cciss: factor out cciss_reset_devices()
[linux-2.6.git] / drivers / block / cciss.c
blobf49dcd734d1b4d22be6c742e91d54f19c16ba595
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
69 static int cciss_allow_hpsa;
70 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
71 MODULE_PARM_DESC(cciss_allow_hpsa,
72 "Prevent cciss driver from accessing hardware known to be "
73 " supported by the hpsa driver");
75 #include "cciss_cmd.h"
76 #include "cciss.h"
77 #include <linux/cciss_ioctl.h>
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id[] = {
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
113 {0,}
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access},
124 {0x40800E11, "Smart Array 5i", &SA5B_access},
125 {0x40820E11, "Smart Array 532", &SA5B_access},
126 {0x40830E11, "Smart Array 5312", &SA5B_access},
127 {0x409A0E11, "Smart Array 641", &SA5_access},
128 {0x409B0E11, "Smart Array 642", &SA5_access},
129 {0x409C0E11, "Smart Array 6400", &SA5_access},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131 {0x40910E11, "Smart Array 6i", &SA5_access},
132 {0x3225103C, "Smart Array P600", &SA5_access},
133 {0x3235103C, "Smart Array P400i", &SA5_access},
134 {0x3211103C, "Smart Array E200i", &SA5_access},
135 {0x3212103C, "Smart Array E200", &SA5_access},
136 {0x3213103C, "Smart Array E200i", &SA5_access},
137 {0x3214103C, "Smart Array E200i", &SA5_access},
138 {0x3215103C, "Smart Array E200i", &SA5_access},
139 {0x3237103C, "Smart Array E500", &SA5_access},
140 /* controllers below this line are also supported by the hpsa driver. */
141 #define HPSA_BOUNDARY 0x3223103C
142 {0x3223103C, "Smart Array P800", &SA5_access},
143 {0x3234103C, "Smart Array P400", &SA5_access},
144 {0x323D103C, "Smart Array P700m", &SA5_access},
145 {0x3241103C, "Smart Array P212", &SA5_access},
146 {0x3243103C, "Smart Array P410", &SA5_access},
147 {0x3245103C, "Smart Array P410i", &SA5_access},
148 {0x3247103C, "Smart Array P411", &SA5_access},
149 {0x3249103C, "Smart Array P812", &SA5_access},
150 {0x324A103C, "Smart Array P712m", &SA5_access},
151 {0x324B103C, "Smart Array P711m", &SA5_access},
152 {0x3250103C, "Smart Array", &SA5_access},
153 {0x3251103C, "Smart Array", &SA5_access},
154 {0x3252103C, "Smart Array", &SA5_access},
155 {0x3253103C, "Smart Array", &SA5_access},
156 {0x3254103C, "Smart Array", &SA5_access},
159 /* How long to wait (in milliseconds) for board to go into simple mode */
160 #define MAX_CONFIG_WAIT 30000
161 #define MAX_IOCTL_CONFIG_WAIT 1000
163 /*define how many times we will try a command because of bus resets */
164 #define MAX_CMD_RETRIES 3
166 #define MAX_CTLR 32
168 /* Originally cciss driver only supports 8 major numbers */
169 #define MAX_CTLR_ORIG 8
171 static ctlr_info_t *hba[MAX_CTLR];
173 static struct task_struct *cciss_scan_thread;
174 static DEFINE_MUTEX(scan_mutex);
175 static LIST_HEAD(scan_q);
177 static void do_cciss_request(struct request_queue *q);
178 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
179 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
180 static int cciss_open(struct block_device *bdev, fmode_t mode);
181 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
182 static int cciss_release(struct gendisk *disk, fmode_t mode);
183 static int do_ioctl(struct block_device *bdev, fmode_t mode,
184 unsigned int cmd, unsigned long arg);
185 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
186 unsigned int cmd, unsigned long arg);
187 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
189 static int cciss_revalidate(struct gendisk *disk);
190 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
191 static int deregister_disk(ctlr_info_t *h, int drv_index,
192 int clear_all, int via_ioctl);
194 static void cciss_read_capacity(int ctlr, int logvol,
195 sector_t *total_size, unsigned int *block_size);
196 static void cciss_read_capacity_16(int ctlr, int logvol,
197 sector_t *total_size, unsigned int *block_size);
198 static void cciss_geometry_inquiry(int ctlr, int logvol,
199 sector_t total_size,
200 unsigned int block_size, InquiryData_struct *inq_buff,
201 drive_info_struct *drv);
202 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
203 static void start_io(ctlr_info_t *h);
204 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
205 __u8 page_code, unsigned char scsi3addr[],
206 int cmd_type);
207 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
208 int attempt_retry);
209 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
211 static int add_to_scan_list(struct ctlr_info *h);
212 static int scan_thread(void *data);
213 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
214 static void cciss_hba_release(struct device *dev);
215 static void cciss_device_release(struct device *dev);
216 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
217 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
218 static inline u32 next_command(ctlr_info_t *h);
220 /* performant mode helper functions */
221 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
222 int *bucket_map);
223 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
225 #ifdef CONFIG_PROC_FS
226 static void cciss_procinit(int i);
227 #else
228 static void cciss_procinit(int i)
231 #endif /* CONFIG_PROC_FS */
233 #ifdef CONFIG_COMPAT
234 static int cciss_compat_ioctl(struct block_device *, fmode_t,
235 unsigned, unsigned long);
236 #endif
238 static const struct block_device_operations cciss_fops = {
239 .owner = THIS_MODULE,
240 .open = cciss_unlocked_open,
241 .release = cciss_release,
242 .ioctl = do_ioctl,
243 .getgeo = cciss_getgeo,
244 #ifdef CONFIG_COMPAT
245 .compat_ioctl = cciss_compat_ioctl,
246 #endif
247 .revalidate_disk = cciss_revalidate,
250 /* set_performant_mode: Modify the tag for cciss performant
251 * set bit 0 for pull model, bits 3-1 for block fetch
252 * register number
254 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
256 if (likely(h->transMethod == CFGTBL_Trans_Performant))
257 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
261 * Enqueuing and dequeuing functions for cmdlists.
263 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
265 hlist_add_head(&c->list, list);
268 static inline void removeQ(CommandList_struct *c)
271 * After kexec/dump some commands might still
272 * be in flight, which the firmware will try
273 * to complete. Resetting the firmware doesn't work
274 * with old fw revisions, so we have to mark
275 * them off as 'stale' to prevent the driver from
276 * falling over.
278 if (WARN_ON(hlist_unhashed(&c->list))) {
279 c->cmd_type = CMD_MSG_STALE;
280 return;
283 hlist_del_init(&c->list);
286 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
287 CommandList_struct *c)
289 unsigned long flags;
290 set_performant_mode(h, c);
291 spin_lock_irqsave(&h->lock, flags);
292 addQ(&h->reqQ, c);
293 h->Qdepth++;
294 start_io(h);
295 spin_unlock_irqrestore(&h->lock, flags);
298 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
299 int nr_cmds)
301 int i;
303 if (!cmd_sg_list)
304 return;
305 for (i = 0; i < nr_cmds; i++) {
306 kfree(cmd_sg_list[i]);
307 cmd_sg_list[i] = NULL;
309 kfree(cmd_sg_list);
312 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
313 ctlr_info_t *h, int chainsize, int nr_cmds)
315 int j;
316 SGDescriptor_struct **cmd_sg_list;
318 if (chainsize <= 0)
319 return NULL;
321 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
322 if (!cmd_sg_list)
323 return NULL;
325 /* Build up chain blocks for each command */
326 for (j = 0; j < nr_cmds; j++) {
327 /* Need a block of chainsized s/g elements. */
328 cmd_sg_list[j] = kmalloc((chainsize *
329 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
330 if (!cmd_sg_list[j]) {
331 dev_err(&h->pdev->dev, "Cannot get memory "
332 "for s/g chains.\n");
333 goto clean;
336 return cmd_sg_list;
337 clean:
338 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
339 return NULL;
342 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
344 SGDescriptor_struct *chain_sg;
345 u64bit temp64;
347 if (c->Header.SGTotal <= h->max_cmd_sgentries)
348 return;
350 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
351 temp64.val32.lower = chain_sg->Addr.lower;
352 temp64.val32.upper = chain_sg->Addr.upper;
353 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
356 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
357 SGDescriptor_struct *chain_block, int len)
359 SGDescriptor_struct *chain_sg;
360 u64bit temp64;
362 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
363 chain_sg->Ext = CCISS_SG_CHAIN;
364 chain_sg->Len = len;
365 temp64.val = pci_map_single(h->pdev, chain_block, len,
366 PCI_DMA_TODEVICE);
367 chain_sg->Addr.lower = temp64.val32.lower;
368 chain_sg->Addr.upper = temp64.val32.upper;
371 #include "cciss_scsi.c" /* For SCSI tape support */
373 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
374 "UNKNOWN"
376 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
378 #ifdef CONFIG_PROC_FS
381 * Report information about this controller.
383 #define ENG_GIG 1000000000
384 #define ENG_GIG_FACTOR (ENG_GIG/512)
385 #define ENGAGE_SCSI "engage scsi"
387 static struct proc_dir_entry *proc_cciss;
389 static void cciss_seq_show_header(struct seq_file *seq)
391 ctlr_info_t *h = seq->private;
393 seq_printf(seq, "%s: HP %s Controller\n"
394 "Board ID: 0x%08lx\n"
395 "Firmware Version: %c%c%c%c\n"
396 "IRQ: %d\n"
397 "Logical drives: %d\n"
398 "Current Q depth: %d\n"
399 "Current # commands on controller: %d\n"
400 "Max Q depth since init: %d\n"
401 "Max # commands on controller since init: %d\n"
402 "Max SG entries since init: %d\n",
403 h->devname,
404 h->product_name,
405 (unsigned long)h->board_id,
406 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
407 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
408 h->num_luns,
409 h->Qdepth, h->commands_outstanding,
410 h->maxQsinceinit, h->max_outstanding, h->maxSG);
412 #ifdef CONFIG_CISS_SCSI_TAPE
413 cciss_seq_tape_report(seq, h->ctlr);
414 #endif /* CONFIG_CISS_SCSI_TAPE */
417 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
419 ctlr_info_t *h = seq->private;
420 unsigned ctlr = h->ctlr;
421 unsigned long flags;
423 /* prevent displaying bogus info during configuration
424 * or deconfiguration of a logical volume
426 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
427 if (h->busy_configuring) {
428 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
429 return ERR_PTR(-EBUSY);
431 h->busy_configuring = 1;
432 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
434 if (*pos == 0)
435 cciss_seq_show_header(seq);
437 return pos;
440 static int cciss_seq_show(struct seq_file *seq, void *v)
442 sector_t vol_sz, vol_sz_frac;
443 ctlr_info_t *h = seq->private;
444 unsigned ctlr = h->ctlr;
445 loff_t *pos = v;
446 drive_info_struct *drv = h->drv[*pos];
448 if (*pos > h->highest_lun)
449 return 0;
451 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
452 return 0;
454 if (drv->heads == 0)
455 return 0;
457 vol_sz = drv->nr_blocks;
458 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
459 vol_sz_frac *= 100;
460 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
462 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
463 drv->raid_level = RAID_UNKNOWN;
464 seq_printf(seq, "cciss/c%dd%d:"
465 "\t%4u.%02uGB\tRAID %s\n",
466 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
467 raid_label[drv->raid_level]);
468 return 0;
471 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
473 ctlr_info_t *h = seq->private;
475 if (*pos > h->highest_lun)
476 return NULL;
477 *pos += 1;
479 return pos;
482 static void cciss_seq_stop(struct seq_file *seq, void *v)
484 ctlr_info_t *h = seq->private;
486 /* Only reset h->busy_configuring if we succeeded in setting
487 * it during cciss_seq_start. */
488 if (v == ERR_PTR(-EBUSY))
489 return;
491 h->busy_configuring = 0;
494 static const struct seq_operations cciss_seq_ops = {
495 .start = cciss_seq_start,
496 .show = cciss_seq_show,
497 .next = cciss_seq_next,
498 .stop = cciss_seq_stop,
501 static int cciss_seq_open(struct inode *inode, struct file *file)
503 int ret = seq_open(file, &cciss_seq_ops);
504 struct seq_file *seq = file->private_data;
506 if (!ret)
507 seq->private = PDE(inode)->data;
509 return ret;
512 static ssize_t
513 cciss_proc_write(struct file *file, const char __user *buf,
514 size_t length, loff_t *ppos)
516 int err;
517 char *buffer;
519 #ifndef CONFIG_CISS_SCSI_TAPE
520 return -EINVAL;
521 #endif
523 if (!buf || length > PAGE_SIZE - 1)
524 return -EINVAL;
526 buffer = (char *)__get_free_page(GFP_KERNEL);
527 if (!buffer)
528 return -ENOMEM;
530 err = -EFAULT;
531 if (copy_from_user(buffer, buf, length))
532 goto out;
533 buffer[length] = '\0';
535 #ifdef CONFIG_CISS_SCSI_TAPE
536 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
537 struct seq_file *seq = file->private_data;
538 ctlr_info_t *h = seq->private;
540 err = cciss_engage_scsi(h->ctlr);
541 if (err == 0)
542 err = length;
543 } else
544 #endif /* CONFIG_CISS_SCSI_TAPE */
545 err = -EINVAL;
546 /* might be nice to have "disengage" too, but it's not
547 safely possible. (only 1 module use count, lock issues.) */
549 out:
550 free_page((unsigned long)buffer);
551 return err;
554 static const struct file_operations cciss_proc_fops = {
555 .owner = THIS_MODULE,
556 .open = cciss_seq_open,
557 .read = seq_read,
558 .llseek = seq_lseek,
559 .release = seq_release,
560 .write = cciss_proc_write,
563 static void __devinit cciss_procinit(int i)
565 struct proc_dir_entry *pde;
567 if (proc_cciss == NULL)
568 proc_cciss = proc_mkdir("driver/cciss", NULL);
569 if (!proc_cciss)
570 return;
571 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
572 S_IROTH, proc_cciss,
573 &cciss_proc_fops, hba[i]);
575 #endif /* CONFIG_PROC_FS */
577 #define MAX_PRODUCT_NAME_LEN 19
579 #define to_hba(n) container_of(n, struct ctlr_info, dev)
580 #define to_drv(n) container_of(n, drive_info_struct, dev)
582 static ssize_t host_store_rescan(struct device *dev,
583 struct device_attribute *attr,
584 const char *buf, size_t count)
586 struct ctlr_info *h = to_hba(dev);
588 add_to_scan_list(h);
589 wake_up_process(cciss_scan_thread);
590 wait_for_completion_interruptible(&h->scan_wait);
592 return count;
594 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
596 static ssize_t dev_show_unique_id(struct device *dev,
597 struct device_attribute *attr,
598 char *buf)
600 drive_info_struct *drv = to_drv(dev);
601 struct ctlr_info *h = to_hba(drv->dev.parent);
602 __u8 sn[16];
603 unsigned long flags;
604 int ret = 0;
606 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
607 if (h->busy_configuring)
608 ret = -EBUSY;
609 else
610 memcpy(sn, drv->serial_no, sizeof(sn));
611 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
613 if (ret)
614 return ret;
615 else
616 return snprintf(buf, 16 * 2 + 2,
617 "%02X%02X%02X%02X%02X%02X%02X%02X"
618 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
619 sn[0], sn[1], sn[2], sn[3],
620 sn[4], sn[5], sn[6], sn[7],
621 sn[8], sn[9], sn[10], sn[11],
622 sn[12], sn[13], sn[14], sn[15]);
624 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
626 static ssize_t dev_show_vendor(struct device *dev,
627 struct device_attribute *attr,
628 char *buf)
630 drive_info_struct *drv = to_drv(dev);
631 struct ctlr_info *h = to_hba(drv->dev.parent);
632 char vendor[VENDOR_LEN + 1];
633 unsigned long flags;
634 int ret = 0;
636 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
637 if (h->busy_configuring)
638 ret = -EBUSY;
639 else
640 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
641 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
643 if (ret)
644 return ret;
645 else
646 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
648 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
650 static ssize_t dev_show_model(struct device *dev,
651 struct device_attribute *attr,
652 char *buf)
654 drive_info_struct *drv = to_drv(dev);
655 struct ctlr_info *h = to_hba(drv->dev.parent);
656 char model[MODEL_LEN + 1];
657 unsigned long flags;
658 int ret = 0;
660 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
661 if (h->busy_configuring)
662 ret = -EBUSY;
663 else
664 memcpy(model, drv->model, MODEL_LEN + 1);
665 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
667 if (ret)
668 return ret;
669 else
670 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
672 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
674 static ssize_t dev_show_rev(struct device *dev,
675 struct device_attribute *attr,
676 char *buf)
678 drive_info_struct *drv = to_drv(dev);
679 struct ctlr_info *h = to_hba(drv->dev.parent);
680 char rev[REV_LEN + 1];
681 unsigned long flags;
682 int ret = 0;
684 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
685 if (h->busy_configuring)
686 ret = -EBUSY;
687 else
688 memcpy(rev, drv->rev, REV_LEN + 1);
689 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
691 if (ret)
692 return ret;
693 else
694 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
696 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
698 static ssize_t cciss_show_lunid(struct device *dev,
699 struct device_attribute *attr, char *buf)
701 drive_info_struct *drv = to_drv(dev);
702 struct ctlr_info *h = to_hba(drv->dev.parent);
703 unsigned long flags;
704 unsigned char lunid[8];
706 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
707 if (h->busy_configuring) {
708 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
709 return -EBUSY;
711 if (!drv->heads) {
712 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
713 return -ENOTTY;
715 memcpy(lunid, drv->LunID, sizeof(lunid));
716 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
717 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
718 lunid[0], lunid[1], lunid[2], lunid[3],
719 lunid[4], lunid[5], lunid[6], lunid[7]);
721 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
723 static ssize_t cciss_show_raid_level(struct device *dev,
724 struct device_attribute *attr, char *buf)
726 drive_info_struct *drv = to_drv(dev);
727 struct ctlr_info *h = to_hba(drv->dev.parent);
728 int raid;
729 unsigned long flags;
731 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
732 if (h->busy_configuring) {
733 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
734 return -EBUSY;
736 raid = drv->raid_level;
737 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
738 if (raid < 0 || raid > RAID_UNKNOWN)
739 raid = RAID_UNKNOWN;
741 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
742 raid_label[raid]);
744 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
746 static ssize_t cciss_show_usage_count(struct device *dev,
747 struct device_attribute *attr, char *buf)
749 drive_info_struct *drv = to_drv(dev);
750 struct ctlr_info *h = to_hba(drv->dev.parent);
751 unsigned long flags;
752 int count;
754 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
755 if (h->busy_configuring) {
756 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
757 return -EBUSY;
759 count = drv->usage_count;
760 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
761 return snprintf(buf, 20, "%d\n", count);
763 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
765 static struct attribute *cciss_host_attrs[] = {
766 &dev_attr_rescan.attr,
767 NULL
770 static struct attribute_group cciss_host_attr_group = {
771 .attrs = cciss_host_attrs,
774 static const struct attribute_group *cciss_host_attr_groups[] = {
775 &cciss_host_attr_group,
776 NULL
779 static struct device_type cciss_host_type = {
780 .name = "cciss_host",
781 .groups = cciss_host_attr_groups,
782 .release = cciss_hba_release,
785 static struct attribute *cciss_dev_attrs[] = {
786 &dev_attr_unique_id.attr,
787 &dev_attr_model.attr,
788 &dev_attr_vendor.attr,
789 &dev_attr_rev.attr,
790 &dev_attr_lunid.attr,
791 &dev_attr_raid_level.attr,
792 &dev_attr_usage_count.attr,
793 NULL
796 static struct attribute_group cciss_dev_attr_group = {
797 .attrs = cciss_dev_attrs,
800 static const struct attribute_group *cciss_dev_attr_groups[] = {
801 &cciss_dev_attr_group,
802 NULL
805 static struct device_type cciss_dev_type = {
806 .name = "cciss_device",
807 .groups = cciss_dev_attr_groups,
808 .release = cciss_device_release,
811 static struct bus_type cciss_bus_type = {
812 .name = "cciss",
816 * cciss_hba_release is called when the reference count
817 * of h->dev goes to zero.
