KVM: remove unused field from the assigned dev struct
[linux-2.6.git] / arch / powerpc / mm / hash_utils_64.c
blob8920eea3452844dfb906fc3f9d6b67a01d37561f
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34 #include <linux/lmb.h>
36 #include <asm/processor.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/page.h>
41 #include <asm/types.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
57 #ifdef DEBUG
58 #define DBG(fmt...) udbg_printf(fmt)
59 #else
60 #define DBG(fmt...)
61 #endif
63 #ifdef DEBUG_LOW
64 #define DBG_LOW(fmt...) udbg_printf(fmt)
65 #else
66 #define DBG_LOW(fmt...)
67 #endif
69 #define KB (1024)
70 #define MB (1024*KB)
71 #define GB (1024L*MB)
74 * Note: pte --> Linux PTE
75 * HPTE --> PowerPC Hashed Page Table Entry
77 * Execution context:
78 * htab_initialize is called with the MMU off (of course), but
79 * the kernel has been copied down to zero so it can directly
80 * reference global data. At this point it is very difficult
81 * to print debug info.
85 #ifdef CONFIG_U3_DART
86 extern unsigned long dart_tablebase;
87 #endif /* CONFIG_U3_DART */
89 static unsigned long _SDR1;
90 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
92 struct hash_pte *htab_address;
93 unsigned long htab_size_bytes;
94 unsigned long htab_hash_mask;
95 int mmu_linear_psize = MMU_PAGE_4K;
96 int mmu_virtual_psize = MMU_PAGE_4K;
97 int mmu_vmalloc_psize = MMU_PAGE_4K;
98 #ifdef CONFIG_SPARSEMEM_VMEMMAP
99 int mmu_vmemmap_psize = MMU_PAGE_4K;
100 #endif
101 int mmu_io_psize = MMU_PAGE_4K;
102 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
103 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
104 u16 mmu_slb_size = 64;
105 #ifdef CONFIG_HUGETLB_PAGE
106 unsigned int HPAGE_SHIFT;
107 #endif
108 #ifdef CONFIG_PPC_64K_PAGES
109 int mmu_ci_restrictions;
110 #endif
111 #ifdef CONFIG_DEBUG_PAGEALLOC
112 static u8 *linear_map_hash_slots;
113 static unsigned long linear_map_hash_count;
114 static DEFINE_SPINLOCK(linear_map_hash_lock);
115 #endif /* CONFIG_DEBUG_PAGEALLOC */
117 /* There are definitions of page sizes arrays to be used when none
118 * is provided by the firmware.
121 /* Pre-POWER4 CPUs (4k pages only)
123 static struct mmu_psize_def mmu_psize_defaults_old[] = {
124 [MMU_PAGE_4K] = {
125 .shift = 12,
126 .sllp = 0,
127 .penc = 0,
128 .avpnm = 0,
129 .tlbiel = 0,
133 /* POWER4, GPUL, POWER5
135 * Support for 16Mb large pages
137 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
138 [MMU_PAGE_4K] = {
139 .shift = 12,
140 .sllp = 0,
141 .penc = 0,
142 .avpnm = 0,
143 .tlbiel = 1,
145 [MMU_PAGE_16M] = {
146 .shift = 24,
147 .sllp = SLB_VSID_L,
148 .penc = 0,
149 .avpnm = 0x1UL,
150 .tlbiel = 0,
154 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
156 unsigned long rflags = pteflags & 0x1fa;
158 /* _PAGE_EXEC -> NOEXEC */
159 if ((pteflags & _PAGE_EXEC) == 0)
160 rflags |= HPTE_R_N;
162 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
163 * need to add in 0x1 if it's a read-only user page
165 if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
166 (pteflags & _PAGE_DIRTY)))
167 rflags |= 1;
169 /* Always add C */
170 return rflags | HPTE_R_C;
173 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
174 unsigned long pstart, unsigned long prot,
175 int psize, int ssize)
177 unsigned long vaddr, paddr;
178 unsigned int step, shift;
179 int ret = 0;
181 shift = mmu_psize_defs[psize].shift;
182 step = 1 << shift;
184 prot = htab_convert_pte_flags(prot);
186 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
187 vstart, vend, pstart, prot, psize, ssize);
189 for (vaddr = vstart, paddr = pstart; vaddr < vend;
190 vaddr += step, paddr += step) {
191 unsigned long hash, hpteg;
192 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
193 unsigned long va = hpt_va(vaddr, vsid, ssize);
194 unsigned long tprot = prot;
196 /* Make kernel text executable */
