4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/sched.h>
53 #include <linux/rcupdate.h>
54 #include <linux/uidgid.h>
55 #include <linux/cred.h>
57 #include <linux/kmsg_dump.h>
58 /* Move somewhere else to avoid recompiling? */
59 #include <generated/utsrelease.h>
61 #include <asm/uaccess.h>
63 #include <asm/unistd.h>
65 #ifndef SET_UNALIGN_CTL
66 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
68 #ifndef GET_UNALIGN_CTL
69 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
72 # define SET_FPEMU_CTL(a,b) (-EINVAL)
75 # define GET_FPEMU_CTL(a,b) (-EINVAL)
78 # define SET_FPEXC_CTL(a,b) (-EINVAL)
81 # define GET_FPEXC_CTL(a,b) (-EINVAL)
84 # define GET_ENDIAN(a,b) (-EINVAL)
87 # define SET_ENDIAN(a,b) (-EINVAL)
90 # define GET_TSC_CTL(a) (-EINVAL)
93 # define SET_TSC_CTL(a) (-EINVAL)
97 * this is where the system-wide overflow UID and GID are defined, for
98 * architectures that now have 32-bit UID/GID but didn't in the past
101 int overflowuid
= DEFAULT_OVERFLOWUID
;
102 int overflowgid
= DEFAULT_OVERFLOWGID
;
104 EXPORT_SYMBOL(overflowuid
);
105 EXPORT_SYMBOL(overflowgid
);
108 * the same as above, but for filesystems which can only store a 16-bit
109 * UID and GID. as such, this is needed on all architectures
112 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
113 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
115 EXPORT_SYMBOL(fs_overflowuid
);
116 EXPORT_SYMBOL(fs_overflowgid
);
119 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
124 EXPORT_SYMBOL(cad_pid
);
127 * If set, this is used for preparing the system to power off.
130 void (*pm_power_off_prepare
)(void);
133 * Returns true if current's euid is same as p's uid or euid,
134 * or has CAP_SYS_NICE to p's user_ns.
136 * Called with rcu_read_lock, creds are safe
138 static bool set_one_prio_perm(struct task_struct
*p
)
140 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
142 if (uid_eq(pcred
->uid
, cred
->euid
) ||
143 uid_eq(pcred
->euid
, cred
->euid
))
145 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
151 * set the priority of a task
152 * - the caller must hold the RCU read lock
154 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
158 if (!set_one_prio_perm(p
)) {
162 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
166 no_nice
= security_task_setnice(p
, niceval
);
173 set_user_nice(p
, niceval
);
178 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
180 struct task_struct
*g
, *p
;
181 struct user_struct
*user
;
182 const struct cred
*cred
= current_cred();
187 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
190 /* normalize: avoid signed division (rounding problems) */
198 read_lock(&tasklist_lock
);
202 p
= find_task_by_vpid(who
);
206 error
= set_one_prio(p
, niceval
, error
);
210 pgrp
= find_vpid(who
);
212 pgrp
= task_pgrp(current
);
213 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
214 error
= set_one_prio(p
, niceval
, error
);
215 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
218 uid
= make_kuid(cred
->user_ns
, who
);
222 else if (!uid_eq(uid
, cred
->uid
) &&
223 !(user
= find_user(uid
)))
224 goto out_unlock
; /* No processes for this user */
226 do_each_thread(g
, p
) {
227 if (uid_eq(task_uid(p
), uid
))
228 error
= set_one_prio(p
, niceval
, error
);
229 } while_each_thread(g
, p
);
230 if (!uid_eq(uid
, cred
->uid
))
231 free_uid(user
); /* For find_user() */
235 read_unlock(&tasklist_lock
);
242 * Ugh. To avoid negative return values, "getpriority()" will
243 * not return the normal nice-value, but a negated value that
244 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
245 * to stay compatible.