819 static void cciss_hba_release(struct device *dev)
822 * nothing to do, but need this to avoid a warning
823 * about not having a release handler from lib/kref.c.
828 * Initialize sysfs entry for each controller. This sets up and registers
829 * the 'cciss#' directory for each individual controller under
830 * /sys/bus/pci/devices/<dev>/.
832 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
834 device_initialize(&h->dev);
835 h->dev.type = &cciss_host_type;
836 h->dev.bus = &cciss_bus_type;
837 dev_set_name(&h->dev, "%s", h->devname);
838 h->dev.parent = &h->pdev->dev;
840 return device_add(&h->dev);
844 * Remove sysfs entries for an hba.
846 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
848 device_del(&h->dev);
849 put_device(&h->dev); /* final put. */
852 /* cciss_device_release is called when the reference count
853 * of h->drv[x]dev goes to zero.
855 static void cciss_device_release(struct device *dev)
857 drive_info_struct *drv = to_drv(dev);
858 kfree(drv);
862 * Initialize sysfs for each logical drive. This sets up and registers
863 * the 'c#d#' directory for each individual logical drive under
864 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
865 * /sys/block/cciss!c#d# to this entry.
867 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
868 int drv_index)
870 struct device *dev;
872 if (h->drv[drv_index]->device_initialized)
873 return 0;
875 dev = &h->drv[drv_index]->dev;
876 device_initialize(dev);
877 dev->type = &cciss_dev_type;
878 dev->bus = &cciss_bus_type;
879 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
880 dev->parent = &h->dev;
881 h->drv[drv_index]->device_initialized = 1;
882 return device_add(dev);
886 * Remove sysfs entries for a logical drive.
888 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
889 int ctlr_exiting)
891 struct device *dev = &h->drv[drv_index]->dev;
893 /* special case for c*d0, we only destroy it on controller exit */
894 if (drv_index == 0 && !ctlr_exiting)
895 return;
897 device_del(dev);
898 put_device(dev); /* the "final" put. */
899 h->drv[drv_index] = NULL;
903 * For operations that cannot sleep, a command block is allocated at init,
904 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
905 * which ones are free or in use. For operations that can wait for kmalloc
906 * to possible sleep, this routine can be called with get_from_pool set to 0.
907 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
909 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
911 CommandList_struct *c;
912 int i;
913 u64bit temp64;
914 dma_addr_t cmd_dma_handle, err_dma_handle;
916 if (!get_from_pool) {
917 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
918 sizeof(CommandList_struct), &cmd_dma_handle);
919 if (c == NULL)
920 return NULL;
921 memset(c, 0, sizeof(CommandList_struct));
923 c->cmdindex = -1;
925 c->err_info = (ErrorInfo_struct *)
926 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
927 &err_dma_handle);
929 if (c->err_info == NULL) {
930 pci_free_consistent(h->pdev,
931 sizeof(CommandList_struct), c, cmd_dma_handle);
932 return NULL;
934 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
935 } else { /* get it out of the controllers pool */
937 do {
938 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
939 if (i == h->nr_cmds)
940 return NULL;
941 } while (test_and_set_bit
942 (i & (BITS_PER_LONG - 1),
943 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
944 #ifdef CCISS_DEBUG
945 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
946 #endif
947 c = h->cmd_pool + i;
948 memset(c, 0, sizeof(CommandList_struct));
949 cmd_dma_handle = h->cmd_pool_dhandle
950 + i * sizeof(CommandList_struct);
951 c->err_info = h->errinfo_pool + i;
952 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
953 err_dma_handle = h->errinfo_pool_dhandle
954 + i * sizeof(ErrorInfo_struct);
955 h->nr_allocs++;
957 c->cmdindex = i;
960 INIT_HLIST_NODE(&c->list);
961 c->busaddr = (__u32) cmd_dma_handle;
962 temp64.val = (__u64) err_dma_handle;
963 c->ErrDesc.Addr.lower = temp64.val32.lower;
964 c->ErrDesc.Addr.upper = temp64.val32.upper;
965 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
967 c->ctlr = h->ctlr;
968 return c;
972 * Frees a command block that was previously allocated with cmd_alloc().
974 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
976 int i;
977 u64bit temp64;
979 if (!got_from_pool) {
980 temp64.val32.lower = c->ErrDesc.Addr.lower;
981 temp64.val32.upper = c->ErrDesc.Addr.upper;
982 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
983 c->err_info, (dma_addr_t) temp64.val);
984 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
985 c, (dma_addr_t) c->busaddr);
986 } else {
987 i = c - h->cmd_pool;
988 clear_bit(i & (BITS_PER_LONG - 1),
989 h->cmd_pool_bits + (i / BITS_PER_LONG));
990 h->nr_frees++;
994 static inline ctlr_info_t *get_host(struct gendisk *disk)
996 return disk->queue->queuedata;
999 static inline drive_info_struct *get_drv(struct gendisk *disk)
1001 return disk->private_data;
1005 * Open. Make sure the device is really there.
1007 static int cciss_open(struct block_device *bdev, fmode_t mode)
1009 ctlr_info_t *host = get_host(bdev->bd_disk);
1010 drive_info_struct *drv = get_drv(bdev->bd_disk);
1012 #ifdef CCISS_DEBUG
1013 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
1014 #endif /* CCISS_DEBUG */
1016 if (drv->busy_configuring)
1017 return -EBUSY;
1019 * Root is allowed to open raw volume zero even if it's not configured
1020 * so array config can still work. Root is also allowed to open any
1021 * volume that has a LUN ID, so it can issue IOCTL to reread the
1022 * disk information. I don't think I really like this
1023 * but I'm already using way to many device nodes to claim another one
1024 * for "raw controller".
1026 if (drv->heads == 0) {
1027 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1028 /* if not node 0 make sure it is a partition = 0 */
1029 if (MINOR(bdev->bd_dev) & 0x0f) {
1030 return -ENXIO;
1031 /* if it is, make sure we have a LUN ID */
1032 } else if (memcmp(drv->LunID, CTLR_LUNID,
1033 sizeof(drv->LunID))) {
1034 return -ENXIO;
1037 if (!capable(CAP_SYS_ADMIN))
1038 return -EPERM;
1040 drv->usage_count++;
1041 host->usage_count++;
1042 return 0;
1045 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1047 int ret;
1049 lock_kernel();
1050 ret = cciss_open(bdev, mode);
1051 unlock_kernel();
1053 return ret;
1057 * Close. Sync first.
1059 static int cciss_release(struct gendisk *disk, fmode_t mode)
1061 ctlr_info_t *host;
1062 drive_info_struct *drv;
1064 lock_kernel();
1065 host = get_host(disk);
1066 drv = get_drv(disk);
1068 #ifdef CCISS_DEBUG
1069 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
1070 #endif /* CCISS_DEBUG */
1072 drv->usage_count--;
1073 host->usage_count--;
1074 unlock_kernel();
1075 return 0;
1078 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1079 unsigned cmd, unsigned long arg)
1081 int ret;
1082 lock_kernel();
1083 ret = cciss_ioctl(bdev, mode, cmd, arg);
1084 unlock_kernel();
1085 return ret;
1088 #ifdef CONFIG_COMPAT
1090 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1091 unsigned cmd, unsigned long arg);
1092 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1093 unsigned cmd, unsigned long arg);
1095 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1096 unsigned cmd, unsigned long arg)
1098 switch (cmd) {
1099 case CCISS_GETPCIINFO:
1100 case CCISS_GETINTINFO:
1101 case CCISS_SETINTINFO:
1102 case CCISS_GETNODENAME:
1103 case CCISS_SETNODENAME:
1104 case CCISS_GETHEARTBEAT:
1105 case CCISS_GETBUSTYPES:
1106 case CCISS_GETFIRMVER:
1107 case CCISS_GETDRIVVER:
1108 case CCISS_REVALIDVOLS:
1109 case CCISS_DEREGDISK:
1110 case CCISS_REGNEWDISK:
1111 case CCISS_REGNEWD:
1112 case CCISS_RESCANDISK:
1113 case CCISS_GETLUNINFO:
1114 return do_ioctl(bdev, mode, cmd, arg);
1116 case CCISS_PASSTHRU32:
1117 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1118 case CCISS_BIG_PASSTHRU32:
1119 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1121 default:
1122 return -ENOIOCTLCMD;
1126 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1127 unsigned cmd, unsigned long arg)
1129 IOCTL32_Command_struct __user *arg32 =
1130 (IOCTL32_Command_struct __user *) arg;
1131 IOCTL_Command_struct arg64;
1132 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1133 int err;
1134 u32 cp;
1136 err = 0;
1137 err |=
1138 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1139 sizeof(arg64.LUN_info));
1140 err |=
1141 copy_from_user(&arg64.Request, &arg32->Request,
1142 sizeof(arg64.Request));
1143 err |=
1144 copy_from_user(&arg64.error_info, &arg32->error_info,
1145 sizeof(arg64.error_info));
1146 err |= get_user(arg64.buf_size, &arg32->buf_size);
1147 err |= get_user(cp, &arg32->buf);
1148 arg64.buf = compat_ptr(cp);
1149 err |= copy_to_user(p, &arg64, sizeof(arg64));
1151 if (err)
1152 return -EFAULT;
1154 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1155 if (err)
1156 return err;
1157 err |=
1158 copy_in_user(&arg32->error_info, &p->error_info,
1159 sizeof(arg32->error_info));
1160 if (err)
1161 return -EFAULT;
1162 return err;
1165 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1166 unsigned cmd, unsigned long arg)
1168 BIG_IOCTL32_Command_struct __user *arg32 =
1169 (BIG_IOCTL32_Command_struct __user *) arg;
1170 BIG_IOCTL_Command_struct arg64;
1171 BIG_IOCTL_Command_struct __user *p =
1172 compat_alloc_user_space(sizeof(arg64));
1173 int err;
1174 u32 cp;
1176 err = 0;
1177 err |=
1178 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1179 sizeof(arg64.LUN_info));
1180 err |=
1181 copy_from_user(&arg64.Request, &arg32->Request,
1182 sizeof(arg64.Request));
1183 err |=
1184 copy_from_user(&arg64.error_info, &arg32->error_info,
1185 sizeof(arg64.error_info));
1186 err |= get_user(arg64.buf_size, &arg32->buf_size);
1187 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1188 err |= get_user(cp, &arg32->buf);
1189 arg64.buf = compat_ptr(cp);
1190 err |= copy_to_user(p, &arg64, sizeof(arg64));
1192 if (err)
1193 return -EFAULT;
1195 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1196 if (err)
1197 return err;
1198 err |=
1199 copy_in_user(&arg32->error_info, &p->error_info,
1200 sizeof(arg32->error_info));
1201 if (err)
1202 return -EFAULT;
1203 return err;
1205 #endif
1207 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1209 drive_info_struct *drv = get_drv(bdev->bd_disk);
1211 if (!drv->cylinders)
1212 return -ENXIO;
1214 geo->heads = drv->heads;
1215 geo->sectors = drv->sectors;
1216 geo->cylinders = drv->cylinders;
1217 return 0;
1220 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1222 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1223 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1224 (void)check_for_unit_attention(host, c);
1227 * ioctl
1229 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1230 unsigned int cmd, unsigned long arg)
1232 struct gendisk *disk = bdev->bd_disk;
1233 ctlr_info_t *host = get_host(disk);
1234 drive_info_struct *drv = get_drv(disk);
1235 int ctlr = host->ctlr;
1236 void __user *argp = (void __user *)arg;
1238 #ifdef CCISS_DEBUG
1239 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1240 #endif /* CCISS_DEBUG */
1242 switch (cmd) {
1243 case CCISS_GETPCIINFO:
1245 cciss_pci_info_struct pciinfo;
1247 if (!arg)
1248 return -EINVAL;
1249 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1250 pciinfo.bus = host->pdev->bus->number;
1251 pciinfo.dev_fn = host->pdev->devfn;
1252 pciinfo.board_id = host->board_id;
1253 if (copy_to_user
1254 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1255 return -EFAULT;
1256 return 0;
1258 case CCISS_GETINTINFO:
1260 cciss_coalint_struct intinfo;
1261 if (!arg)
1262 return -EINVAL;
1263 intinfo.delay =
1264 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1265 intinfo.count =
1266 readl(&host->cfgtable->HostWrite.CoalIntCount);
1267 if (copy_to_user
1268 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1269 return -EFAULT;
1270 return 0;
1272 case CCISS_SETINTINFO:
1274 cciss_coalint_struct intinfo;
1275 unsigned long flags;
1276 int i;
1278 if (!arg)
1279 return -EINVAL;
1280 if (!capable(CAP_SYS_ADMIN))
1281 return -EPERM;
1282 if (copy_from_user
1283 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1284 return -EFAULT;
1285 if ((intinfo.delay == 0) && (intinfo.count == 0))
1287 // printk("cciss_ioctl: delay and count cannot be 0\n");
1288 return -EINVAL;
1290 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1291 /* Update the field, and then ring the doorbell */
1292 writel(intinfo.delay,
1293 &(host->cfgtable->HostWrite.CoalIntDelay));
1294 writel(intinfo.count,
1295 &(host->cfgtable->HostWrite.CoalIntCount));
1296 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1298 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1299 if (!(readl(host->vaddr + SA5_DOORBELL)
1300 & CFGTBL_ChangeReq))
1301 break;
1302 /* delay and try again */
1303 udelay(1000);
1305 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1306 if (i >= MAX_IOCTL_CONFIG_WAIT)
1307 return -EAGAIN;
1308 return 0;
1310 case CCISS_GETNODENAME:
1312 NodeName_type NodeName;
1313 int i;
1315 if (!arg)
1316 return -EINVAL;
1317 for (i = 0; i < 16; i++)
1318 NodeName[i] =
1319 readb(&host->cfgtable->ServerName[i]);
1320 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1321 return -EFAULT;
1322 return 0;
1324 case CCISS_SETNODENAME:
1326 NodeName_type NodeName;
1327 unsigned long flags;
1328 int i;
1330 if (!arg)
1331 return -EINVAL;
1332 if (!capable(CAP_SYS_ADMIN))
1333 return -EPERM;
1335 if (copy_from_user
1336 (NodeName, argp, sizeof(NodeName_type)))
1337 return -EFAULT;
1339 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1341 /* Update the field, and then ring the doorbell */
1342 for (i = 0; i < 16; i++)
1343 writeb(NodeName[i],
1344 &host->cfgtable->ServerName[i]);
1346 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1348 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1349 if (!(readl(host->vaddr + SA5_DOORBELL)
1350 & CFGTBL_ChangeReq))
1351 break;
1352 /* delay and try again */
1353 udelay(1000);
1355 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1356 if (i >= MAX_IOCTL_CONFIG_WAIT)
1357 return -EAGAIN;
1358 return 0;
1361 case CCISS_GETHEARTBEAT:
1363 Heartbeat_type heartbeat;
1365 if (!arg)
1366 return -EINVAL;
1367 heartbeat = readl(&host->cfgtable->HeartBeat);
1368 if (copy_to_user
1369 (argp, &heartbeat, sizeof(Heartbeat_type)))
1370 return -EFAULT;
1371 return 0;
1373 case CCISS_GETBUSTYPES:
1375 BusTypes_type BusTypes;
1377 if (!arg)
1378 return -EINVAL;
1379 BusTypes = readl(&host->cfgtable->BusTypes);
1380 if (copy_to_user
1381 (argp, &BusTypes, sizeof(BusTypes_type)))
1382 return -EFAULT;
1383 return 0;
1385 case CCISS_GETFIRMVER:
1387 FirmwareVer_type firmware;
1389 if (!arg)
1390 return -EINVAL;
1391 memcpy(firmware, host->firm_ver, 4);
1393 if (copy_to_user
1394 (argp, firmware, sizeof(FirmwareVer_type)))
1395 return -EFAULT;
1396 return 0;
1398 case CCISS_GETDRIVVER:
1400 DriverVer_type DriverVer = DRIVER_VERSION;
1402 if (!arg)
1403 return -EINVAL;
1405 if (copy_to_user
