
850 mutex_unlock(&mdsc->mutex);
854 * session caps
858 * Free preallocated cap messages assigned to this session
860 static void cleanup_cap_releases(struct ceph_mds_session *session)
862 struct ceph_msg *msg;
864 spin_lock(&session->s_cap_lock);
865 while (!list_empty(&session->s_cap_releases)) {
866 msg = list_first_entry(&session->s_cap_releases,
867 struct ceph_msg, list_head);
868 list_del_init(&msg->list_head);
869 ceph_msg_put(msg);
871 while (!list_empty(&session->s_cap_releases_done)) {
872 msg = list_first_entry(&session->s_cap_releases_done,
873 struct ceph_msg, list_head);
874 list_del_init(&msg->list_head);
875 ceph_msg_put(msg);
877 spin_unlock(&session->s_cap_lock);
881 * Helper to safely iterate over all caps associated with a session, with
882 * special care taken to handle a racing __ceph_remove_cap().
884 * Caller must hold session s_mutex.
886 static int iterate_session_caps(struct ceph_mds_session *session,
887 int (*cb)(struct inode *, struct ceph_cap *,
888 void *), void *arg)
890 struct list_head *p;
891 struct ceph_cap *cap;
892 struct inode *inode, *last_inode = NULL;
893 struct ceph_cap *old_cap = NULL;
894 int ret;
896 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
897 spin_lock(&session->s_cap_lock);
898 p = session->s_caps.next;
899 while (p != &session->s_caps) {
900 cap = list_entry(p, struct ceph_cap, session_caps);
901 inode = igrab(&cap->ci->vfs_inode);
902 if (!inode) {
903 p = p->next;
904 continue;
906 session->s_cap_iterator = cap;
907 spin_unlock(&session->s_cap_lock);
909 if (last_inode) {
910 iput(last_inode);
911 last_inode = NULL;
913 if (old_cap) {
914 ceph_put_cap(session->s_mdsc, old_cap);
915 old_cap = NULL;
918 ret = cb(inode, cap, arg);
919 last_inode = inode;
921 spin_lock(&session->s_cap_lock);
922 p = p->next;
923 if (cap->ci == NULL) {
924 dout("iterate_session_caps finishing cap %p removal\n",
925 cap);
926 BUG_ON(cap->session != session);
927 list_del_init(&cap->session_caps);
928 session->s_nr_caps--;
929 cap->session = NULL;
930 old_cap = cap; /* put_cap it w/o locks held */
932 if (ret < 0)
933 goto out;
935 ret = 0;
936 out:
937 session->s_cap_iterator = NULL;
938 spin_unlock(&session->s_cap_lock);
940 if (last_inode)
941 iput(last_inode);
942 if (old_cap)
943 ceph_put_cap(session->s_mdsc, old_cap);
945 return ret;
948 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
949 void *arg)
951 struct ceph_inode_info *ci = ceph_inode(inode);
952 int drop = 0;
954 dout("removing cap %p, ci is %p, inode is %p\n",
955 cap, ci, &ci->vfs_inode);
956 spin_lock(&ci->i_ceph_lock);
957 __ceph_remove_cap(cap);
958 if (!__ceph_is_any_real_caps(ci)) {
959 struct ceph_mds_client *mdsc =
960 ceph_sb_to_client(inode->i_sb)->mdsc;
962 spin_lock(&mdsc->cap_dirty_lock);
963 if (!list_empty(&ci->i_dirty_item)) {
964 pr_info(" dropping dirty %s state for %p %lld\n",
965 ceph_cap_string(ci->i_dirty_caps),
966 inode, ceph_ino(inode));
967 ci->i_dirty_caps = 0;
968 list_del_init(&ci->i_dirty_item);
969 drop = 1;
971 if (!list_empty(&ci->i_flushing_item)) {
972 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
973 ceph_cap_string(ci->i_flushing_caps),
974 inode, ceph_ino(inode));
975 ci->i_flushing_caps = 0;
976 list_del_init(&ci->i_flushing_item);
977 mdsc->num_cap_flushing--;
978 drop = 1;
980 if (drop && ci->i_wrbuffer_ref) {
981 pr_info(" dropping dirty data for %p %lld\n",
982 inode, ceph_ino(inode));
983 ci->i_wrbuffer_ref = 0;
984 ci->i_wrbuffer_ref_head = 0;
985 drop++;
987 spin_unlock(&mdsc->cap_dirty_lock);
989 spin_unlock(&ci->i_ceph_lock);
990 while (drop--)
991 iput(inode);
992 return 0;
996 * caller must hold session s_mutex
998 static void remove_session_caps(struct ceph_mds_session *session)
1000 dout("remove_session_caps on %p\n", session);
1001 iterate_session_caps(session, remove_session_caps_cb, NULL);
1002 BUG_ON(session->s_nr_caps > 0);
1003 BUG_ON(!list_empty(&session->s_cap_flushing));
1004 cleanup_cap_releases(session);
1008 * wake up any threads waiting on this session's caps. if the cap is
1009 * old (didn't get renewed on the client reconnect), remove it now.
1011 * caller must hold s_mutex.
1013 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1014 void *arg)
1016 struct ceph_inode_info *ci = ceph_inode(inode);
1018 wake_up_all(&ci->i_cap_wq);
1019 if (arg) {
1020 spin_lock(&ci->i_ceph_lock);
1021 ci->i_wanted_max_size = 0;
1022 ci->i_requested_max_size = 0;
1023 spin_unlock(&ci->i_ceph_lock);
1025 return 0;
1028 static void wake_up_session_caps(struct ceph_mds_session *session,
1029 int reconnect)
1031 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1032 iterate_session_caps(session, wake_up_session_cb,
1033 (void *)(unsigned long)reconnect);
1037 * Send periodic message to MDS renewing all currently held caps. The
1038 * ack will reset the expiration for all caps from this session.
1040 * caller holds s_mutex
1042 static int send_renew_caps(struct ceph_mds_client *mdsc,
1043 struct ceph_mds_session *session)
1045 struct ceph_msg *msg;
1046 int state;
1048 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1049 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1050 pr_info("mds%d caps stale\n", session->s_mds);
1051 session->s_renew_requested = jiffies;
1053 /* do not try to renew caps until a recovering mds has reconnected
1054 * with its clients. */
1055 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1056 if (state < CEPH_MDS_STATE_RECONNECT) {
1057 dout("send_renew_caps ignoring mds%d (%s)\n",
1058 session->s_mds, ceph_mds_state_name(state));
1059 return 0;
1062 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1063 ceph_mds_state_name(state));
1064 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1065 ++session->s_renew_seq);
1066 if (!msg)
1067 return -ENOMEM;
1068 ceph_con_send(&session->s_con, msg);
1069 return 0;
1073 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1075 * Called under session->s_mutex
1077 static void renewed_caps(struct ceph_mds_client *mdsc,
1078 struct ceph_mds_session *session, int is_renew)
1080 int was_stale;
1081 int wake = 0;
1083 spin_lock(&session->s_cap_lock);
1084 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1086 session->s_cap_ttl = session->s_renew_requested +
1087 mdsc->mdsmap->m_session_timeout*HZ;
1089 if (was_stale) {
1090 if (time_before(jiffies, session->s_cap_ttl)) {
1091 pr_info("mds%d caps renewed\n", session->s_mds);
1092 wake = 1;
1093 } else {
1094 pr_info("mds%d caps still stale\n", session->s_mds);
1097 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1098 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1099 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1100 spin_unlock(&session->s_cap_lock);
1102 if (wake)
1103 wake_up_session_caps(session, 0);
1107 * send a session close request
1109 static int request_close_session(struct ceph_mds_client *mdsc,
1110 struct ceph_mds_session *session)
1112 struct ceph_msg *msg;
1114 dout("request_close_session mds%d state %s seq %lld\n",
1115 session->s_mds, session_state_name(session->s_state),
1116 session->s_seq);
1117 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1118 if (!msg)
1119 return -ENOMEM;
1120 ceph_con_send(&session->s_con, msg);
1121 return 0;
1125 * Called with s_mutex held.
1127 static int __close_session(struct ceph_mds_client *mdsc,
1128 struct ceph_mds_session *session)
1130 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1131 return 0;
1132 session->s_state = CEPH_MDS_SESSION_CLOSING;
1133 return request_close_session(mdsc, session);
1137 * Trim old(er) caps.
1139 * Because we can't cache an inode without one or more caps, we do
1140 * this indirectly: if a cap is unused, we prune its aliases, at which
1141 * point the inode will hopefully get dropped to.
1143 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1144 * memory pressure from the MDS, though, so it needn't be perfect.
1146 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1148 struct ceph_mds_session *session = arg;
1149 struct ceph_inode_info *ci = ceph_inode(inode);
1150 int used, oissued, mine;
1152 if (session->s_trim_caps <= 0)
1153 return -1;
1155 spin_lock(&ci->i_ceph_lock);
1156 mine = cap->issued | cap->implemented;
1157 used = __ceph_caps_used(ci);
1158 oissued = __ceph_caps_issued_other(ci, cap);
1160 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1161 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1162 ceph_cap_string(used));
1163 if (ci->i_dirty_caps)
1164 goto out; /* dirty caps */
1165 if ((used & ~oissued) & mine)
1166 goto out; /* we need these caps */
1168 session->s_trim_caps--;
1169 if (oissued) {
1170 /* we aren't the only cap.. just remove us */
1171 __ceph_remove_cap(cap);
1172 } else {
1173 /* try to drop referring dentries */
1174 spin_unlock(&ci->i_ceph_lock);
1175 d_prune_aliases(inode);
1176 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1177 inode, cap, atomic_read(&inode->i_count));
1178 return 0;
1181 out:
1182 spin_unlock(&ci->i_ceph_lock);
1183 return 0;
1187 * Trim session cap count down to some max number.
