2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
37 #ifdef CONFIG_UBIFS_FS_DEBUG
39 DEFINE_SPINLOCK(dbg_lock
);
41 static const char *get_key_fmt(int fmt
)
44 case UBIFS_SIMPLE_KEY_FMT
:
47 return "unknown/invalid format";
51 static const char *get_key_hash(int hash
)
54 case UBIFS_KEY_HASH_R5
:
56 case UBIFS_KEY_HASH_TEST
:
59 return "unknown/invalid name hash";
63 static const char *get_key_type(int type
)
77 return "unknown/invalid key";
81 static const char *get_dent_type(int type
)
94 case UBIFS_ITYPE_FIFO
:
96 case UBIFS_ITYPE_SOCK
:
99 return "unknown/invalid type";
103 const char *dbg_snprintf_key(const struct ubifs_info
*c
,
104 const union ubifs_key
*key
, char *buffer
, int len
)
107 int type
= key_type(c
, key
);
109 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
112 len
-= snprintf(p
, len
, "(%lu, %s)",
113 (unsigned long)key_inum(c
, key
),
118 len
-= snprintf(p
, len
, "(%lu, %s, %#08x)",
119 (unsigned long)key_inum(c
, key
),
120 get_key_type(type
), key_hash(c
, key
));
123 len
-= snprintf(p
, len
, "(%lu, %s, %u)",
124 (unsigned long)key_inum(c
, key
),
125 get_key_type(type
), key_block(c
, key
));
128 len
-= snprintf(p
, len
, "(%lu, %s)",
129 (unsigned long)key_inum(c
, key
),
133 len
-= snprintf(p
, len
, "(bad key type: %#08x, %#08x)",
134 key
->u32
[0], key
->u32
[1]);
137 len
-= snprintf(p
, len
, "bad key format %d", c
->key_fmt
);
138 ubifs_assert(len
> 0);
142 const char *dbg_ntype(int type
)
146 return "padding node";
148 return "superblock node";
150 return "master node";
152 return "reference node";
155 case UBIFS_DENT_NODE
:
156 return "direntry node";
157 case UBIFS_XENT_NODE
:
158 return "xentry node";
159 case UBIFS_DATA_NODE
:
161 case UBIFS_TRUN_NODE
:
162 return "truncate node";
164 return "indexing node";
166 return "commit start node";
167 case UBIFS_ORPH_NODE
:
168 return "orphan node";
170 return "unknown node";
174 static const char *dbg_gtype(int type
)
177 case UBIFS_NO_NODE_GROUP
:
178 return "no node group";
179 case UBIFS_IN_NODE_GROUP
:
180 return "in node group";
181 case UBIFS_LAST_OF_NODE_GROUP
:
182 return "last of node group";
188 const char *dbg_cstate(int cmt_state
)
192 return "commit resting";
193 case COMMIT_BACKGROUND
:
194 return "background commit requested";
195 case COMMIT_REQUIRED
:
196 return "commit required";
197 case COMMIT_RUNNING_BACKGROUND
:
198 return "BACKGROUND commit running";
199 case COMMIT_RUNNING_REQUIRED
:
200 return "commit running and required";
202 return "broken commit";
204 return "unknown commit state";
208 const char *dbg_jhead(int jhead
)
218 return "unknown journal head";
222 static void dump_ch(const struct ubifs_ch
*ch
)
224 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
225 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
226 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
227 dbg_ntype(ch
->node_type
));
228 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
229 dbg_gtype(ch
->group_type
));
230 printk(KERN_DEBUG
"\tsqnum %llu\n",
231 (unsigned long long)le64_to_cpu(ch
->sqnum
));
232 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
235 void dbg_dump_inode(struct ubifs_info
*c
, const struct inode
*inode
)
237 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
238 struct qstr nm
= { .name
= NULL
};
240 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
243 printk(KERN_DEBUG
"Dump in-memory inode:");
244 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
245 printk(KERN_DEBUG
"\tsize %llu\n",
246 (unsigned long long)i_size_read(inode
));
247 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
248 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
249 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
250 printk(KERN_DEBUG
"\tatime %u.%u\n",
251 (unsigned int)inode
->i_atime
.tv_sec
,
252 (unsigned int)inode
->i_atime
.tv_nsec
);
253 printk(KERN_DEBUG
"\tmtime %u.%u\n",
254 (unsigned int)inode
->i_mtime
.tv_sec
,
255 (unsigned int)inode
->i_mtime
.tv_nsec
);
256 printk(KERN_DEBUG
"\tctime %u.%u\n",
257 (unsigned int)inode
->i_ctime
.tv_sec
,
258 (unsigned int)inode
->i_ctime
.tv_nsec
);
259 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
260 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
261 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
262 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
263 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
264 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
265 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
266 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
267 (unsigned long long)ui
->synced_i_size
);
268 printk(KERN_DEBUG
"\tui_size %llu\n",
269 (unsigned long long)ui
->ui_size
);
270 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
271 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
272 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
273 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
274 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
276 if (!S_ISDIR(inode
->i_mode
))
279 printk(KERN_DEBUG
"List of directory entries:\n");
280 ubifs_assert(!mutex_is_locked(&c
->tnc_mutex
));
282 lowest_dent_key(c
, &key
, inode
->i_ino
);
284 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
286 if (PTR_ERR(dent
) != -ENOENT
)
287 printk(KERN_DEBUG
"error %ld\n", PTR_ERR(dent
));
291 printk(KERN_DEBUG
"\t%d: %s (%s)\n",
292 count
++, dent
->name
, get_dent_type(dent
->type
));
294 nm
.name
= dent
->name
;
295 nm
.len
= le16_to_cpu(dent
->nlen
);
298 key_read(c
, &dent
->key
, &key
);
303 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
307 const struct ubifs_ch
*ch
= node
;
308 char key_buf
[DBG_KEY_BUF_LEN
];
310 if (dbg_is_tst_rcvry(c
))
313 /* If the magic is incorrect, just hexdump the first bytes */
314 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
315 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
316 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
317 (void *)node
, UBIFS_CH_SZ
, 1);
321 spin_lock(&dbg_lock
);
324 switch (ch
->node_type
) {
327 const struct ubifs_pad_node
*pad
= node
;
329 printk(KERN_DEBUG
"\tpad_len %u\n",
330 le32_to_cpu(pad
->pad_len
));
335 const struct ubifs_sb_node
*sup
= node
;
336 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
338 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
339 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
340 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
341 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
342 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
343 printk(KERN_DEBUG
"\t big_lpt %u\n",
344 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
345 printk(KERN_DEBUG
"\t space_fixup %u\n",
346 !!(sup_flags
& UBIFS_FLG_SPACE_FIXUP
));
347 printk(KERN_DEBUG
"\tmin_io_size %u\n",
348 le32_to_cpu(sup
->min_io_size
));
349 printk(KERN_DEBUG
"\tleb_size %u\n",
350 le32_to_cpu(sup
->leb_size
));
351 printk(KERN_DEBUG
"\tleb_cnt %u\n",
352 le32_to_cpu(sup
->leb_cnt
));
353 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
354 le32_to_cpu(sup
->max_leb_cnt
));
355 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
356 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
357 printk(KERN_DEBUG
"\tlog_lebs %u\n",
358 le32_to_cpu(sup
->log_lebs
));
359 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
360 le32_to_cpu(sup
->lpt_lebs
));
361 printk(KERN_DEBUG
"\torph_lebs %u\n",
362 le32_to_cpu(sup
->orph_lebs
));
363 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
364 le32_to_cpu(sup
->jhead_cnt
));
365 printk(KERN_DEBUG
"\tfanout %u\n",
366 le32_to_cpu(sup
->fanout
));
367 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
368 le32_to_cpu(sup
->lsave_cnt
));
369 printk(KERN_DEBUG
"\tdefault_compr %u\n",
370 (int)le16_to_cpu(sup
->default_compr
));
371 printk(KERN_DEBUG
"\trp_size %llu\n",
372 (unsigned long long)le64_to_cpu(sup
->rp_size
));
373 printk(KERN_DEBUG
"\trp_uid %u\n",
374 le32_to_cpu(sup
->rp_uid
));
375 printk(KERN_DEBUG
"\trp_gid %u\n",
376 le32_to_cpu(sup
->rp_gid
));
377 printk(KERN_DEBUG
"\tfmt_version %u\n",
378 le32_to_cpu(sup
->fmt_version
));
379 printk(KERN_DEBUG
"\ttime_gran %u\n",
380 le32_to_cpu(sup
->time_gran
));
381 printk(KERN_DEBUG
"\tUUID %pUB\n",
387 const struct ubifs_mst_node
*mst
= node
;
389 printk(KERN_DEBUG
"\thighest_inum %llu\n",
390 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
391 printk(KERN_DEBUG
"\tcommit number %llu\n",
392 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
393 printk(KERN_DEBUG
"\tflags %#x\n",
394 le32_to_cpu(mst
->flags
));
395 printk(KERN_DEBUG
"\tlog_lnum %u\n",
396 le32_to_cpu(mst
->log_lnum
));
397 printk(KERN_DEBUG
"\troot_lnum %u\n",
398 le32_to_cpu(mst
->root_lnum
));
399 printk(KERN_DEBUG
"\troot_offs %u\n",
400 le32_to_cpu(mst
->root_offs
));
401 printk(KERN_DEBUG
"\troot_len %u\n",
402 le32_to_cpu(mst
->root_len
));
403 printk(KERN_DEBUG
"\tgc_lnum %u\n",
404 le32_to_cpu(mst
->gc_lnum
));
405 printk(KERN_DEBUG