247 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
249 struct task_struct
*g
, *p
;
250 struct user_struct
*user
;
251 const struct cred
*cred
= current_cred();
252 long niceval
, retval
= -ESRCH
;
256 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
260 read_lock(&tasklist_lock
);
264 p
= find_task_by_vpid(who
);
268 niceval
= 20 - task_nice(p
);
269 if (niceval
> retval
)
275 pgrp
= find_vpid(who
);
277 pgrp
= task_pgrp(current
);
278 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
279 niceval
= 20 - task_nice(p
);
280 if (niceval
> retval
)
282 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
285 uid
= make_kuid(cred
->user_ns
, who
);
289 else if (!uid_eq(uid
, cred
->uid
) &&
290 !(user
= find_user(uid
)))
291 goto out_unlock
; /* No processes for this user */
293 do_each_thread(g
, p
) {
294 if (uid_eq(task_uid(p
), uid
)) {
295 niceval
= 20 - task_nice(p
);
296 if (niceval
> retval
)
299 } while_each_thread(g
, p
);
300 if (!uid_eq(uid
, cred
->uid
))
301 free_uid(user
); /* for find_user() */
305 read_unlock(&tasklist_lock
);
312 * emergency_restart - reboot the system
314 * Without shutting down any hardware or taking any locks
315 * reboot the system. This is called when we know we are in
316 * trouble so this is our best effort to reboot. This is
317 * safe to call in interrupt context.
319 void emergency_restart(void)
321 kmsg_dump(KMSG_DUMP_EMERG
);
322 machine_emergency_restart();
324 EXPORT_SYMBOL_GPL(emergency_restart
);
326 void kernel_restart_prepare(char *cmd
)
328 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
329 system_state
= SYSTEM_RESTART
;
330 usermodehelper_disable();
335 * register_reboot_notifier - Register function to be called at reboot time
336 * @nb: Info about notifier function to be called
338 * Registers a function with the list of functions
339 * to be called at reboot time.
341 * Currently always returns zero, as blocking_notifier_chain_register()
342 * always returns zero.
344 int register_reboot_notifier(struct notifier_block
*nb
)
346 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
348 EXPORT_SYMBOL(register_reboot_notifier
);
351 * unregister_reboot_notifier - Unregister previously registered reboot notifier
352 * @nb: Hook to be unregistered
354 * Unregisters a previously registered reboot
357 * Returns zero on success, or %-ENOENT on failure.
359 int unregister_reboot_notifier(struct notifier_block
*nb
)
361 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
363 EXPORT_SYMBOL(unregister_reboot_notifier
);
366 * kernel_restart - reboot the system
367 * @cmd: pointer to buffer containing command to execute for restart
370 * Shutdown everything and perform a clean reboot.
371 * This is not safe to call in interrupt context.
373 void kernel_restart(char *cmd
)
375 kernel_restart_prepare(cmd
);
376 disable_nonboot_cpus();
379 printk(KERN_EMERG
"Restarting system.\n");
381 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
382 kmsg_dump(KMSG_DUMP_RESTART
);
383 machine_restart(cmd
);
385 EXPORT_SYMBOL_GPL(kernel_restart
);
387 static void kernel_shutdown_prepare(enum system_states state
)
389 blocking_notifier_call_chain(&reboot_notifier_list
,
390 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
391 system_state
= state
;
392 usermodehelper_disable();
396 * kernel_halt - halt the system
398 * Shutdown everything and perform a clean system halt.
400 void kernel_halt(void)
402 kernel_shutdown_prepare(SYSTEM_HALT
);
403 disable_nonboot_cpus();
405 printk(KERN_EMERG
"System halted.\n");
406 kmsg_dump(KMSG_DUMP_HALT
);
410 EXPORT_SYMBOL_GPL(kernel_halt
);
413 * kernel_power_off - power_off the system
415 * Shutdown everything and perform a clean system power_off.