1189 static int trim_caps(struct ceph_mds_client *mdsc,
1190 struct ceph_mds_session *session,
1191 int max_caps)
1193 int trim_caps = session->s_nr_caps - max_caps;
1195 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1196 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1197 if (trim_caps > 0) {
1198 session->s_trim_caps = trim_caps;
1199 iterate_session_caps(session, trim_caps_cb, session);
1200 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1201 session->s_mds, session->s_nr_caps, max_caps,
1202 trim_caps - session->s_trim_caps);
1203 session->s_trim_caps = 0;
1205 return 0;
1209 * Allocate cap_release messages. If there is a partially full message
1210 * in the queue, try to allocate enough to cover it's remainder, so that
1211 * we can send it immediately.
1213 * Called under s_mutex.
1215 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1216 struct ceph_mds_session *session)
1218 struct ceph_msg *msg, *partial = NULL;
1219 struct ceph_mds_cap_release *head;
1220 int err = -ENOMEM;
1221 int extra = mdsc->fsc->mount_options->cap_release_safety;
1222 int num;
1224 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1225 extra);
1227 spin_lock(&session->s_cap_lock);
1229 if (!list_empty(&session->s_cap_releases)) {
1230 msg = list_first_entry(&session->s_cap_releases,
1231 struct ceph_msg,
1232 list_head);
1233 head = msg->front.iov_base;
1234 num = le32_to_cpu(head->num);
1235 if (num) {
1236 dout(" partial %p with (%d/%d)\n", msg, num,
1237 (int)CEPH_CAPS_PER_RELEASE);
1238 extra += CEPH_CAPS_PER_RELEASE - num;
1239 partial = msg;
1242 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1243 spin_unlock(&session->s_cap_lock);
1244 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1245 GFP_NOFS, false);
1246 if (!msg)
1247 goto out_unlocked;
1248 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1249 (int)msg->front.iov_len);
1250 head = msg->front.iov_base;
1251 head->num = cpu_to_le32(0);
1252 msg->front.iov_len = sizeof(*head);
1253 spin_lock(&session->s_cap_lock);
1254 list_add(&msg->list_head, &session->s_cap_releases);
1255 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1258 if (partial) {
1259 head = partial->front.iov_base;
1260 num = le32_to_cpu(head->num);
1261 dout(" queueing partial %p with %d/%d\n", partial, num,
1262 (int)CEPH_CAPS_PER_RELEASE);
1263 list_move_tail(&partial->list_head,
1264 &session->s_cap_releases_done);
1265 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1267 err = 0;
1268 spin_unlock(&session->s_cap_lock);
1269 out_unlocked:
1270 return err;
1274 * flush all dirty inode data to disk.
1276 * returns true if we've flushed through want_flush_seq
1278 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1280 int mds, ret = 1;
1282 dout("check_cap_flush want %lld\n", want_flush_seq);
1283 mutex_lock(&mdsc->mutex);
1284 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1285 struct ceph_mds_session *session = mdsc->sessions[mds];
1287 if (!session)
1288 continue;
1289 get_session(session);
1290 mutex_unlock(&mdsc->mutex);
1292 mutex_lock(&session->s_mutex);
1293 if (!list_empty(&session->s_cap_flushing)) {
1294 struct ceph_inode_info *ci =
1295 list_entry(session->s_cap_flushing.next,
1296 struct ceph_inode_info,
1297 i_flushing_item);
1298 struct inode *inode = &ci->vfs_inode;
1300 spin_lock(&ci->i_ceph_lock);
1301 if (ci->i_cap_flush_seq <= want_flush_seq) {
1302 dout("check_cap_flush still flushing %p "
1303 "seq %lld <= %lld to mds%d\n", inode,
1304 ci->i_cap_flush_seq, want_flush_seq,
1305 session->s_mds);
1306 ret = 0;
1308 spin_unlock(&ci->i_ceph_lock);
1310 mutex_unlock(&session->s_mutex);
1311 ceph_put_mds_session(session);
1313 if (!ret)
1314 return ret;
1315 mutex_lock(&mdsc->mutex);
1318 mutex_unlock(&mdsc->mutex);
1319 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1320 return ret;
1324 * called under s_mutex
1326 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1327 struct ceph_mds_session *session)
1329 struct ceph_msg *msg;
1331 dout("send_cap_releases mds%d\n", session->s_mds);
1332 spin_lock(&session->s_cap_lock);
1333 while (!list_empty(&session->s_cap_releases_done)) {
1334 msg = list_first_entry(&session->s_cap_releases_done,
1335 struct ceph_msg, list_head);
1336 list_del_init(&msg->list_head);
1337 spin_unlock(&session->s_cap_lock);
1338 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1339 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1340 ceph_con_send(&session->s_con, msg);
1341 spin_lock(&session->s_cap_lock);
1343 spin_unlock(&session->s_cap_lock);
1346 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1347 struct ceph_mds_session *session)
1349 struct ceph_msg *msg;
1350 struct ceph_mds_cap_release *head;
1351 unsigned num;
1353 dout("discard_cap_releases mds%d\n", session->s_mds);
1354 spin_lock(&session->s_cap_lock);
1356 /* zero out the in-progress message */
1357 msg = list_first_entry(&session->s_cap_releases,
1358 struct ceph_msg, list_head);
1359 head = msg->front.iov_base;
1360 num = le32_to_cpu(head->num);
1361 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1362 head->num = cpu_to_le32(0);
1363 session->s_num_cap_releases += num;
1365 /* requeue completed messages */
1366 while (!list_empty(&session->s_cap_releases_done)) {
1367 msg = list_first_entry(&session->s_cap_releases_done,
1368 struct ceph_msg, list_head);
1369 list_del_init(&msg->list_head);
1371 head = msg->front.iov_base;
1372 num = le32_to_cpu(head->num);
1373 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1374 num);
1375 session->s_num_cap_releases += num;
1376 head->num = cpu_to_le32(0);
1377 msg->front.iov_len = sizeof(*head);
1378 list_add(&msg->list_head, &session->s_cap_releases);
1381 spin_unlock(&session->s_cap_lock);
1385 * requests
1389 * Create an mds request.
1391 struct ceph_mds_request *
1392 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1394 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1396 if (!req)
1397 return ERR_PTR(-ENOMEM);
1399 mutex_init(&req->r_fill_mutex);
1400 req->r_mdsc = mdsc;
1401 req->r_started = jiffies;
1402 req->r_resend_mds = -1;
1403 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1404 req->r_fmode = -1;
1405 kref_init(&req->r_kref);
1406 INIT_LIST_HEAD(&req->r_wait);
1407 init_completion(&req->r_completion);
1408 init_completion(&req->r_safe_completion);
1409 INIT_LIST_HEAD(&req->r_unsafe_item);
1411 req->r_op = op;
1412 req->r_direct_mode = mode;
1413 return req;
1417 * return oldest (lowest) request, tid in request tree, 0 if none.
1419 * called under mdsc->mutex.
1421 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1423 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1424 return NULL;
1425 return rb_entry(rb_first(&mdsc->request_tree),
1426 struct ceph_mds_request, r_node);
1429 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1431 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1433 if (req)
1434 return req->r_tid;
1435 return 0;
1439 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1440 * on build_path_from_dentry in fs/cifs/dir.c.
1442 * If @stop_on_nosnap, generate path relative to the first non-snapped
1443 * inode.
1445 * Encode hidden .snap dirs as a double /, i.e.
1446 * foo/.snap/bar -> foo//bar
1448 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1449 int stop_on_nosnap)
1451 struct dentry *temp;
1452 char *path;
1453 int len, pos;
1454 unsigned seq;
1456 if (dentry == NULL)
1457 return ERR_PTR(-EINVAL);
1459 retry:
1460 len = 0;
1461 seq = read_seqbegin(&rename_lock);
1462 rcu_read_lock();
1463 for (temp = dentry; !IS_ROOT(temp);) {
1464 struct inode *inode = temp->d_inode;
1465 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1466 len++; /* slash only */
1467 else if (stop_on_nosnap && inode &&
1468 ceph_snap(inode) == CEPH_NOSNAP)
1469 break;
1470 else
1471 len += 1 + temp->d_name.len;
1472 temp = temp->d_parent;
1474 rcu_read_unlock();
1475 if (len)
1476 len--; /* no leading '/' */
1478 path = kmalloc(len+1, GFP_NOFS);
1479 if (path == NULL)
1480 return ERR_PTR(-ENOMEM);
1481 pos = len;
1482 path[pos] = 0; /* trailing null */
1483 rcu_read_lock();
1484 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1485 struct inode *inode;
1487 spin_lock(&temp->d_lock);
1488 inode = temp->d_inode;
1489 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1490 dout("build_path path+%d: %p SNAPDIR\n",
1491 pos, temp);
1492 } else if (stop_on_nosnap && inode &&
1493 ceph_snap(inode) == CEPH_NOSNAP) {
1494 spin_unlock(&temp->d_lock);
1495 break;
1496 } else {
1497 pos -= temp->d_name.len;
1498 if (pos < 0) {
1499 spin_unlock(&temp->d_lock);
1500 break;
1502 strncpy(path + pos, temp->d_name.name,
1503 temp->d_name.len);
1505 spin_unlock(&temp->d_lock);
1506 if (pos)
1507 path[--pos] = '/';
1508 temp = temp->d_parent;
1510 rcu_read_unlock();
1511 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1512 pr_err("build_path did not end path lookup where "
1513 "expected, namelen is %d, pos is %d\n", len, pos);
1514 /* presumably this is only possible if racing with a
1515 rename of one of the parent directories (we can not
1516 lock the dentries above us to prevent this, but
1517 retrying should be harmless) */
1518 kfree(path);
1519 goto retry;
1522 *base = ceph_ino(temp->d_inode);
1523 *plen = len;
1524 dout("build_path on %p %d built %llx '%.*s'\n",
1525 dentry, dentry->d_count, *base, len, path);
1526 return path;
1529 static int build_dentry_path(struct dentry *dentry,
1530 const char **ppath, int *ppathlen, u64 *pino,
1531 int *pfreepath)
1533 char *path;
1535 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1536 *pino = ceph_ino(dentry->d_parent->d_inode);
1537 *ppath = dentry->d_name.name;
1538 *ppathlen = dentry->d_name.len;
1539 return 0;
1541 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1542 if (IS_ERR(path))
1543 return PTR_ERR(path);
1544 *ppath = path;
1545 *pfreepath = 1;
1546 return 0;
1549 static int build_inode_path(struct inode *inode,
1550 const char **ppath, int *ppathlen, u64 *pino,
1551 int *pfreepath)
1553 struct dentry *dentry;
1554 char *path;
1556 if (ceph_snap(inode) == CEPH_NOSNAP) {
1557 *pino = ceph_ino(inode);
1558 *ppathlen = 0;
1559 return 0;
1561 dentry = d_find_alias(inode);
1562 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1563 dput(dentry);
1564 if (IS_ERR(path))
1565 return PTR_ERR(path);
1566 *ppath = path;
1567 *pfreepath = 1;
1568 return 0;
1572 * request arguments may be specified via an inode *, a dentry *, or
1573 * an explicit ino+path.