197 if (in_kernel_text(vaddr))
198 tprot &= ~HPTE_R_N;
200 hash = hpt_hash(va, shift, ssize);
201 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
203 BUG_ON(!ppc_md.hpte_insert);
204 ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
205 HPTE_V_BOLTED, psize, ssize);
207 if (ret < 0)
208 break;
209 #ifdef CONFIG_DEBUG_PAGEALLOC
210 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
211 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
212 #endif /* CONFIG_DEBUG_PAGEALLOC */
214 return ret < 0 ? ret : 0;
217 #ifdef CONFIG_MEMORY_HOTPLUG
218 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
219 int psize, int ssize)
221 unsigned long vaddr;
222 unsigned int step, shift;
224 shift = mmu_psize_defs[psize].shift;
225 step = 1 << shift;
227 if (!ppc_md.hpte_removebolted) {
228 printk(KERN_WARNING "Platform doesn't implement "
229 "hpte_removebolted\n");
230 return -EINVAL;
233 for (vaddr = vstart; vaddr < vend; vaddr += step)
234 ppc_md.hpte_removebolted(vaddr, psize, ssize);
236 return 0;
238 #endif /* CONFIG_MEMORY_HOTPLUG */
240 static int __init htab_dt_scan_seg_sizes(unsigned long node,
241 const char *uname, int depth,
242 void *data)
244 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
245 u32 *prop;
246 unsigned long size = 0;
248 /* We are scanning "cpu" nodes only */
249 if (type == NULL || strcmp(type, "cpu") != 0)
250 return 0;
252 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
253 &size);
254 if (prop == NULL)
255 return 0;
256 for (; size >= 4; size -= 4, ++prop) {
257 if (prop[0] == 40) {
258 DBG("1T segment support detected\n");
259 cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
260 return 1;
263 cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B;
264 return 0;
267 static void __init htab_init_seg_sizes(void)
269 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
272 static int __init htab_dt_scan_page_sizes(unsigned long node,
273 const char *uname, int depth,
274 void *data)
276 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
277 u32 *prop;
278 unsigned long size = 0;
280 /* We are scanning "cpu" nodes only */
281 if (type == NULL || strcmp(type, "cpu") != 0)
282 return 0;
284 prop = (u32 *)of_get_flat_dt_prop(node,
285 "ibm,segment-page-sizes", &size);
286 if (prop != NULL) {
287 DBG("Page sizes from device-tree:\n");
288 size /= 4;
289 cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
290 while(size > 0) {
291 unsigned int shift = prop[0];
292 unsigned int slbenc = prop[1];
293 unsigned int lpnum = prop[2];
294 unsigned int lpenc = 0;
295 struct mmu_psize_def *def;
296 int idx = -1;
298 size -= 3; prop += 3;
299 while(size > 0 && lpnum) {
300 if (prop[0] == shift)
301 lpenc = prop[1];
302 prop += 2; size -= 2;
303 lpnum--;
305 switch(shift) {
306 case 0xc:
307 idx = MMU_PAGE_4K;
308 break;
309 case 0x10:
310 idx = MMU_PAGE_64K;
311 break;
312 case 0x14:
313 idx = MMU_PAGE_1M;
314 break;
315 case 0x18:
316 idx = MMU_PAGE_16M;
317 cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
318 break;
319 case 0x22:
320 idx = MMU_PAGE_16G;
321 break;
323 if (idx < 0)
324 continue;
325 def = &mmu_psize_defs[idx];
326 def->shift = shift;
327 if (shift <= 23)
328 def->avpnm = 0;
329 else
330 def->avpnm = (1 << (shift - 23)) - 1;
331 def->sllp = slbenc;
332 def->penc = lpenc;
333 /* We don't know for sure what's up with tlbiel, so
334 * for now we only set it for 4K and 64K pages
336 if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
337 def->tlbiel = 1;
338 else
339 def->tlbiel = 0;
341 DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, "
342 "tlbiel=%d, penc=%d\n",
343 idx, shift, def->sllp, def->avpnm, def->tlbiel,
344 def->penc);
346 return 1;
348 return 0;
351 /* Scan for 16G memory blocks that have been set aside for huge pages
352 * and reserve those blocks for 16G huge pages.