"\tihead_lnum %u\n",
406 le32_to_cpu(mst
->ihead_lnum
));
407 printk(KERN_DEBUG
"\tihead_offs %u\n",
408 le32_to_cpu(mst
->ihead_offs
));
409 printk(KERN_DEBUG
"\tindex_size %llu\n",
410 (unsigned long long)le64_to_cpu(mst
->index_size
));
411 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
412 le32_to_cpu(mst
->lpt_lnum
));
413 printk(KERN_DEBUG
"\tlpt_offs %u\n",
414 le32_to_cpu(mst
->lpt_offs
));
415 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
416 le32_to_cpu(mst
->nhead_lnum
));
417 printk(KERN_DEBUG
"\tnhead_offs %u\n",
418 le32_to_cpu(mst
->nhead_offs
));
419 printk(KERN_DEBUG
"\tltab_lnum %u\n",
420 le32_to_cpu(mst
->ltab_lnum
));
421 printk(KERN_DEBUG
"\tltab_offs %u\n",
422 le32_to_cpu(mst
->ltab_offs
));
423 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
424 le32_to_cpu(mst
->lsave_lnum
));
425 printk(KERN_DEBUG
"\tlsave_offs %u\n",
426 le32_to_cpu(mst
->lsave_offs
));
427 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
428 le32_to_cpu(mst
->lscan_lnum
));
429 printk(KERN_DEBUG
"\tleb_cnt %u\n",
430 le32_to_cpu(mst
->leb_cnt
));
431 printk(KERN_DEBUG
"\tempty_lebs %u\n",
432 le32_to_cpu(mst
->empty_lebs
));
433 printk(KERN_DEBUG
"\tidx_lebs %u\n",
434 le32_to_cpu(mst
->idx_lebs
));
435 printk(KERN_DEBUG
"\ttotal_free %llu\n",
436 (unsigned long long)le64_to_cpu(mst
->total_free
));
437 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
438 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
439 printk(KERN_DEBUG
"\ttotal_used %llu\n",
440 (unsigned long long)le64_to_cpu(mst
->total_used
));
441 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
442 (unsigned long long)le64_to_cpu(mst
->total_dead
));
443 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
444 (unsigned long long)le64_to_cpu(mst
->total_dark
));
449 const struct ubifs_ref_node
*ref
= node
;
451 printk(KERN_DEBUG
"\tlnum %u\n",
452 le32_to_cpu(ref
->lnum
));
453 printk(KERN_DEBUG
"\toffs %u\n",
454 le32_to_cpu(ref
->offs
));
455 printk(KERN_DEBUG
"\tjhead %u\n",
456 le32_to_cpu(ref
->jhead
));
461 const struct ubifs_ino_node
*ino
= node
;
463 key_read(c
, &ino
->key
, &key
);
464 printk(KERN_DEBUG
"\tkey %s\n",
465 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
466 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
467 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
468 printk(KERN_DEBUG
"\tsize %llu\n",
469 (unsigned long long)le64_to_cpu(ino
->size
));
470 printk(KERN_DEBUG
"\tnlink %u\n",
471 le32_to_cpu(ino
->nlink
));
472 printk(KERN_DEBUG
"\tatime %lld.%u\n",
473 (long long)le64_to_cpu(ino
->atime_sec
),
474 le32_to_cpu(ino
->atime_nsec
));
475 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
476 (long long)le64_to_cpu(ino
->mtime_sec
),
477 le32_to_cpu(ino
->mtime_nsec
));
478 printk(KERN_DEBUG
"\tctime %lld.%u\n",
479 (long long)le64_to_cpu(ino
->ctime_sec
),
480 le32_to_cpu(ino
->ctime_nsec
));
481 printk(KERN_DEBUG
"\tuid %u\n",
482 le32_to_cpu(ino
->uid
));
483 printk(KERN_DEBUG
"\tgid %u\n",
484 le32_to_cpu(ino
->gid
));
485 printk(KERN_DEBUG
"\tmode %u\n",
486 le32_to_cpu(ino
->mode
));
487 printk(KERN_DEBUG
"\tflags %#x\n",
488 le32_to_cpu(ino
->flags
));
489 printk(KERN_DEBUG
"\txattr_cnt %u\n",
490 le32_to_cpu(ino
->xattr_cnt
));
491 printk(KERN_DEBUG
"\txattr_size %u\n",
492 le32_to_cpu(ino
->xattr_size
));
493 printk(KERN_DEBUG
"\txattr_names %u\n",
494 le32_to_cpu(ino
->xattr_names
));
495 printk(KERN_DEBUG
"\tcompr_type %#x\n",
496 (int)le16_to_cpu(ino
->compr_type
));
497 printk(KERN_DEBUG
"\tdata len %u\n",
498 le32_to_cpu(ino
->data_len
));
501 case UBIFS_DENT_NODE
:
502 case UBIFS_XENT_NODE
:
504 const struct ubifs_dent_node
*dent
= node
;
505 int nlen
= le16_to_cpu(dent
->nlen
);
507 key_read(c
, &dent
->key
, &key
);
508 printk(KERN_DEBUG
"\tkey %s\n",
509 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
510 printk(KERN_DEBUG
"\tinum %llu\n",
511 (unsigned long long)le64_to_cpu(dent
->inum
));
512 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
513 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
514 printk(KERN_DEBUG
"\tname ");
516 if (nlen
> UBIFS_MAX_NLEN
)
517 printk(KERN_DEBUG
"(bad name length, not printing, "
518 "bad or corrupted node)");
520 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
521 printk(KERN_CONT
"%c", dent
->name
[i
]);
523 printk(KERN_CONT
"\n");
527 case UBIFS_DATA_NODE
:
529 const struct ubifs_data_node
*dn
= node
;
530 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
532 key_read(c
, &dn
->key
, &key
);
533 printk(KERN_DEBUG
"\tkey %s\n",
534 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
535 printk(KERN_DEBUG
"\tsize %u\n",
536 le32_to_cpu(dn
->size
));
537 printk(KERN_DEBUG
"\tcompr_typ %d\n",
538 (int)le16_to_cpu(dn
->compr_type
));
539 printk(KERN_DEBUG
"\tdata size %d\n",
541 printk(KERN_DEBUG
"\tdata:\n");
542 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
543 (void *)&dn
->data
, dlen
, 0);
546 case UBIFS_TRUN_NODE
:
548 const struct ubifs_trun_node
*trun
= node
;
550 printk(KERN_DEBUG
"\tinum %u\n",
551 le32_to_cpu(trun
->inum
));
552 printk(KERN_DEBUG
"\told_size %llu\n",
553 (unsigned long long)le64_to_cpu(trun
->old_size
));
554 printk(KERN_DEBUG
"\tnew_size %llu\n",
555 (unsigned long long)le64_to_cpu(trun
->new_size
));
560 const struct ubifs_idx_node
*idx
= node
;
562 n
= le16_to_cpu(idx
->child_cnt
);
563 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
564 printk(KERN_DEBUG
"\tlevel %d\n",
565 (int)le16_to_cpu(idx
->level
));
566 printk(KERN_DEBUG
"\tBranches:\n");
568 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
569 const struct ubifs_branch
*br
;
571 br
= ubifs_idx_branch(c
, idx
, i
);
572 key_read(c
, &br
->key
, &key
);
573 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
574 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
575 le32_to_cpu(br
->len
),
576 dbg_snprintf_key(c
, &key
, key_buf
,
583 case UBIFS_ORPH_NODE
:
585 const struct ubifs_orph_node
*orph
= node
;
587 printk(KERN_DEBUG
"\tcommit number %llu\n",
589 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
590 printk(KERN_DEBUG
"\tlast node flag %llu\n",
591 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
592 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
593 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
594 for (i
= 0; i
< n
; i
++)
595 printk(KERN_DEBUG
"\t ino %llu\n",
596 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
600 printk(KERN_DEBUG
"node type %d was not recognized\n",
603 spin_unlock(&dbg_lock
);
606 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
608 spin_lock(&dbg_lock
);
609 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
610 req
->new_ino
, req
->dirtied_ino
);
611 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
612 req
->new_ino_d
, req
->dirtied_ino_d
);
613 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
614 req
->new_page
, req
->dirtied_page
);
615 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
616 req
->new_dent
, req
->mod_dent
);
617 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
618 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
619 req
->data_growth
, req
->dd_growth
);
620 spin_unlock(&dbg_lock
);
623 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
625 spin_lock(&dbg_lock
);
626 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
627 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
628 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
629 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
631 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
632 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
634 spin_unlock(&dbg_lock
);
637 void dbg_dump_budg(struct ubifs_info
*c
, const struct ubifs_budg_info
*bi
)
641 struct ubifs_bud
*bud
;
642 struct ubifs_gced_idx_leb
*idx_gc
;
643 long long available
, outstanding
, free
;
645 spin_lock(&c
->space_lock
);
646 spin_lock(&dbg_lock
);
647 printk(KERN_DEBUG
"(pid %d) Budgeting info: data budget sum %lld, "
648 "total budget sum %lld\n", current
->pid
,
649 bi
->data_growth
+ bi
->dd_growth
,
650 bi
->data_growth
+ bi
->dd_growth
+ bi
->idx_growth
);
651 printk(KERN_DEBUG
"\tbudg_data_growth %lld, budg_dd_growth %lld, "
652 "budg_idx_growth %lld\n", bi
->data_growth
, bi
->dd_growth
,
654 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %llu, "
655 "uncommitted_idx %lld\n", bi
->min_idx_lebs
, bi
->old_idx_sz
,
656 bi
->uncommitted_idx
);
657 printk(KERN_DEBUG
"\tpage_budget %d, inode_budget %d, dent_budget %d\n",
658 bi
->page_budget
, bi
->inode_budget
, bi
->dent_budget
);
659 printk(KERN_DEBUG
"\tnospace %u, nospace_rp %u\n",
660 bi
->nospace
, bi
->nospace_rp
);
661 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
662 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
666 * If we are dumping saved budgeting data, do not print
667 * additional information which is about the current state, not
668 * the old one which corresponded to the saved budgeting data.