1575 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1576 const char *rpath, u64 rino,
1577 const char **ppath, int *pathlen,
1578 u64 *ino, int *freepath)
1580 int r = 0;
1582 if (rinode) {
1583 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1584 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1585 ceph_snap(rinode));
1586 } else if (rdentry) {
1587 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1588 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1589 *ppath);
1590 } else if (rpath || rino) {
1591 *ino = rino;
1592 *ppath = rpath;
1593 *pathlen = rpath ? strlen(rpath) : 0;
1594 dout(" path %.*s\n", *pathlen, rpath);
1597 return r;
1601 * called under mdsc->mutex
1603 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1604 struct ceph_mds_request *req,
1605 int mds)
1607 struct ceph_msg *msg;
1608 struct ceph_mds_request_head *head;
1609 const char *path1 = NULL;
1610 const char *path2 = NULL;
1611 u64 ino1 = 0, ino2 = 0;
1612 int pathlen1 = 0, pathlen2 = 0;
1613 int freepath1 = 0, freepath2 = 0;
1614 int len;
1615 u16 releases;
1616 void *p, *end;
1617 int ret;
1619 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1620 req->r_path1, req->r_ino1.ino,
1621 &path1, &pathlen1, &ino1, &freepath1);
1622 if (ret < 0) {
1623 msg = ERR_PTR(ret);
1624 goto out;
1627 ret = set_request_path_attr(NULL, req->r_old_dentry,
1628 req->r_path2, req->r_ino2.ino,
1629 &path2, &pathlen2, &ino2, &freepath2);
1630 if (ret < 0) {
1631 msg = ERR_PTR(ret);
1632 goto out_free1;
1635 len = sizeof(*head) +
1636 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1638 /* calculate (max) length for cap releases */
1639 len += sizeof(struct ceph_mds_request_release) *
1640 (!!req->r_inode_drop + !!req->r_dentry_drop +
1641 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1642 if (req->r_dentry_drop)
1643 len += req->r_dentry->d_name.len;
1644 if (req->r_old_dentry_drop)
1645 len += req->r_old_dentry->d_name.len;
1647 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1648 if (!msg) {
1649 msg = ERR_PTR(-ENOMEM);
1650 goto out_free2;
1653 msg->hdr.tid = cpu_to_le64(req->r_tid);
1655 head = msg->front.iov_base;
1656 p = msg->front.iov_base + sizeof(*head);
1657 end = msg->front.iov_base + msg->front.iov_len;
1659 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1660 head->op = cpu_to_le32(req->r_op);
1661 head->caller_uid = cpu_to_le32(req->r_uid);
1662 head->caller_gid = cpu_to_le32(req->r_gid);
1663 head->args = req->r_args;
1665 ceph_encode_filepath(&p, end, ino1, path1);
1666 ceph_encode_filepath(&p, end, ino2, path2);
1668 /* make note of release offset, in case we need to replay */
1669 req->r_request_release_offset = p - msg->front.iov_base;
1671 /* cap releases */
1672 releases = 0;
1673 if (req->r_inode_drop)
1674 releases += ceph_encode_inode_release(&p,
1675 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1676 mds, req->r_inode_drop, req->r_inode_unless, 0);
1677 if (req->r_dentry_drop)
1678 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1679 mds, req->r_dentry_drop, req->r_dentry_unless);
1680 if (req->r_old_dentry_drop)
1681 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1682 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1683 if (req->r_old_inode_drop)
1684 releases += ceph_encode_inode_release(&p,
1685 req->r_old_dentry->d_inode,
1686 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1687 head->num_releases = cpu_to_le16(releases);
1689 BUG_ON(p > end);
1690 msg->front.iov_len = p - msg->front.iov_base;
1691 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1693 msg->pages = req->r_pages;
1694 msg->nr_pages = req->r_num_pages;
1695 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1696 msg->hdr.data_off = cpu_to_le16(0);
1698 out_free2:
1699 if (freepath2)
1700 kfree((char *)path2);
1701 out_free1:
1702 if (freepath1)
1703 kfree((char *)path1);
1704 out:
1705 return msg;
1709 * called under mdsc->mutex if error, under no mutex if
1710 * success.
1712 static void complete_request(struct ceph_mds_client *mdsc,
1713 struct ceph_mds_request *req)
1715 if (req->r_callback)
1716 req->r_callback(mdsc, req);
1717 else
1718 complete_all(&req->r_completion);
1722 * called under mdsc->mutex
1724 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1725 struct ceph_mds_request *req,
1726 int mds)
1728 struct ceph_mds_request_head *rhead;
1729 struct ceph_msg *msg;
1730 int flags = 0;
1732 req->r_attempts++;
1733 if (req->r_inode) {
1734 struct ceph_cap *cap =
1735 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1737 if (cap)
1738 req->r_sent_on_mseq = cap->mseq;
1739 else
1740 req->r_sent_on_mseq = -1;
1742 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1743 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1745 if (req->r_got_unsafe) {
1747 * Replay. Do not regenerate message (and rebuild
1748 * paths, etc.); just use the original message.
1749 * Rebuilding paths will break for renames because
1750 * d_move mangles the src name.
1752 msg = req->r_request;
1753 rhead = msg->front.iov_base;
1755 flags = le32_to_cpu(rhead->flags);
1756 flags |= CEPH_MDS_FLAG_REPLAY;
1757 rhead->flags = cpu_to_le32(flags);
1759 if (req->r_target_inode)
1760 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1762 rhead->num_retry = req->r_attempts - 1;
1764 /* remove cap/dentry releases from message */
1765 rhead->num_releases = 0;
1766 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1767 msg->front.iov_len = req->r_request_release_offset;
1768 return 0;
1771 if (req->r_request) {
1772 ceph_msg_put(req->r_request);
1773 req->r_request = NULL;
1775 msg = create_request_message(mdsc, req, mds);
1776 if (IS_ERR(msg)) {
1777 req->r_err = PTR_ERR(msg);
1778 complete_request(mdsc, req);
1779 return PTR_ERR(msg);
1781 req->r_request = msg;
1783 rhead = msg->front.iov_base;
1784 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1785 if (req->r_got_unsafe)
1786 flags |= CEPH_MDS_FLAG_REPLAY;
1787 if (req->r_locked_dir)
1788 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1789 rhead->flags = cpu_to_le32(flags);
1790 rhead->num_fwd = req->r_num_fwd;
1791 rhead->num_retry = req->r_attempts - 1;
1792 rhead->ino = 0;
1794 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1795 return 0;
1799 * send request, or put it on the appropriate wait list.