1406 (argp, &DriverVer, sizeof(DriverVer_type)))
1407 return -EFAULT;
1408 return 0;
1411 case CCISS_DEREGDISK:
1412 case CCISS_REGNEWD:
1413 case CCISS_REVALIDVOLS:
1414 return rebuild_lun_table(host, 0, 1);
1416 case CCISS_GETLUNINFO:{
1417 LogvolInfo_struct luninfo;
1419 memcpy(&luninfo.LunID, drv->LunID,
1420 sizeof(luninfo.LunID));
1421 luninfo.num_opens = drv->usage_count;
1422 luninfo.num_parts = 0;
1423 if (copy_to_user(argp, &luninfo,
1424 sizeof(LogvolInfo_struct)))
1425 return -EFAULT;
1426 return 0;
1428 case CCISS_PASSTHRU:
1430 IOCTL_Command_struct iocommand;
1431 CommandList_struct *c;
1432 char *buff = NULL;
1433 u64bit temp64;
1434 DECLARE_COMPLETION_ONSTACK(wait);
1436 if (!arg)
1437 return -EINVAL;
1439 if (!capable(CAP_SYS_RAWIO))
1440 return -EPERM;
1442 if (copy_from_user
1443 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1444 return -EFAULT;
1445 if ((iocommand.buf_size < 1) &&
1446 (iocommand.Request.Type.Direction != XFER_NONE)) {
1447 return -EINVAL;
1449 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1450 /* Check kmalloc limits */
1451 if (iocommand.buf_size > 128000)
1452 return -EINVAL;
1453 #endif
1454 if (iocommand.buf_size > 0) {
1455 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1456 if (buff == NULL)
1457 return -EFAULT;
1459 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1460 /* Copy the data into the buffer we created */
1461 if (copy_from_user
1462 (buff, iocommand.buf, iocommand.buf_size)) {
1463 kfree(buff);
1464 return -EFAULT;
1466 } else {
1467 memset(buff, 0, iocommand.buf_size);
1469 if ((c = cmd_alloc(host, 0)) == NULL) {
1470 kfree(buff);
1471 return -ENOMEM;
1473 /* Fill in the command type */
1474 c->cmd_type = CMD_IOCTL_PEND;
1475 /* Fill in Command Header */
1476 c->Header.ReplyQueue = 0; /* unused in simple mode */
1477 if (iocommand.buf_size > 0) /* buffer to fill */
1479 c->Header.SGList = 1;
1480 c->Header.SGTotal = 1;
1481 } else /* no buffers to fill */
1483 c->Header.SGList = 0;
1484 c->Header.SGTotal = 0;
1486 c->Header.LUN = iocommand.LUN_info;
1487 /* use the kernel address the cmd block for tag */
1488 c->Header.Tag.lower = c->busaddr;
1490 /* Fill in Request block */
1491 c->Request = iocommand.Request;
1493 /* Fill in the scatter gather information */
1494 if (iocommand.buf_size > 0) {
1495 temp64.val = pci_map_single(host->pdev, buff,
1496 iocommand.buf_size,
1497 PCI_DMA_BIDIRECTIONAL);
1498 c->SG[0].Addr.lower = temp64.val32.lower;
1499 c->SG[0].Addr.upper = temp64.val32.upper;
1500 c->SG[0].Len = iocommand.buf_size;
1501 c->SG[0].Ext = 0; /* we are not chaining */
1503 c->waiting = &wait;
1505 enqueue_cmd_and_start_io(host, c);
1506 wait_for_completion(&wait);
1508 /* unlock the buffers from DMA */
1509 temp64.val32.lower = c->SG[0].Addr.lower;
1510 temp64.val32.upper = c->SG[0].Addr.upper;
1511 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1512 iocommand.buf_size,
1513 PCI_DMA_BIDIRECTIONAL);
1515 check_ioctl_unit_attention(host, c);
1517 /* Copy the error information out */
1518 iocommand.error_info = *(c->err_info);
1519 if (copy_to_user
1520 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1521 kfree(buff);
1522 cmd_free(host, c, 0);
1523 return -EFAULT;
1526 if (iocommand.Request.Type.Direction == XFER_READ) {
1527 /* Copy the data out of the buffer we created */
1528 if (copy_to_user
1529 (iocommand.buf, buff, iocommand.buf_size)) {
1530 kfree(buff);
1531 cmd_free(host, c, 0);
1532 return -EFAULT;
1535 kfree(buff);
1536 cmd_free(host, c, 0);
1537 return 0;
1539 case CCISS_BIG_PASSTHRU:{
1540 BIG_IOCTL_Command_struct *ioc;
1541 CommandList_struct *c;
1542 unsigned char **buff = NULL;
1543 int *buff_size = NULL;
1544 u64bit temp64;
1545 BYTE sg_used = 0;
1546 int status = 0;
1547 int i;
1548 DECLARE_COMPLETION_ONSTACK(wait);
1549 __u32 left;
1550 __u32 sz;
1551 BYTE __user *data_ptr;
1553 if (!arg)
1554 return -EINVAL;
1555 if (!capable(CAP_SYS_RAWIO))
1556 return -EPERM;
1557 ioc = (BIG_IOCTL_Command_struct *)
1558 kmalloc(sizeof(*ioc), GFP_KERNEL);
1559 if (!ioc) {
1560 status = -ENOMEM;
1561 goto cleanup1;
1563 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1564 status = -EFAULT;
1565 goto cleanup1;
1567 if ((ioc->buf_size < 1) &&
1568 (ioc->Request.Type.Direction != XFER_NONE)) {
1569 status = -EINVAL;
1570 goto cleanup1;
1572 /* Check kmalloc limits using all SGs */
1573 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1574 status = -EINVAL;
1575 goto cleanup1;
1577 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1578 status = -EINVAL;
1579 goto cleanup1;
1581 buff =
1582 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1583 if (!buff) {
1584 status = -ENOMEM;
1585 goto cleanup1;
1587 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1588 GFP_KERNEL);
1589 if (!buff_size) {
1590 status = -ENOMEM;
1591 goto cleanup1;
1593 left = ioc->buf_size;
1594 data_ptr = ioc->buf;
1595 while (left) {
1596 sz = (left >
1597 ioc->malloc_size) ? ioc->
1598 malloc_size : left;
1599 buff_size[sg_used] = sz;
1600 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1601 if (buff[sg_used] == NULL) {
1602 status = -ENOMEM;
1603 goto cleanup1;
1605 if (ioc->Request.Type.Direction == XFER_WRITE) {
1606 if (copy_from_user
1607 (buff[sg_used], data_ptr, sz)) {
1608 status = -EFAULT;
1609 goto cleanup1;
1611 } else {
1612 memset(buff[sg_used], 0, sz);
1614 left -= sz;
1615 data_ptr += sz;
1616 sg_used++;
1618 if ((c = cmd_alloc(host, 0)) == NULL) {
1619 status = -ENOMEM;
1620 goto cleanup1;
1622 c->cmd_type = CMD_IOCTL_PEND;
1623 c->Header.ReplyQueue = 0;
1625 if (ioc->buf_size > 0) {
1626 c->Header.SGList = sg_used;
1627 c->Header.SGTotal = sg_used;
1628 } else {
1629 c->Header.SGList = 0;
1630 c->Header.SGTotal = 0;
1632 c->Header.LUN = ioc->LUN_info;
1633 c->Header.Tag.lower = c->busaddr;
1635 c->Request = ioc->Request;
1636 if (ioc->buf_size > 0) {
1637 for (i = 0; i < sg_used; i++) {
1638 temp64.val =
1639 pci_map_single(host->pdev, buff[i],
1640 buff_size[i],
1641 PCI_DMA_BIDIRECTIONAL);
1642 c->SG[i].Addr.lower =
1643 temp64.val32.lower;
1644 c->SG[i].Addr.upper =
1645 temp64.val32.upper;
1646 c->SG[i].Len = buff_size[i];
1647 c->SG[i].Ext = 0; /* we are not chaining */
1650 c->waiting = &wait;
1651 enqueue_cmd_and_start_io(host, c);
1652 wait_for_completion(&wait);
1653 /* unlock the buffers from DMA */
1654 for (i = 0; i < sg_used; i++) {
1655 temp64.val32.lower = c->SG[i].Addr.lower;
1656 temp64.val32.upper = c->SG[i].Addr.upper;
1657 pci_unmap_single(host->pdev,
1658 (dma_addr_t) temp64.val, buff_size[i],
1659 PCI_DMA_BIDIRECTIONAL);
1661 check_ioctl_unit_attention(host, c);
1662 /* Copy the error information out */
1663 ioc->error_info = *(c->err_info);
1664 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1665 cmd_free(host, c, 0);
1666 status = -EFAULT;
1667 goto cleanup1;
1669 if (ioc->Request.Type.Direction == XFER_READ) {
1670 /* Copy the data out of the buffer we created */
1671 BYTE __user *ptr = ioc->buf;
1672 for (i = 0; i < sg_used; i++) {
1673 if (copy_to_user
1674 (ptr, buff[i], buff_size[i])) {
1675 cmd_free(host, c, 0);
1676 status = -EFAULT;
1677 goto cleanup1;
1679 ptr += buff_size[i];
1682 cmd_free(host, c, 0);
1683 status = 0;
1684 cleanup1:
1685 if (buff) {
1686 for (i = 0; i < sg_used; i++)
1687 kfree(buff[i]);
1688 kfree(buff);
1690 kfree(buff_size);
1691 kfree(ioc);
1692 return status;
1695 /* scsi_cmd_ioctl handles these, below, though some are not */
1696 /* very meaningful for cciss. SG_IO is the main one people want. */
1698 case SG_GET_VERSION_NUM:
1699 case SG_SET_TIMEOUT:
1700 case SG_GET_TIMEOUT:
1701 case SG_GET_RESERVED_SIZE:
1702 case SG_SET_RESERVED_SIZE:
1703 case SG_EMULATED_HOST:
1704 case SG_IO:
1705 case SCSI_IOCTL_SEND_COMMAND:
1706 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1708 /* scsi_cmd_ioctl would normally handle these, below, but */
1709 /* they aren't a good fit for cciss, as CD-ROMs are */
1710 /* not supported, and we don't have any bus/target/lun */
1711 /* which we present to the kernel. */
1713 case CDROM_SEND_PACKET:
1714 case CDROMCLOSETRAY:
1715 case CDROMEJECT:
1716 case SCSI_IOCTL_GET_IDLUN:
1717 case SCSI_IOCTL_GET_BUS_NUMBER:
1718 default:
1719 return -ENOTTY;
1723 static void cciss_check_queues(ctlr_info_t *h)
1725 int start_queue = h->next_to_run;
1726 int i;
1728 /* check to see if we have maxed out the number of commands that can
1729 * be placed on the queue. If so then exit. We do this check here
1730 * in case the interrupt we serviced was from an ioctl and did not
1731 * free any new commands.
1733 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1734 return;
1736 /* We have room on the queue for more commands. Now we need to queue
1737 * them up. We will also keep track of the next queue to run so
1738 * that every queue gets a chance to be started first.
1740 for (i = 0; i < h->highest_lun + 1; i++) {
1741 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1742 /* make sure the disk has been added and the drive is real
1743 * because this can be called from the middle of init_one.
1745 if (!h->drv[curr_queue])
1746 continue;
1747 if (!(h->drv[curr_queue]->queue) ||
1748 !(h->drv[curr_queue]->heads))
1749 continue;
1750 blk_start_queue(h->gendisk[curr_queue]->queue);
1752 /* check to see if we have maxed out the number of commands
1753 * that can be placed on the queue.
1755 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1756 if (curr_queue == start_queue) {
1757 h->next_to_run =
1758 (start_queue + 1) % (h->highest_lun + 1);
1759 break;
1760 } else {
1761 h->next_to_run = curr_queue;
1762 break;
1768 static void cciss_softirq_done(struct request *rq)
1770 CommandList_struct *cmd = rq->completion_data;
1771 ctlr_info_t *h = hba[cmd->ctlr];
1772 SGDescriptor_struct *curr_sg = cmd->SG;
1773 u64bit temp64;
1774 unsigned long flags;
1775 int i, ddir;
1776 int sg_index = 0;
1778 if (cmd->Request.Type.Direction == XFER_READ)
1779 ddir = PCI_DMA_FROMDEVICE;
1780 else
1781 ddir = PCI_DMA_TODEVICE;
1783 /* command did not need to be retried */
1784 /* unmap the DMA mapping for all the scatter gather elements */
1785 for (i = 0; i < cmd->Header.SGList; i++) {
1786 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1787 cciss_unmap_sg_chain_block(h, cmd);
1788 /* Point to the next block */
1789 curr_sg = h->cmd_sg_list[cmd->cmdindex];
1790 sg_index = 0;
1792 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1793 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1794 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1795 ddir);
1796 ++sg_index;
1799 #ifdef CCISS_DEBUG
1800 printk("Done with %p\n", rq);
1801 #endif /* CCISS_DEBUG */
1803 /* set the residual count for pc requests */
1804 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1805 rq->resid_len = cmd->err_info->ResidualCnt;
1807 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1809 spin_lock_irqsave(&h->lock, flags);
1810 cmd_free(h, cmd, 1);
1811 cciss_check_queues(h);
1812 spin_unlock_irqrestore(&h->lock, flags);
1815 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1816 unsigned char scsi3addr[], uint32_t log_unit)
1818 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1819 sizeof(h->drv[log_unit]->LunID));
1822 /* This function gets the SCSI vendor, model, and revision of a logical drive
1823 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1824 * they cannot be read.
1826 static void cciss_get_device_descr(int ctlr, int logvol,
1827 char *vendor, char *model, char *rev)
1829 int rc;
1830 InquiryData_struct *inq_buf;
1831 unsigned char scsi3addr[8];
1833 *vendor = '\0';
1834 *model = '\0';
1835 *rev = '\0';
1837 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1838 if (!inq_buf)
1839 return;
1841 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1842 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1843 scsi3addr, TYPE_CMD);
1844 if (rc == IO_OK) {
1845 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1846 vendor[VENDOR_LEN] = '\0';
1847 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1848 model[MODEL_LEN] = '\0';
1849 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1850 rev[REV_LEN] = '\0';
1853 kfree(inq_buf);
1854 return;
1857 /* This function gets the serial number of a logical drive via
1858 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1859 * number cannot be had, for whatever reason, 16 bytes of 0xff
1860 * are returned instead.
1862 static void cciss_get_serial_no(int ctlr, int logvol,
1863 unsigned char *serial_no, int buflen)
1865 #define PAGE_83_INQ_BYTES 64
1866 int rc;
1867 unsigned char *buf;
1868 unsigned char scsi3addr[8];
1870 if (buflen > 16)
1871 buflen = 16;
1872 memset(serial_no, 0xff, buflen);
1873 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1874 if (!buf)
1875 return;
1876 memset(serial_no, 0, buflen);
1877 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1878 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1879 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1880 if (rc == IO_OK)
1881 memcpy(serial_no, &buf[8], buflen);
1882 kfree(buf);
1883 return;
1887 * cciss_add_disk sets up the block device queue for a logical drive
1889 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1890 int drv_index)
1892 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1893 if (!disk->queue)
1894 goto init_queue_failure;
1895 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1896 disk->major = h->major;
1897 disk->first_minor = drv_index << NWD_SHIFT;
1898 disk->fops = &cciss_fops;
1899 if (cciss_create_ld_sysfs_entry(h, drv_index))
1900 goto cleanup_queue;
1901 disk->private_data = h->drv[drv_index];
1902 disk->driverfs_dev = &h->drv[drv_index]->dev;
1904 /* Set up queue information */
1905 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1907 /* This is a hardware imposed limit. */
1908 blk_queue_max_segments(disk->queue, h->maxsgentries);
1910 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1912 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1914 disk->queue->queuedata = h;
1916 blk_queue_logical_block_size(disk->queue,
1917 h->drv[drv_index]->block_size);
1919 /* Make sure all queue data is written out before */
1920 /* setting h->drv[drv_index]->queue, as setting this */
1921 /* allows the interrupt handler to start the queue */
1922 wmb();
1923 h->drv[drv_index]->queue = disk->queue;
1924 add_disk(disk);
1925 return 0;
1927 cleanup_queue:
1928 blk_cleanup_queue(disk->queue);
1929 disk->queue = NULL;
1930 init_queue_failure:
1931 return -1;
1934 /* This function will check the usage_count of the drive to be updated/added.
1935 * If the usage_count is zero and it is a heretofore unknown drive, or,
1936 * the drive's capacity, geometry, or serial number has changed,
1937 * then the drive information will be updated and the disk will be
1938 * re-registered with the kernel. If these conditions don't hold,
1939 * then it will be left alone for the next reboot. The exception to this
1940 * is disk 0 which will always be left registered with the kernel since it
1941 * is also the controller node. Any changes to disk 0 will show up on
1942 * the next reboot.