672 printk(KERN_DEBUG
"\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
673 c
->freeable_cnt
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
674 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
675 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
676 atomic_long_read(&c
->dirty_zn_cnt
),
677 atomic_long_read(&c
->clean_zn_cnt
));
678 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
679 c
->gc_lnum
, c
->ihead_lnum
);
681 /* If we are in R/O mode, journal heads do not exist */
683 for (i
= 0; i
< c
->jhead_cnt
; i
++)
684 printk(KERN_DEBUG
"\tjhead %s\t LEB %d\n",
685 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
686 c
->jheads
[i
].wbuf
.lnum
);
687 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
688 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
689 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
691 list_for_each_entry(bud
, &c
->old_buds
, list
)
692 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
693 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
694 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
695 idx_gc
->lnum
, idx_gc
->unmap
);
696 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
698 /* Print budgeting predictions */
699 available
= ubifs_calc_available(c
, c
->bi
.min_idx_lebs
);
700 outstanding
= c
->bi
.data_growth
+ c
->bi
.dd_growth
;
701 free
= ubifs_get_free_space_nolock(c
);
702 printk(KERN_DEBUG
"Budgeting predictions:\n");
703 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
704 available
, outstanding
, free
);
706 spin_unlock(&dbg_lock
);
707 spin_unlock(&c
->space_lock
);
710 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
712 int i
, spc
, dark
= 0, dead
= 0;
714 struct ubifs_bud
*bud
;
716 spc
= lp
->free
+ lp
->dirty
;
717 if (spc
< c
->dead_wm
)
720 dark
= ubifs_calc_dark(c
, spc
);
722 if (lp
->flags
& LPROPS_INDEX
)
723 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
724 "free + dirty %-8d flags %#x (", lp
->lnum
, lp
->free
,
725 lp
->dirty
, c
->leb_size
- spc
, spc
, lp
->flags
);
727 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
728 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
729 "flags %#-4x (", lp
->lnum
, lp
->free
, lp
->dirty
,
730 c
->leb_size
- spc
, spc
, dark
, dead
,
731 (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
733 if (lp
->flags
& LPROPS_TAKEN
) {
734 if (lp
->flags
& LPROPS_INDEX
)
735 printk(KERN_CONT
"index, taken");
737 printk(KERN_CONT
"taken");
741 if (lp
->flags
& LPROPS_INDEX
) {
742 switch (lp
->flags
& LPROPS_CAT_MASK
) {
743 case LPROPS_DIRTY_IDX
:
746 case LPROPS_FRDI_IDX
:
747 s
= "freeable index";
753 switch (lp
->flags
& LPROPS_CAT_MASK
) {
755 s
= "not categorized";
766 case LPROPS_FREEABLE
:
774 printk(KERN_CONT
"%s", s
);
777 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
778 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
779 if (bud
->lnum
== lp
->lnum
) {
781 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
783 * Note, if we are in R/O mode or in the middle
784 * of mounting/re-mounting, the write-buffers do
788 lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
789 printk(KERN_CONT
", jhead %s",
795 printk(KERN_CONT
", bud of jhead %s",
796 dbg_jhead(bud
->jhead
));
799 if (lp
->lnum
== c
->gc_lnum
)
800 printk(KERN_CONT
", GC LEB");
801 printk(KERN_CONT
")\n");
804 void dbg_dump_lprops(struct ubifs_info
*c
)
807 struct ubifs_lprops lp
;
808 struct ubifs_lp_stats lst
;
810 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
812 ubifs_get_lp_stats(c
, &lst
);
813 dbg_dump_lstats(&lst
);
815 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
816 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
818 ubifs_err("cannot read lprops for LEB %d", lnum
);
820 dbg_dump_lprop(c
, &lp
);
822 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
826 void dbg_dump_lpt_info(struct ubifs_info
*c
)
830 spin_lock(&dbg_lock
);
831 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
832 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
833 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
834 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
835 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
836 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
837 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
838 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
839 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
840 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
841 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
842 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
843 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
844 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
845 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
846 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
847 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
848 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
849 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
850 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
851 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
852 c
->nhead_lnum
, c
->nhead_offs
);
853 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
854 c
->ltab_lnum
, c
->ltab_offs
);
856 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
857 c
->lsave_lnum
, c
->lsave_offs
);
858 for (i
= 0; i
< c
->lpt_lebs
; i
++)
859 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
860 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
861 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
862 spin_unlock(&dbg_lock
);
865 void dbg_dump_sleb(const struct ubifs_info
*c
,
866 const struct ubifs_scan_leb
*sleb
, int offs
)
868 struct ubifs_scan_node
*snod
;
870 printk(KERN_DEBUG
"(pid %d) start dumping scanned data from LEB %d:%d\n",
871 current
->pid
, sleb
->lnum
, offs
);
873 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
875 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", sleb
->lnum
,
876 snod
->offs
, snod
->len
);
877 dbg_dump_node(c
, snod
->node
);
881 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
883 struct ubifs_scan_leb
*sleb
;
884 struct ubifs_scan_node
*snod
;
887 if (dbg_is_tst_rcvry(c
))
890 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
893 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
895 ubifs_err("cannot allocate memory for dumping LEB %d", lnum
);
899 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
901 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
905 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
906 sleb
->nodes_cnt
, sleb
->endpt
);
908 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
910 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
911 snod
->offs
, snod
->len
);
912 dbg_dump_node(c
, snod
->node
);
915 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
917 ubifs_scan_destroy(sleb
);
924 void dbg_dump_znode(const struct ubifs_info
*c
,
925 const struct ubifs_znode
*znode
)
928 const struct ubifs_zbranch
*zbr
;
929 char key_buf
[DBG_KEY_BUF_LEN
];
931 spin_lock(&dbg_lock
);
933 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
937 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
938 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
939 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
940 znode
->child_cnt
, znode
->flags
);
942 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
943 spin_unlock(&dbg_lock
);
947 printk(KERN_DEBUG
"zbranches:\n");
948 for (n
= 0; n
< znode
->child_cnt
; n
++) {
949 zbr
= &znode
->zbranch
[n
];
950 if (znode
->level
> 0)
951 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
952 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
954 dbg_snprintf_key(c
, &zbr
->key
,
958 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
959 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
961 dbg_snprintf_key(c
, &zbr
->key
,
965 spin_unlock(&dbg_lock
);
968 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
972 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
973 current
->pid
, cat
, heap
->cnt
);
974 for (i
= 0; i
< heap
->cnt
; i
++) {
975 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
977 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
978 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
979 lprops
->free
, lprops
->dirty
, lprops
->flags
);
981 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
984 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
985 struct ubifs_nnode
*parent
, int iip
)
989 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
990 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
991 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
992 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
993 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
994 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
995 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
997 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
998 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
1002 void dbg_dump_tnc(struct ubifs_info
*c
)
1004 struct ubifs_znode
*znode
;
1007 printk(KERN_DEBUG
"\n");
1008 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
1009 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
1010 level
= znode
->level
;
1011 printk(KERN_DEBUG
"== Level %d ==\n", level
);
1013 if (level
!= znode
->level
) {
1014 level
= znode
->level
;
1015 printk(KERN_DEBUG
"== Level %d ==\n", level
);
1017 dbg_dump_znode(c
, znode
);
1018 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
1020 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
1023 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
1026 dbg_dump_znode(c
, znode
);
1031 * dbg_dump_index - dump the on-flash index.
1032 * @c: UBIFS file-system description object
1034 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1035 * which dumps only in-memory znodes and does not read znodes which from flash.
1037 void dbg_dump_index(struct ubifs_info
*c
)
1039 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
1043 * dbg_save_space_info - save information about flash space.
1044 * @c: UBIFS file-system description object
1046 * This function saves information about UBIFS free space, dirty space, etc, in
1047 * order to check it later.
1049 void dbg_save_space_info(struct ubifs_info
*c
)
1051 struct ubifs_debug_info
*d
= c
->dbg
;
1054 spin_lock(&c
->space_lock
);
1055 memcpy(&d
->saved_lst
, &c
->lst
, sizeof(struct ubifs_lp_stats
));
1056 memcpy(&d
->saved_bi
, &c
->bi
, sizeof(struct ubifs_budg_info
));
1057 d
->saved_idx_gc_cnt
= c
->idx_gc_cnt
;
1060 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1061 * affects the free space calculations, and UBIFS might not know about
1062 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1063 * only when we read their lprops, and we do this only lazily, upon the
1064 * need. So at any given point of time @c->freeable_cnt might be not
1067 * Just one example about the issue we hit when we did not zero
1069 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1070 * amount of free space in @d->saved_free
1071 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1072 * information from flash, where we cache LEBs from various
1073 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1074 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1075 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1076 * -> 'ubifs_add_to_cat()').
1077 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1079 * 4. We calculate the amount of free space when the re-mount is
1080 * finished in 'dbg_check_space_info()' and it does not match
1083 freeable_cnt
= c
->freeable_cnt
;
1084 c
->freeable_cnt
= 0;
1085 d
->saved_free
= ubifs_get_free_space_nolock(c
);
1086 c
->freeable_cnt
= freeable_cnt
;
1087 spin_unlock(&c
->space_lock
);
1091 * dbg_check_space_info - check flash space information.
1092 * @c: UBIFS file-system description object
1094 * This function compares current flash space information with the information
1095 * which was saved when the 'dbg_save_space_info()' function was called.