1801 static int __do_request(struct ceph_mds_client *mdsc,
1802 struct ceph_mds_request *req)
1804 struct ceph_mds_session *session = NULL;
1805 int mds = -1;
1806 int err = -EAGAIN;
1808 if (req->r_err || req->r_got_result)
1809 goto out;
1811 if (req->r_timeout &&
1812 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1813 dout("do_request timed out\n");
1814 err = -EIO;
1815 goto finish;
1818 put_request_session(req);
1820 mds = __choose_mds(mdsc, req);
1821 if (mds < 0 ||
1822 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1823 dout("do_request no mds or not active, waiting for map\n");
1824 list_add(&req->r_wait, &mdsc->waiting_for_map);
1825 goto out;
1828 /* get, open session */
1829 session = __ceph_lookup_mds_session(mdsc, mds);
1830 if (!session) {
1831 session = register_session(mdsc, mds);
1832 if (IS_ERR(session)) {
1833 err = PTR_ERR(session);
1834 goto finish;
1837 req->r_session = get_session(session);
1839 dout("do_request mds%d session %p state %s\n", mds, session,
1840 session_state_name(session->s_state));
1841 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1842 session->s_state != CEPH_MDS_SESSION_HUNG) {
1843 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1844 session->s_state == CEPH_MDS_SESSION_CLOSING)
1845 __open_session(mdsc, session);
1846 list_add(&req->r_wait, &session->s_waiting);
1847 goto out_session;
1850 /* send request */
1851 req->r_resend_mds = -1; /* forget any previous mds hint */
1853 if (req->r_request_started == 0) /* note request start time */
1854 req->r_request_started = jiffies;
1856 err = __prepare_send_request(mdsc, req, mds);
1857 if (!err) {
1858 ceph_msg_get(req->r_request);
1859 ceph_con_send(&session->s_con, req->r_request);
1862 out_session:
1863 ceph_put_mds_session(session);
1864 out:
1865 return err;
1867 finish:
1868 req->r_err = err;
1869 complete_request(mdsc, req);
1870 goto out;
1874 * called under mdsc->mutex
1876 static void __wake_requests(struct ceph_mds_client *mdsc,
1877 struct list_head *head)
1879 struct ceph_mds_request *req;
1880 LIST_HEAD(tmp_list);
1882 list_splice_init(head, &tmp_list);
1884 while (!list_empty(&tmp_list)) {
1885 req = list_entry(tmp_list.next,
1886 struct ceph_mds_request, r_wait);
1887 list_del_init(&req->r_wait);
1888 __do_request(mdsc, req);
1893 * Wake up threads with requests pending for @mds, so that they can
1894 * resubmit their requests to a possibly different mds.
1896 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1898 struct ceph_mds_request *req;
1899 struct rb_node *p;
1901 dout("kick_requests mds%d\n", mds);
1902 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1903 req = rb_entry(p, struct ceph_mds_request, r_node);
1904 if (req->r_got_unsafe)
1905 continue;
1906 if (req->r_session &&
1907 req->r_session->s_mds == mds) {
1908 dout(" kicking tid %llu\n", req->r_tid);
1909 __do_request(mdsc, req);
1914 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1915 struct ceph_mds_request *req)
1917 dout("submit_request on %p\n", req);
1918 mutex_lock(&mdsc->mutex);
1919 __register_request(mdsc, req, NULL);
1920 __do_request(mdsc, req);
1921 mutex_unlock(&mdsc->mutex);
1925 * Synchrously perform an mds request. Take care of all of the
1926 * session setup, forwarding, retry details.
1928 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1929 struct inode *dir,
1930 struct ceph_mds_request *req)
1932 int err;
1934 dout("do_request on %p\n", req);
1936 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1937 if (req->r_inode)
1938 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1939 if (req->r_locked_dir)
1940 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1941 if (req->r_old_dentry)
1942 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1943 CEPH_CAP_PIN);
1945 /* issue */
1946 mutex_lock(&mdsc->mutex);
1947 __register_request(mdsc, req, dir);
1948 __do_request(mdsc, req);
1950 if (req->r_err) {
1951 err = req->r_err;
1952 __unregister_request(mdsc, req);
1953 dout("do_request early error %d\n", err);
1954 goto out;
1957 /* wait */
1958 mutex_unlock(&mdsc->mutex);
1959 dout("do_request waiting\n");
1960 if (req->r_timeout) {
1961 err = (long)wait_for_completion_killable_timeout(
1962 &req->r_completion, req->r_timeout);
1963 if (err == 0)
1964 err = -EIO;
1965 } else {
1966 err = wait_for_completion_killable(&req->r_completion);
1968 dout("do_request waited, got %d\n", err);
1969 mutex_lock(&mdsc->mutex);
1971 /* only abort if we didn't race with a real reply */
1972 if (req->r_got_result) {
1973 err = le32_to_cpu(req->r_reply_info.head->result);
1974 } else if (err < 0) {
1975 dout("aborted request %lld with %d\n", req->r_tid, err);
1978 * ensure we aren't running concurrently with
1979 * ceph_fill_trace or ceph_readdir_prepopulate, which
1980 * rely on locks (dir mutex) held by our caller.
1982 mutex_lock(&req->r_fill_mutex);
1983 req->r_err = err;
1984 req->r_aborted = true;
1985 mutex_unlock(&req->r_fill_mutex);
1987 if (req->r_locked_dir &&
1988 (req->r_op & CEPH_MDS_OP_WRITE))
1989 ceph_invalidate_dir_request(req);
1990 } else {
1991 err = req->r_err;
1994 out:
1995 mutex_unlock(&mdsc->mutex);
1996 dout("do_request %p done, result %d\n", req, err);
1997 return err;
2001 * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
2002 * namespace request.
2004 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2006 struct inode *inode = req->r_locked_dir;
2007 struct ceph_inode_info *ci = ceph_inode(inode);
2009 dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2010 spin_lock(&ci->i_ceph_lock);
2011 ceph_dir_clear_complete(inode);
2012 ci->i_release_count++;
2013 spin_unlock(&ci->i_ceph_lock);
2015 if (req->r_dentry)
2016 ceph_invalidate_dentry_lease(req->r_dentry);
2017 if (req->r_old_dentry)
2018 ceph_invalidate_dentry_lease(req->r_old_dentry);
2022 * Handle mds reply.
2024 * We take the session mutex and parse and process the reply immediately.
2025 * This preserves the logical ordering of replies, capabilities, etc., sent
2026 * by the MDS as they are applied to our local cache.
2028 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2030 struct ceph_mds_client *mdsc = session->s_mdsc;
2031 struct ceph_mds_request *req;
2032 struct ceph_mds_reply_head *head = msg->front.iov_base;
2033 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2034 u64 tid;
2035 int err, result;
2036 int mds = session->s_mds;
2038 if (msg->front.iov_len < sizeof(*head)) {
2039 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2040 ceph_msg_dump(msg);
2041 return;
2044 /* get request, session */
2045 tid = le64_to_cpu(msg->hdr.tid);
2046 mutex_lock(&mdsc->mutex);
2047 req = __lookup_request(mdsc, tid);
2048 if (!req) {
2049 dout("handle_reply on unknown tid %llu\n", tid);
2050 mutex_unlock(&mdsc->mutex);
2051 return;
2053 dout("handle_reply %p\n", req);
2055 /* correct session? */
2056 if (req->r_session != session) {
2057 pr_err("mdsc_handle_reply got %llu on session mds%d"
2058 " not mds%d\n", tid, session->s_mds,
2059 req->r_session ? req->r_session->s_mds : -1);
2060 mutex_unlock(&mdsc->mutex);
2061 goto out;
2064 /* dup? */
2065 if ((req->r_got_unsafe && !head->safe) ||
2066 (req->r_got_safe && head->safe)) {
2067 pr_warning("got a dup %s reply on %llu from mds%d\n",
2068 head->safe ? "safe" : "unsafe", tid, mds);
2069 mutex_unlock(&mdsc->mutex);
2070 goto out;
2072 if (req->r_got_safe && !head->safe) {
2073 pr_warning("got unsafe after safe on %llu from mds%d\n",
2074 tid, mds);
2075 mutex_unlock(&mdsc->mutex);
2076 goto out;
2079 result = le32_to_cpu(head->result);
2082 * Handle an ESTALE
2083 * if we're not talking to the authority, send to them
2084 * if the authority has changed while we weren't looking,
2085 * send to new authority
2086 * Otherwise we just have to return an ESTALE
2088 if (result == -ESTALE) {
2089 dout("got ESTALE on request %llu", req->r_tid);
2090 if (!req->r_inode) {
2091 /* do nothing; not an authority problem */
2092 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2093 dout("not using auth, setting for that now");
2094 req->r_direct_mode = USE_AUTH_MDS;
2095 __do_request(mdsc, req);
2096 mutex_unlock(&mdsc->mutex);
2097 goto out;
2098 } else {
2099 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2100 struct ceph_cap *cap = NULL;
2102 if (req->r_session)
2103 cap = ceph_get_cap_for_mds(ci,
2104 req->r_session->s_mds);
2106 dout("already using auth");
2107 if ((!cap || cap != ci->i_auth_cap) ||
2108 (cap->mseq != req->r_sent_on_mseq)) {
2109 dout("but cap changed, so resending");
2110 __do_request(mdsc, req);
2111 mutex_unlock(&mdsc->mutex);
2112 goto out;
2115 dout("have to return ESTALE on request %llu", req->r_tid);
2119 if (head->safe) {
2120 req->r_got_safe = true;
2121 __unregister_request(mdsc, req);
2122 complete_all(&req->r_safe_completion);
2124 if (req->r_got_unsafe) {
2126 * We already handled the unsafe response, now do the
2127 * cleanup. No need to examine the response; the MDS
2128 * doesn't include any result info in the safe
2129 * response. And even if it did, there is nothing
2130 * useful we could do with a revised return value.