1944 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1945 int via_ioctl)
1947 ctlr_info_t *h = hba[ctlr];
1948 struct gendisk *disk;
1949 InquiryData_struct *inq_buff = NULL;
1950 unsigned int block_size;
1951 sector_t total_size;
1952 unsigned long flags = 0;
1953 int ret = 0;
1954 drive_info_struct *drvinfo;
1956 /* Get information about the disk and modify the driver structure */
1957 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1958 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1959 if (inq_buff == NULL || drvinfo == NULL)
1960 goto mem_msg;
1962 /* testing to see if 16-byte CDBs are already being used */
1963 if (h->cciss_read == CCISS_READ_16) {
1964 cciss_read_capacity_16(h->ctlr, drv_index,
1965 &total_size, &block_size);
1967 } else {
1968 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1969 /* if read_capacity returns all F's this volume is >2TB */
1970 /* in size so we switch to 16-byte CDB's for all */
1971 /* read/write ops */
1972 if (total_size == 0xFFFFFFFFULL) {
1973 cciss_read_capacity_16(ctlr, drv_index,
1974 &total_size, &block_size);
1975 h->cciss_read = CCISS_READ_16;
1976 h->cciss_write = CCISS_WRITE_16;
1977 } else {
1978 h->cciss_read = CCISS_READ_10;
1979 h->cciss_write = CCISS_WRITE_10;
1983 cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1984 inq_buff, drvinfo);
1985 drvinfo->block_size = block_size;
1986 drvinfo->nr_blocks = total_size + 1;
1988 cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1989 drvinfo->model, drvinfo->rev);
1990 cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1991 sizeof(drvinfo->serial_no));
1992 /* Save the lunid in case we deregister the disk, below. */
1993 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1994 sizeof(drvinfo->LunID));
1996 /* Is it the same disk we already know, and nothing's changed? */
1997 if (h->drv[drv_index]->raid_level != -1 &&
1998 ((memcmp(drvinfo->serial_no,
1999 h->drv[drv_index]->serial_no, 16) == 0) &&
2000 drvinfo->block_size == h->drv[drv_index]->block_size &&
2001 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2002 drvinfo->heads == h->drv[drv_index]->heads &&
2003 drvinfo->sectors == h->drv[drv_index]->sectors &&
2004 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2005 /* The disk is unchanged, nothing to update */
2006 goto freeret;
2008 /* If we get here it's not the same disk, or something's changed,
2009 * so we need to * deregister it, and re-register it, if it's not
2010 * in use.
2011 * If the disk already exists then deregister it before proceeding
2012 * (unless it's the first disk (for the controller node).
2014 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2015 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
2016 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2017 h->drv[drv_index]->busy_configuring = 1;
2018 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2020 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2021 * which keeps the interrupt handler from starting
2022 * the queue.
2024 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2027 /* If the disk is in use return */
2028 if (ret)
2029 goto freeret;
2031 /* Save the new information from cciss_geometry_inquiry
2032 * and serial number inquiry. If the disk was deregistered
2033 * above, then h->drv[drv_index] will be NULL.
2035 if (h->drv[drv_index] == NULL) {
2036 drvinfo->device_initialized = 0;
2037 h->drv[drv_index] = drvinfo;
2038 drvinfo = NULL; /* so it won't be freed below. */
2039 } else {
2040 /* special case for cxd0 */
2041 h->drv[drv_index]->block_size = drvinfo->block_size;
2042 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2043 h->drv[drv_index]->heads = drvinfo->heads;
2044 h->drv[drv_index]->sectors = drvinfo->sectors;
2045 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2046 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2047 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2048 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2049 VENDOR_LEN + 1);
2050 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2051 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2054 ++h->num_luns;
2055 disk = h->gendisk[drv_index];
2056 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2058 /* If it's not disk 0 (drv_index != 0)
2059 * or if it was disk 0, but there was previously
2060 * no actual corresponding configured logical drive
2061 * (raid_leve == -1) then we want to update the
2062 * logical drive's information.
2064 if (drv_index || first_time) {
2065 if (cciss_add_disk(h, disk, drv_index) != 0) {
2066 cciss_free_gendisk(h, drv_index);
2067 cciss_free_drive_info(h, drv_index);
2068 printk(KERN_WARNING "cciss:%d could not update "
2069 "disk %d\n", h->ctlr, drv_index);
2070 --h->num_luns;
2074 freeret:
2075 kfree(inq_buff);
2076 kfree(drvinfo);
2077 return;
2078 mem_msg:
2079 printk(KERN_ERR "cciss: out of memory\n");
2080 goto freeret;
2083 /* This function will find the first index of the controllers drive array
2084 * that has a null drv pointer and allocate the drive info struct and
2085 * will return that index This is where new drives will be added.
2086 * If the index to be returned is greater than the highest_lun index for
2087 * the controller then highest_lun is set * to this new index.
2088 * If there are no available indexes or if tha allocation fails, then -1
2089 * is returned. * "controller_node" is used to know if this is a real
2090 * logical drive, or just the controller node, which determines if this
2091 * counts towards highest_lun.
2093 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2095 int i;
2096 drive_info_struct *drv;
2098 /* Search for an empty slot for our drive info */
2099 for (i = 0; i < CISS_MAX_LUN; i++) {
2101 /* if not cxd0 case, and it's occupied, skip it. */
2102 if (h->drv[i] && i != 0)
2103 continue;
2105 * If it's cxd0 case, and drv is alloc'ed already, and a
2106 * disk is configured there, skip it.
2108 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2109 continue;
2112 * We've found an empty slot. Update highest_lun
2113 * provided this isn't just the fake cxd0 controller node.
2115 if (i > h->highest_lun && !controller_node)
2116 h->highest_lun = i;
2118 /* If adding a real disk at cxd0, and it's already alloc'ed */
2119 if (i == 0 && h->drv[i] != NULL)
2120 return i;
2123 * Found an empty slot, not already alloc'ed. Allocate it.
2124 * Mark it with raid_level == -1, so we know it's new later on.
2126 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2127 if (!drv)
2128 return -1;
2129 drv->raid_level = -1; /* so we know it's new */
2130 h->drv[i] = drv;
2131 return i;
2133 return -1;
2136 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2138 kfree(h->drv[drv_index]);
2139 h->drv[drv_index] = NULL;
2142 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2144 put_disk(h->gendisk[drv_index]);
2145 h->gendisk[drv_index] = NULL;
2148 /* cciss_add_gendisk finds a free hba[]->drv structure
2149 * and allocates a gendisk if needed, and sets the lunid
2150 * in the drvinfo structure. It returns the index into
2151 * the ->drv[] array, or -1 if none are free.
2152 * is_controller_node indicates whether highest_lun should
2153 * count this disk, or if it's only being added to provide
2154 * a means to talk to the controller in case no logical
2155 * drives have yet been configured.
2157 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2158 int controller_node)
2160 int drv_index;
2162 drv_index = cciss_alloc_drive_info(h, controller_node);
2163 if (drv_index == -1)
2164 return -1;
2166 /*Check if the gendisk needs to be allocated */
2167 if (!h->gendisk[drv_index]) {
2168 h->gendisk[drv_index] =
2169 alloc_disk(1 << NWD_SHIFT);
2170 if (!h->gendisk[drv_index]) {
2171 printk(KERN_ERR "cciss%d: could not "
2172 "allocate a new disk %d\n",
2173 h->ctlr, drv_index);
2174 goto err_free_drive_info;
2177 memcpy(h->drv[drv_index]->LunID, lunid,
2178 sizeof(h->drv[drv_index]->LunID));
2179 if (cciss_create_ld_sysfs_entry(h, drv_index))
2180 goto err_free_disk;
2181 /* Don't need to mark this busy because nobody */
2182 /* else knows about this disk yet to contend */
2183 /* for access to it. */
2184 h->drv[drv_index]->busy_configuring = 0;
2185 wmb();
2186 return drv_index;
2188 err_free_disk:
2189 cciss_free_gendisk(h, drv_index);
2190 err_free_drive_info:
2191 cciss_free_drive_info(h, drv_index);
2192 return -1;
2195 /* This is for the special case of a controller which
2196 * has no logical drives. In this case, we still need
2197 * to register a disk so the controller can be accessed
2198 * by the Array Config Utility.
2200 static void cciss_add_controller_node(ctlr_info_t *h)
2202 struct gendisk *disk;
2203 int drv_index;
2205 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2206 return;
2208 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2209 if (drv_index == -1)
2210 goto error;
2211 h->drv[drv_index]->block_size = 512;
2212 h->drv[drv_index]->nr_blocks = 0;
2213 h->drv[drv_index]->heads = 0;
2214 h->drv[drv_index]->sectors = 0;
2215 h->drv[drv_index]->cylinders = 0;
2216 h->drv[drv_index]->raid_level = -1;
2217 memset(h->drv[drv_index]->serial_no, 0, 16);
2218 disk = h->gendisk[drv_index];
2219 if (cciss_add_disk(h, disk, drv_index) == 0)
2220 return;
2221 cciss_free_gendisk(h, drv_index);
2222 cciss_free_drive_info(h, drv_index);
2223 error:
2224 printk(KERN_WARNING "cciss%d: could not "
2225 "add disk 0.\n", h->ctlr);
2226 return;
2229 /* This function will add and remove logical drives from the Logical
2230 * drive array of the controller and maintain persistency of ordering
2231 * so that mount points are preserved until the next reboot. This allows
2232 * for the removal of logical drives in the middle of the drive array
2233 * without a re-ordering of those drives.
2234 * INPUT
2235 * h = The controller to perform the operations on
2237 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2238 int via_ioctl)
2240 int ctlr = h->ctlr;
2241 int num_luns;
2242 ReportLunData_struct *ld_buff = NULL;
2243 int return_code;
2244 int listlength = 0;
2245 int i;
2246 int drv_found;
2247 int drv_index = 0;
2248 unsigned char lunid[8] = CTLR_LUNID;
2249 unsigned long flags;
2251 if (!capable(CAP_SYS_RAWIO))
2252 return -EPERM;
2254 /* Set busy_configuring flag for this operation */
2255 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2256 if (h->busy_configuring) {
2257 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2258 return -EBUSY;
2260 h->busy_configuring = 1;
2261 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2263 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2264 if (ld_buff == NULL)
2265 goto mem_msg;
2267 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2268 sizeof(ReportLunData_struct),
2269 0, CTLR_LUNID, TYPE_CMD);
2271 if (return_code == IO_OK)
2272 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2273 else { /* reading number of logical volumes failed */
2274 printk(KERN_WARNING "cciss: report logical volume"
2275 " command failed\n");
2276 listlength = 0;
2277 goto freeret;
2280 num_luns = listlength / 8; /* 8 bytes per entry */
2281 if (num_luns > CISS_MAX_LUN) {
2282 num_luns = CISS_MAX_LUN;
2283 printk(KERN_WARNING "cciss: more luns configured"
2284 " on controller than can be handled by"
2285 " this driver.\n");
2288 if (num_luns == 0)
2289 cciss_add_controller_node(h);
2291 /* Compare controller drive array to driver's drive array
2292 * to see if any drives are missing on the controller due
2293 * to action of Array Config Utility (user deletes drive)
2294 * and deregister logical drives which have disappeared.
2296 for (i = 0; i <= h->highest_lun; i++) {
2297 int j;
2298 drv_found = 0;
2300 /* skip holes in the array from already deleted drives */
2301 if (h->drv[i] == NULL)
2302 continue;
2304 for (j = 0; j < num_luns; j++) {
2305 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2306 if (memcmp(h->drv[i]->LunID, lunid,
2307 sizeof(lunid)) == 0) {
2308 drv_found = 1;
2309 break;
2312 if (!drv_found) {
2313 /* Deregister it from the OS, it's gone. */
2314 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2315 h->drv[i]->busy_configuring = 1;
2316 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2317 return_code = deregister_disk(h, i, 1, via_ioctl);
2318 if (h->drv[i] != NULL)
2319 h->drv[i]->busy_configuring = 0;
2323 /* Compare controller drive array to driver's drive array.
2324 * Check for updates in the drive information and any new drives
2325 * on the controller due to ACU adding logical drives, or changing
2326 * a logical drive's size, etc. Reregister any new/changed drives
2328 for (i = 0; i < num_luns; i++) {
2329 int j;
2331 drv_found = 0;
2333 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2334 /* Find if the LUN is already in the drive array
2335 * of the driver. If so then update its info
2336 * if not in use. If it does not exist then find
2337 * the first free index and add it.
2339 for (j = 0; j <= h->highest_lun; j++) {
2340 if (h->drv[j] != NULL &&
2341 memcmp(h->drv[j]->LunID, lunid,
2342 sizeof(h->drv[j]->LunID)) == 0) {
2343 drv_index = j;
2344 drv_found = 1;
2345 break;
2349 /* check if the drive was found already in the array */
2350 if (!drv_found) {
2351 drv_index = cciss_add_gendisk(h, lunid, 0);
2352 if (drv_index == -1)
2353 goto freeret;
2355 cciss_update_drive_info(ctlr, drv_index, first_time,
2356 via_ioctl);
2357 } /* end for */
2359 freeret:
2360 kfree(ld_buff);
2361 h->busy_configuring = 0;
2362 /* We return -1 here to tell the ACU that we have registered/updated
2363 * all of the drives that we can and to keep it from calling us
2364 * additional times.
2366 return -1;
2367 mem_msg:
2368 printk(KERN_ERR "cciss: out of memory\n");
2369 h->busy_configuring = 0;
2370 goto freeret;
2373 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2375 /* zero out the disk size info */
2376 drive_info->nr_blocks = 0;
2377 drive_info->block_size = 0;
2378 drive_info->heads = 0;
2379 drive_info->sectors = 0;
2380 drive_info->cylinders = 0;
2381 drive_info->raid_level = -1;
2382 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2383 memset(drive_info->model, 0, sizeof(drive_info->model));
2384 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2385 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2387 * don't clear the LUNID though, we need to remember which
2388 * one this one is.
2392 /* This function will deregister the disk and it's queue from the
2393 * kernel. It must be called with the controller lock held and the
2394 * drv structures busy_configuring flag set. It's parameters are:
2396 * disk = This is the disk to be deregistered
2397 * drv = This is the drive_info_struct associated with the disk to be
2398 * deregistered. It contains information about the disk used
2399 * by the driver.
2400 * clear_all = This flag determines whether or not the disk information
2401 * is going to be completely cleared out and the highest_lun
2402 * reset. Sometimes we want to clear out information about
2403 * the disk in preparation for re-adding it. In this case
2404 * the highest_lun should be left unchanged and the LunID
2405 * should not be cleared.
2406 * via_ioctl
2407 * This indicates whether we've reached this path via ioctl.
2408 * This affects the maximum usage count allowed for c0d0 to be messed with.
2409 * If this path is reached via ioctl(), then the max_usage_count will
2410 * be 1, as the process calling ioctl() has got to have the device open.
2411 * If we get here via sysfs, then the max usage count will be zero.
2413 static int deregister_disk(ctlr_info_t *h, int drv_index,
2414 int clear_all, int via_ioctl)
2416 int i;
2417 struct gendisk *disk;
2418 drive_info_struct *drv;
2419 int recalculate_highest_lun;
2421 if (!capable(CAP_SYS_RAWIO))
2422 return -EPERM;
2424 drv = h->drv[drv_index];
2425 disk = h->gendisk[drv_index];
2427 /* make sure logical volume is NOT is use */
2428 if (clear_all || (h->gendisk[0] == disk)) {
2429 if (drv->usage_count > via_ioctl)
2430 return -EBUSY;
2431 } else if (drv->usage_count > 0)
2432 return -EBUSY;
2434 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2436 /* invalidate the devices and deregister the disk. If it is disk
2437 * zero do not deregister it but just zero out it's values. This
2438 * allows us to delete disk zero but keep the controller registered.
2440 if (h->gendisk[0] != disk) {
2441 struct request_queue *q = disk->queue;
2442 if (disk->flags & GENHD_FL_UP) {
2443 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2444 del_gendisk(disk);
2446 if (q)
2447 blk_cleanup_queue(q);
2448 /* If clear_all is set then we are deleting the logical
2449 * drive, not just refreshing its info. For drives
2450 * other than disk 0 we will call put_disk. We do not
2451 * do this for disk 0 as we need it to be able to
2452 * configure the controller.
2454 if (clear_all){
2455 /* This isn't pretty, but we need to find the
2456 * disk in our array and NULL our the pointer.
2457 * This is so that we will call alloc_disk if
2458 * this index is used again later.
2460 for (i=0; i < CISS_MAX_LUN; i++){
2461 if (h->gendisk[i] == disk) {
2462 h->gendisk[i] = NULL;
2463 break;
2466 put_disk(disk);
2468 } else {
2469 set_capacity(disk, 0);
2470 cciss_clear_drive_info(drv);
2473 --h->num_luns;
2475 /* if it was the last disk, find the new hightest lun */
2476 if (clear_all && recalculate_highest_lun) {
2477 int newhighest = -1;
2478 for (i = 0; i <= h->highest_lun; i++) {
2479 /* if the disk has size > 0, it is available */
2480 if (h->drv[i] && h->drv[i]->heads)
2481 newhighest = i;
2483 h->highest_lun = newhighest;
2485 return 0;
2488 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2489 size_t size, __u8 page_code, unsigned char *scsi3addr,
2490 int cmd_type)
2492 ctlr_info_t *h = hba[ctlr];
2493 u64bit buff_dma_handle;
2494 int status = IO_OK;
2496 c->cmd_type = CMD_IOCTL_PEND;
2497 c->Header.ReplyQueue = 0;
2498 if (buff != NULL) {
2499 c->Header.SGList = 1;
2500 c->Header.SGTotal = 1;
2501 } else {
2502 c->Header.SGList = 0;
2503 c->Header.SGTotal = 0;
2505 c->Header.Tag.lower = c->busaddr;
2506 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2508 c->Request.Type.Type = cmd_type;
2509 if (cmd_type == TYPE_CMD) {
2510 switch (cmd) {
2511 case CISS_INQUIRY:
2512 /* are we trying to read a vital product page */
2513 if (page_code != 0) {
2514 c->Request.CDB[1] = 0x01;
2515 c->Request.CDB[2] = page_code;
2517 c->Request.CDBLen = 6;
2518 c->Request.Type.Attribute = ATTR_SIMPLE;
2519 c->Request.Type.Direction = XFER_READ;
2520 c->Request.Timeout = 0;
2521 c->Request.CDB[0] = CISS_INQUIRY;
2522 c->Request.CDB[4] = size & 0xFF;
2523 break;
2524 case CISS_REPORT_LOG:
2525 case CISS_REPORT_PHYS:
2526 /* Talking to controller so It's a physical command
2527 mode = 00 target = 0. Nothing to write.