1096 * Returns zero if the information has not changed, and %-EINVAL it it has
1099 int dbg_check_space_info(struct ubifs_info
*c
)
1101 struct ubifs_debug_info
*d
= c
->dbg
;
1102 struct ubifs_lp_stats lst
;
1106 spin_lock(&c
->space_lock
);
1107 freeable_cnt
= c
->freeable_cnt
;
1108 c
->freeable_cnt
= 0;
1109 free
= ubifs_get_free_space_nolock(c
);
1110 c
->freeable_cnt
= freeable_cnt
;
1111 spin_unlock(&c
->space_lock
);
1113 if (free
!= d
->saved_free
) {
1114 ubifs_err("free space changed from %lld to %lld",
1115 d
->saved_free
, free
);
1122 ubifs_msg("saved lprops statistics dump");
1123 dbg_dump_lstats(&d
->saved_lst
);
1124 ubifs_msg("saved budgeting info dump");
1125 dbg_dump_budg(c
, &d
->saved_bi
);
1126 ubifs_msg("saved idx_gc_cnt %d", d
->saved_idx_gc_cnt
);
1127 ubifs_msg("current lprops statistics dump");
1128 ubifs_get_lp_stats(c
, &lst
);
1129 dbg_dump_lstats(&lst
);
1130 ubifs_msg("current budgeting info dump");
1131 dbg_dump_budg(c
, &c
->bi
);
1137 * dbg_check_synced_i_size - check synchronized inode size.
1138 * @c: UBIFS file-system description object
1139 * @inode: inode to check
1141 * If inode is clean, synchronized inode size has to be equivalent to current
1142 * inode size. This function has to be called only for locked inodes (@i_mutex
1143 * has to be locked). Returns %0 if synchronized inode size if correct, and
1146 int dbg_check_synced_i_size(const struct ubifs_info
*c
, struct inode
*inode
)
1149 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1151 if (!dbg_is_chk_gen(c
))
1153 if (!S_ISREG(inode
->i_mode
))
1156 mutex_lock(&ui
->ui_mutex
);
1157 spin_lock(&ui
->ui_lock
);
1158 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1159 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1160 "is clean", ui
->ui_size
, ui
->synced_i_size
);
1161 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1162 inode
->i_mode
, i_size_read(inode
));
1166 spin_unlock(&ui
->ui_lock
);
1167 mutex_unlock(&ui
->ui_mutex
);
1172 * dbg_check_dir - check directory inode size and link count.
1173 * @c: UBIFS file-system description object
1174 * @dir: the directory to calculate size for
1175 * @size: the result is returned here
1177 * This function makes sure that directory size and link count are correct.
1178 * Returns zero in case of success and a negative error code in case of
1181 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1182 * calling this function.
1184 int dbg_check_dir(struct ubifs_info
*c
, const struct inode
*dir
)
1186 unsigned int nlink
= 2;
1187 union ubifs_key key
;
1188 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1189 struct qstr nm
= { .name
= NULL
};
1190 loff_t size
= UBIFS_INO_NODE_SZ
;
1192 if (!dbg_is_chk_gen(c
))
1195 if (!S_ISDIR(dir
->i_mode
))
1198 lowest_dent_key(c
, &key
, dir
->i_ino
);
1202 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1204 err
= PTR_ERR(dent
);
1210 nm
.name
= dent
->name
;
1211 nm
.len
= le16_to_cpu(dent
->nlen
);
1212 size
+= CALC_DENT_SIZE(nm
.len
);
1213 if (dent
->type
== UBIFS_ITYPE_DIR
)
1217 key_read(c
, &dent
->key
, &key
);
1221 if (i_size_read(dir
) != size
) {
1222 ubifs_err("directory inode %lu has size %llu, "
1223 "but calculated size is %llu", dir
->i_ino
,
1224 (unsigned long long)i_size_read(dir
),
1225 (unsigned long long)size
);
1226 dbg_dump_inode(c
, dir
);
1230 if (dir
->i_nlink
!= nlink
) {
1231 ubifs_err("directory inode %lu has nlink %u, but calculated "
1232 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
1233 dbg_dump_inode(c
, dir
);
1242 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1243 * @c: UBIFS file-system description object
1244 * @zbr1: first zbranch
1245 * @zbr2: following zbranch
1247 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1248 * names of the direntries/xentries which are referred by the keys. This
1249 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1250 * sure the name of direntry/xentry referred by @zbr1 is less than
1251 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1252 * and a negative error code in case of failure.
1254 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1255 struct ubifs_zbranch
*zbr2
)
1257 int err
, nlen1
, nlen2
, cmp
;
1258 struct ubifs_dent_node
*dent1
, *dent2
;
1259 union ubifs_key key
;
1260 char key_buf
[DBG_KEY_BUF_LEN
];
1262 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1263 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1266 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1272 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1275 err
= ubifs_validate_entry(c
, dent1
);
1279 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1282 err
= ubifs_validate_entry(c
, dent2
);
1286 /* Make sure node keys are the same as in zbranch */
1288 key_read(c
, &dent1
->key
, &key
);
1289 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1290 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1291 zbr1
->offs
, dbg_snprintf_key(c
, &key
, key_buf
,
1293 dbg_err("but it should have key %s according to tnc",
1294 dbg_snprintf_key(c
, &zbr1
->key
, key_buf
,
1296 dbg_dump_node(c
, dent1
);
1300 key_read(c
, &dent2
->key
, &key
);
1301 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1302 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1303 zbr1
->offs
, dbg_snprintf_key(c
, &key
, key_buf
,
1305 dbg_err("but it should have key %s according to tnc",
1306 dbg_snprintf_key(c
, &zbr2
->key
, key_buf
,
1308 dbg_dump_node(c
, dent2
);
1312 nlen1
= le16_to_cpu(dent1
->nlen
);
1313 nlen2
= le16_to_cpu(dent2
->nlen
);
1315 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1316 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1320 if (cmp
== 0 && nlen1
== nlen2
)
1321 dbg_err("2 xent/dent nodes with the same name");
1323 dbg_err("bad order of colliding key %s",
1324 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
1326 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1327 dbg_dump_node(c
, dent1
);
1328 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1329 dbg_dump_node(c
, dent2
);
1338 * dbg_check_znode - check if znode is all right.
1339 * @c: UBIFS file-system description object
1340 * @zbr: zbranch which points to this znode
1342 * This function makes sure that znode referred to by @zbr is all right.
1343 * Returns zero if it is, and %-EINVAL if it is not.
1345 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1347 struct ubifs_znode
*znode
= zbr
->znode
;
1348 struct ubifs_znode
*zp
= znode
->parent
;
1351 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1355 if (znode
->level
< 0) {
1359 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1365 /* Only dirty zbranch may have no on-flash nodes */
1366 if (!ubifs_zn_dirty(znode
)) {
1371 if (ubifs_zn_dirty(znode
)) {
1373 * If znode is dirty, its parent has to be dirty as well. The
1374 * order of the operation is important, so we have to have
1378 if (zp
&& !ubifs_zn_dirty(zp
)) {
1380 * The dirty flag is atomic and is cleared outside the
1381 * TNC mutex, so znode's dirty flag may now have
1382 * been cleared. The child is always cleared before the
1383 * parent, so we just need to check again.
1386 if (ubifs_zn_dirty(znode
)) {
1394 const union ubifs_key
*min
, *max
;
1396 if (znode
->level
!= zp
->level
- 1) {
1401 /* Make sure the 'parent' pointer in our znode is correct */
1402 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1404 /* This zbranch does not exist in the parent */
1409 if (znode
->iip
>= zp
->child_cnt
) {
1414 if (znode
->iip
!= n
) {
1415 /* This may happen only in case of collisions */
1416 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1417 &zp
->zbranch
[znode
->iip
].key
)) {
1425 * Make sure that the first key in our znode is greater than or
1426 * equal to the key in the pointing zbranch.
1429 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1435 if (n
+ 1 < zp
->child_cnt
) {
1436 max
= &zp
->zbranch
[n
+ 1].key
;
1439 * Make sure the last key in our znode is less or
1440 * equivalent than the key in the zbranch which goes
1441 * after our pointing zbranch.
1443 cmp
= keys_cmp(c
, max
,
1444 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1451 /* This may only be root znode */
1452 if (zbr
!= &c
->zroot
) {
1459 * Make sure that next key is greater or equivalent then the previous
1462 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1463 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1464 &znode
->zbranch
[n
].key
);
1470 /* This can only be keys with colliding hash */
1471 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1476 if (znode
->level
!= 0 || c
->replaying
)
1480 * Colliding keys should follow binary order of
1481 * corresponding xentry/dentry names.
1483 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1484 &znode
->zbranch
[n
]);
1494 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1495 if (!znode
->zbranch
[n
].znode
&&
1496 (znode
->zbranch
[n
].lnum
== 0 ||
1497 znode
->zbranch
[n
].len
== 0)) {
1502 if (znode
->zbranch
[n
].lnum
!= 0 &&
1503 znode
->zbranch
[n
].len
== 0) {
1508 if (znode
->zbranch
[n
].lnum
== 0 &&
1509 znode
->zbranch
[n
].len
!= 0) {
1514 if (znode
->zbranch
[n
].lnum
== 0 &&
1515 znode
->zbranch
[n
].offs
!= 0) {
1520 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1521 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1530 ubifs_err("failed, error %d", err
);
1531 ubifs_msg("dump of the znode");
1532 dbg_dump_znode(c
, znode
);
1534 ubifs_msg("dump of the parent znode");
1535 dbg_dump_znode(c
, zp
);
1542 * dbg_check_tnc - check TNC tree.