417 void kernel_power_off(void)
419 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
420 if (pm_power_off_prepare
)
421 pm_power_off_prepare();
422 disable_nonboot_cpus();
424 printk(KERN_EMERG
"Power down.\n");
425 kmsg_dump(KMSG_DUMP_POWEROFF
);
428 EXPORT_SYMBOL_GPL(kernel_power_off
);
430 static DEFINE_MUTEX(reboot_mutex
);
433 * Reboot system call: for obvious reasons only root may call it,
434 * and even root needs to set up some magic numbers in the registers
435 * so that some mistake won't make this reboot the whole machine.
436 * You can also set the meaning of the ctrl-alt-del-key here.
438 * reboot doesn't sync: do that yourself before calling this.
440 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
443 struct pid_namespace
*pid_ns
= task_active_pid_ns(current
);
447 /* We only trust the superuser with rebooting the system. */
448 if (!ns_capable(pid_ns
->user_ns
, CAP_SYS_BOOT
))
451 /* For safety, we require "magic" arguments. */
452 if (magic1
!= LINUX_REBOOT_MAGIC1
||
453 (magic2
!= LINUX_REBOOT_MAGIC2
&&
454 magic2
!= LINUX_REBOOT_MAGIC2A
&&
455 magic2
!= LINUX_REBOOT_MAGIC2B
&&
456 magic2
!= LINUX_REBOOT_MAGIC2C
))
460 * If pid namespaces are enabled and the current task is in a child
461 * pid_namespace, the command is handled by reboot_pid_ns() which will
464 ret
= reboot_pid_ns(pid_ns
, cmd
);
468 /* Instead of trying to make the power_off code look like
469 * halt when pm_power_off is not set do it the easy way.
471 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
472 cmd
= LINUX_REBOOT_CMD_HALT
;
474 mutex_lock(&reboot_mutex
);
476 case LINUX_REBOOT_CMD_RESTART
:
477 kernel_restart(NULL
);
480 case LINUX_REBOOT_CMD_CAD_ON
:
484 case LINUX_REBOOT_CMD_CAD_OFF
:
488 case LINUX_REBOOT_CMD_HALT
:
491 panic("cannot halt");
493 case LINUX_REBOOT_CMD_POWER_OFF
:
498 case LINUX_REBOOT_CMD_RESTART2
:
499 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
503 buffer
[sizeof(buffer
) - 1] = '\0';
505 kernel_restart(buffer
);
509 case LINUX_REBOOT_CMD_KEXEC
:
510 ret
= kernel_kexec();
514 #ifdef CONFIG_HIBERNATION
515 case LINUX_REBOOT_CMD_SW_SUSPEND
:
524 mutex_unlock(&reboot_mutex
);
528 static void deferred_cad(struct work_struct
*dummy
)
530 kernel_restart(NULL
);
534 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
535 * As it's called within an interrupt, it may NOT sync: the only choice
536 * is whether to reboot at once, or just ignore the ctrl-alt-del.
538 void ctrl_alt_del(void)
540 static DECLARE_WORK(cad_work
, deferred_cad
);
543 schedule_work(&cad_work
);
545 kill_cad_pid(SIGINT
, 1);
549 * Unprivileged users may change the real gid to the effective gid
550 * or vice versa. (BSD-style)
552 * If you set the real gid at all, or set the effective gid to a value not
553 * equal to the real gid, then the saved gid is set to the new effective gid.
555 * This makes it possible for a setgid program to completely drop its
556 * privileges, which is often a useful assertion to make when you are doing
557 * a security audit over a program.
559 * The general idea is that a program which uses just setregid() will be
560 * 100% compatible with BSD. A program which uses just setgid() will be
561 * 100% compatible with POSIX with saved IDs.
563 * SMP: There are not races, the GIDs are checked only by filesystem
564 * operations (as far as semantic preservation is concerned).