2529 c->Request.CDBLen = 12;
2530 c->Request.Type.Attribute = ATTR_SIMPLE;
2531 c->Request.Type.Direction = XFER_READ;
2532 c->Request.Timeout = 0;
2533 c->Request.CDB[0] = cmd;
2534 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2535 c->Request.CDB[7] = (size >> 16) & 0xFF;
2536 c->Request.CDB[8] = (size >> 8) & 0xFF;
2537 c->Request.CDB[9] = size & 0xFF;
2538 break;
2540 case CCISS_READ_CAPACITY:
2541 c->Request.CDBLen = 10;
2542 c->Request.Type.Attribute = ATTR_SIMPLE;
2543 c->Request.Type.Direction = XFER_READ;
2544 c->Request.Timeout = 0;
2545 c->Request.CDB[0] = cmd;
2546 break;
2547 case CCISS_READ_CAPACITY_16:
2548 c->Request.CDBLen = 16;
2549 c->Request.Type.Attribute = ATTR_SIMPLE;
2550 c->Request.Type.Direction = XFER_READ;
2551 c->Request.Timeout = 0;
2552 c->Request.CDB[0] = cmd;
2553 c->Request.CDB[1] = 0x10;
2554 c->Request.CDB[10] = (size >> 24) & 0xFF;
2555 c->Request.CDB[11] = (size >> 16) & 0xFF;
2556 c->Request.CDB[12] = (size >> 8) & 0xFF;
2557 c->Request.CDB[13] = size & 0xFF;
2558 c->Request.Timeout = 0;
2559 c->Request.CDB[0] = cmd;
2560 break;
2561 case CCISS_CACHE_FLUSH:
2562 c->Request.CDBLen = 12;
2563 c->Request.Type.Attribute = ATTR_SIMPLE;
2564 c->Request.Type.Direction = XFER_WRITE;
2565 c->Request.Timeout = 0;
2566 c->Request.CDB[0] = BMIC_WRITE;
2567 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2568 break;
2569 case TEST_UNIT_READY:
2570 c->Request.CDBLen = 6;
2571 c->Request.Type.Attribute = ATTR_SIMPLE;
2572 c->Request.Type.Direction = XFER_NONE;
2573 c->Request.Timeout = 0;
2574 break;
2575 default:
2576 printk(KERN_WARNING
2577 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2578 return IO_ERROR;
2580 } else if (cmd_type == TYPE_MSG) {
2581 switch (cmd) {
2582 case 0: /* ABORT message */
2583 c->Request.CDBLen = 12;
2584 c->Request.Type.Attribute = ATTR_SIMPLE;
2585 c->Request.Type.Direction = XFER_WRITE;
2586 c->Request.Timeout = 0;
2587 c->Request.CDB[0] = cmd; /* abort */
2588 c->Request.CDB[1] = 0; /* abort a command */
2589 /* buff contains the tag of the command to abort */
2590 memcpy(&c->Request.CDB[4], buff, 8);
2591 break;
2592 case 1: /* RESET message */
2593 c->Request.CDBLen = 16;
2594 c->Request.Type.Attribute = ATTR_SIMPLE;
2595 c->Request.Type.Direction = XFER_NONE;
2596 c->Request.Timeout = 0;
2597 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2598 c->Request.CDB[0] = cmd; /* reset */
2599 c->Request.CDB[1] = 0x03; /* reset a target */
2600 break;
2601 case 3: /* No-Op message */
2602 c->Request.CDBLen = 1;
2603 c->Request.Type.Attribute = ATTR_SIMPLE;
2604 c->Request.Type.Direction = XFER_WRITE;
2605 c->Request.Timeout = 0;
2606 c->Request.CDB[0] = cmd;
2607 break;
2608 default:
2609 printk(KERN_WARNING
2610 "cciss%d: unknown message type %d\n", ctlr, cmd);
2611 return IO_ERROR;
2613 } else {
2614 printk(KERN_WARNING
2615 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2616 return IO_ERROR;
2618 /* Fill in the scatter gather information */
2619 if (size > 0) {
2620 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2621 buff, size,
2622 PCI_DMA_BIDIRECTIONAL);
2623 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2624 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2625 c->SG[0].Len = size;
2626 c->SG[0].Ext = 0; /* we are not chaining */
2628 return status;
2631 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2633 switch (c->err_info->ScsiStatus) {
2634 case SAM_STAT_GOOD:
2635 return IO_OK;
2636 case SAM_STAT_CHECK_CONDITION:
2637 switch (0xf & c->err_info->SenseInfo[2]) {
2638 case 0: return IO_OK; /* no sense */
2639 case 1: return IO_OK; /* recovered error */
2640 default:
2641 if (check_for_unit_attention(h, c))
2642 return IO_NEEDS_RETRY;
2643 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2644 "check condition, sense key = 0x%02x\n",
2645 h->ctlr, c->Request.CDB[0],
2646 c->err_info->SenseInfo[2]);
2648 break;
2649 default:
2650 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2651 "scsi status = 0x%02x\n", h->ctlr,
2652 c->Request.CDB[0], c->err_info->ScsiStatus);
2653 break;
2655 return IO_ERROR;
2658 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2660 int return_status = IO_OK;
2662 if (c->err_info->CommandStatus == CMD_SUCCESS)
2663 return IO_OK;
2665 switch (c->err_info->CommandStatus) {
2666 case CMD_TARGET_STATUS:
2667 return_status = check_target_status(h, c);
2668 break;
2669 case CMD_DATA_UNDERRUN:
2670 case CMD_DATA_OVERRUN:
2671 /* expected for inquiry and report lun commands */
2672 break;
2673 case CMD_INVALID:
2674 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2675 "reported invalid\n", c->Request.CDB[0]);
2676 return_status = IO_ERROR;
2677 break;
2678 case CMD_PROTOCOL_ERR:
2679 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2680 "protocol error \n", c->Request.CDB[0]);
2681 return_status = IO_ERROR;
2682 break;
2683 case CMD_HARDWARE_ERR:
2684 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2685 " hardware error\n", c->Request.CDB[0]);
2686 return_status = IO_ERROR;
2687 break;
2688 case CMD_CONNECTION_LOST:
2689 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2690 "connection lost\n", c->Request.CDB[0]);
2691 return_status = IO_ERROR;
2692 break;
2693 case CMD_ABORTED:
2694 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2695 "aborted\n", c->Request.CDB[0]);
2696 return_status = IO_ERROR;
2697 break;
2698 case CMD_ABORT_FAILED:
2699 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2700 "abort failed\n", c->Request.CDB[0]);
2701 return_status = IO_ERROR;
2702 break;
2703 case CMD_UNSOLICITED_ABORT:
2704 printk(KERN_WARNING
2705 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2706 c->Request.CDB[0]);
2707 return_status = IO_NEEDS_RETRY;
2708 break;
2709 default:
2710 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2711 "unknown status %x\n", c->Request.CDB[0],
2712 c->err_info->CommandStatus);
2713 return_status = IO_ERROR;
2715 return return_status;
2718 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2719 int attempt_retry)
2721 DECLARE_COMPLETION_ONSTACK(wait);
2722 u64bit buff_dma_handle;
2723 int return_status = IO_OK;
2725 resend_cmd2:
2726 c->waiting = &wait;
2727 enqueue_cmd_and_start_io(h, c);
2729 wait_for_completion(&wait);
2731 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2732 goto command_done;
2734 return_status = process_sendcmd_error(h, c);
2736 if (return_status == IO_NEEDS_RETRY &&
2737 c->retry_count < MAX_CMD_RETRIES) {
2738 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2739 c->Request.CDB[0]);
2740 c->retry_count++;
2741 /* erase the old error information */
2742 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2743 return_status = IO_OK;
2744 INIT_COMPLETION(wait);
2745 goto resend_cmd2;
2748 command_done:
2749 /* unlock the buffers from DMA */
2750 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2751 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2752 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2753 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2754 return return_status;
2757 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2758 __u8 page_code, unsigned char scsi3addr[],
2759 int cmd_type)
2761 ctlr_info_t *h = hba[ctlr];
2762 CommandList_struct *c;
2763 int return_status;
2765 c = cmd_alloc(h, 0);
2766 if (!c)
2767 return -ENOMEM;
2768 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2769 scsi3addr, cmd_type);
2770 if (return_status == IO_OK)
2771 return_status = sendcmd_withirq_core(h, c, 1);
2773 cmd_free(h, c, 0);
2774 return return_status;
2777 static void cciss_geometry_inquiry(int ctlr, int logvol,
2778 sector_t total_size,
2779 unsigned int block_size,
2780 InquiryData_struct *inq_buff,
2781 drive_info_struct *drv)
2783 int return_code;
2784 unsigned long t;
2785 unsigned char scsi3addr[8];
2787 memset(inq_buff, 0, sizeof(InquiryData_struct));
2788 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2789 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2790 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2791 if (return_code == IO_OK) {
2792 if (inq_buff->data_byte[8] == 0xFF) {
2793 printk(KERN_WARNING
2794 "cciss: reading geometry failed, volume "
2795 "does not support reading geometry\n");
2796 drv->heads = 255;
2797 drv->sectors = 32; /* Sectors per track */
2798 drv->cylinders = total_size + 1;
2799 drv->raid_level = RAID_UNKNOWN;
2800 } else {
2801 drv->heads = inq_buff->data_byte[6];
2802 drv->sectors = inq_buff->data_byte[7];
2803 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2804 drv->cylinders += inq_buff->data_byte[5];
2805 drv->raid_level = inq_buff->data_byte[8];
2807 drv->block_size = block_size;
2808 drv->nr_blocks = total_size + 1;
2809 t = drv->heads * drv->sectors;
2810 if (t > 1) {
2811 sector_t real_size = total_size + 1;
2812 unsigned long rem = sector_div(real_size, t);
2813 if (rem)
2814 real_size++;
2815 drv->cylinders = real_size;
2817 } else { /* Get geometry failed */
2818 printk(KERN_WARNING "cciss: reading geometry failed\n");
2822 static void
2823 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2824 unsigned int *block_size)
2826 ReadCapdata_struct *buf;
2827 int return_code;
2828 unsigned char scsi3addr[8];
2830 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2831 if (!buf) {
2832 printk(KERN_WARNING "cciss: out of memory\n");
2833 return;
2836 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2837 return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2838 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2839 if (return_code == IO_OK) {
2840 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2841 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2842 } else { /* read capacity command failed */
2843 printk(KERN_WARNING "cciss: read capacity failed\n");
2844 *total_size = 0;
2845 *block_size = BLOCK_SIZE;
2847 kfree(buf);
2850 static void cciss_read_capacity_16(int ctlr, int logvol,
2851 sector_t *total_size, unsigned int *block_size)
2853 ReadCapdata_struct_16 *buf;
2854 int return_code;
2855 unsigned char scsi3addr[8];
2857 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2858 if (!buf) {
2859 printk(KERN_WARNING "cciss: out of memory\n");
2860 return;
2863 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2864 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2865 ctlr, buf, sizeof(ReadCapdata_struct_16),
2866 0, scsi3addr, TYPE_CMD);
2867 if (return_code == IO_OK) {
2868 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2869 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2870 } else { /* read capacity command failed */
2871 printk(KERN_WARNING "cciss: read capacity failed\n");
2872 *total_size = 0;
2873 *block_size = BLOCK_SIZE;
2875 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2876 (unsigned long long)*total_size+1, *block_size);
2877 kfree(buf);
2880 static int cciss_revalidate(struct gendisk *disk)
2882 ctlr_info_t *h = get_host(disk);
2883 drive_info_struct *drv = get_drv(disk);
2884 int logvol;
2885 int FOUND = 0;
2886 unsigned int block_size;
2887 sector_t total_size;
2888 InquiryData_struct *inq_buff = NULL;
2890 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2891 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2892 sizeof(drv->LunID)) == 0) {
2893 FOUND = 1;
2894 break;
2898 if (!FOUND)
2899 return 1;
2901 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2902 if (inq_buff == NULL) {
2903 printk(KERN_WARNING "cciss: out of memory\n");
2904 return 1;
2906 if (h->cciss_read == CCISS_READ_10) {
2907 cciss_read_capacity(h->ctlr, logvol,
2908 &total_size, &block_size);
2909 } else {
2910 cciss_read_capacity_16(h->ctlr, logvol,
2911 &total_size, &block_size);
2913 cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2914 inq_buff, drv);
2916 blk_queue_logical_block_size(drv->queue, drv->block_size);
2917 set_capacity(disk, drv->nr_blocks);
2919 kfree(inq_buff);
2920 return 0;
2924 * Map (physical) PCI mem into (virtual) kernel space
2926 static void __iomem *remap_pci_mem(ulong base, ulong size)
2928 ulong page_base = ((ulong) base) & PAGE_MASK;
2929 ulong page_offs = ((ulong) base) - page_base;
2930 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2932 return page_remapped ? (page_remapped + page_offs) : NULL;
2936 * Takes jobs of the Q and sends them to the hardware, then puts it on
2937 * the Q to wait for completion.
2939 static void start_io(ctlr_info_t *h)
2941 CommandList_struct *c;
2943 while (!hlist_empty(&h->reqQ)) {
2944 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2945 /* can't do anything if fifo is full */
2946 if ((h->access.fifo_full(h))) {
2947 printk(KERN_WARNING "cciss: fifo full\n");
2948 break;
2951 /* Get the first entry from the Request Q */
2952 removeQ(c);
2953 h->Qdepth--;
2955 /* Tell the controller execute command */
2956 h->access.submit_command(h, c);
2958 /* Put job onto the completed Q */
2959 addQ(&h->cmpQ, c);
2963 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2964 /* Zeros out the error record and then resends the command back */
2965 /* to the controller */
2966 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2968 /* erase the old error information */
2969 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2971 /* add it to software queue and then send it to the controller */
2972 addQ(&h->reqQ, c);
2973 h->Qdepth++;
2974 if (h->Qdepth > h->maxQsinceinit)
2975 h->maxQsinceinit = h->Qdepth;
2977 start_io(h);
2980 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2981 unsigned int msg_byte, unsigned int host_byte,
2982 unsigned int driver_byte)
2984 /* inverse of macros in scsi.h */
2985 return (scsi_status_byte & 0xff) |
2986 ((msg_byte & 0xff) << 8) |
2987 ((host_byte & 0xff) << 16) |
2988 ((driver_byte & 0xff) << 24);
2991 static inline int evaluate_target_status(ctlr_info_t *h,
2992 CommandList_struct *cmd, int *retry_cmd)
2994 unsigned char sense_key;
2995 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2996 int error_value;
2998 *retry_cmd = 0;
2999 /* If we get in here, it means we got "target status", that is, scsi status */
3000 status_byte = cmd->err_info->ScsiStatus;
3001 driver_byte = DRIVER_OK;
3002 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3004 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3005 host_byte = DID_PASSTHROUGH;
3006 else
3007 host_byte = DID_OK;
3009 error_value = make_status_bytes(status_byte, msg_byte,
3010 host_byte, driver_byte);
3012 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3013 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3014 printk(KERN_WARNING "cciss: cmd %p "
3015 "has SCSI Status 0x%x\n",
3016 cmd, cmd->err_info->ScsiStatus);
3017 return error_value;
3020 /* check the sense key */
3021 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3022 /* no status or recovered error */
3023 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3024 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3025 error_value = 0;
3027 if (check_for_unit_attention(h, cmd)) {
3028 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3029 return 0;
3032 /* Not SG_IO or similar? */
3033 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3034 if (error_value != 0)
3035 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3036 " sense key = 0x%x\n", cmd, sense_key);
3037 return error_value;
3040 /* SG_IO or similar, copy sense data back */
3041 if (cmd->rq->sense) {
3042 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3043 cmd->rq->sense_len = cmd->err_info->SenseLen;
3044 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3045 cmd->rq->sense_len);
3046 } else
3047 cmd->rq->sense_len = 0;
3049 return error_value;
3052 /* checks the status of the job and calls complete buffers to mark all
3053 * buffers for the completed job. Note that this function does not need
3054 * to hold the hba/queue lock.