1543 * @c: UBIFS file-system description object
1544 * @extra: do extra checks that are possible at start commit
1546 * This function traverses whole TNC tree and checks every znode. Returns zero
1547 * if everything is all right and %-EINVAL if something is wrong with TNC.
1549 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1551 struct ubifs_znode
*znode
;
1552 long clean_cnt
= 0, dirty_cnt
= 0;
1555 if (!dbg_is_chk_index(c
))
1558 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1559 if (!c
->zroot
.znode
)
1562 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1564 struct ubifs_znode
*prev
;
1565 struct ubifs_zbranch
*zbr
;
1570 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1572 err
= dbg_check_znode(c
, zbr
);
1577 if (ubifs_zn_dirty(znode
))
1584 znode
= ubifs_tnc_postorder_next(znode
);
1589 * If the last key of this znode is equivalent to the first key
1590 * of the next znode (collision), then check order of the keys.
1592 last
= prev
->child_cnt
- 1;
1593 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1594 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1595 &znode
->zbranch
[0].key
)) {
1596 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1597 &znode
->zbranch
[0]);
1601 ubifs_msg("first znode");
1602 dbg_dump_znode(c
, prev
);
1603 ubifs_msg("second znode");
1604 dbg_dump_znode(c
, znode
);
1611 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1612 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1613 atomic_long_read(&c
->clean_zn_cnt
),
1617 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1618 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1619 atomic_long_read(&c
->dirty_zn_cnt
),
1629 * dbg_walk_index - walk the on-flash index.
1630 * @c: UBIFS file-system description object
1631 * @leaf_cb: called for each leaf node
1632 * @znode_cb: called for each indexing node
1633 * @priv: private data which is passed to callbacks
1635 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1636 * node and @znode_cb for each indexing node. Returns zero in case of success
1637 * and a negative error code in case of failure.
1639 * It would be better if this function removed every znode it pulled to into
1640 * the TNC, so that the behavior more closely matched the non-debugging
1643 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1644 dbg_znode_callback znode_cb
, void *priv
)
1647 struct ubifs_zbranch
*zbr
;
1648 struct ubifs_znode
*znode
, *child
;
1650 mutex_lock(&c
->tnc_mutex
);
1651 /* If the root indexing node is not in TNC - pull it */
1652 if (!c
->zroot
.znode
) {
1653 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1654 if (IS_ERR(c
->zroot
.znode
)) {
1655 err
= PTR_ERR(c
->zroot
.znode
);
1656 c
->zroot
.znode
= NULL
;
1662 * We are going to traverse the indexing tree in the postorder manner.
1663 * Go down and find the leftmost indexing node where we are going to
1666 znode
= c
->zroot
.znode
;
1667 while (znode
->level
> 0) {
1668 zbr
= &znode
->zbranch
[0];
1671 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1672 if (IS_ERR(child
)) {
1673 err
= PTR_ERR(child
);
1682 /* Iterate over all indexing nodes */
1689 err
= znode_cb(c
, znode
, priv
);
1691 ubifs_err("znode checking function returned "
1693 dbg_dump_znode(c
, znode
);
1697 if (leaf_cb
&& znode
->level
== 0) {
1698 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1699 zbr
= &znode
->zbranch
[idx
];
1700 err
= leaf_cb(c
, zbr
, priv
);
1702 ubifs_err("leaf checking function "
1703 "returned error %d, for leaf "
1705 err
, zbr
->lnum
, zbr
->offs
);
1714 idx
= znode
->iip
+ 1;
1715 znode
= znode
->parent
;
1716 if (idx
< znode
->child_cnt
) {
1717 /* Switch to the next index in the parent */
1718 zbr
= &znode
->zbranch
[idx
];
1721 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1722 if (IS_ERR(child
)) {
1723 err
= PTR_ERR(child
);
1731 * This is the last child, switch to the parent and
1736 /* Go to the lowest leftmost znode in the new sub-tree */
1737 while (znode
->level
> 0) {
1738 zbr
= &znode
->zbranch
[0];
1741 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1742 if (IS_ERR(child
)) {
1743 err
= PTR_ERR(child
);
1752 mutex_unlock(&c
->tnc_mutex
);
1757 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1760 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1761 dbg_dump_znode(c
, znode
);
1763 mutex_unlock(&c
->tnc_mutex
);
1768 * add_size - add znode size to partially calculated index size.
1769 * @c: UBIFS file-system description object
1770 * @znode: znode to add size for
1771 * @priv: partially calculated index size
1773 * This is a helper function for 'dbg_check_idx_size()' which is called for
1774 * every indexing node and adds its size to the 'long long' variable pointed to
1777 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1779 long long *idx_size
= priv
;
1782 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1783 add
= ALIGN(add
, 8);
1789 * dbg_check_idx_size - check index size.
1790 * @c: UBIFS file-system description object
1791 * @idx_size: size to check
1793 * This function walks the UBIFS index, calculates its size and checks that the
1794 * size is equivalent to @idx_size. Returns zero in case of success and a
1795 * negative error code in case of failure.
1797 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1802 if (!dbg_is_chk_index(c
))
1805 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1807 ubifs_err("error %d while walking the index", err
);
1811 if (calc
!= idx_size
) {
1812 ubifs_err("index size check failed: calculated size is %lld, "
1813 "should be %lld", calc
, idx_size
);
1822 * struct fsck_inode - information about an inode used when checking the file-system.
1823 * @rb: link in the RB-tree of inodes
1824 * @inum: inode number
1825 * @mode: inode type, permissions, etc
1826 * @nlink: inode link count
1827 * @xattr_cnt: count of extended attributes
1828 * @references: how many directory/xattr entries refer this inode (calculated
1829 * while walking the index)
1830 * @calc_cnt: for directory inode count of child directories
1831 * @size: inode size (read from on-flash inode)
1832 * @xattr_sz: summary size of all extended attributes (read from on-flash
1834 * @calc_sz: for directories calculated directory size
1835 * @calc_xcnt: count of extended attributes
1836 * @calc_xsz: calculated summary size of all extended attributes
1837 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1838 * inode (read from on-flash inode)
1839 * @calc_xnms: calculated sum of lengths of all extended attribute names
1846 unsigned int xattr_cnt
;
1850 unsigned int xattr_sz
;
1852 long long calc_xcnt
;
1854 unsigned int xattr_nms
;
1855 long long calc_xnms
;
1859 * struct fsck_data - private FS checking information.
1860 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1863 struct rb_root inodes
;
1867 * add_inode - add inode information to RB-tree of inodes.
1868 * @c: UBIFS file-system description object
1869 * @fsckd: FS checking information
1870 * @ino: raw UBIFS inode to add
1872 * This is a helper function for 'check_leaf()' which adds information about
1873 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1874 * case of success and a negative error code in case of failure.
1876 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1877 struct fsck_data
*fsckd
,
1878 struct ubifs_ino_node
*ino
)
1880 struct rb_node
**p
, *parent
= NULL
;
1881 struct fsck_inode
*fscki
;
1882 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1883 struct inode
*inode
;
1884 struct ubifs_inode
*ui
;
1886 p
= &fsckd
->inodes
.rb_node
;
1889 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1890 if (inum
< fscki
->inum
)
1892 else if (inum
> fscki
->inum
)
1893 p
= &(*p
)->rb_right
;
1898 if (inum
> c
->highest_inum
) {
1899 ubifs_err("too high inode number, max. is %lu",
1900 (unsigned long)c
->highest_inum
);
1901 return ERR_PTR(-EINVAL
);
1904 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1906 return ERR_PTR(-ENOMEM
);
1908 inode
= ilookup(c
->vfs_sb
, inum
);
1912 * If the inode is present in the VFS inode cache, use it instead of
1913 * the on-flash inode which might be out-of-date. E.g., the size might
1914 * be out-of-date. If we do not do this, the following may happen, for
1916 * 1. A power cut happens
1917 * 2. We mount the file-system R/O, the replay process fixes up the
1918 * inode size in the VFS cache, but on on-flash.
1919 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1923 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1924 fscki
->size
= le64_to_cpu(ino
->size
);
1925 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1926 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1927 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1928 fscki
->mode
= le32_to_cpu(ino
->mode
);
1930 ui
= ubifs_inode(inode
);
1931 fscki
->nlink
= inode
->i_nlink
;
1932 fscki
->size
= inode
->i_size
;
1933 fscki
->xattr_cnt
= ui
->xattr_cnt
;
1934 fscki
->xattr_sz
= ui
->xattr_size
;
1935 fscki
->xattr_nms
= ui
->xattr_names
;
1936 fscki
->mode
= inode
->i_mode
;
1940 if (S_ISDIR(fscki
->mode
)) {
1941 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1942 fscki
->calc_cnt
= 2;
1945 rb_link_node(&fscki
->rb
, parent
, p
);
1946 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1952 * search_inode - search inode in the RB-tree of inodes.
1953 * @fsckd: FS checking information
1954 * @inum: inode number to search
1956 * This is a helper function for 'check_leaf()' which searches inode @inum in
1957 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1958 * the inode was not found.
1960 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1963 struct fsck_inode
*fscki
;
1965 p
= fsckd
->inodes
.rb_node
;
1967 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1968 if (inum
< fscki
->inum
)
1970 else if (inum
> fscki
->inum
)
1979 * read_add_inode - read inode node and add it to RB-tree of inodes.