354 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
355 const char *uname, int depth,
356 void *data) {
357 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
358 unsigned long *addr_prop;
359 u32 *page_count_prop;
360 unsigned int expected_pages;
361 long unsigned int phys_addr;
362 long unsigned int block_size;
364 /* We are scanning "memory" nodes only */
365 if (type == NULL || strcmp(type, "memory") != 0)
366 return 0;
368 /* This property is the log base 2 of the number of virtual pages that
369 * will represent this memory block. */
370 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
371 if (page_count_prop == NULL)
372 return 0;
373 expected_pages = (1 << page_count_prop[0]);
374 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
375 if (addr_prop == NULL)
376 return 0;
377 phys_addr = addr_prop[0];
378 block_size = addr_prop[1];
379 if (block_size != (16 * GB))
380 return 0;
381 printk(KERN_INFO "Huge page(16GB) memory: "
382 "addr = 0x%lX size = 0x%lX pages = %d\n",
383 phys_addr, block_size, expected_pages);
384 lmb_reserve(phys_addr, block_size * expected_pages);
385 add_gpage(phys_addr, block_size, expected_pages);
386 return 0;
389 static void __init htab_init_page_sizes(void)
391 int rc;
393 /* Default to 4K pages only */
394 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
395 sizeof(mmu_psize_defaults_old));
398 * Try to find the available page sizes in the device-tree
400 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
401 if (rc != 0) /* Found */
402 goto found;
405 * Not in the device-tree, let's fallback on known size
406 * list for 16M capable GP & GR
408 if (cpu_has_feature(CPU_FTR_16M_PAGE))
409 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
410 sizeof(mmu_psize_defaults_gp));
411 found:
412 #ifndef CONFIG_DEBUG_PAGEALLOC
414 * Pick a size for the linear mapping. Currently, we only support
415 * 16M, 1M and 4K which is the default
417 if (mmu_psize_defs[MMU_PAGE_16M].shift)
418 mmu_linear_psize = MMU_PAGE_16M;
419 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
420 mmu_linear_psize = MMU_PAGE_1M;
421 #endif /* CONFIG_DEBUG_PAGEALLOC */
423 #ifdef CONFIG_PPC_64K_PAGES
425 * Pick a size for the ordinary pages. Default is 4K, we support
426 * 64K for user mappings and vmalloc if supported by the processor.
427 * We only use 64k for ioremap if the processor
428 * (and firmware) support cache-inhibited large pages.
429 * If not, we use 4k and set mmu_ci_restrictions so that
430 * hash_page knows to switch processes that use cache-inhibited
431 * mappings to 4k pages.
433 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
434 mmu_virtual_psize = MMU_PAGE_64K;
435 mmu_vmalloc_psize = MMU_PAGE_64K;
436 if (mmu_linear_psize == MMU_PAGE_4K)
437 mmu_linear_psize = MMU_PAGE_64K;
438 if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) {
440 * Don't use 64k pages for ioremap on pSeries, since
441 * that would stop us accessing the HEA ethernet.