3056 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3057 int timeout)
3059 int retry_cmd = 0;
3060 struct request *rq = cmd->rq;
3062 rq->errors = 0;
3064 if (timeout)
3065 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3067 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3068 goto after_error_processing;
3070 switch (cmd->err_info->CommandStatus) {
3071 case CMD_TARGET_STATUS:
3072 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3073 break;
3074 case CMD_DATA_UNDERRUN:
3075 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3076 printk(KERN_WARNING "cciss: cmd %p has"
3077 " completed with data underrun "
3078 "reported\n", cmd);
3079 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3081 break;
3082 case CMD_DATA_OVERRUN:
3083 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3084 printk(KERN_WARNING "cciss: cmd %p has"
3085 " completed with data overrun "
3086 "reported\n", cmd);
3087 break;
3088 case CMD_INVALID:
3089 printk(KERN_WARNING "cciss: cmd %p is "
3090 "reported invalid\n", cmd);
3091 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3092 cmd->err_info->CommandStatus, DRIVER_OK,
3093 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3094 DID_PASSTHROUGH : DID_ERROR);
3095 break;
3096 case CMD_PROTOCOL_ERR:
3097 printk(KERN_WARNING "cciss: cmd %p has "
3098 "protocol error \n", cmd);
3099 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3100 cmd->err_info->CommandStatus, DRIVER_OK,
3101 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3102 DID_PASSTHROUGH : DID_ERROR);
3103 break;
3104 case CMD_HARDWARE_ERR:
3105 printk(KERN_WARNING "cciss: cmd %p had "
3106 " hardware error\n", cmd);
3107 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3108 cmd->err_info->CommandStatus, DRIVER_OK,
3109 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3110 DID_PASSTHROUGH : DID_ERROR);
3111 break;
3112 case CMD_CONNECTION_LOST:
3113 printk(KERN_WARNING "cciss: cmd %p had "
3114 "connection lost\n", cmd);
3115 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3116 cmd->err_info->CommandStatus, DRIVER_OK,
3117 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3118 DID_PASSTHROUGH : DID_ERROR);
3119 break;
3120 case CMD_ABORTED:
3121 printk(KERN_WARNING "cciss: cmd %p was "
3122 "aborted\n", cmd);
3123 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3124 cmd->err_info->CommandStatus, DRIVER_OK,
3125 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3126 DID_PASSTHROUGH : DID_ABORT);
3127 break;
3128 case CMD_ABORT_FAILED:
3129 printk(KERN_WARNING "cciss: cmd %p reports "
3130 "abort failed\n", cmd);
3131 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3132 cmd->err_info->CommandStatus, DRIVER_OK,
3133 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3134 DID_PASSTHROUGH : DID_ERROR);
3135 break;
3136 case CMD_UNSOLICITED_ABORT:
3137 printk(KERN_WARNING "cciss%d: unsolicited "
3138 "abort %p\n", h->ctlr, cmd);
3139 if (cmd->retry_count < MAX_CMD_RETRIES) {
3140 retry_cmd = 1;
3141 printk(KERN_WARNING
3142 "cciss%d: retrying %p\n", h->ctlr, cmd);
3143 cmd->retry_count++;
3144 } else
3145 printk(KERN_WARNING
3146 "cciss%d: %p retried too "
3147 "many times\n", h->ctlr, cmd);
3148 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3149 cmd->err_info->CommandStatus, DRIVER_OK,
3150 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3151 DID_PASSTHROUGH : DID_ABORT);
3152 break;
3153 case CMD_TIMEOUT:
3154 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3155 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3156 cmd->err_info->CommandStatus, DRIVER_OK,
3157 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3158 DID_PASSTHROUGH : DID_ERROR);
3159 break;
3160 default:
3161 printk(KERN_WARNING "cciss: cmd %p returned "
3162 "unknown status %x\n", cmd,
3163 cmd->err_info->CommandStatus);
3164 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3165 cmd->err_info->CommandStatus, DRIVER_OK,
3166 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3167 DID_PASSTHROUGH : DID_ERROR);
3170 after_error_processing:
3172 /* We need to return this command */
3173 if (retry_cmd) {
3174 resend_cciss_cmd(h, cmd);
3175 return;
3177 cmd->rq->completion_data = cmd;
3178 blk_complete_request(cmd->rq);
3181 static inline u32 cciss_tag_contains_index(u32 tag)
3183 #define DIRECT_LOOKUP_BIT 0x10
3184 return tag & DIRECT_LOOKUP_BIT;
3187 static inline u32 cciss_tag_to_index(u32 tag)
3189 #define DIRECT_LOOKUP_SHIFT 5
3190 return tag >> DIRECT_LOOKUP_SHIFT;
3193 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3195 #define CCISS_ERROR_BITS 0x03
3196 return tag & ~CCISS_ERROR_BITS;
3199 static inline void cciss_mark_tag_indexed(u32 *tag)
3201 *tag |= DIRECT_LOOKUP_BIT;
3204 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3206 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3210 * Get a request and submit it to the controller.
3212 static void do_cciss_request(struct request_queue *q)
3214 ctlr_info_t *h = q->queuedata;
3215 CommandList_struct *c;
3216 sector_t start_blk;
3217 int seg;
3218 struct request *creq;
3219 u64bit temp64;
3220 struct scatterlist *tmp_sg;
3221 SGDescriptor_struct *curr_sg;
3222 drive_info_struct *drv;
3223 int i, dir;
3224 int sg_index = 0;
3225 int chained = 0;
3227 /* We call start_io here in case there is a command waiting on the
3228 * queue that has not been sent.
3230 if (blk_queue_plugged(q))
3231 goto startio;
3233 queue:
3234 creq = blk_peek_request(q);
3235 if (!creq)
3236 goto startio;
3238 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3240 if ((c = cmd_alloc(h, 1)) == NULL)
3241 goto full;
3243 blk_start_request(creq);
3245 tmp_sg = h->scatter_list[c->cmdindex];
3246 spin_unlock_irq(q->queue_lock);
3248 c->cmd_type = CMD_RWREQ;
3249 c->rq = creq;
3251 /* fill in the request */
3252 drv = creq->rq_disk->private_data;
3253 c->Header.ReplyQueue = 0; /* unused in simple mode */
3254 /* got command from pool, so use the command block index instead */
3255 /* for direct lookups. */
3256 /* The first 2 bits are reserved for controller error reporting. */
3257 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3258 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3259 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3260 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3261 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3262 c->Request.Type.Attribute = ATTR_SIMPLE;
3263 c->Request.Type.Direction =
3264 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3265 c->Request.Timeout = 0; /* Don't time out */
3266 c->Request.CDB[0] =
3267 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3268 start_blk = blk_rq_pos(creq);
3269 #ifdef CCISS_DEBUG
3270 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3271 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3272 #endif /* CCISS_DEBUG */
3274 sg_init_table(tmp_sg, h->maxsgentries);
3275 seg = blk_rq_map_sg(q, creq, tmp_sg);
3277 /* get the DMA records for the setup */
3278 if (c->Request.Type.Direction == XFER_READ)
3279 dir = PCI_DMA_FROMDEVICE;
3280 else
3281 dir = PCI_DMA_TODEVICE;
3283 curr_sg = c->SG;
3284 sg_index = 0;
3285 chained = 0;
3287 for (i = 0; i < seg; i++) {
3288 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3289 !chained && ((seg - i) > 1)) {
3290 /* Point to next chain block. */
3291 curr_sg = h->cmd_sg_list[c->cmdindex];
3292 sg_index = 0;
3293 chained = 1;
3295 curr_sg[sg_index].Len = tmp_sg[i].length;
3296 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3297 tmp_sg[i].offset,
3298 tmp_sg[i].length, dir);
3299 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3300 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3301 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3302 ++sg_index;
3304 if (chained)
3305 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3306 (seg - (h->max_cmd_sgentries - 1)) *
3307 sizeof(SGDescriptor_struct));
3309 /* track how many SG entries we are using */
3310 if (seg > h->maxSG)
3311 h->maxSG = seg;
3313 #ifdef CCISS_DEBUG
3314 printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3315 "chained[%d]\n",
3316 blk_rq_sectors(creq), seg, chained);
3317 #endif /* CCISS_DEBUG */
3319 c->Header.SGTotal = seg + chained;
3320 if (seg <= h->max_cmd_sgentries)
3321 c->Header.SGList = c->Header.SGTotal;
3322 else
3323 c->Header.SGList = h->max_cmd_sgentries;
3324 set_performant_mode(h, c);
3326 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3327 if(h->cciss_read == CCISS_READ_10) {
3328 c->Request.CDB[1] = 0;
3329 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3330 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3331 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3332 c->Request.CDB[5] = start_blk & 0xff;
3333 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3334 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3335 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3336 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3337 } else {
3338 u32 upper32 = upper_32_bits(start_blk);
3340 c->Request.CDBLen = 16;
3341 c->Request.CDB[1]= 0;
3342 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3343 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3344 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3345 c->Request.CDB[5]= upper32 & 0xff;
3346 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3347 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3348 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3349 c->Request.CDB[9]= start_blk & 0xff;
3350 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3351 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3352 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3353 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3354 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3356 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3357 c->Request.CDBLen = creq->cmd_len;
3358 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3359 } else {
3360 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3361 BUG();
3364 spin_lock_irq(q->queue_lock);
3366 addQ(&h->reqQ, c);
3367 h->Qdepth++;
3368 if (h->Qdepth > h->maxQsinceinit)
3369 h->maxQsinceinit = h->Qdepth;
3371 goto queue;
3372 full:
3373 blk_stop_queue(q);
3374 startio:
3375 /* We will already have the driver lock here so not need
3376 * to lock it.
3378 start_io(h);
3381 static inline unsigned long get_next_completion(ctlr_info_t *h)
3383 return h->access.command_completed(h);
3386 static inline int interrupt_pending(ctlr_info_t *h)
3388 return h->access.intr_pending(h);
3391 static inline long interrupt_not_for_us(ctlr_info_t *h)
3393 return !(h->msi_vector || h->msix_vector) &&
3394 ((h->access.intr_pending(h) == 0) ||
3395 (h->interrupts_enabled == 0));
3398 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3399 u32 raw_tag)
3401 if (unlikely(tag_index >= h->nr_cmds)) {
3402 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3403 return 1;
3405 return 0;
3408 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3409 u32 raw_tag)
3411 removeQ(c);
3412 if (likely(c->cmd_type == CMD_RWREQ))
3413 complete_command(h, c, 0);
3414 else if (c->cmd_type == CMD_IOCTL_PEND)
3415 complete(c->waiting);
3416 #ifdef CONFIG_CISS_SCSI_TAPE
3417 else if (c->cmd_type == CMD_SCSI)
3418 complete_scsi_command(c, 0, raw_tag);
3419 #endif
3422 static inline u32 next_command(ctlr_info_t *h)
3424 u32 a;
3426 if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
3427 return h->access.command_completed(h);
3429 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3430 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3431 (h->reply_pool_head)++;
3432 h->commands_outstanding--;
3433 } else {
3434 a = FIFO_EMPTY;
3436 /* Check for wraparound */
3437 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3438 h->reply_pool_head = h->reply_pool;
3439 h->reply_pool_wraparound ^= 1;
3441 return a;
3444 /* process completion of an indexed ("direct lookup") command */
3445 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3447 u32 tag_index;
3448 CommandList_struct *c;
3450 tag_index = cciss_tag_to_index(raw_tag);
3451 if (bad_tag(h, tag_index, raw_tag))
3452 return next_command(h);
3453 c = h->cmd_pool + tag_index;
3454 finish_cmd(h, c, raw_tag);
3455 return next_command(h);
3458 /* process completion of a non-indexed command */
3459 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3461 u32 tag;
3462 CommandList_struct *c = NULL;
3463 struct hlist_node *tmp;
3464 __u32 busaddr_masked, tag_masked;
3466 tag = cciss_tag_discard_error_bits(raw_tag);
3467 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3468 busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
3469 tag_masked = cciss_tag_discard_error_bits(tag);
3470 if (busaddr_masked == tag_masked) {
3471 finish_cmd(h, c, raw_tag);
3472 return next_command(h);
3475 bad_tag(h, h->nr_cmds + 1, raw_tag);
3476 return next_command(h);
3479 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3481 ctlr_info_t *h = dev_id;
3482 unsigned long flags;
3483 u32 raw_tag;
3485 if (interrupt_not_for_us(h))
3486 return IRQ_NONE;
3488 * If there are completed commands in the completion queue,
3489 * we had better do something about it.
3491 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3492 while (interrupt_pending(h)) {
3493 raw_tag = get_next_completion(h);
3494 while (raw_tag != FIFO_EMPTY) {
3495 if (cciss_tag_contains_index(raw_tag))
3496 raw_tag = process_indexed_cmd(h, raw_tag);
3497 else
3498 raw_tag = process_nonindexed_cmd(h, raw_tag);
3502 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3503 return IRQ_HANDLED;
3506 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3507 * check the interrupt pending register because it is not set.
3509 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3511 ctlr_info_t *h = dev_id;
3512 unsigned long flags;
3513 u32 raw_tag;
3515 if (interrupt_not_for_us(h))
3516 return IRQ_NONE;
3518 * If there are completed commands in the completion queue,
3519 * we had better do something about it.
3521 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3522 raw_tag = get_next_completion(h);
3523 while (raw_tag != FIFO_EMPTY) {
3524 if (cciss_tag_contains_index(raw_tag))
3525 raw_tag = process_indexed_cmd(h, raw_tag);
3526 else
3527 raw_tag = process_nonindexed_cmd(h, raw_tag);
3530 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3531 return IRQ_HANDLED;
3535 * add_to_scan_list() - add controller to rescan queue
3536 * @h: Pointer to the controller.
3538 * Adds the controller to the rescan queue if not already on the queue.
3540 * returns 1 if added to the queue, 0 if skipped (could be on the
3541 * queue already, or the controller could be initializing or shutting
3542 * down).
3544 static int add_to_scan_list(struct ctlr_info *h)
3546 struct ctlr_info *test_h;
3547 int found = 0;
3548 int ret = 0;
3550 if (h->busy_initializing)
3551 return 0;
3553 if (!mutex_trylock(&h->busy_shutting_down))
3554 return 0;
3556 mutex_lock(&scan_mutex);
3557 list_for_each_entry(test_h, &scan_q, scan_list) {
3558 if (test_h == h) {
3559 found = 1;
3560 break;
3563 if (!found && !h->busy_scanning) {
3564 INIT_COMPLETION(h->scan_wait);
3565 list_add_tail(&h->scan_list, &scan_q);
3566 ret = 1;
3568 mutex_unlock(&scan_mutex);
3569 mutex_unlock(&h->busy_shutting_down);
3571 return ret;
3575 * remove_from_scan_list() - remove controller from rescan queue
3576 * @h: Pointer to the controller.
3578 * Removes the controller from the rescan queue if present. Blocks if
3579 * the controller is currently conducting a rescan. The controller
3580 * can be in one of three states:
3581 * 1. Doesn't need a scan
3582 * 2. On the scan list, but not scanning yet (we remove it)
3583 * 3. Busy scanning (and not on the list). In this case we want to wait for
3584 * the scan to complete to make sure the scanning thread for this
3585 * controller is completely idle.
3587 static void remove_from_scan_list(struct ctlr_info *h)
3589 struct ctlr_info *test_h, *tmp_h;
3591 mutex_lock(&scan_mutex);
3592 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3593 if (test_h == h) { /* state 2. */
3594 list_del(&h->scan_list);
3595 complete_all(&h->scan_wait);
3596 mutex_unlock(&scan_mutex);
3597 return;
3600 if (h->busy_scanning) { /* state 3. */
3601 mutex_unlock(&scan_mutex);
3602 wait_for_completion(&h->scan_wait);
3603 } else { /* state 1, nothing to do. */
3604 mutex_unlock(&scan_mutex);
3609 * scan_thread() - kernel thread used to rescan controllers
3610 * @data: Ignored.
3612 * A kernel thread used scan for drive topology changes on
3613 * controllers. The thread processes only one controller at a time
3614 * using a queue. Controllers are added to the queue using
3615 * add_to_scan_list() and removed from the queue either after done
3616 * processing or using remove_from_scan_list().
3618 * returns 0.
3620 static int scan_thread(void *data)
3622 struct ctlr_info *h;
3624 while (1) {
3625 set_current_state(TASK_INTERRUPTIBLE);
3626 schedule();
3627 if (kthread_should_stop())
3628 break;
3630 while (1) {
3631 mutex_lock(&scan_mutex);
3632 if (list_empty(&scan_q)) {
3633 mutex_unlock(&scan_mutex);
3634 break;
3637 h = list_entry(scan_q.next,
3638 struct ctlr_info,
3639 scan_list);
3640 list_del(&h->scan_list);
3641 h->busy_scanning = 1;
3642 mutex_unlock(&scan_mutex);
3644 rebuild_lun_table(h, 0, 0);
3645 complete_all(&h->scan_wait);
3646 mutex_lock(&scan_mutex);
3647 h->busy_scanning = 0;
3648 mutex_unlock(&scan_mutex);
3652 return 0;
3655 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3657 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3658 return 0;
3660 switch (c->err_info->SenseInfo[12]) {
3661 case STATE_CHANGED:
3662 printk(KERN_WARNING "cciss%d: a state change "
3663 "detected, command retried\n", h->ctlr);
3664 return 1;
3665 break;
3666 case LUN_FAILED:
3667 printk(KERN_WARNING "cciss%d: LUN failure "
3668 "detected, action required\n", h->ctlr);
3669 return 1;
3670 break;
3671 case REPORT_LUNS_CHANGED:
3672 printk(KERN_WARNING "cciss%d: report LUN data "
3673 "changed\n", h->ctlr);
3675 * Here, we could call add_to_scan_list and wake up the scan thread,
3676 * except that it's quite likely that we will get more than one
3677 * REPORT_LUNS_CHANGED condition in quick succession, which means
3678 * that those which occur after the first one will likely happen
3679 * *during* the scan_thread's rescan. And the rescan code is not
3680 * robust enough to restart in the middle, undoing what it has already
3681 * done, and it's not clear that it's even possible to do this, since
3682 * part of what it does is notify the block layer, which starts
3683 * doing it's own i/o to read partition tables and so on, and the
3684 * driver doesn't have visibility to know what might need undoing.
3685 * In any event, if possible, it is horribly complicated to get right
3686 * so we just don't do it for now.
3688 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3690 return 1;
3691 break;
3692 case POWER_OR_RESET:
3693 printk(KERN_WARNING "cciss%d: a power on "
3694 "or device reset detected\n", h->ctlr);
3695 return 1;
3696 break;
3697 case UNIT_ATTENTION_CLEARED:
3698 printk(KERN_WARNING "cciss%d: unit attention "
3699 "cleared by another initiator\n", h->ctlr);
3700 return 1;
3701 break;
3702 default:
3703 printk(KERN_WARNING "cciss%d: unknown "
3704 "unit attention detected\n", h->ctlr);
3705 return 1;
3710 * We cannot read the structure directly, for portability we must use
3711 * the io functions.