566 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
568 struct user_namespace
*ns
= current_user_ns();
569 const struct cred
*old
;
574 krgid
= make_kgid(ns
, rgid
);
575 kegid
= make_kgid(ns
, egid
);
577 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
579 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
582 new = prepare_creds();
585 old
= current_cred();
588 if (rgid
!= (gid_t
) -1) {
589 if (gid_eq(old
->gid
, krgid
) ||
590 gid_eq(old
->egid
, krgid
) ||
591 nsown_capable(CAP_SETGID
))
596 if (egid
!= (gid_t
) -1) {
597 if (gid_eq(old
->gid
, kegid
) ||
598 gid_eq(old
->egid
, kegid
) ||
599 gid_eq(old
->sgid
, kegid
) ||
600 nsown_capable(CAP_SETGID
))
606 if (rgid
!= (gid_t
) -1 ||
607 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
608 new->sgid
= new->egid
;
609 new->fsgid
= new->egid
;
611 return commit_creds(new);
619 * setgid() is implemented like SysV w/ SAVED_IDS
621 * SMP: Same implicit races as above.
623 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
625 struct user_namespace
*ns
= current_user_ns();
626 const struct cred
*old
;
631 kgid
= make_kgid(ns
, gid
);
632 if (!gid_valid(kgid
))
635 new = prepare_creds();
638 old
= current_cred();
641 if (nsown_capable(CAP_SETGID
))
642 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
643 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
644 new->egid
= new->fsgid
= kgid
;
648 return commit_creds(new);
656 * change the user struct in a credentials set to match the new UID
658 static int set_user(struct cred
*new)
660 struct user_struct
*new_user
;
662 new_user
= alloc_uid(new->uid
);
667 * We don't fail in case of NPROC limit excess here because too many
668 * poorly written programs don't check set*uid() return code, assuming
669 * it never fails if called by root. We may still enforce NPROC limit
670 * for programs doing set*uid()+execve() by harmlessly deferring the
671 * failure to the execve() stage.
673 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
674 new_user
!= INIT_USER
)
675 current
->flags
|= PF_NPROC_EXCEEDED
;
677 current
->flags
&= ~PF_NPROC_EXCEEDED
;
680 new->user
= new_user
;
685 * Unprivileged users may change the real uid to the effective uid
686 * or vice versa. (BSD-style)
688 * If you set the real uid at all, or set the effective uid to a value not
689 * equal to the real uid, then the saved uid is set to the new effective uid.
691 * This makes it possible for a setuid program to completely drop its
692 * privileges, which is often a useful assertion to make when you are doing
693 * a security audit over a program.
695 * The general idea is that a program which uses just setreuid() will be
696 * 100% compatible with BSD. A program which uses just setuid() will be
697 * 100% compatible with POSIX with saved IDs.
699 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
701 struct user_namespace
*ns
= current_user_ns();
702 const struct cred
*old
;
707 kruid
= make_kuid(ns
, ruid
);
708 keuid
= make_kuid(ns
, euid
);
710 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
712 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
715 new = prepare_creds();
718 old
= current_cred();
721 if (ruid
!= (uid_t
) -1) {
723 if (!uid_eq(old
->uid
, kruid
) &&
724 !uid_eq(old
->euid
, kruid
) &&
725 !nsown_capable(CAP_SETUID
))
729 if (euid
!= (uid_t
) -1) {
731 if (!uid_eq(old
->uid
, keuid
) &&
732 !uid_eq(old
->euid
, keuid
) &&
733 !uid_eq(old
->suid
, keuid
) &&
734 !nsown_capable(CAP_SETUID
))
738 if (!uid_eq(new->uid
, old
->uid
)) {
739 retval
= set_user(new);
743 if (ruid
!= (uid_t
) -1 ||
744 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
745 new->suid
= new->euid
;
746 new->fsuid
= new->euid
;
748 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
752 return commit_creds(new);
760 * setuid() is implemented like SysV with SAVED_IDS
762 * Note that SAVED_ID's is deficient in that a setuid root program
763 * like sendmail, for example, cannot set its uid to be a normal
764 * user and then switch back, because if you're root, setuid() sets
765 * the saved uid too. If you don't like this, blame the bright people
766 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
767 * will allow a root program to temporarily drop privileges and be able to
768 * regain them by swapping the real and effective uid.