443 if (!machine_is(pseries))
444 mmu_io_psize = MMU_PAGE_64K;
445 } else
446 mmu_ci_restrictions = 1;
448 #endif /* CONFIG_PPC_64K_PAGES */
450 #ifdef CONFIG_SPARSEMEM_VMEMMAP
451 /* We try to use 16M pages for vmemmap if that is supported
452 * and we have at least 1G of RAM at boot
454 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
455 lmb_phys_mem_size() >= 0x40000000)
456 mmu_vmemmap_psize = MMU_PAGE_16M;
457 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
458 mmu_vmemmap_psize = MMU_PAGE_64K;
459 else
460 mmu_vmemmap_psize = MMU_PAGE_4K;
461 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
463 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
464 "virtual = %d, io = %d"
465 #ifdef CONFIG_SPARSEMEM_VMEMMAP
466 ", vmemmap = %d"
467 #endif
468 "\n",
469 mmu_psize_defs[mmu_linear_psize].shift,
470 mmu_psize_defs[mmu_virtual_psize].shift,
471 mmu_psize_defs[mmu_io_psize].shift
472 #ifdef CONFIG_SPARSEMEM_VMEMMAP
473 ,mmu_psize_defs[mmu_vmemmap_psize].shift
474 #endif
477 #ifdef CONFIG_HUGETLB_PAGE
478 /* Reserve 16G huge page memory sections for huge pages */
479 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
481 /* Set default large page size. Currently, we pick 16M or 1M depending
482 * on what is available
484 if (mmu_psize_defs[MMU_PAGE_16M].shift)
485 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
486 /* With 4k/4level pagetables, we can't (for now) cope with a
487 * huge page size < PMD_SIZE */
488 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
489 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
490 #endif /* CONFIG_HUGETLB_PAGE */
493 static int __init htab_dt_scan_pftsize(unsigned long node,
494 const char *uname, int depth,
495 void *data)
497 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
498 u32 *prop;
500 /* We are scanning "cpu" nodes only */
501 if (type == NULL || strcmp(type, "cpu") != 0)
502 return 0;
504 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
505 if (prop != NULL) {
506 /* pft_size[0] is the NUMA CEC cookie */
507 ppc64_pft_size = prop[1];
508 return 1;
510 return 0;
513 static unsigned long __init htab_get_table_size(void)
515 unsigned long mem_size, rnd_mem_size, pteg_count;
517 /* If hash size isn't already provided by the platform, we try to
518 * retrieve it from the device-tree. If it's not there neither, we
519 * calculate it now based on the total RAM size
521 if (ppc64_pft_size == 0)
522 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
523 if (ppc64_pft_size)
524 return 1UL << ppc64_pft_size;
526 /* round mem_size up to next power of 2 */
527 mem_size = lmb_phys_mem_size();
528 rnd_mem_size = 1UL << __ilog2(mem_size);
529 if (rnd_mem_size < mem_size)
530 rnd_mem_size <<= 1;
532 /* # pages / 2 */
533 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
535 return pteg_count << 7;
538 #ifdef CONFIG_MEMORY_HOTPLUG
539 void create_section_mapping(unsigned long start, unsigned long end)
541 BUG_ON(htab_bolt_mapping(start, end, __pa(start),
542 PAGE_KERNEL, mmu_linear_psize,
543 mmu_kernel_ssize));
546 int remove_section_mapping(unsigned long start, unsigned long end)
548 return htab_remove_mapping(start, end, mmu_linear_psize,
549 mmu_kernel_ssize);
551 #endif /* CONFIG_MEMORY_HOTPLUG */
553 static inline void make_bl(unsigned int *insn_addr, void *func)
555 unsigned long funcp = *((unsigned long *)func);
556 int offset = funcp - (unsigned long)insn_addr;
558 *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
559 flush_icache_range((unsigned long)insn_addr, 4+
560 (unsigned long)insn_addr);
563 static void __init htab_finish_init(void)
565 extern unsigned int *htab_call_hpte_insert1;
566 extern unsigned int *htab_call_hpte_insert2;
567 extern unsigned int *htab_call_hpte_remove;
568 extern unsigned int *htab_call_hpte_updatepp;
570 #ifdef CONFIG_PPC_HAS_HASH_64K
571 extern unsigned int *ht64_call_hpte_insert1;
572 extern unsigned int *ht64_call_hpte_insert2;
573 extern unsigned int *ht64_call_hpte_remove;
574 extern unsigned int *ht64_call_hpte_updatepp;
576 make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
577 make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
578 make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
579 make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
580 #endif /* CONFIG_PPC_HAS_HASH_64K */
582 make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
583 make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
584 make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
585 make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
588 void __init htab_initialize(void)
590 unsigned long table;
591 unsigned long pteg_count;
592 unsigned long prot;
593 unsigned long base = 0, size = 0, limit;
594 int i;
596 DBG(" -> htab_initialize()\n");
598 /* Initialize segment sizes */
599 htab_init_seg_sizes();
601 /* Initialize page sizes */
602 htab_init_page_sizes();
604 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
605 mmu_kernel_ssize = MMU_SEGSIZE_1T;
606 mmu_highuser_ssize = MMU_SEGSIZE_1T;
607 printk(KERN_INFO "Using 1TB segments\n");
611 * Calculate the required size of the htab. We want the number of
612 * PTEGs to equal one half the number of real pages.