1980 * @c: UBIFS file-system description object
1981 * @fsckd: FS checking information
1982 * @inum: inode number to read
1984 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1985 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1986 * information pointer in case of success and a negative error code in case of
1989 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1990 struct fsck_data
*fsckd
, ino_t inum
)
1993 union ubifs_key key
;
1994 struct ubifs_znode
*znode
;
1995 struct ubifs_zbranch
*zbr
;
1996 struct ubifs_ino_node
*ino
;
1997 struct fsck_inode
*fscki
;
1999 fscki
= search_inode(fsckd
, inum
);
2003 ino_key_init(c
, &key
, inum
);
2004 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2006 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
2007 return ERR_PTR(-ENOENT
);
2008 } else if (err
< 0) {
2009 ubifs_err("error %d while looking up inode %lu",
2010 err
, (unsigned long)inum
);
2011 return ERR_PTR(err
);
2014 zbr
= &znode
->zbranch
[n
];
2015 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
2016 ubifs_err("bad node %lu node length %d",
2017 (unsigned long)inum
, zbr
->len
);
2018 return ERR_PTR(-EINVAL
);
2021 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2023 return ERR_PTR(-ENOMEM
);
2025 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2027 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2028 zbr
->lnum
, zbr
->offs
, err
);
2030 return ERR_PTR(err
);
2033 fscki
= add_inode(c
, fsckd
, ino
);
2035 if (IS_ERR(fscki
)) {
2036 ubifs_err("error %ld while adding inode %lu node",
2037 PTR_ERR(fscki
), (unsigned long)inum
);
2045 * check_leaf - check leaf node.
2046 * @c: UBIFS file-system description object
2047 * @zbr: zbranch of the leaf node to check
2048 * @priv: FS checking information
2050 * This is a helper function for 'dbg_check_filesystem()' which is called for
2051 * every single leaf node while walking the indexing tree. It checks that the
2052 * leaf node referred from the indexing tree exists, has correct CRC, and does
2053 * some other basic validation. This function is also responsible for building
2054 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2055 * calculates reference count, size, etc for each inode in order to later
2056 * compare them to the information stored inside the inodes and detect possible
2057 * inconsistencies. Returns zero in case of success and a negative error code
2058 * in case of failure.
2060 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
2065 struct ubifs_ch
*ch
;
2066 int err
, type
= key_type(c
, &zbr
->key
);
2067 struct fsck_inode
*fscki
;
2069 if (zbr
->len
< UBIFS_CH_SZ
) {
2070 ubifs_err("bad leaf length %d (LEB %d:%d)",
2071 zbr
->len
, zbr
->lnum
, zbr
->offs
);
2075 node
= kmalloc(zbr
->len
, GFP_NOFS
);
2079 err
= ubifs_tnc_read_node(c
, zbr
, node
);
2081 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2082 zbr
->lnum
, zbr
->offs
, err
);
2086 /* If this is an inode node, add it to RB-tree of inodes */
2087 if (type
== UBIFS_INO_KEY
) {
2088 fscki
= add_inode(c
, priv
, node
);
2089 if (IS_ERR(fscki
)) {
2090 err
= PTR_ERR(fscki
);
2091 ubifs_err("error %d while adding inode node", err
);
2097 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
2098 type
!= UBIFS_DATA_KEY
) {
2099 ubifs_err("unexpected node type %d at LEB %d:%d",
2100 type
, zbr
->lnum
, zbr
->offs
);
2106 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
2107 ubifs_err("too high sequence number, max. is %llu",
2113 if (type
== UBIFS_DATA_KEY
) {
2115 struct ubifs_data_node
*dn
= node
;
2118 * Search the inode node this data node belongs to and insert
2119 * it to the RB-tree of inodes.
2121 inum
= key_inum_flash(c
, &dn
->key
);
2122 fscki
= read_add_inode(c
, priv
, inum
);
2123 if (IS_ERR(fscki
)) {
2124 err
= PTR_ERR(fscki
);
2125 ubifs_err("error %d while processing data node and "
2126 "trying to find inode node %lu",
2127 err
, (unsigned long)inum
);
2131 /* Make sure the data node is within inode size */
2132 blk_offs
= key_block_flash(c
, &dn
->key
);
2133 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
2134 blk_offs
+= le32_to_cpu(dn
->size
);
2135 if (blk_offs
> fscki
->size
) {
2136 ubifs_err("data node at LEB %d:%d is not within inode "
2137 "size %lld", zbr
->lnum
, zbr
->offs
,
2144 struct ubifs_dent_node
*dent
= node
;
2145 struct fsck_inode
*fscki1
;
2147 err
= ubifs_validate_entry(c
, dent
);
2152 * Search the inode node this entry refers to and the parent
2153 * inode node and insert them to the RB-tree of inodes.
2155 inum
= le64_to_cpu(dent
->inum
);
2156 fscki
= read_add_inode(c
, priv
, inum
);
2157 if (IS_ERR(fscki
)) {
2158 err
= PTR_ERR(fscki
);
2159 ubifs_err("error %d while processing entry node and "
2160 "trying to find inode node %lu",
2161 err
, (unsigned long)inum
);
2165 /* Count how many direntries or xentries refers this inode */
2166 fscki
->references
+= 1;
2168 inum
= key_inum_flash(c
, &dent
->key
);
2169 fscki1
= read_add_inode(c
, priv
, inum
);
2170 if (IS_ERR(fscki1
)) {
2171 err
= PTR_ERR(fscki1
);
2172 ubifs_err("error %d while processing entry node and "
2173 "trying to find parent inode node %lu",
2174 err
, (unsigned long)inum
);
2178 nlen
= le16_to_cpu(dent
->nlen
);
2179 if (type
== UBIFS_XENT_KEY
) {
2180 fscki1
->calc_xcnt
+= 1;
2181 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2182 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2183 fscki1
->calc_xnms
+= nlen
;
2185 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2186 if (dent
->type
== UBIFS_ITYPE_DIR
)
2187 fscki1
->calc_cnt
+= 1;
2196 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2197 dbg_dump_node(c
, node
);
2204 * free_inodes - free RB-tree of inodes.
2205 * @fsckd: FS checking information
2207 static void free_inodes(struct fsck_data
*fsckd
)
2209 struct rb_node
*this = fsckd
->inodes
.rb_node
;
2210 struct fsck_inode
*fscki
;
2214 this = this->rb_left
;
2215 else if (this->rb_right
)
2216 this = this->rb_right
;
2218 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2219 this = rb_parent(this);
2221 if (this->rb_left
== &fscki
->rb
)
2222 this->rb_left
= NULL
;
2224 this->rb_right
= NULL
;
2232 * check_inodes - checks all inodes.
2233 * @c: UBIFS file-system description object
2234 * @fsckd: FS checking information
2236 * This is a helper function for 'dbg_check_filesystem()' which walks the
2237 * RB-tree of inodes after the index scan has been finished, and checks that
2238 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2239 * %-EINVAL if not, and a negative error code in case of failure.
2241 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2244 union ubifs_key key
;
2245 struct ubifs_znode
*znode
;
2246 struct ubifs_zbranch
*zbr
;
2247 struct ubifs_ino_node
*ino
;
2248 struct fsck_inode
*fscki
;
2249 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2252 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2253 this = rb_next(this);
2255 if (S_ISDIR(fscki
->mode
)) {
2257 * Directories have to have exactly one reference (they
2258 * cannot have hardlinks), although root inode is an
2261 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2262 fscki
->references
!= 1) {
2263 ubifs_err("directory inode %lu has %d "
2264 "direntries which refer it, but "
2266 (unsigned long)fscki
->inum
,
2270 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2271 fscki
->references
!= 0) {
2272 ubifs_err("root inode %lu has non-zero (%d) "
2273 "direntries which refer it",
2274 (unsigned long)fscki
->inum
,
2278 if (fscki
->calc_sz
!= fscki
->size
) {
2279 ubifs_err("directory inode %lu size is %lld, "
2280 "but calculated size is %lld",
2281 (unsigned long)fscki
->inum
,
2282 fscki
->size
, fscki
->calc_sz
);
2285 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2286 ubifs_err("directory inode %lu nlink is %d, "
2287 "but calculated nlink is %d",
2288 (unsigned long)fscki
->inum
,
2289 fscki
->nlink
, fscki
->calc_cnt
);
2293 if (fscki
->references
!= fscki
->nlink
) {
2294 ubifs_err("inode %lu nlink is %d, but "
2295 "calculated nlink is %d",
2296 (unsigned long)fscki
->inum
,
2297 fscki
->nlink
, fscki
->references
);
2301 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2302 ubifs_err("inode %lu has xattr size %u, but "
2303 "calculated size is %lld",
2304 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2308 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2309 ubifs_err("inode %lu has %u xattrs, but "
2310 "calculated count is %lld",
2311 (unsigned long)fscki
->inum
,
2312 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2315 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2316 ubifs_err("inode %lu has xattr names' size %u, but "
2317 "calculated names' size is %lld",
2318 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2327 /* Read the bad inode and dump it */
2328 ino_key_init(c
, &key
, fscki
->inum
);
2329 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2331 ubifs_err("inode %lu not found in index",
2332 (unsigned long)fscki
->inum
);
2334 } else if (err
< 0) {
2335 ubifs_err("error %d while looking up inode %lu",
2336 err
, (unsigned long)fscki
->inum
);
2340 zbr
= &znode
->zbranch
[n
];
2341 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2345 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2347 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2348 zbr
->lnum
, zbr
->offs
, err
);
2353 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2354 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2355 dbg_dump_node(c
, ino
);
2361 * dbg_check_filesystem - check the file-system.
2362 * @c: UBIFS file-system description object
2364 * This function checks the file system, namely:
2365 * o makes sure that all leaf nodes exist and their CRCs are correct;
2366 * o makes sure inode nlink, size, xattr size/count are correct (for all
2369 * The function reads whole indexing tree and all nodes, so it is pretty
2370 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2371 * not, and a negative error code in case of failure.