2132 dout("got safe reply %llu, mds%d\n", tid, mds);
2133 list_del_init(&req->r_unsafe_item);
2135 /* last unsafe request during umount? */
2136 if (mdsc->stopping && !__get_oldest_req(mdsc))
2137 complete_all(&mdsc->safe_umount_waiters);
2138 mutex_unlock(&mdsc->mutex);
2139 goto out;
2141 } else {
2142 req->r_got_unsafe = true;
2143 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2146 dout("handle_reply tid %lld result %d\n", tid, result);
2147 rinfo = &req->r_reply_info;
2148 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2149 mutex_unlock(&mdsc->mutex);
2151 mutex_lock(&session->s_mutex);
2152 if (err < 0) {
2153 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2154 ceph_msg_dump(msg);
2155 goto out_err;
2158 /* snap trace */
2159 if (rinfo->snapblob_len) {
2160 down_write(&mdsc->snap_rwsem);
2161 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2162 rinfo->snapblob + rinfo->snapblob_len,
2163 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2164 downgrade_write(&mdsc->snap_rwsem);
2165 } else {
2166 down_read(&mdsc->snap_rwsem);
2169 /* insert trace into our cache */
2170 mutex_lock(&req->r_fill_mutex);
2171 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2172 if (err == 0) {
2173 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2174 rinfo->dir_nr)
2175 ceph_readdir_prepopulate(req, req->r_session);
2176 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2178 mutex_unlock(&req->r_fill_mutex);
2180 up_read(&mdsc->snap_rwsem);
2181 out_err:
2182 mutex_lock(&mdsc->mutex);
2183 if (!req->r_aborted) {
2184 if (err) {
2185 req->r_err = err;
2186 } else {
2187 req->r_reply = msg;
2188 ceph_msg_get(msg);
2189 req->r_got_result = true;
2191 } else {
2192 dout("reply arrived after request %lld was aborted\n", tid);
2194 mutex_unlock(&mdsc->mutex);
2196 ceph_add_cap_releases(mdsc, req->r_session);
2197 mutex_unlock(&session->s_mutex);
2199 /* kick calling process */
2200 complete_request(mdsc, req);
2201 out:
2202 ceph_mdsc_put_request(req);
2203 return;
2209 * handle mds notification that our request has been forwarded.
2211 static void handle_forward(struct ceph_mds_client *mdsc,
2212 struct ceph_mds_session *session,
2213 struct ceph_msg *msg)
2215 struct ceph_mds_request *req;
2216 u64 tid = le64_to_cpu(msg->hdr.tid);
2217 u32 next_mds;
2218 u32 fwd_seq;
2219 int err = -EINVAL;
2220 void *p = msg->front.iov_base;
2221 void *end = p + msg->front.iov_len;
2223 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2224 next_mds = ceph_decode_32(&p);
2225 fwd_seq = ceph_decode_32(&p);
2227 mutex_lock(&mdsc->mutex);
2228 req = __lookup_request(mdsc, tid);
2229 if (!req) {
2230 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2231 goto out; /* dup reply? */
2234 if (req->r_aborted) {
2235 dout("forward tid %llu aborted, unregistering\n", tid);
2236 __unregister_request(mdsc, req);
2237 } else if (fwd_seq <= req->r_num_fwd) {
2238 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2239 tid, next_mds, req->r_num_fwd, fwd_seq);
2240 } else {
2241 /* resend. forward race not possible; mds would drop */
2242 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2243 BUG_ON(req->r_err);
2244 BUG_ON(req->r_got_result);
2245 req->r_num_fwd = fwd_seq;
2246 req->r_resend_mds = next_mds;
2247 put_request_session(req);
2248 __do_request(mdsc, req);
2250 ceph_mdsc_put_request(req);
2251 out:
2252 mutex_unlock(&mdsc->mutex);
2253 return;
2255 bad:
2256 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2260 * handle a mds session control message
2262 static void handle_session(struct ceph_mds_session *session,
2263 struct ceph_msg *msg)
2265 struct ceph_mds_client *mdsc = session->s_mdsc;
2266 u32 op;
2267 u64 seq;
2268 int mds = session->s_mds;
2269 struct ceph_mds_session_head *h = msg->front.iov_base;
2270 int wake = 0;
2272 /* decode */
2273 if (msg->front.iov_len != sizeof(*h))
2274 goto bad;
2275 op = le32_to_cpu(h->op);
2276 seq = le64_to_cpu(h->seq);
2278 mutex_lock(&mdsc->mutex);
2279 if (op == CEPH_SESSION_CLOSE)
2280 __unregister_session(mdsc, session);
2281 /* FIXME: this ttl calculation is generous */
2282 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2283 mutex_unlock(&mdsc->mutex);
2285 mutex_lock(&session->s_mutex);
2287 dout("handle_session mds%d %s %p state %s seq %llu\n",
2288 mds, ceph_session_op_name(op), session,
2289 session_state_name(session->s_state), seq);
2291 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2292 session->s_state = CEPH_MDS_SESSION_OPEN;
2293 pr_info("mds%d came back\n", session->s_mds);
2296 switch (op) {
2297 case CEPH_SESSION_OPEN:
2298 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2299 pr_info("mds%d reconnect success\n", session->s_mds);
2300 session->s_state = CEPH_MDS_SESSION_OPEN;
2301 renewed_caps(mdsc, session, 0);
2302 wake = 1;
2303 if (mdsc->stopping)
2304 __close_session(mdsc, session);
2305 break;
2307 case CEPH_SESSION_RENEWCAPS:
2308 if (session->s_renew_seq == seq)
2309 renewed_caps(mdsc, session, 1);
2310 break;
2312 case CEPH_SESSION_CLOSE:
2313 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2314 pr_info("mds%d reconnect denied\n", session->s_mds);
2315 remove_session_caps(session);
2316 wake = 1; /* for good measure */
2317 wake_up_all(&mdsc->session_close_wq);
2318 kick_requests(mdsc, mds);
2319 break;
2321 case CEPH_SESSION_STALE:
2322 pr_info("mds%d caps went stale, renewing\n",
2323 session->s_mds);
2324 spin_lock(&session->s_gen_ttl_lock);
2325 session->s_cap_gen++;
2326 session->s_cap_ttl = jiffies - 1;
2327 spin_unlock(&session->s_gen_ttl_lock);
2328 send_renew_caps(mdsc, session);
2329 break;
2331 case CEPH_SESSION_RECALL_STATE:
2332 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2333 break;
2335 default:
2336 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2337 WARN_ON(1);
2340 mutex_unlock(&session->s_mutex);
2341 if (wake) {
2342 mutex_lock(&mdsc->mutex);
2343 __wake_requests(mdsc, &session->s_waiting);
2344 mutex_unlock(&mdsc->mutex);
2346 return;
2348 bad:
2349 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2350 (int)msg->front.iov_len);
2351 ceph_msg_dump(msg);
2352 return;
2357 * called under session->mutex.
2359 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2360 struct ceph_mds_session *session)
2362 struct ceph_mds_request *req, *nreq;
2363 int err;
2365 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2367 mutex_lock(&mdsc->mutex);
2368 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2369 err = __prepare_send_request(mdsc, req, session->s_mds);
2370 if (!err) {
2371 ceph_msg_get(req->r_request);
2372 ceph_con_send(&session->s_con, req->r_request);
2375 mutex_unlock(&mdsc->mutex);
2379 * Encode information about a cap for a reconnect with the MDS.
2381 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2382 void *arg)
2384 union {
2385 struct ceph_mds_cap_reconnect v2;
2386 struct ceph_mds_cap_reconnect_v1 v1;
2387 } rec;
2388 size_t reclen;
2389 struct ceph_inode_info *ci;
2390 struct ceph_reconnect_state *recon_state = arg;
2391 struct ceph_pagelist *pagelist = recon_state->pagelist;
2392 char *path;
2393 int pathlen, err;
2394 u64 pathbase;
2395 struct dentry *dentry;
2397 ci = cap->ci;
2399 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2400 inode, ceph_vinop(inode), cap, cap->cap_id,
2401 ceph_cap_string(cap->issued));
2402 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2403 if (err)
2404 return err;
2406 dentry = d_find_alias(inode);
2407 if (dentry) {
2408 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2409 if (IS_ERR(path)) {
2410 err = PTR_ERR(path);
2411 goto out_dput;
2413 } else {
2414 path = NULL;
2415 pathlen = 0;
2417 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2418 if (err)
2419 goto out_free;
2421 spin_lock(&ci->i_ceph_lock);
2422 cap->seq = 0; /* reset cap seq */
2423 cap->issue_seq = 0; /* and issue_seq */
2425 if (recon_state->flock) {
2426 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2427 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2428 rec.v2.issued = cpu_to_le32(cap->issued);
2429 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2430 rec.v2.pathbase = cpu_to_le64(pathbase);
2431 rec.v2.flock_len = 0;
2432 reclen = sizeof(rec.v2);
2433 } else {
2434 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2435 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2436 rec.v1.issued = cpu_to_le32(cap->issued);
2437 rec.v1.size = cpu_to_le64(inode->i_size);
2438 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2439 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2440 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2441 rec.v1.pathbase = cpu_to_le64(pathbase);
2442 reclen = sizeof(rec.v1);
2444 spin_unlock(&ci->i_ceph_lock);
2446 if (recon_state->flock) {
2447 int num_fcntl_locks, num_flock_locks;
2448 struct ceph_pagelist_cursor trunc_point;
2450 ceph_pagelist_set_cursor(pagelist, &trunc_point);
2451 do {
2452 lock_flocks();
2453 ceph_count_locks(inode, &num_fcntl_locks,
2454 &num_flock_locks);
2455 rec.v2.flock_len = (2*sizeof(u32) +
2456 (num_fcntl_locks+num_flock_locks) *
2457 sizeof(struct ceph_filelock));
2458 unlock_flocks();
2460 /* pre-alloc pagelist */
2461 ceph_pagelist_truncate(pagelist, &trunc_point);
2462 err = ceph_pagelist_append(pagelist, &rec, reclen);
2463 if (!err)
2464 err = ceph_pagelist_reserve(pagelist,
2465 rec.v2.flock_len);
2467 /* encode locks */
2468 if (!err) {
2469 lock_flocks();
2470 err = ceph_encode_locks(inode,
2471 pagelist,
2472 num_fcntl_locks,
2473 num_flock_locks);
2474 unlock_flocks();
2476 } while (err == -ENOSPC);
2477 } else {
2478 err = ceph_pagelist_append(pagelist, &rec, reclen);
2481 out_free:
2482 kfree(path);
2483 out_dput:
2484 dput(dentry);
2485 return err;
2490 * If an MDS fails and recovers, clients need to reconnect in order to
2491 * reestablish shared state. This includes all caps issued through
2492 * this session _and_ the snap_realm hierarchy. Because it's not
2493 * clear which snap realms the mds cares about, we send everything we
2494 * know about.. that ensures we'll then get any new info the
2495 * recovering MDS might have.