3712 * This is for debug only.
3714 static void print_cfg_table(CfgTable_struct *tb)
3716 #ifdef CCISS_DEBUG
3717 int i;
3718 char temp_name[17];
3720 printk("Controller Configuration information\n");
3721 printk("------------------------------------\n");
3722 for (i = 0; i < 4; i++)
3723 temp_name[i] = readb(&(tb->Signature[i]));
3724 temp_name[4] = '\0';
3725 printk(" Signature = %s\n", temp_name);
3726 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3727 printk(" Transport methods supported = 0x%x\n",
3728 readl(&(tb->TransportSupport)));
3729 printk(" Transport methods active = 0x%x\n",
3730 readl(&(tb->TransportActive)));
3731 printk(" Requested transport Method = 0x%x\n",
3732 readl(&(tb->HostWrite.TransportRequest)));
3733 printk(" Coalesce Interrupt Delay = 0x%x\n",
3734 readl(&(tb->HostWrite.CoalIntDelay)));
3735 printk(" Coalesce Interrupt Count = 0x%x\n",
3736 readl(&(tb->HostWrite.CoalIntCount)));
3737 printk(" Max outstanding commands = 0x%d\n",
3738 readl(&(tb->CmdsOutMax)));
3739 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3740 for (i = 0; i < 16; i++)
3741 temp_name[i] = readb(&(tb->ServerName[i]));
3742 temp_name[16] = '\0';
3743 printk(" Server Name = %s\n", temp_name);
3744 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3745 #endif /* CCISS_DEBUG */
3748 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3750 int i, offset, mem_type, bar_type;
3751 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3752 return 0;
3753 offset = 0;
3754 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3755 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3756 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3757 offset += 4;
3758 else {
3759 mem_type = pci_resource_flags(pdev, i) &
3760 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3761 switch (mem_type) {
3762 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3763 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3764 offset += 4; /* 32 bit */
3765 break;
3766 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3767 offset += 8;
3768 break;
3769 default: /* reserved in PCI 2.2 */
3770 printk(KERN_WARNING
3771 "Base address is invalid\n");
3772 return -1;
3773 break;
3776 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3777 return i + 1;
3779 return -1;
3782 /* Fill in bucket_map[], given nsgs (the max number of
3783 * scatter gather elements supported) and bucket[],
3784 * which is an array of 8 integers. The bucket[] array
3785 * contains 8 different DMA transfer sizes (in 16
3786 * byte increments) which the controller uses to fetch
3787 * commands. This function fills in bucket_map[], which
3788 * maps a given number of scatter gather elements to one of
3789 * the 8 DMA transfer sizes. The point of it is to allow the
3790 * controller to only do as much DMA as needed to fetch the
3791 * command, with the DMA transfer size encoded in the lower
3792 * bits of the command address.
3794 static void calc_bucket_map(int bucket[], int num_buckets,
3795 int nsgs, int *bucket_map)
3797 int i, j, b, size;
3799 /* even a command with 0 SGs requires 4 blocks */
3800 #define MINIMUM_TRANSFER_BLOCKS 4
3801 #define NUM_BUCKETS 8
3802 /* Note, bucket_map must have nsgs+1 entries. */
3803 for (i = 0; i <= nsgs; i++) {
3804 /* Compute size of a command with i SG entries */
3805 size = i + MINIMUM_TRANSFER_BLOCKS;
3806 b = num_buckets; /* Assume the biggest bucket */
3807 /* Find the bucket that is just big enough */
3808 for (j = 0; j < 8; j++) {
3809 if (bucket[j] >= size) {
3810 b = j;
3811 break;
3814 /* for a command with i SG entries, use bucket b. */
3815 bucket_map[i] = b;
3819 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3821 int i;
3823 /* under certain very rare conditions, this can take awhile.
3824 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3825 * as we enter this code.) */
3826 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3827 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3828 break;
3829 msleep(10);
3833 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h)
3835 /* This is a bit complicated. There are 8 registers on
3836 * the controller which we write to to tell it 8 different
3837 * sizes of commands which there may be. It's a way of
3838 * reducing the DMA done to fetch each command. Encoded into
3839 * each command's tag are 3 bits which communicate to the controller
3840 * which of the eight sizes that command fits within. The size of
3841 * each command depends on how many scatter gather entries there are.
3842 * Each SG entry requires 16 bytes. The eight registers are programmed
3843 * with the number of 16-byte blocks a command of that size requires.
3844 * The smallest command possible requires 5 such 16 byte blocks.
3845 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3846 * blocks. Note, this only extends to the SG entries contained
3847 * within the command block, and does not extend to chained blocks
3848 * of SG elements. bft[] contains the eight values we write to
3849 * the registers. They are not evenly distributed, but have more
3850 * sizes for small commands, and fewer sizes for larger commands.
3852 __u32 trans_offset;
3853 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3855 * 5 = 1 s/g entry or 4k
3856 * 6 = 2 s/g entry or 8k
3857 * 8 = 4 s/g entry or 16k
3858 * 10 = 6 s/g entry or 24k
3860 unsigned long register_value;
3861 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3863 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3865 /* Controller spec: zero out this buffer. */
3866 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3867 h->reply_pool_head = h->reply_pool;
3869 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3870 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3871 h->blockFetchTable);
3872 writel(bft[0], &h->transtable->BlockFetch0);
3873 writel(bft[1], &h->transtable->BlockFetch1);
3874 writel(bft[2], &h->transtable->BlockFetch2);
3875 writel(bft[3], &h->transtable->BlockFetch3);
3876 writel(bft[4], &h->transtable->BlockFetch4);
3877 writel(bft[5], &h->transtable->BlockFetch5);
3878 writel(bft[6], &h->transtable->BlockFetch6);
3879 writel(bft[7], &h->transtable->BlockFetch7);
3881 /* size of controller ring buffer */
3882 writel(h->max_commands, &h->transtable->RepQSize);
3883 writel(1, &h->transtable->RepQCount);
3884 writel(0, &h->transtable->RepQCtrAddrLow32);
3885 writel(0, &h->transtable->RepQCtrAddrHigh32);
3886 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3887 writel(0, &h->transtable->RepQAddr0High32);
3888 writel(CFGTBL_Trans_Performant,
3889 &(h->cfgtable->HostWrite.TransportRequest));
3891 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3892 cciss_wait_for_mode_change_ack(h);
3893 register_value = readl(&(h->cfgtable->TransportActive));
3894 if (!(register_value & CFGTBL_Trans_Performant))
3895 printk(KERN_WARNING "cciss: unable to get board into"
3896 " performant mode\n");
3899 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3901 __u32 trans_support;
3903 dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
3904 /* Attempt to put controller into performant mode if supported */
3905 /* Does board support performant mode? */
3906 trans_support = readl(&(h->cfgtable->TransportSupport));
3907 if (!(trans_support & PERFORMANT_MODE))
3908 return;
3910 printk(KERN_WARNING "cciss%d: Placing controller into "
3911 "performant mode\n", h->ctlr);
3912 /* Performant mode demands commands on a 32 byte boundary
3913 * pci_alloc_consistent aligns on page boundarys already.
3914 * Just need to check if divisible by 32
3916 if ((sizeof(CommandList_struct) % 32) != 0) {
3917 printk(KERN_WARNING "%s %d %s\n",
3918 "cciss info: command size[",
3919 (int)sizeof(CommandList_struct),
3920 "] not divisible by 32, no performant mode..\n");
3921 return;
3924 /* Performant mode ring buffer and supporting data structures */
3925 h->reply_pool = (__u64 *)pci_alloc_consistent(
3926 h->pdev, h->max_commands * sizeof(__u64),
3927 &(h->reply_pool_dhandle));
3929 /* Need a block fetch table for performant mode */
3930 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
3931 sizeof(__u32)), GFP_KERNEL);
3933 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
3934 goto clean_up;
3936 cciss_enter_performant_mode(h);
3938 /* Change the access methods to the performant access methods */
3939 h->access = SA5_performant_access;
3940 h->transMethod = CFGTBL_Trans_Performant;
3942 return;
3943 clean_up:
3944 kfree(h->blockFetchTable);
3945 if (h->reply_pool)
3946 pci_free_consistent(h->pdev,
3947 h->max_commands * sizeof(__u64),
3948 h->reply_pool,
3949 h->reply_pool_dhandle);
3950 return;
3952 } /* cciss_put_controller_into_performant_mode */
3954 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3955 * controllers that are capable. If not, we use IO-APIC mode.
3958 static void __devinit cciss_interrupt_mode(ctlr_info_t *c)
3960 #ifdef CONFIG_PCI_MSI
3961 int err;
3962 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3963 {0, 2}, {0, 3}
3966 /* Some boards advertise MSI but don't really support it */
3967 if ((c->board_id == 0x40700E11) || (c->board_id == 0x40800E11) ||
3968 (c->board_id == 0x40820E11) || (c->board_id == 0x40830E11))
3969 goto default_int_mode;
3971 if (pci_find_capability(c->pdev, PCI_CAP_ID_MSIX)) {
3972 err = pci_enable_msix(c->pdev, cciss_msix_entries, 4);
3973 if (!err) {
3974 c->intr[0] = cciss_msix_entries[0].vector;
3975 c->intr[1] = cciss_msix_entries[1].vector;
3976 c->intr[2] = cciss_msix_entries[2].vector;
3977 c->intr[3] = cciss_msix_entries[3].vector;
3978 c->msix_vector = 1;
3979 return;
3981 if (err > 0) {
3982 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3983 "available\n", err);
3984 goto default_int_mode;
3985 } else {
3986 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3987 err);
3988 goto default_int_mode;
3991 if (pci_find_capability(c->pdev, PCI_CAP_ID_MSI)) {
3992 if (!pci_enable_msi(c->pdev)) {
3993 c->msi_vector = 1;
3994 } else {
3995 printk(KERN_WARNING "cciss: MSI init failed\n");
3998 default_int_mode:
3999 #endif /* CONFIG_PCI_MSI */
4000 /* if we get here we're going to use the default interrupt mode */
4001 c->intr[PERF_MODE_INT] = c->pdev->irq;
4002 return;
4005 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4007 int i;
4008 u32 subsystem_vendor_id, subsystem_device_id;
4010 subsystem_vendor_id = pdev->subsystem_vendor;
4011 subsystem_device_id = pdev->subsystem_device;
4012 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4013 subsystem_vendor_id;
4015 for (i = 0; i < ARRAY_SIZE(products); i++) {
4016 /* Stand aside for hpsa driver on request */
4017 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
4018 return -ENODEV;
4019 if (*board_id == products[i].board_id)
4020 return i;
4022 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4023 *board_id);
4024 return -ENODEV;
4027 static inline bool cciss_board_disabled(ctlr_info_t *h)
4029 u16 command;
4031 (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4032 return ((command & PCI_COMMAND_MEMORY) == 0);
4035 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4036 unsigned long *memory_bar)
4038 int i;
4040 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4041 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4042 /* addressing mode bits already removed */
4043 *memory_bar = pci_resource_start(pdev, i);
4044 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4045 *memory_bar);
4046 return 0;
4048 dev_warn(&pdev->dev, "no memory BAR found\n");
4049 return -ENODEV;
4052 static int __devinit cciss_wait_for_board_ready(ctlr_info_t *h)
4054 int i;
4055 u32 scratchpad;
4057 for (i = 0; i < CCISS_BOARD_READY_ITERATIONS; i++) {
4058 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4059 if (scratchpad == CCISS_FIRMWARE_READY)
4060 return 0;
4061 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4063 dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
4064 return -ENODEV;
4067 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4068 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4069 u64 *cfg_offset)
4071 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4072 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4073 *cfg_base_addr &= (u32) 0x0000ffff;
4074 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4075 if (*cfg_base_addr_index == -1) {
4076 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4077 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4078 return -ENODEV;
4080 return 0;
4083 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4085 u64 cfg_offset;
4086 u32 cfg_base_addr;
4087 u64 cfg_base_addr_index;
4088 u32 trans_offset;
4089 int rc;
4091 rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4092 &cfg_base_addr_index, &cfg_offset);
4093 if (rc)
4094 return rc;
4095 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4096 cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4097 if (!h->cfgtable)
4098 return -ENOMEM;
4099 /* Find performant mode table. */
4100 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4101 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4102 cfg_base_addr_index)+cfg_offset+trans_offset,
4103 sizeof(*h->transtable));
4104 if (!h->transtable)
4105 return -ENOMEM;
4106 return 0;
4109 /* Interrogate the hardware for some limits:
4110 * max commands, max SG elements without chaining, and with chaining,
4111 * SG chain block size, etc.
4113 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4115 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4116 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4117 h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4119 * Limit in-command s/g elements to 32 save dma'able memory.
4120 * Howvever spec says if 0, use 31
4122 h->max_cmd_sgentries = 31;
4123 if (h->maxsgentries > 512) {
4124 h->max_cmd_sgentries = 32;
4125 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4126 h->maxsgentries--; /* save one for chain pointer */
4127 } else {
4128 h->maxsgentries = 31; /* default to traditional values */
4129 h->chainsize = 0;
4133 static inline bool CISS_signature_present(ctlr_info_t *h)
4135 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4136 (readb(&h->cfgtable->Signature[1]) != 'I') ||
4137 (readb(&h->cfgtable->Signature[2]) != 'S') ||
4138 (readb(&h->cfgtable->Signature[3]) != 'S')) {
4139 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4140 return false;
4142 return true;
4145 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4146 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4148 #ifdef CONFIG_X86
4149 u32 prefetch;
4151 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4152 prefetch |= 0x100;
4153 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4154 #endif
4157 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4158 * in a prefetch beyond physical memory.
4160 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4162 u32 dma_prefetch;
4163 __u32 dma_refetch;
4165 if (h->board_id != 0x3225103C)
4166 return;
4167 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4168 dma_prefetch |= 0x8000;
4169 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4170 pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4171 dma_refetch |= 0x1;
4172 pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4175 static int __devinit cciss_pci_init(ctlr_info_t *c)
4177 int prod_index, err;
4179 prod_index = cciss_lookup_board_id(c->pdev, &c->board_id);
4180 if (prod_index < 0)
4181 return -ENODEV;
4182 c->product_name = products[prod_index].product_name;
4183 c->access = *(products[prod_index].access);
4185 if (cciss_board_disabled(c)) {
4186 printk(KERN_WARNING
4187 "cciss: controller appears to be disabled\n");
4188 return -ENODEV;
4190 err = pci_enable_device(c->pdev);
4191 if (err) {
4192 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
4193 return err;
4196 err = pci_request_regions(c->pdev, "cciss");
4197 if (err) {
4198 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
4199 "aborting\n");
4200 return err;
4203 #ifdef CCISS_DEBUG
4204 printk(KERN_INFO "command = %x\n", command);
4205 printk(KERN_INFO "irq = %x\n", c->pdev->irq);
4206 printk(KERN_INFO "board_id = %x\n", c->board_id);
4207 #endif /* CCISS_DEBUG */
4209 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4210 * else we use the IO-APIC interrupt assigned to us by system ROM.
4212 cciss_interrupt_mode(c);
4213 err = cciss_pci_find_memory_BAR(c->pdev, &c->paddr);
4214 if (err)
4215 goto err_out_free_res;
4216 c->vaddr = remap_pci_mem(c->paddr, 0x250);
4217 if (!c->vaddr) {
4218 err = -ENOMEM;
4219 goto err_out_free_res;
4221 err = cciss_wait_for_board_ready(c);
4222 if (err)
4223 goto err_out_free_res;
4224 err = cciss_find_cfgtables(c);
4225 if (err)
4226 goto err_out_free_res;
4227 print_cfg_table(c->cfgtable);
4228 cciss_find_board_params(c);
4230 if (!CISS_signature_present(c)) {
4231 err = -ENODEV;
4232 goto err_out_free_res;
4234 cciss_enable_scsi_prefetch(c);
4235 cciss_p600_dma_prefetch_quirk(c);
4236 cciss_put_controller_into_performant_mode(c);
4237 return 0;
4239 err_out_free_res:
4241 * Deliberately omit pci_disable_device(): it does something nasty to
4242 * Smart Array controllers that pci_enable_device does not undo
4244 if (c->transtable)
4245 iounmap(c->transtable);
4246 if (c->cfgtable)
4247 iounmap(c->cfgtable);
4248 if (c->vaddr)
4249 iounmap(c->vaddr);
4250 pci_release_regions(c->pdev);
4251 return err;
4254 /* Function to find the first free pointer into our hba[] array
4255 * Returns -1 if no free entries are left.