614 htab_size_bytes = htab_get_table_size();
615 pteg_count = htab_size_bytes >> 7;
617 htab_hash_mask = pteg_count - 1;
619 if (firmware_has_feature(FW_FEATURE_LPAR)) {
620 /* Using a hypervisor which owns the htab */
621 htab_address = NULL;
622 _SDR1 = 0;
623 } else {
624 /* Find storage for the HPT. Must be contiguous in
625 * the absolute address space. On cell we want it to be
626 * in the first 2 Gig so we can use it for IOMMU hacks.
628 if (machine_is(cell))
629 limit = 0x80000000;
630 else
631 limit = 0;
633 table = lmb_alloc_base(htab_size_bytes, htab_size_bytes, limit);
635 DBG("Hash table allocated at %lx, size: %lx\n", table,
636 htab_size_bytes);
638 htab_address = abs_to_virt(table);
640 /* htab absolute addr + encoded htabsize */
641 _SDR1 = table + __ilog2(pteg_count) - 11;
643 /* Initialize the HPT with no entries */
644 memset((void *)table, 0, htab_size_bytes);
646 /* Set SDR1 */
647 mtspr(SPRN_SDR1, _SDR1);
650 prot = PAGE_KERNEL;
652 #ifdef CONFIG_DEBUG_PAGEALLOC
653 linear_map_hash_count = lmb_end_of_DRAM() >> PAGE_SHIFT;
654 linear_map_hash_slots = __va(lmb_alloc_base(linear_map_hash_count,
655 1, lmb.rmo_size));
656 memset(linear_map_hash_slots, 0, linear_map_hash_count);
657 #endif /* CONFIG_DEBUG_PAGEALLOC */
659 /* On U3 based machines, we need to reserve the DART area and
660 * _NOT_ map it to avoid cache paradoxes as it's remapped non
661 * cacheable later on
664 /* create bolted the linear mapping in the hash table */
665 for (i=0; i < lmb.memory.cnt; i++) {
666 base = (unsigned long)__va(lmb.memory.region[i].base);
667 size = lmb.memory.region[i].size;
669 DBG("creating mapping for region: %lx..%lx (prot: %x)\n",
670 base, size, prot);
672 #ifdef CONFIG_U3_DART
673 /* Do not map the DART space. Fortunately, it will be aligned
674 * in such a way that it will not cross two lmb regions and
675 * will fit within a single 16Mb page.
676 * The DART space is assumed to be a full 16Mb region even if
677 * we only use 2Mb of that space. We will use more of it later
678 * for AGP GART. We have to use a full 16Mb large page.
680 DBG("DART base: %lx\n", dart_tablebase);
682 if (dart_tablebase != 0 && dart_tablebase >= base
683 && dart_tablebase < (base + size)) {
684 unsigned long dart_table_end = dart_tablebase + 16 * MB;
685 if (base != dart_tablebase)
686 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
687 __pa(base), prot,
688 mmu_linear_psize,
689 mmu_kernel_ssize));
690 if ((base + size) > dart_table_end)
691 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
692 base + size,
693 __pa(dart_table_end),
694 prot,
695 mmu_linear_psize,
696 mmu_kernel_ssize));
697 continue;
699 #endif /* CONFIG_U3_DART */
700 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
701 prot, mmu_linear_psize, mmu_kernel_ssize));
705 * If we have a memory_limit and we've allocated TCEs then we need to
706 * explicitly map the TCE area at the top of RAM. We also cope with the
707 * case that the TCEs start below memory_limit.
708 * tce_alloc_start/end are 16MB aligned so the mapping should work
709 * for either 4K or 16MB pages.