2497 * This is a relatively heavyweight operation, but it's rare.
2499 * called with mdsc->mutex held.
2501 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2502 struct ceph_mds_session *session)
2504 struct ceph_msg *reply;
2505 struct rb_node *p;
2506 int mds = session->s_mds;
2507 int err = -ENOMEM;
2508 struct ceph_pagelist *pagelist;
2509 struct ceph_reconnect_state recon_state;
2511 pr_info("mds%d reconnect start\n", mds);
2513 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2514 if (!pagelist)
2515 goto fail_nopagelist;
2516 ceph_pagelist_init(pagelist);
2518 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2519 if (!reply)
2520 goto fail_nomsg;
2522 mutex_lock(&session->s_mutex);
2523 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2524 session->s_seq = 0;
2526 ceph_con_close(&session->s_con);
2527 ceph_con_open(&session->s_con,
2528 CEPH_ENTITY_TYPE_MDS, mds,
2529 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2531 /* replay unsafe requests */
2532 replay_unsafe_requests(mdsc, session);
2534 down_read(&mdsc->snap_rwsem);
2536 dout("session %p state %s\n", session,
2537 session_state_name(session->s_state));
2539 /* drop old cap expires; we're about to reestablish that state */
2540 discard_cap_releases(mdsc, session);
2542 /* traverse this session's caps */
2543 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2544 if (err)
2545 goto fail;
2547 recon_state.pagelist = pagelist;
2548 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2549 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2550 if (err < 0)
2551 goto fail;
2554 * snaprealms. we provide mds with the ino, seq (version), and
2555 * parent for all of our realms. If the mds has any newer info,
2556 * it will tell us.
2558 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2559 struct ceph_snap_realm *realm =
2560 rb_entry(p, struct ceph_snap_realm, node);
2561 struct ceph_mds_snaprealm_reconnect sr_rec;
2563 dout(" adding snap realm %llx seq %lld parent %llx\n",
2564 realm->ino, realm->seq, realm->parent_ino);
2565 sr_rec.ino = cpu_to_le64(realm->ino);
2566 sr_rec.seq = cpu_to_le64(realm->seq);
2567 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2568 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2569 if (err)
2570 goto fail;
2573 reply->pagelist = pagelist;
2574 if (recon_state.flock)
2575 reply->hdr.version = cpu_to_le16(2);
2576 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2577 reply->nr_pages = calc_pages_for(0, pagelist->length);
2578 ceph_con_send(&session->s_con, reply);
2580 mutex_unlock(&session->s_mutex);
2582 mutex_lock(&mdsc->mutex);
2583 __wake_requests(mdsc, &session->s_waiting);
2584 mutex_unlock(&mdsc->mutex);
2586 up_read(&mdsc->snap_rwsem);
2587 return;
2589 fail:
2590 ceph_msg_put(reply);
2591 up_read(&mdsc->snap_rwsem);
2592 mutex_unlock(&session->s_mutex);
2593 fail_nomsg:
2594 ceph_pagelist_release(pagelist);
2595 kfree(pagelist);
2596 fail_nopagelist:
2597 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2598 return;
2603 * compare old and new mdsmaps, kicking requests
2604 * and closing out old connections as necessary
2606 * called under mdsc->mutex.
2608 static void check_new_map(struct ceph_mds_client *mdsc,
2609 struct ceph_mdsmap *newmap,
2610 struct ceph_mdsmap *oldmap)
2612 int i;
2613 int oldstate, newstate;
2614 struct ceph_mds_session *s;
2616 dout("check_new_map new %u old %u\n",
2617 newmap->m_epoch, oldmap->m_epoch);
2619 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2620 if (mdsc->sessions[i] == NULL)
2621 continue;
2622 s = mdsc->sessions[i];
2623 oldstate = ceph_mdsmap_get_state(oldmap, i);
2624 newstate = ceph_mdsmap_get_state(newmap, i);
2626 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2627 i, ceph_mds_state_name(oldstate),
2628 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2629 ceph_mds_state_name(newstate),
2630 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2631 session_state_name(s->s_state));
2633 if (i >= newmap->m_max_mds ||
2634 memcmp(ceph_mdsmap_get_addr(oldmap, i),
2635 ceph_mdsmap_get_addr(newmap, i),
2636 sizeof(struct ceph_entity_addr))) {
2637 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2638 /* the session never opened, just close it
2639 * out now */
2640 __wake_requests(mdsc, &s->s_waiting);
2641 __unregister_session(mdsc, s);
2642 } else {
2643 /* just close it */
2644 mutex_unlock(&mdsc->mutex);
2645 mutex_lock(&s->s_mutex);
2646 mutex_lock(&mdsc->mutex);
2647 ceph_con_close(&s->s_con);
2648 mutex_unlock(&s->s_mutex);
2649 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2652 /* kick any requests waiting on the recovering mds */
2653 kick_requests(mdsc, i);
2654 } else if (oldstate == newstate) {
2655 continue; /* nothing new with this mds */
2659 * send reconnect?
2661 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2662 newstate >= CEPH_MDS_STATE_RECONNECT) {
2663 mutex_unlock(&mdsc->mutex);
2664 send_mds_reconnect(mdsc, s);
2665 mutex_lock(&mdsc->mutex);
2669 * kick request on any mds that has gone active.
2671 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2672 newstate >= CEPH_MDS_STATE_ACTIVE) {
2673 if (oldstate != CEPH_MDS_STATE_CREATING &&
2674 oldstate != CEPH_MDS_STATE_STARTING)
2675 pr_info("mds%d recovery completed\n", s->s_mds);
2676 kick_requests(mdsc, i);
2677 ceph_kick_flushing_caps(mdsc, s);
2678 wake_up_session_caps(s, 1);
2682 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2683 s = mdsc->sessions[i];
2684 if (!s)
2685 continue;
2686 if (!ceph_mdsmap_is_laggy(newmap, i))
2687 continue;
2688 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2689 s->s_state == CEPH_MDS_SESSION_HUNG ||
2690 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2691 dout(" connecting to export targets of laggy mds%d\n",
2693 __open_export_target_sessions(mdsc, s);
2701 * leases
2705 * caller must hold session s_mutex, dentry->d_lock
2707 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2709 struct ceph_dentry_info *di = ceph_dentry(dentry);
2711 ceph_put_mds_session(di->lease_session);
2712 di->lease_session = NULL;
2715 static void handle_lease(struct ceph_mds_client *mdsc,
2716 struct ceph_mds_session *session,
2717 struct ceph_msg *msg)
2719 struct super_block *sb = mdsc->fsc->sb;
2720 struct inode *inode;
2721 struct dentry *parent, *dentry;
2722 struct ceph_dentry_info *di;
2723 int mds = session->s_mds;
2724 struct ceph_mds_lease *h = msg->front.iov_base;
2725 u32 seq;
2726 struct ceph_vino vino;
2727 struct qstr dname;
2728 int release = 0;
2730 dout("handle_lease from mds%d\n", mds);
2732 /* decode */
2733 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2734 goto bad;
2735 vino.ino = le64_to_cpu(h->ino);
2736 vino.snap = CEPH_NOSNAP;
2737 seq = le32_to_cpu(h->seq);
2738 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2739 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2740 if (dname.len != get_unaligned_le32(h+1))
2741 goto bad;
2743 mutex_lock(&session->s_mutex);
2744 session->s_seq++;
2746 /* lookup inode */
2747 inode = ceph_find_inode(sb, vino);
2748 dout("handle_lease %s, ino %llx %p %.*s\n",
2749 ceph_lease_op_name(h->action), vino.ino, inode,
2750 dname.len, dname.name);
2751 if (inode == NULL) {
2752 dout("handle_lease no inode %llx\n", vino.ino);
2753 goto release;
2756 /* dentry */
2757 parent = d_find_alias(inode);
2758 if (!parent) {
2759 dout("no parent dentry on inode %p\n", inode);
2760 WARN_ON(1);
2761 goto release; /* hrm... */
2763 dname.hash = full_name_hash(dname.name, dname.len);
2764 dentry = d_lookup(parent, &dname);
2765 dput(parent);
2766 if (!dentry)
2767 goto release;
2769 spin_lock(&dentry->d_lock);
2770 di = ceph_dentry(dentry);
2771 switch (h->action) {
2772 case CEPH_MDS_LEASE_REVOKE:
2773 if (di->lease_session == session) {
2774 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2775 h->seq = cpu_to_le32(di->lease_seq);
2776 __ceph_mdsc_drop_dentry_lease(dentry);
2778 release = 1;
2779 break;
2781 case CEPH_MDS_LEASE_RENEW:
2782 if (di->lease_session == session &&
2783 di->lease_gen == session->s_cap_gen &&
2784 di->lease_renew_from &&
2785 di->lease_renew_after == 0) {
2786 unsigned long duration =
2787 le32_to_cpu(h->duration_ms) * HZ / 1000;
2789 di->lease_seq = seq;
2790 dentry->d_time = di->lease_renew_from + duration;
2791 di->lease_renew_after = di->lease_renew_from +
2792 (duration >> 1);
2793 di->lease_renew_from = 0;
2795 break;
2797 spin_unlock(&dentry->d_lock);
2798 dput(dentry);
2800 if (!release)
2801 goto out;
2803 release:
2804 /* let's just reuse the same message */
2805 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2806 ceph_msg_get(msg);
2807 ceph_con_send(&session->s_con, msg);
2809 out:
2810 iput(inode);
2811 mutex_unlock(&session->s_mutex);
2812 return;
2814 bad:
2815 pr_err("corrupt lease message\n");
2816 ceph_msg_dump(msg);
2819 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2820 struct inode *inode,
2821 struct dentry *dentry, char action,
2822 u32 seq)
2824 struct ceph_msg *msg;
2825 struct ceph_mds_lease *lease;
2826 int len = sizeof(*lease) + sizeof(u32);
2827 int dnamelen = 0;
2829 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2830 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2831 dnamelen = dentry->d_name.len;
2832 len += dnamelen;
2834 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2835 if (!msg)
2836 return;
2837 lease = msg->front.iov_base;
2838 lease->action = action;
2839 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2840 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2841 lease->seq = cpu_to_le32(seq);
2842 put_unaligned_le32(dnamelen, lease + 1);
2843 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2846 * if this is a preemptive lease RELEASE, no need to
2847 * flush request stream, since the actual request will
2848 * soon follow.