2373 int dbg_check_filesystem(struct ubifs_info
*c
)
2376 struct fsck_data fsckd
;
2378 if (!dbg_is_chk_fs(c
))
2381 fsckd
.inodes
= RB_ROOT
;
2382 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2386 err
= check_inodes(c
, &fsckd
);
2390 free_inodes(&fsckd
);
2394 ubifs_err("file-system check failed with error %d", err
);
2396 free_inodes(&fsckd
);
2401 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2402 * @c: UBIFS file-system description object
2403 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2405 * This function returns zero if the list of data nodes is sorted correctly,
2406 * and %-EINVAL if not.
2408 int dbg_check_data_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2410 struct list_head
*cur
;
2411 struct ubifs_scan_node
*sa
, *sb
;
2413 if (!dbg_is_chk_gen(c
))
2416 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2418 uint32_t blka
, blkb
;
2421 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2422 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2424 if (sa
->type
!= UBIFS_DATA_NODE
) {
2425 ubifs_err("bad node type %d", sa
->type
);
2426 dbg_dump_node(c
, sa
->node
);
2429 if (sb
->type
!= UBIFS_DATA_NODE
) {
2430 ubifs_err("bad node type %d", sb
->type
);
2431 dbg_dump_node(c
, sb
->node
);
2435 inuma
= key_inum(c
, &sa
->key
);
2436 inumb
= key_inum(c
, &sb
->key
);
2440 if (inuma
> inumb
) {
2441 ubifs_err("larger inum %lu goes before inum %lu",
2442 (unsigned long)inuma
, (unsigned long)inumb
);
2446 blka
= key_block(c
, &sa
->key
);
2447 blkb
= key_block(c
, &sb
->key
);
2450 ubifs_err("larger block %u goes before %u", blka
, blkb
);
2454 ubifs_err("two data nodes for the same block");
2462 dbg_dump_node(c
, sa
->node
);
2463 dbg_dump_node(c
, sb
->node
);
2468 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2469 * @c: UBIFS file-system description object
2470 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2472 * This function returns zero if the list of non-data nodes is sorted correctly,
2473 * and %-EINVAL if not.
2475 int dbg_check_nondata_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2477 struct list_head
*cur
;
2478 struct ubifs_scan_node
*sa
, *sb
;
2480 if (!dbg_is_chk_gen(c
))
2483 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2485 uint32_t hasha
, hashb
;
2488 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2489 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2491 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2492 sa
->type
!= UBIFS_XENT_NODE
) {
2493 ubifs_err("bad node type %d", sa
->type
);
2494 dbg_dump_node(c
, sa
->node
);
2497 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2498 sa
->type
!= UBIFS_XENT_NODE
) {
2499 ubifs_err("bad node type %d", sb
->type
);
2500 dbg_dump_node(c
, sb
->node
);
2504 if (sa
->type
!= UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2505 ubifs_err("non-inode node goes before inode node");
2509 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
!= UBIFS_INO_NODE
)
2512 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2513 /* Inode nodes are sorted in descending size order */
2514 if (sa
->len
< sb
->len
) {
2515 ubifs_err("smaller inode node goes first");
2522 * This is either a dentry or xentry, which should be sorted in
2523 * ascending (parent ino, hash) order.
2525 inuma
= key_inum(c
, &sa
->key
);
2526 inumb
= key_inum(c
, &sb
->key
);
2530 if (inuma
> inumb
) {
2531 ubifs_err("larger inum %lu goes before inum %lu",
2532 (unsigned long)inuma
, (unsigned long)inumb
);
2536 hasha
= key_block(c
, &sa
->key
);
2537 hashb
= key_block(c
, &sb
->key
);
2539 if (hasha
> hashb
) {
2540 ubifs_err("larger hash %u goes before %u",
2549 ubifs_msg("dumping first node");
2550 dbg_dump_node(c
, sa
->node
);
2551 ubifs_msg("dumping second node");
2552 dbg_dump_node(c
, sb
->node
);
2557 static inline int chance(unsigned int n
, unsigned int out_of
)
2559 return !!((random32() % out_of
) + 1 <= n
);
2563 static int power_cut_emulated(struct ubifs_info
*c
, int lnum
, int write
)
2565 struct ubifs_debug_info
*d
= c
->dbg
;
2567 ubifs_assert(dbg_is_tst_rcvry(c
));
2570 /* First call - decide delay to the power cut */
2572 unsigned long delay
;
2576 /* Fail withing 1 minute */
2577 delay
= random32() % 60000;
2578 d
->pc_timeout
= jiffies
;
2579 d
->pc_timeout
+= msecs_to_jiffies(delay
);
2580 ubifs_warn("failing after %lums", delay
);
2583 delay
= random32() % 10000;
2584 /* Fail within 10000 operations */
2585 d
->pc_cnt_max
= delay
;
2586 ubifs_warn("failing after %lu calls", delay
);
2593 /* Determine if failure delay has expired */
2594 if (d
->pc_delay
== 1 && time_before(jiffies
, d
->pc_timeout
))
2596 if (d
->pc_delay
== 2 && d
->pc_cnt
++ < d
->pc_cnt_max
)
2599 if (lnum
== UBIFS_SB_LNUM
) {
2600 if (write
&& chance(1, 2))
2604 ubifs_warn("failing in super block LEB %d", lnum
);
2605 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2608 ubifs_warn("failing in master LEB %d", lnum
);
2609 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2610 if (write
&& chance(99, 100))
2612 if (chance(399, 400))
2614 ubifs_warn("failing in log LEB %d", lnum
);
2615 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2616 if (write
&& chance(7, 8))
2620 ubifs_warn("failing in LPT LEB %d", lnum
);
2621 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2622 if (write
&& chance(1, 2))
2626 ubifs_warn("failing in orphan LEB %d", lnum
);
2627 } else if (lnum
== c
->ihead_lnum
) {
2628 if (chance(99, 100))
2630 ubifs_warn("failing in index head LEB %d", lnum
);
2631 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2634 ubifs_warn("failing in GC head LEB %d", lnum
);
2635 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2636 !ubifs_search_bud(c
, lnum
)) {
2639 ubifs_warn("failing in non-bud LEB %d", lnum
);
2640 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2641 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2642 if (chance(999, 1000))
2644 ubifs_warn("failing in bud LEB %d commit running", lnum
);
2646 if (chance(9999, 10000))
2648 ubifs_warn("failing in bud LEB %d commit not running", lnum
);
2652 ubifs_warn("========== Power cut emulated ==========");
2657 static void cut_data(const void *buf
, unsigned int len
)
2659 unsigned int from
, to
, i
, ffs
= chance(1, 2);
2660 unsigned char *p
= (void *)buf
;
2662 from
= random32() % (len
+ 1);
2664 to
= random32() % (len
- from
+ 1);
2669 ubifs_warn("filled bytes %u-%u with %s", from
, to
- 1,
2670 ffs
? "0xFFs" : "random data");
2673 for (i
= from
; i
< to
; i
++)
2676 for (i
= from
; i
< to
; i
++)
2677 p
[i
] = random32() % 0x100;
2680 int dbg_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
,
2681 int offs
, int len
, int dtype
)
2685 if (c
->dbg
->pc_happened
)
2688 failing
= power_cut_emulated(c
, lnum
, 1);
2691 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
, dtype
);
2699 int dbg_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
,
2704 if (c
->dbg
->pc_happened
)
2706 if (power_cut_emulated(c
, lnum
, 1))
2708 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
, dtype
);
2711 if (power_cut_emulated(c
, lnum
, 1))
2716 int dbg_leb_unmap(struct ubifs_info
*c
, int lnum
)
2720 if (c
->dbg
->pc_happened
)
2722 if (power_cut_emulated(c
, lnum
, 0))
2724 err
= ubi_leb_unmap(c
->ubi
, lnum
);
2727 if (power_cut_emulated(c
, lnum
, 0))
2732 int dbg_leb_map(struct ubifs_info
*c
, int lnum
, int dtype
)
2736 if (c
->dbg
->pc_happened
)
2738 if (power_cut_emulated(c
, lnum
, 0))
2740 err
= ubi_leb_map(c
->ubi
, lnum
, dtype
);
2743 if (power_cut_emulated(c
, lnum
, 0))
2749 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2750 * contain the stuff specific to particular file-system mounts.
2752 static struct dentry
*dfs_rootdir
;
2754 static int dfs_file_open(struct inode
*inode
, struct file
*file
)
2756 file
->private_data
= inode
->i_private
;
2757 return nonseekable_open(inode
, file
);
2761 * provide_user_output - provide output to the user reading a debugfs file.
2762 * @val: boolean value for the answer
2763 * @u: the buffer to store the answer at
2764 * @count: size of the buffer
2765 * @ppos: position in the @u output buffer
2767 * This is a simple helper function which stores @val boolean value in the user
2768 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2769 * bytes written to @u in case of success and a negative error code in case of
2772 static int provide_user_output(int val
, char __user
*u
, size_t count
,
2784 return simple_read_from_buffer(u
, count
, ppos
, buf
, 2);
2787 static ssize_t
dfs_file_read(struct file
*file
, char __user
*u
, size_t count
,
2790 struct dentry
*dent
= file
->f_path
.dentry
;
2791 struct ubifs_info
*c
= file
->private_data
;
2792 struct ubifs_debug_info
*d
= c
->dbg
;
2795 if (dent
== d
->dfs_chk_gen
)
2797 else if (dent
== d
->dfs_chk_index
)
2799 else if (dent
== d
->dfs_chk_orph
)
2801 else if (dent
== d
->dfs_chk_lprops
)
2802 val
= d
->chk_lprops
;
2803 else if (dent
== d
->dfs_chk_fs
)
2805 else if (dent
== d
->dfs_tst_rcvry
)
2810 return provide_user_output(val
, u
, count
, ppos
);
2814 * interpret_user_input - interpret user debugfs file input.