711 if (tce_alloc_start) {
712 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
713 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
715 if (base + size >= tce_alloc_start)
716 tce_alloc_start = base + size + 1;
718 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
719 __pa(tce_alloc_start), prot,
720 mmu_linear_psize, mmu_kernel_ssize));
723 htab_finish_init();
725 DBG(" <- htab_initialize()\n");
727 #undef KB
728 #undef MB
730 void htab_initialize_secondary(void)
732 if (!firmware_has_feature(FW_FEATURE_LPAR))
733 mtspr(SPRN_SDR1, _SDR1);
737 * Called by asm hashtable.S for doing lazy icache flush
739 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
741 struct page *page;
743 if (!pfn_valid(pte_pfn(pte)))
744 return pp;
746 page = pte_page(pte);
748 /* page is dirty */
749 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
750 if (trap == 0x400) {
751 __flush_dcache_icache(page_address(page));
752 set_bit(PG_arch_1, &page->flags);
753 } else
754 pp |= HPTE_R_N;
756 return pp;
759 #ifdef CONFIG_PPC_MM_SLICES
760 unsigned int get_paca_psize(unsigned long addr)
762 unsigned long index, slices;
764 if (addr < SLICE_LOW_TOP) {
765 slices = get_paca()->context.low_slices_psize;
766 index = GET_LOW_SLICE_INDEX(addr);
767 } else {
768 slices = get_paca()->context.high_slices_psize;
769 index = GET_HIGH_SLICE_INDEX(addr);
771 return (slices >> (index * 4)) & 0xF;
774 #else
775 unsigned int get_paca_psize(unsigned long addr)
777 return get_paca()->context.user_psize;
779 #endif
782 * Demote a segment to using 4k pages.
783 * For now this makes the whole process use 4k pages.
785 #ifdef CONFIG_PPC_64K_PAGES
786 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
788 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
789 return;
790 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
791 #ifdef CONFIG_SPU_BASE
792 spu_flush_all_slbs(mm);
793 #endif
794 if (get_paca_psize(addr) != MMU_PAGE_4K) {
795 get_paca()->context = mm->context;
796 slb_flush_and_rebolt();
799 #endif /* CONFIG_PPC_64K_PAGES */
801 #ifdef CONFIG_PPC_SUBPAGE_PROT
803 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
804 * Userspace sets the subpage permissions using the subpage_prot system call.
806 * Result is 0: full permissions, _PAGE_RW: read-only,
807 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
809 static int subpage_protection(pgd_t *pgdir, unsigned long ea)
811 struct subpage_prot_table *spt = pgd_subpage_prot(pgdir);
812 u32 spp = 0;
813 u32 **sbpm, *sbpp;
815 if (ea >= spt->maxaddr)
816 return 0;
817 if (ea < 0x100000000) {
818 /* addresses below 4GB use spt->low_prot */
819 sbpm = spt->low_prot;
820 } else {
821 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
822 if (!sbpm)
823 return 0;
825 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
826 if (!sbpp)
827 return 0;
828 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
830 /* extract 2-bit bitfield for this 4k subpage */
831 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
833 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
834 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
835 return spp;
838 #else /* CONFIG_PPC_SUBPAGE_PROT */
839 static inline int subpage_protection(pgd_t *pgdir, unsigned long ea)
841 return 0;
843 #endif
845 /* Result code is:
846 * 0 - handled
847 * 1 - normal page fault
848 * -1 - critical hash insertion error
849 * -2 - access not permitted by subpage protection mechanism
851 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
853 void *pgdir;
854 unsigned long vsid;
855 struct mm_struct *mm;
856 pte_t *ptep;
857 cpumask_t tmp;
858 int rc, user_region = 0, local = 0;
859 int psize, ssize;
861 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
862 ea, access, trap);
864 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
865 DBG_LOW(" out of pgtable range !\n");
866 return 1;
869 /* Get region & vsid */
870 switch (REGION_ID(ea)) {
871 case USER_REGION_ID:
872 user_region = 1;
873 mm = current->mm;
874 if (! mm) {
875 DBG_LOW(" user region with no mm !\n");
876 return 1;
878 psize = get_slice_psize(mm, ea);
879 ssize = user_segment_size(ea);
880 vsid = get_vsid(mm->context.id, ea, ssize);
881 break;
882 case VMALLOC_REGION_ID:
883 mm = &init_mm;
884 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
885 if (ea < VMALLOC_END)
886 psize = mmu_vmalloc_psize;
887 else
888 psize = mmu_io_psize;
889 ssize = mmu_kernel_ssize;
890 break;
891 default:
892 /* Not a valid range
893 * Send the problem up to do_page_fault
895 return 1;
897 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
899 /* Get pgdir */
900 pgdir = mm->pgd;
901 if (pgdir == NULL)
902 return 1;
904 /* Check CPU locality */
905 tmp = cpumask_of_cpu(smp_processor_id());
906 if (user_region && cpus_equal(mm->cpu_vm_mask, tmp))
907 local = 1;
909 #ifdef CONFIG_HUGETLB_PAGE
910 /* Handle hugepage regions */
911 if (HPAGE_SHIFT && mmu_huge_psizes[psize]) {
912 DBG_LOW(" -> huge page !\n");
913 return hash_huge_page(mm, access, ea, vsid, local, trap);
915 #endif /* CONFIG_HUGETLB_PAGE */
917 #ifndef CONFIG_PPC_64K_PAGES
918 /* If we use 4K pages and our psize is not 4K, then we are hitting
919 * a special driver mapping, we need to align the address before
920 * we fetch the PTE
922 if (psize != MMU_PAGE_4K)
923 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
924 #endif /* CONFIG_PPC_64K_PAGES */
926 /* Get PTE and page size from page tables */
927 ptep = find_linux_pte(pgdir, ea);
928 if (ptep == NULL || !pte_present(*ptep)) {
929 DBG_LOW(" no PTE !\n");
930 return 1;
933 #ifndef CONFIG_PPC_64K_PAGES
934 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
935 #else
936 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
937 pte_val(*(ptep + PTRS_PER_PTE)));
938 #endif
939 /* Pre-check access permissions (will be re-checked atomically
940 * in __hash_page_XX but this pre-check is a fast path
942 if (access & ~pte_val(*ptep)) {
943 DBG_LOW(" no access !\n");
944 return 1;
947 /* Do actual hashing */
948 #ifdef CONFIG_PPC_64K_PAGES
949 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
950 if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
951 demote_segment_4k(mm, ea);
952 psize = MMU_PAGE_4K;
955 /* If this PTE is non-cacheable and we have restrictions on
956 * using non cacheable large pages, then we switch to 4k
958 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
959 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
960 if (user_region) {
961 demote_segment_4k(mm, ea);
962 psize = MMU_PAGE_4K;
963 } else if (ea < VMALLOC_END) {
965 * some driver did a non-cacheable mapping
966 * in vmalloc space, so switch vmalloc
967 * to 4k pages
969 printk(KERN_ALERT "Reducing vmalloc segment "
970 "to 4kB pages because of "
971 "non-cacheable mapping\n");
972 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
973 #ifdef CONFIG_SPU_BASE
974 spu_flush_all_slbs(mm);
975 #endif
978 if (user_region) {
979 if (psize != get_paca_psize(ea)) {
980 get_paca()->context = mm->context;
981 slb_flush_and_rebolt();
983 } else if (get_paca()->vmalloc_sllp !=
984 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
985 get_paca()->vmalloc_sllp =
986 mmu_psize_defs[mmu_vmalloc_psize].sllp;
987 slb_vmalloc_update();
989 #endif /* CONFIG_PPC_64K_PAGES */
991 #ifdef CONFIG_PPC_HAS_HASH_64K
992 if (psize == MMU_PAGE_64K)
993 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
994 else
995 #endif /* CONFIG_PPC_HAS_HASH_64K */
997 int spp = subpage_protection(pgdir, ea);
998 if (access & spp)
999 rc = -2;
1000 else
1001 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1002 local, ssize, spp);
1005 #ifndef CONFIG_PPC_64K_PAGES
1006 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1007 #else
1008 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1009 pte_val(*(ptep + PTRS_PER_PTE)));
1010 #endif
1011 DBG_LOW(" -> rc=%d\n", rc);
1012 return rc;
1014 EXPORT_SYMBOL_GPL(hash_page);
1016 void hash_preload(struct mm_struct *mm, unsigned long ea,
1017 unsigned long access, unsigned long trap)
1019 unsigned long vsid;
1020 void *pgdir;
1021 pte_t *ptep;
1022 cpumask_t mask;
1023 unsigned long flags;
1024 int local = 0;
1025 int ssize;
1027 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1029 #ifdef CONFIG_PPC_MM_SLICES
1030 /* We only prefault standard pages for now */
1031 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1032 return;
1033 #endif
1035 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1036 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1038 /* Get Linux PTE if available */
1039 pgdir = mm->pgd;
1040 if (pgdir == NULL)
1041 return;
1042 ptep = find_linux_pte(pgdir, ea);
1043 if (!ptep)
1044 return;
1046 #ifdef CONFIG_PPC_64K_PAGES
1047 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1048 * a 64K kernel), then we don't preload, hash_page() will take
1049 * care of it once we actually try to access the page.