2850 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2852 ceph_con_send(&session->s_con, msg);
2856 * Preemptively release a lease we expect to invalidate anyway.
2857 * Pass @inode always, @dentry is optional.
2859 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2860 struct dentry *dentry)
2862 struct ceph_dentry_info *di;
2863 struct ceph_mds_session *session;
2864 u32 seq;
2866 BUG_ON(inode == NULL);
2867 BUG_ON(dentry == NULL);
2869 /* is dentry lease valid? */
2870 spin_lock(&dentry->d_lock);
2871 di = ceph_dentry(dentry);
2872 if (!di || !di->lease_session ||
2873 di->lease_session->s_mds < 0 ||
2874 di->lease_gen != di->lease_session->s_cap_gen ||
2875 !time_before(jiffies, dentry->d_time)) {
2876 dout("lease_release inode %p dentry %p -- "
2877 "no lease\n",
2878 inode, dentry);
2879 spin_unlock(&dentry->d_lock);
2880 return;
2883 /* we do have a lease on this dentry; note mds and seq */
2884 session = ceph_get_mds_session(di->lease_session);
2885 seq = di->lease_seq;
2886 __ceph_mdsc_drop_dentry_lease(dentry);
2887 spin_unlock(&dentry->d_lock);
2889 dout("lease_release inode %p dentry %p to mds%d\n",
2890 inode, dentry, session->s_mds);
2891 ceph_mdsc_lease_send_msg(session, inode, dentry,
2892 CEPH_MDS_LEASE_RELEASE, seq);
2893 ceph_put_mds_session(session);
2897 * drop all leases (and dentry refs) in preparation for umount
2899 static void drop_leases(struct ceph_mds_client *mdsc)
2901 int i;
2903 dout("drop_leases\n");
2904 mutex_lock(&mdsc->mutex);
2905 for (i = 0; i < mdsc->max_sessions; i++) {
2906 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2907 if (!s)
2908 continue;
2909 mutex_unlock(&mdsc->mutex);
2910 mutex_lock(&s->s_mutex);
2911 mutex_unlock(&s->s_mutex);
2912 ceph_put_mds_session(s);
2913 mutex_lock(&mdsc->mutex);
2915 mutex_unlock(&mdsc->mutex);
2921 * delayed work -- periodically trim expired leases, renew caps with mds
2923 static void schedule_delayed(struct ceph_mds_client *mdsc)
2925 int delay = 5;
2926 unsigned hz = round_jiffies_relative(HZ * delay);
2927 schedule_delayed_work(&mdsc->delayed_work, hz);
2930 static void delayed_work(struct work_struct *work)
2932 int i;
2933 struct ceph_mds_client *mdsc =
2934 container_of(work, struct ceph_mds_client, delayed_work.work);
2935 int renew_interval;
2936 int renew_caps;
2938 dout("mdsc delayed_work\n");
2939 ceph_check_delayed_caps(mdsc);
2941 mutex_lock(&mdsc->mutex);
2942 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2943 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2944 mdsc->last_renew_caps);
2945 if (renew_caps)
2946 mdsc->last_renew_caps = jiffies;
2948 for (i = 0; i < mdsc->max_sessions; i++) {
2949 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2950 if (s == NULL)
2951 continue;
2952 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2953 dout("resending session close request for mds%d\n",
2954 s->s_mds);
2955 request_close_session(mdsc, s);
2956 ceph_put_mds_session(s);
2957 continue;
2959 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2960 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2961 s->s_state = CEPH_MDS_SESSION_HUNG;
2962 pr_info("mds%d hung\n", s->s_mds);
2965 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2966 /* this mds is failed or recovering, just wait */
2967 ceph_put_mds_session(s);
2968 continue;
2970 mutex_unlock(&mdsc->mutex);
2972 mutex_lock(&s->s_mutex);
2973 if (renew_caps)
2974 send_renew_caps(mdsc, s);
2975 else
2976 ceph_con_keepalive(&s->s_con);
2977 ceph_add_cap_releases(mdsc, s);
2978 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2979 s->s_state == CEPH_MDS_SESSION_HUNG)
2980 ceph_send_cap_releases(mdsc, s);
2981 mutex_unlock(&s->s_mutex);
2982 ceph_put_mds_session(s);
2984 mutex_lock(&mdsc->mutex);
2986 mutex_unlock(&mdsc->mutex);
2988 schedule_delayed(mdsc);
2991 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2994 struct ceph_mds_client *mdsc;
2996 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
2997 if (!mdsc)
2998 return -ENOMEM;
2999 mdsc->fsc = fsc;
3000 fsc->mdsc = mdsc;
3001 mutex_init(&mdsc->mutex);
3002 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3003 if (mdsc->mdsmap == NULL)
3004 return -ENOMEM;
3006 init_completion(&mdsc->safe_umount_waiters);
3007 init_waitqueue_head(&mdsc->session_close_wq);
3008 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3009 mdsc->sessions = NULL;
3010 mdsc->max_sessions = 0;
3011 mdsc->stopping = 0;
3012 init_rwsem(&mdsc->snap_rwsem);
3013 mdsc->snap_realms = RB_ROOT;
3014 INIT_LIST_HEAD(&mdsc->snap_empty);
3015 spin_lock_init(&mdsc->snap_empty_lock);
3016 mdsc->last_tid = 0;
3017 mdsc->request_tree = RB_ROOT;
3018 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3019 mdsc->last_renew_caps = jiffies;
3020 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3021 spin_lock_init(&mdsc->cap_delay_lock);
3022 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3023 spin_lock_init(&mdsc->snap_flush_lock);
3024 mdsc->cap_flush_seq = 0;
3025 INIT_LIST_HEAD(&mdsc->cap_dirty);
3026 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3027 mdsc->num_cap_flushing = 0;
3028 spin_lock_init(&mdsc->cap_dirty_lock);
3029 init_waitqueue_head(&mdsc->cap_flushing_wq);
3030 spin_lock_init(&mdsc->dentry_lru_lock);
3031 INIT_LIST_HEAD(&mdsc->dentry_lru);
3033 ceph_caps_init(mdsc);
3034 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3036 return 0;
3040 * Wait for safe replies on open mds requests. If we time out, drop
3041 * all requests from the tree to avoid dangling dentry refs.
3043 static void wait_requests(struct ceph_mds_client *mdsc)
3045 struct ceph_mds_request *req;
3046 struct ceph_fs_client *fsc = mdsc->fsc;
3048 mutex_lock(&mdsc->mutex);
3049 if (__get_oldest_req(mdsc)) {
3050 mutex_unlock(&mdsc->mutex);
3052 dout("wait_requests waiting for requests\n");
3053 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3054 fsc->client->options->mount_timeout * HZ);
3056 /* tear down remaining requests */
3057 mutex_lock(&mdsc->mutex);
3058 while ((req = __get_oldest_req(mdsc))) {
3059 dout("wait_requests timed out on tid %llu\n",
3060 req->r_tid);
3061 __unregister_request(mdsc, req);
3064 mutex_unlock(&mdsc->mutex);
3065 dout("wait_requests done\n");
3069 * called before mount is ro, and before dentries are torn down.
3070 * (hmm, does this still race with new lookups?)
3072 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3074 dout("pre_umount\n");
3075 mdsc->stopping = 1;
3077 drop_leases(mdsc);
3078 ceph_flush_dirty_caps(mdsc);
3079 wait_requests(mdsc);
3082 * wait for reply handlers to drop their request refs and
3083 * their inode/dcache refs
3085 ceph_msgr_flush();
3089 * wait for all write mds requests to flush.