2815 * @u: user-provided buffer with the input
2816 * @count: buffer size
2818 * This is a helper function which interpret user input to a boolean UBIFS
2819 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2820 * in case of failure.
2822 static int interpret_user_input(const char __user
*u
, size_t count
)
2827 buf_size
= min_t(size_t, count
, (sizeof(buf
) - 1));
2828 if (copy_from_user(buf
, u
, buf_size
))
2833 else if (buf
[0] == '0')
2839 static ssize_t
dfs_file_write(struct file
*file
, const char __user
*u
,
2840 size_t count
, loff_t
*ppos
)
2842 struct ubifs_info
*c
= file
->private_data
;
2843 struct ubifs_debug_info
*d
= c
->dbg
;
2844 struct dentry
*dent
= file
->f_path
.dentry
;
2848 * TODO: this is racy - the file-system might have already been
2849 * unmounted and we'd oops in this case. The plan is to fix it with
2850 * help of 'iterate_supers_type()' which we should have in v3.0: when
2851 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2852 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2853 * superblocks and fine the one with the same UUID, and take the
2856 * The other way to go suggested by Al Viro is to create a separate
2857 * 'ubifs-debug' file-system instead.
2859 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
) {
2863 if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2864 dbg_dump_budg(c
, &c
->bi
);
2867 if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2868 mutex_lock(&c
->tnc_mutex
);
2870 mutex_unlock(&c
->tnc_mutex
);
2874 val
= interpret_user_input(u
, count
);
2878 if (dent
== d
->dfs_chk_gen
)
2880 else if (dent
== d
->dfs_chk_index
)
2882 else if (dent
== d
->dfs_chk_orph
)
2884 else if (dent
== d
->dfs_chk_lprops
)
2885 d
->chk_lprops
= val
;
2886 else if (dent
== d
->dfs_chk_fs
)
2888 else if (dent
== d
->dfs_tst_rcvry
)
2896 static const struct file_operations dfs_fops
= {
2897 .open
= dfs_file_open
,
2898 .read
= dfs_file_read
,
2899 .write
= dfs_file_write
,
2900 .owner
= THIS_MODULE
,
2901 .llseek
= no_llseek
,
2905 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2906 * @c: UBIFS file-system description object
2908 * This function creates all debugfs files for this instance of UBIFS. Returns
2909 * zero in case of success and a negative error code in case of failure.
2911 * Note, the only reason we have not merged this function with the
2912 * 'ubifs_debugging_init()' function is because it is better to initialize
2913 * debugfs interfaces at the very end of the mount process, and remove them at
2914 * the very beginning of the mount process.
2916 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2920 struct dentry
*dent
;
2921 struct ubifs_debug_info
*d
= c
->dbg
;
2923 n
= snprintf(d
->dfs_dir_name
, UBIFS_DFS_DIR_LEN
+ 1, UBIFS_DFS_DIR_NAME
,
2924 c
->vi
.ubi_num
, c
->vi
.vol_id
);
2925 if (n
== UBIFS_DFS_DIR_LEN
) {
2926 /* The array size is too small */
2927 fname
= UBIFS_DFS_DIR_NAME
;
2928 dent
= ERR_PTR(-EINVAL
);
2932 fname
= d
->dfs_dir_name
;
2933 dent
= debugfs_create_dir(fname
, dfs_rootdir
);
2934 if (IS_ERR_OR_NULL(dent
))
2938 fname
= "dump_lprops";
2939 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2940 if (IS_ERR_OR_NULL(dent
))
2942 d
->dfs_dump_lprops
= dent
;
2944 fname
= "dump_budg";
2945 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2946 if (IS_ERR_OR_NULL(dent
))
2948 d
->dfs_dump_budg
= dent
;
2951 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2952 if (IS_ERR_OR_NULL(dent
))
2954 d
->dfs_dump_tnc
= dent
;
2956 fname
= "chk_general";
2957 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2959 if (IS_ERR_OR_NULL(dent
))
2961 d
->dfs_chk_gen
= dent
;
2963 fname
= "chk_index";
2964 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2966 if (IS_ERR_OR_NULL(dent
))
2968 d
->dfs_chk_index
= dent
;
2970 fname
= "chk_orphans";
2971 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2973 if (IS_ERR_OR_NULL(dent
))
2975 d
->dfs_chk_orph
= dent
;
2977 fname
= "chk_lprops";
2978 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2980 if (IS_ERR_OR_NULL(dent
))
2982 d
->dfs_chk_lprops
= dent
;
2985 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2987 if (IS_ERR_OR_NULL(dent
))
2989 d
->dfs_chk_fs
= dent
;
2991 fname
= "tst_recovery";
2992 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2994 if (IS_ERR_OR_NULL(dent
))
2996 d
->dfs_tst_rcvry
= dent
;
3001 debugfs_remove_recursive(d
->dfs_dir
);
3003 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
3004 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3010 * dbg_debugfs_exit_fs - remove all debugfs files.
3011 * @c: UBIFS file-system description object
3013 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
3015 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
3018 struct ubifs_global_debug_info ubifs_dbg
;
3020 static struct dentry
*dfs_chk_gen
;
3021 static struct dentry
*dfs_chk_index
;
3022 static struct dentry
*dfs_chk_orph
;
3023 static struct dentry
*dfs_chk_lprops
;
3024 static struct dentry
*dfs_chk_fs
;
3025 static struct dentry
*dfs_tst_rcvry
;
3027 static ssize_t
dfs_global_file_read(struct file
*file
, char __user
*u
,
3028 size_t count
, loff_t
*ppos
)
3030 struct dentry
*dent
= file
->f_path
.dentry
;
3033 if (dent
== dfs_chk_gen
)
3034 val
= ubifs_dbg
.chk_gen
;
3035 else if (dent
== dfs_chk_index
)
3036 val
= ubifs_dbg
.chk_index
;
3037 else if (dent
== dfs_chk_orph
)
3038 val
= ubifs_dbg
.chk_orph
;
3039 else if (dent
== dfs_chk_lprops
)
3040 val
= ubifs_dbg
.chk_lprops
;
3041 else if (dent
== dfs_chk_fs
)
3042 val
= ubifs_dbg
.chk_fs
;
3043 else if (dent
== dfs_tst_rcvry
)
3044 val
= ubifs_dbg
.tst_rcvry
;
3048 return provide_user_output(val
, u
, count
, ppos
);
3051 static ssize_t
dfs_global_file_write(struct file
*file
, const char __user
*u
,
3052 size_t count
, loff_t
*ppos
)
3054 struct dentry
*dent
= file
->f_path
.dentry
;
3057 val
= interpret_user_input(u
, count
);
3061 if (dent
== dfs_chk_gen
)
3062 ubifs_dbg
.chk_gen
= val
;
3063 else if (dent
== dfs_chk_index
)
3064 ubifs_dbg
.chk_index
= val
;
3065 else if (dent
== dfs_chk_orph
)
3066 ubifs_dbg
.chk_orph
= val
;
3067 else if (dent
== dfs_chk_lprops
)
3068 ubifs_dbg
.chk_lprops
= val
;
3069 else if (dent
== dfs_chk_fs
)
3070 ubifs_dbg
.chk_fs
= val
;
3071 else if (dent
== dfs_tst_rcvry
)
3072 ubifs_dbg
.tst_rcvry
= val
;
3079 static const struct file_operations dfs_global_fops
= {
3080 .read
= dfs_global_file_read
,
3081 .write
= dfs_global_file_write
,
3082 .owner
= THIS_MODULE
,
3083 .llseek
= no_llseek
,
3087 * dbg_debugfs_init - initialize debugfs file-system.
3089 * UBIFS uses debugfs file-system to expose various debugging knobs to
3090 * user-space. This function creates "ubifs" directory in the debugfs
3091 * file-system. Returns zero in case of success and a negative error code in
3094 int dbg_debugfs_init(void)
3098 struct dentry
*dent
;
3101 dent
= debugfs_create_dir(fname
, NULL
);
3102 if (IS_ERR_OR_NULL(dent
))
3106 fname
= "chk_general";
3107 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3109 if (IS_ERR_OR_NULL(dent
))
3113 fname
= "chk_index";
3114 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3116 if (IS_ERR_OR_NULL(dent
))
3118 dfs_chk_index
= dent
;
3120 fname
= "chk_orphans";
3121 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3123 if (IS_ERR_OR_NULL(dent
))
3125 dfs_chk_orph
= dent
;
3127 fname
= "chk_lprops";
3128 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3130 if (IS_ERR_OR_NULL(dent
))
3132 dfs_chk_lprops
= dent
;
3135 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3137 if (IS_ERR_OR_NULL(dent
))
3141 fname
= "tst_recovery";
3142 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3144 if (IS_ERR_OR_NULL(dent
))
3146 dfs_tst_rcvry
= dent
;
3151 debugfs_remove_recursive(dfs_rootdir
);
3153 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
3154 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3160 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3162 void dbg_debugfs_exit(void)
3164 debugfs_remove_recursive(dfs_rootdir
);
3168 * ubifs_debugging_init - initialize UBIFS debugging.
3169 * @c: UBIFS file-system description object
3171 * This function initializes debugging-related data for the file system.
3172 * Returns zero in case of success and a negative error code in case of
3175 int ubifs_debugging_init(struct ubifs_info
*c
)
3177 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
3185 * ubifs_debugging_exit - free debugging data.
3186 * @c: UBIFS file-system description object
3188 void ubifs_debugging_exit(struct ubifs_info
*c
)
3193 #endif /* CONFIG_UBIFS_FS_DEBUG */