1050 * That way we don't have to duplicate all of the logic for segment
1051 * page size demotion here
1053 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1054 return;
1055 #endif /* CONFIG_PPC_64K_PAGES */
1057 /* Get VSID */
1058 ssize = user_segment_size(ea);
1059 vsid = get_vsid(mm->context.id, ea, ssize);
1061 /* Hash doesn't like irqs */
1062 local_irq_save(flags);
1064 /* Is that local to this CPU ? */
1065 mask = cpumask_of_cpu(smp_processor_id());
1066 if (cpus_equal(mm->cpu_vm_mask, mask))
1067 local = 1;
1069 /* Hash it in */
1070 #ifdef CONFIG_PPC_HAS_HASH_64K
1071 if (mm->context.user_psize == MMU_PAGE_64K)
1072 __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1073 else
1074 #endif /* CONFIG_PPC_HAS_HASH_64K */
1075 __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1076 subpage_protection(pgdir, ea));
1078 local_irq_restore(flags);
1081 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1082 * do not forget to update the assembly call site !
1084 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1085 int local)
1087 unsigned long hash, index, shift, hidx, slot;
1089 DBG_LOW("flush_hash_page(va=%016x)\n", va);
1090 pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1091 hash = hpt_hash(va, shift, ssize);
1092 hidx = __rpte_to_hidx(pte, index);
1093 if (hidx & _PTEIDX_SECONDARY)
1094 hash = ~hash;
1095 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1096 slot += hidx & _PTEIDX_GROUP_IX;
1097 DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx);
1098 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1099 } pte_iterate_hashed_end();
1102 void flush_hash_range(unsigned long number, int local)
1104 if (ppc_md.flush_hash_range)
1105 ppc_md.flush_hash_range(number, local);
1106 else {
1107 int i;
1108 struct ppc64_tlb_batch *batch =
1109 &__get_cpu_var(ppc64_tlb_batch);
1111 for (i = 0; i < number; i++)
1112 flush_hash_page(batch->vaddr[i], batch->pte[i],
1113 batch->psize, batch->ssize, local);
1118 * low_hash_fault is called when we the low level hash code failed
1119 * to instert a PTE due to an hypervisor error
1121 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1123 if (user_mode(regs)) {
1124 #ifdef CONFIG_PPC_SUBPAGE_PROT
1125 if (rc == -2)
1126 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1127 else
1128 #endif
1129 _exception(SIGBUS, regs, BUS_ADRERR, address);
1130 } else
1131 bad_page_fault(regs, address, SIGBUS);
1134 #ifdef CONFIG_DEBUG_PAGEALLOC
1135 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1137 unsigned long hash, hpteg;
1138 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1139 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1140 unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1141 int ret;
1143 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1144 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1146 ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1147 mode, HPTE_V_BOLTED,
1148 mmu_linear_psize, mmu_kernel_ssize);
1149 BUG_ON (ret < 0);
1150 spin_lock(&linear_map_hash_lock);
1151 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1152 linear_map_hash_slots[lmi] = ret | 0x80;
1153 spin_unlock(&linear_map_hash_lock);
1156 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1158 unsigned long hash, hidx, slot;
1159 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1160 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1162 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1163 spin_lock(&linear_map_hash_lock);
1164 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1165 hidx = linear_map_hash_slots[lmi] & 0x7f;
1166 linear_map_hash_slots[lmi] = 0;
1167 spin_unlock(&linear_map_hash_lock);
1168 if (hidx & _PTEIDX_SECONDARY)
1169 hash = ~hash;
1170 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1171 slot += hidx & _PTEIDX_GROUP_IX;
1172 ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1175 void kernel_map_pages(struct page *page, int numpages, int enable)
1177 unsigned long flags, vaddr, lmi;
1178 int i;
1180 local_irq_save(flags);
1181 for (i = 0; i < numpages; i++, page++) {
1182 vaddr = (unsigned long)page_address(page);
1183 lmi = __pa(vaddr) >> PAGE_SHIFT;
1184 if (lmi >= linear_map_hash_count)
1185 continue;
1186 if (enable)
1187 kernel_map_linear_page(vaddr, lmi);
1188 else
1189 kernel_unmap_linear_page(vaddr, lmi);
1191 local_irq_restore(flags);
1193 #endif /* CONFIG_DEBUG_PAGEALLOC */