3091 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3093 struct ceph_mds_request *req = NULL, *nextreq;
3094 struct rb_node *n;
3096 mutex_lock(&mdsc->mutex);
3097 dout("wait_unsafe_requests want %lld\n", want_tid);
3098 restart:
3099 req = __get_oldest_req(mdsc);
3100 while (req && req->r_tid <= want_tid) {
3101 /* find next request */
3102 n = rb_next(&req->r_node);
3103 if (n)
3104 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3105 else
3106 nextreq = NULL;
3107 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3108 /* write op */
3109 ceph_mdsc_get_request(req);
3110 if (nextreq)
3111 ceph_mdsc_get_request(nextreq);
3112 mutex_unlock(&mdsc->mutex);
3113 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3114 req->r_tid, want_tid);
3115 wait_for_completion(&req->r_safe_completion);
3116 mutex_lock(&mdsc->mutex);
3117 ceph_mdsc_put_request(req);
3118 if (!nextreq)
3119 break; /* next dne before, so we're done! */
3120 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3121 /* next request was removed from tree */
3122 ceph_mdsc_put_request(nextreq);
3123 goto restart;
3125 ceph_mdsc_put_request(nextreq); /* won't go away */
3127 req = nextreq;
3129 mutex_unlock(&mdsc->mutex);
3130 dout("wait_unsafe_requests done\n");
3133 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3135 u64 want_tid, want_flush;
3137 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3138 return;
3140 dout("sync\n");
3141 mutex_lock(&mdsc->mutex);
3142 want_tid = mdsc->last_tid;
3143 want_flush = mdsc->cap_flush_seq;
3144 mutex_unlock(&mdsc->mutex);
3145 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3147 ceph_flush_dirty_caps(mdsc);
3149 wait_unsafe_requests(mdsc, want_tid);
3150 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3154 * true if all sessions are closed, or we force unmount
3156 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3158 int i, n = 0;
3160 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3161 return true;
3163 mutex_lock(&mdsc->mutex);
3164 for (i = 0; i < mdsc->max_sessions; i++)
3165 if (mdsc->sessions[i])
3166 n++;
3167 mutex_unlock(&mdsc->mutex);
3168 return n == 0;
3172 * called after sb is ro.
3174 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3176 struct ceph_mds_session *session;
3177 int i;
3178 struct ceph_fs_client *fsc = mdsc->fsc;
3179 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3181 dout("close_sessions\n");
3183 /* close sessions */
3184 mutex_lock(&mdsc->mutex);
3185 for (i = 0; i < mdsc->max_sessions; i++) {
3186 session = __ceph_lookup_mds_session(mdsc, i);
3187 if (!session)
3188 continue;
3189 mutex_unlock(&mdsc->mutex);
3190 mutex_lock(&session->s_mutex);
3191 __close_session(mdsc, session);
3192 mutex_unlock(&session->s_mutex);
3193 ceph_put_mds_session(session);
3194 mutex_lock(&mdsc->mutex);
3196 mutex_unlock(&mdsc->mutex);
3198 dout("waiting for sessions to close\n");
3199 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3200 timeout);
3202 /* tear down remaining sessions */
3203 mutex_lock(&mdsc->mutex);
3204 for (i = 0; i < mdsc->max_sessions; i++) {
3205 if (mdsc->sessions[i]) {
3206 session = get_session(mdsc->sessions[i]);
3207 __unregister_session(mdsc, session);
3208 mutex_unlock(&mdsc->mutex);
3209 mutex_lock(&session->s_mutex);
3210 remove_session_caps(session);
3211 mutex_unlock(&session->s_mutex);
3212 ceph_put_mds_session(session);
3213 mutex_lock(&mdsc->mutex);
3216 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3217 mutex_unlock(&mdsc->mutex);
3219 ceph_cleanup_empty_realms(mdsc);
3221 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3223 dout("stopped\n");
3226 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3228 dout("stop\n");
3229 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3230 if (mdsc->mdsmap)
3231 ceph_mdsmap_destroy(mdsc->mdsmap);
3232 kfree(mdsc->sessions);
3233 ceph_caps_finalize(mdsc);
3236 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3238 struct ceph_mds_client *mdsc = fsc->mdsc;
3240 dout("mdsc_destroy %p\n", mdsc);
3241 ceph_mdsc_stop(mdsc);
3243 /* flush out any connection work with references to us */
3244 ceph_msgr_flush();
3246 fsc->mdsc = NULL;
3247 kfree(mdsc);
3248 dout("mdsc_destroy %p done\n", mdsc);
3253 * handle mds map update.
3255 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3257 u32 epoch;
3258 u32 maplen;
3259 void *p = msg->front.iov_base;
3260 void *end = p + msg->front.iov_len;
3261 struct ceph_mdsmap *newmap, *oldmap;
3262 struct ceph_fsid fsid;
3263 int err = -EINVAL;
3265 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3266 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3267 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3268 return;
3269 epoch = ceph_decode_32(&p);
3270 maplen = ceph_decode_32(&p);
3271 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3273 /* do we need it? */
3274 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3275 mutex_lock(&mdsc->mutex);
3276 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3277 dout("handle_map epoch %u <= our %u\n",
3278 epoch, mdsc->mdsmap->m_epoch);
3279 mutex_unlock(&mdsc->mutex);
3280 return;
3283 newmap = ceph_mdsmap_decode(&p, end);
3284 if (IS_ERR(newmap)) {
3285 err = PTR_ERR(newmap);
3286 goto bad_unlock;
3289 /* swap into place */
3290 if (mdsc->mdsmap) {
3291 oldmap = mdsc->mdsmap;
3292 mdsc->mdsmap = newmap;
3293 check_new_map(mdsc, newmap, oldmap);
3294 ceph_mdsmap_destroy(oldmap);
3295 } else {
3296 mdsc->mdsmap = newmap; /* first mds map */
3298 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3300 __wake_requests(mdsc, &mdsc->waiting_for_map);
3302 mutex_unlock(&mdsc->mutex);
3303 schedule_delayed(mdsc);
3304 return;
3306 bad_unlock:
3307 mutex_unlock(&mdsc->mutex);
3308 bad:
3309 pr_err("error decoding mdsmap %d\n", err);
3310 return;
3313 static struct ceph_connection *con_get(struct ceph_connection *con)
3315 struct ceph_mds_session *s = con->private;
3317 if (get_session(s)) {
3318 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3319 return con;
3321 dout("mdsc con_get %p FAIL\n", s);
3322 return NULL;
3325 static void con_put(struct ceph_connection *con)
3327 struct ceph_mds_session *s = con->private;
3329 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3330 ceph_put_mds_session(s);
3334 * if the client is unresponsive for long enough, the mds will kill
3335 * the session entirely.
3337 static void peer_reset(struct ceph_connection *con)
3339 struct ceph_mds_session *s = con->private;
3340 struct ceph_mds_client *mdsc = s->s_mdsc;
3342 pr_warning("mds%d closed our session\n", s->s_mds);
3343 send_mds_reconnect(mdsc, s);
3346 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3348 struct ceph_mds_session *s = con->private;
3349 struct ceph_mds_client *mdsc = s->s_mdsc;
3350 int type = le16_to_cpu(msg->hdr.type);
3352 mutex_lock(&mdsc->mutex);
3353 if (__verify_registered_session(mdsc, s) < 0) {
3354 mutex_unlock(&mdsc->mutex);
3355 goto out;
3357 mutex_unlock(&mdsc->mutex);
3359 switch (type) {
3360 case CEPH_MSG_MDS_MAP:
3361 ceph_mdsc_handle_map(mdsc, msg);
3362 break;
3363 case CEPH_MSG_CLIENT_SESSION:
3364 handle_session(s, msg);
3365 break;
3366 case CEPH_MSG_CLIENT_REPLY:
3367 handle_reply(s, msg);
3368 break;
3369 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3370 handle_forward(mdsc, s, msg);
3371 break;
3372 case CEPH_MSG_CLIENT_CAPS:
3373 ceph_handle_caps(s, msg);
3374 break;
3375 case CEPH_MSG_CLIENT_SNAP:
3376 ceph_handle_snap(mdsc, s, msg);
3377 break;
3378 case CEPH_MSG_CLIENT_LEASE:
3379 handle_lease(mdsc, s, msg);
3380 break;
3382 default:
3383 pr_err("received unknown message type %d %s\n", type,
3384 ceph_msg_type_name(type));
3386 out:
3387 ceph_msg_put(msg);
3391 * authentication
3395 * Note: returned pointer is the address of a structure that's
3396 * managed separately. Caller must *not* attempt to free it.
3398 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3399 int *proto, int force_new)
3401 struct ceph_mds_session *s = con->private;
3402 struct ceph_mds_client *mdsc = s->s_mdsc;
3403 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3404 struct ceph_auth_handshake *auth = &s->s_auth;
3406 if (force_new && auth->authorizer) {
3407 if (ac->ops && ac->ops->destroy_authorizer)
3408 ac->ops->destroy_authorizer(ac, auth->authorizer);
3409 auth->authorizer = NULL;
3411 if (!auth->authorizer && ac->ops && ac->ops->create_authorizer) {
3412 int ret = ac->ops->create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3413 auth);
3414 if (ret)
3415 return ERR_PTR(ret);
3417 *proto = ac->protocol;
3419 return auth;
3423 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3425 struct ceph_mds_session *s = con->private;
3426 struct ceph_mds_client *mdsc = s->s_mdsc;
3427 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3429 return ac->ops->verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3432 static int invalidate_authorizer(struct ceph_connection *con)
3434 struct ceph_mds_session *s = con->private;
3435 struct ceph_mds_client *mdsc = s->s_mdsc;
3436 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3438 if (ac->ops->invalidate_authorizer)
3439 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3441 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3444 static const struct ceph_connection_operations mds_con_ops = {
3445 .get = con_get,
3446 .put = con_put,
3447 .dispatch = dispatch,
3448 .get_authorizer = get_authorizer,
3449 .verify_authorizer_reply = verify_authorizer_reply,
3450 .invalidate_authorizer = invalidate_authorizer,
3451 .peer_reset = peer_reset,
3454 /* eof */