4257 static int alloc_cciss_hba(void)
4259 int i;
4261 for (i = 0; i < MAX_CTLR; i++) {
4262 if (!hba[i]) {
4263 ctlr_info_t *p;
4265 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4266 if (!p)
4267 goto Enomem;
4268 hba[i] = p;
4269 return i;
4272 printk(KERN_WARNING "cciss: This driver supports a maximum"
4273 " of %d controllers.\n", MAX_CTLR);
4274 return -1;
4275 Enomem:
4276 printk(KERN_ERR "cciss: out of memory.\n");
4277 return -1;
4280 static void free_hba(int n)
4282 ctlr_info_t *h = hba[n];
4283 int i;
4285 hba[n] = NULL;
4286 for (i = 0; i < h->highest_lun + 1; i++)
4287 if (h->gendisk[i] != NULL)
4288 put_disk(h->gendisk[i]);
4289 kfree(h);
4292 /* Send a message CDB to the firmware. */
4293 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4295 typedef struct {
4296 CommandListHeader_struct CommandHeader;
4297 RequestBlock_struct Request;
4298 ErrDescriptor_struct ErrorDescriptor;
4299 } Command;
4300 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4301 Command *cmd;
4302 dma_addr_t paddr64;
4303 uint32_t paddr32, tag;
4304 void __iomem *vaddr;
4305 int i, err;
4307 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4308 if (vaddr == NULL)
4309 return -ENOMEM;
4311 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4312 CCISS commands, so they must be allocated from the lower 4GiB of
4313 memory. */
4314 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4315 if (err) {
4316 iounmap(vaddr);
4317 return -ENOMEM;
4320 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4321 if (cmd == NULL) {
4322 iounmap(vaddr);
4323 return -ENOMEM;
4326 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4327 although there's no guarantee, we assume that the address is at
4328 least 4-byte aligned (most likely, it's page-aligned). */
4329 paddr32 = paddr64;
4331 cmd->CommandHeader.ReplyQueue = 0;
4332 cmd->CommandHeader.SGList = 0;
4333 cmd->CommandHeader.SGTotal = 0;
4334 cmd->CommandHeader.Tag.lower = paddr32;
4335 cmd->CommandHeader.Tag.upper = 0;
4336 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4338 cmd->Request.CDBLen = 16;
4339 cmd->Request.Type.Type = TYPE_MSG;
4340 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4341 cmd->Request.Type.Direction = XFER_NONE;
4342 cmd->Request.Timeout = 0; /* Don't time out */
4343 cmd->Request.CDB[0] = opcode;
4344 cmd->Request.CDB[1] = type;
4345 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4347 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4348 cmd->ErrorDescriptor.Addr.upper = 0;
4349 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4351 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4353 for (i = 0; i < 10; i++) {
4354 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4355 if ((tag & ~3) == paddr32)
4356 break;
4357 schedule_timeout_uninterruptible(HZ);
4360 iounmap(vaddr);
4362 /* we leak the DMA buffer here ... no choice since the controller could
4363 still complete the command. */
4364 if (i == 10) {
4365 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4366 opcode, type);
4367 return -ETIMEDOUT;
4370 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4372 if (tag & 2) {
4373 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4374 opcode, type);
4375 return -EIO;
4378 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4379 opcode, type);
4380 return 0;
4383 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4384 #define cciss_noop(p) cciss_message(p, 3, 0)
4386 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4388 /* the #defines are stolen from drivers/pci/msi.h. */
4389 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4390 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4392 int pos;
4393 u16 control = 0;
4395 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4396 if (pos) {
4397 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4398 if (control & PCI_MSI_FLAGS_ENABLE) {
4399 printk(KERN_INFO "cciss: resetting MSI\n");
4400 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4404 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4405 if (pos) {
4406 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4407 if (control & PCI_MSIX_FLAGS_ENABLE) {
4408 printk(KERN_INFO "cciss: resetting MSI-X\n");
4409 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4413 return 0;
4416 /* This does a hard reset of the controller using PCI power management
4417 * states. */
4418 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4420 u16 pmcsr, saved_config_space[32];
4421 int i, pos;
4423 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4425 /* This is very nearly the same thing as
4427 pci_save_state(pci_dev);
4428 pci_set_power_state(pci_dev, PCI_D3hot);
4429 pci_set_power_state(pci_dev, PCI_D0);
4430 pci_restore_state(pci_dev);
4432 but we can't use these nice canned kernel routines on
4433 kexec, because they also check the MSI/MSI-X state in PCI
4434 configuration space and do the wrong thing when it is
4435 set/cleared. Also, the pci_save/restore_state functions
4436 violate the ordering requirements for restoring the
4437 configuration space from the CCISS document (see the
4438 comment below). So we roll our own .... */
4440 for (i = 0; i < 32; i++)
4441 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4443 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4444 if (pos == 0) {
4445 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4446 return -ENODEV;
4449 /* Quoting from the Open CISS Specification: "The Power
4450 * Management Control/Status Register (CSR) controls the power
4451 * state of the device. The normal operating state is D0,
4452 * CSR=00h. The software off state is D3, CSR=03h. To reset
4453 * the controller, place the interface device in D3 then to
4454 * D0, this causes a secondary PCI reset which will reset the
4455 * controller." */
4457 /* enter the D3hot power management state */
4458 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4459 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4460 pmcsr |= PCI_D3hot;
4461 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4463 schedule_timeout_uninterruptible(HZ >> 1);
4465 /* enter the D0 power management state */
4466 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4467 pmcsr |= PCI_D0;
4468 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4470 schedule_timeout_uninterruptible(HZ >> 1);
4472 /* Restore the PCI configuration space. The Open CISS
4473 * Specification says, "Restore the PCI Configuration
4474 * Registers, offsets 00h through 60h. It is important to
4475 * restore the command register, 16-bits at offset 04h,
4476 * last. Do not restore the configuration status register,
4477 * 16-bits at offset 06h." Note that the offset is 2*i. */
4478 for (i = 0; i < 32; i++) {
4479 if (i == 2 || i == 3)
4480 continue;
4481 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4483 wmb();
4484 pci_write_config_word(pdev, 4, saved_config_space[2]);
4486 return 0;
4489 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4491 int i;
4493 if (!reset_devices)
4494 return 0;
4496 /* Reset the controller with a PCI power-cycle */
4497 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4498 return -ENODEV;
4500 /* Some devices (notably the HP Smart Array 5i Controller)
4501 need a little pause here */
4502 msleep(CCISS_POST_RESET_PAUSE_MSECS);
4504 /* Now try to get the controller to respond to a no-op */
4505 for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4506 if (cciss_noop(pdev) == 0)
4507 break;
4508 else
4509 dev_warn(&pdev->dev, "no-op failed%s\n",
4510 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4511 "; re-trying" : ""));
4512 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4514 return 0;
4518 * This is it. Find all the controllers and register them. I really hate
4519 * stealing all these major device numbers.
4520 * returns the number of block devices registered.
4522 static int __devinit cciss_init_one(struct pci_dev *pdev,
4523 const struct pci_device_id *ent)
4525 int i;
4526 int j = 0;
4527 int k = 0;
4528 int rc;
4529 int dac, return_code;
4530 InquiryData_struct *inq_buff;
4532 rc = cciss_init_reset_devices(pdev);
4533 if (rc)
4534 return rc;
4535 i = alloc_cciss_hba();
4536 if (i < 0)
4537 return -1;
4539 hba[i]->pdev = pdev;
4540 hba[i]->busy_initializing = 1;
4541 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4542 INIT_HLIST_HEAD(&hba[i]->reqQ);
4543 mutex_init(&hba[i]->busy_shutting_down);
4545 if (cciss_pci_init(hba[i]) != 0)
4546 goto clean_no_release_regions;
4548 sprintf(hba[i]->devname, "cciss%d", i);
4549 hba[i]->ctlr = i;
4551 init_completion(&hba[i]->scan_wait);
4553 if (cciss_create_hba_sysfs_entry(hba[i]))
4554 goto clean0;
4556 /* configure PCI DMA stuff */
4557 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4558 dac = 1;
4559 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4560 dac = 0;
4561 else {
4562 printk(KERN_ERR "cciss: no suitable DMA available\n");
4563 goto clean1;
4567 * register with the major number, or get a dynamic major number
4568 * by passing 0 as argument. This is done for greater than
4569 * 8 controller support.
4571 if (i < MAX_CTLR_ORIG)
4572 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4573 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4574 if (rc == -EBUSY || rc == -EINVAL) {
4575 printk(KERN_ERR
4576 "cciss: Unable to get major number %d for %s "
4577 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4578 goto clean1;
4579 } else {
4580 if (i >= MAX_CTLR_ORIG)
4581 hba[i]->major = rc;
4584 /* make sure the board interrupts are off */
4585 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4586 if (hba[i]->msi_vector || hba[i]->msix_vector) {
4587 if (request_irq(hba[i]->intr[PERF_MODE_INT],
4588 do_cciss_msix_intr,
4589 IRQF_DISABLED, hba[i]->devname, hba[i])) {
4590 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4591 hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
4592 goto clean2;
4594 } else {
4595 if (request_irq(hba[i]->intr[PERF_MODE_INT], do_cciss_intx,
4596 IRQF_DISABLED, hba[i]->devname, hba[i])) {
4597 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4598 hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
4599 goto clean2;
4603 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4604 hba[i]->devname, pdev->device, pci_name(pdev),
4605 hba[i]->intr[PERF_MODE_INT], dac ? "" : " not");
4607 hba[i]->cmd_pool_bits =
4608 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4609 * sizeof(unsigned long), GFP_KERNEL);
4610 hba[i]->cmd_pool = (CommandList_struct *)
4611 pci_alloc_consistent(hba[i]->pdev,
4612 hba[i]->nr_cmds * sizeof(CommandList_struct),
4613 &(hba[i]->cmd_pool_dhandle));
4614 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4615 pci_alloc_consistent(hba[i]->pdev,
4616 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4617 &(hba[i]->errinfo_pool_dhandle));
4618 if ((hba[i]->cmd_pool_bits == NULL)
4619 || (hba[i]->cmd_pool == NULL)
4620 || (hba[i]->errinfo_pool == NULL)) {
4621 printk(KERN_ERR "cciss: out of memory");
4622 goto clean4;
4625 /* Need space for temp scatter list */
4626 hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4627 sizeof(struct scatterlist *),
4628 GFP_KERNEL);
4629 for (k = 0; k < hba[i]->nr_cmds; k++) {
4630 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4631 hba[i]->maxsgentries,
4632 GFP_KERNEL);
4633 if (hba[i]->scatter_list[k] == NULL) {
4634 printk(KERN_ERR "cciss%d: could not allocate "
4635 "s/g lists\n", i);
4636 goto clean4;
4639 hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i],
4640 hba[i]->chainsize, hba[i]->nr_cmds);
4641 if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0)
4642 goto clean4;
4644 spin_lock_init(&hba[i]->lock);
4646 /* Initialize the pdev driver private data.
4647 have it point to hba[i]. */
4648 pci_set_drvdata(pdev, hba[i]);
4649 /* command and error info recs zeroed out before
4650 they are used */
4651 memset(hba[i]->cmd_pool_bits, 0,
4652 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4653 * sizeof(unsigned long));
4655 hba[i]->num_luns = 0;
4656 hba[i]->highest_lun = -1;
4657 for (j = 0; j < CISS_MAX_LUN; j++) {
4658 hba[i]->drv[j] = NULL;
4659 hba[i]->gendisk[j] = NULL;
4662 cciss_scsi_setup(i);
4664 /* Turn the interrupts on so we can service requests */
4665 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4667 /* Get the firmware version */
4668 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4669 if (inq_buff == NULL) {
4670 printk(KERN_ERR "cciss: out of memory\n");
4671 goto clean4;
4674 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4675 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4676 if (return_code == IO_OK) {
4677 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4678 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4679 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4680 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4681 } else { /* send command failed */
4682 printk(KERN_WARNING "cciss: unable to determine firmware"
4683 " version of controller\n");
4685 kfree(inq_buff);
4687 cciss_procinit(i);
4689 hba[i]->cciss_max_sectors = 8192;
4691 rebuild_lun_table(hba[i], 1, 0);
4692 hba[i]->busy_initializing = 0;
4693 return 1;
4695 clean4:
4696 kfree(hba[i]->cmd_pool_bits);
4697 /* Free up sg elements */
4698 for (k = 0; k < hba[i]->nr_cmds; k++)
4699 kfree(hba[i]->scatter_list[k]);
4700 kfree(hba[i]->scatter_list);
4701 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4702 if (hba[i]->cmd_pool)
4703 pci_free_consistent(hba[i]->pdev,
4704 hba[i]->nr_cmds * sizeof(CommandList_struct),
4705 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4706 if (hba[i]->errinfo_pool)
4707 pci_free_consistent(hba[i]->pdev,
4708 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4709 hba[i]->errinfo_pool,
4710 hba[i]->errinfo_pool_dhandle);
4711 free_irq(hba[i]->intr[PERF_MODE_INT], hba[i]);
4712 clean2:
4713 unregister_blkdev(hba[i]->major, hba[i]->devname);
4714 clean1:
4715 cciss_destroy_hba_sysfs_entry(hba[i]);
4716 clean0:
4717 pci_release_regions(pdev);
4718 clean_no_release_regions:
4719 hba[i]->busy_initializing = 0;
4722 * Deliberately omit pci_disable_device(): it does something nasty to
4723 * Smart Array controllers that pci_enable_device does not undo
4725 pci_set_drvdata(pdev, NULL);
4726 free_hba(i);
4727 return -1;
4730 static void cciss_shutdown(struct pci_dev *pdev)
4732 ctlr_info_t *h;
4733 char *flush_buf;
4734 int return_code;
4736 h = pci_get_drvdata(pdev);
4737 flush_buf = kzalloc(4, GFP_KERNEL);
4738 if (!flush_buf) {
4739 printk(KERN_WARNING
4740 "cciss:%d cache not flushed, out of memory.\n",
4741 h->ctlr);
4742 return;
4744 /* write all data in the battery backed cache to disk */
4745 memset(flush_buf, 0, 4);
4746 return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4747 4, 0, CTLR_LUNID, TYPE_CMD);
4748 kfree(flush_buf);
4749 if (return_code != IO_OK)
4750 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4751 h->ctlr);
4752 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4753 free_irq(h->intr[PERF_MODE_INT], h);
4756 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4758 ctlr_info_t *tmp_ptr;
4759 int i, j;
4761 if (pci_get_drvdata(pdev) == NULL) {
4762 printk(KERN_ERR "cciss: Unable to remove device \n");
4763 return;
4766 tmp_ptr = pci_get_drvdata(pdev);
4767 i = tmp_ptr->ctlr;
4768 if (hba[i] == NULL) {
4769 printk(KERN_ERR "cciss: device appears to "
4770 "already be removed \n");
4771 return;
4774 mutex_lock(&hba[i]->busy_shutting_down);
4776 remove_from_scan_list(hba[i]);
4777 remove_proc_entry(hba[i]->devname, proc_cciss);
4778 unregister_blkdev(hba[i]->major, hba[i]->devname);
4780 /* remove it from the disk list */
4781 for (j = 0; j < CISS_MAX_LUN; j++) {
4782 struct gendisk *disk = hba[i]->gendisk[j];
4783 if (disk) {
4784 struct request_queue *q = disk->queue;
4786 if (disk->flags & GENHD_FL_UP) {
4787 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4788 del_gendisk(disk);
4790 if (q)
4791 blk_cleanup_queue(q);
4795 #ifdef CONFIG_CISS_SCSI_TAPE
4796 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4797 #endif
4799 cciss_shutdown(pdev);
4801 #ifdef CONFIG_PCI_MSI
4802 if (hba[i]->msix_vector)
4803 pci_disable_msix(hba[i]->pdev);
4804 else if (hba[i]->msi_vector)
4805 pci_disable_msi(hba[i]->pdev);
4806 #endif /* CONFIG_PCI_MSI */
4808 iounmap(hba[i]->transtable);
4809 iounmap(hba[i]->cfgtable);
4810 iounmap(hba[i]->vaddr);
4812 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4813 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4814 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4815 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4816 kfree(hba[i]->cmd_pool_bits);
4817 /* Free up sg elements */
4818 for (j = 0; j < hba[i]->nr_cmds; j++)
4819 kfree(hba[i]->scatter_list[j]);
4820 kfree(hba[i]->scatter_list);
4821 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4823 * Deliberately omit pci_disable_device(): it does something nasty to
4824 * Smart Array controllers that pci_enable_device does not undo
4826 pci_release_regions(pdev);
4827 pci_set_drvdata(pdev, NULL);
4828 cciss_destroy_hba_sysfs_entry(hba[i]);
4829 mutex_unlock(&hba[i]->busy_shutting_down);
4830 free_hba(i);
4833 static struct pci_driver cciss_pci_driver = {
4834 .name = "cciss",
4835 .probe = cciss_init_one,
4836 .remove = __devexit_p(cciss_remove_one),
4837 .id_table = cciss_pci_device_id, /* id_table */
4838 .shutdown = cciss_shutdown,
4842 * This is it. Register the PCI driver information for the cards we control
4843 * the OS will call our registered routines when it finds one of our cards.
4845 static int __init cciss_init(void)
4847 int err;
4850 * The hardware requires that commands are aligned on a 64-bit
4851 * boundary. Given that we use pci_alloc_consistent() to allocate an
4852 * array of them, the size must be a multiple of 8 bytes.
4854 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4855 printk(KERN_INFO DRIVER_NAME "\n");
4857 err = bus_register(&cciss_bus_type);
4858 if (err)
4859 return err;
4861 /* Start the scan thread */
4862 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4863 if (IS_ERR(cciss_scan_thread)) {
4864 err = PTR_ERR(cciss_scan_thread);
4865 goto err_bus_unregister;
4868 /* Register for our PCI devices */
4869 err = pci_register_driver(&cciss_pci_driver);
4870 if (err)
4871 goto err_thread_stop;
4873 return err;
4875 err_thread_stop:
4876 kthread_stop(cciss_scan_thread);
4877 err_bus_unregister:
4878 bus_unregister(&cciss_bus_type);
4880 return err;
4883 static void __exit cciss_cleanup(void)
4885 int i;
4887 pci_unregister_driver(&cciss_pci_driver);
4888 /* double check that all controller entrys have been removed */
4889 for (i = 0; i < MAX_CTLR; i++) {
4890 if (hba[i] != NULL) {
4891 printk(KERN_WARNING "cciss: had to remove"
4892 " controller %d\n", i);
4893 cciss_remove_one(hba[i]->pdev);
4896 kthread_stop(cciss_scan_thread);
4897 remove_proc_entry("driver/cciss", NULL);
4898 bus_unregister(&cciss_bus_type);
4901 module_init(cciss_init);
4902 module_exit(cciss_cleanup);