770 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
772 struct user_namespace
*ns
= current_user_ns();
773 const struct cred
*old
;
778 kuid
= make_kuid(ns
, uid
);
779 if (!uid_valid(kuid
))
782 new = prepare_creds();
785 old
= current_cred();
788 if (nsown_capable(CAP_SETUID
)) {
789 new->suid
= new->uid
= kuid
;
790 if (!uid_eq(kuid
, old
->uid
)) {
791 retval
= set_user(new);
795 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
799 new->fsuid
= new->euid
= kuid
;
801 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
805 return commit_creds(new);
814 * This function implements a generic ability to update ruid, euid,
815 * and suid. This allows you to implement the 4.4 compatible seteuid().
817 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
819 struct user_namespace
*ns
= current_user_ns();
820 const struct cred
*old
;
823 kuid_t kruid
, keuid
, ksuid
;
825 kruid
= make_kuid(ns
, ruid
);
826 keuid
= make_kuid(ns
, euid
);
827 ksuid
= make_kuid(ns
, suid
);
829 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
832 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
835 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
838 new = prepare_creds();
842 old
= current_cred();
845 if (!nsown_capable(CAP_SETUID
)) {
846 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
847 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
849 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
850 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
852 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
853 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
857 if (ruid
!= (uid_t
) -1) {
859 if (!uid_eq(kruid
, old
->uid
)) {
860 retval
= set_user(new);
865 if (euid
!= (uid_t
) -1)
867 if (suid
!= (uid_t
) -1)
869 new->fsuid
= new->euid
;
871 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
875 return commit_creds(new);
882 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
884 const struct cred
*cred
= current_cred();
886 uid_t ruid
, euid
, suid
;
888 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
889 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
890 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
892 if (!(retval
= put_user(ruid
, ruidp
)) &&
893 !(retval
= put_user(euid
, euidp
)))
894 retval
= put_user(suid
, suidp
);
900 * Same as above, but for rgid, egid, sgid.
902 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
904 struct user_namespace
*ns
= current_user_ns();
905 const struct cred
*old
;
908 kgid_t krgid
, kegid
, ksgid
;
910 krgid
= make_kgid(ns
, rgid
);
911 kegid
= make_kgid(ns
, egid
);
912 ksgid
= make_kgid(ns
, sgid
);
914 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
916 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
918 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
921 new = prepare_creds();
924 old
= current_cred();
927 if (!nsown_capable(CAP_SETGID
)) {
928 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
929 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
931 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
932 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
934 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
935 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
939 if (rgid
!= (gid_t
) -1)
941 if (egid
!= (gid_t
) -1)
943 if (sgid
!= (gid_t
) -1)
945 new->fsgid
= new->egid
;
947 return commit_creds(new);
954 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
956 const struct cred
*cred
= current_cred();
958 gid_t rgid
, egid
, sgid
;
960 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
961 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
962 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
964 if (!(retval
= put_user(rgid
, rgidp
)) &&
965 !(retval
= put_user(egid
, egidp
)))
966 retval
= put_user(sgid
, sgidp
);
973 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
974 * is used for "access()" and for the NFS daemon (letting nfsd stay at
975 * whatever uid it wants to). It normally shadows "euid", except when
976 * explicitly set by setfsuid() or for access..
978 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
980 const struct cred
*old
;
985 old
= current_cred();
986 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
988 kuid
= make_kuid(old
->user_ns
, uid
);
989 if (!uid_valid(kuid
))
992 new = prepare_creds();
996 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
997 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
998 nsown_capable(CAP_SETUID
)) {
999 if (!uid_eq(kuid
, old
->fsuid
)) {
1001 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
1015 * Samma på svenska..
1017 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
1019 const struct cred
*old
;
1024 old
= current_cred();
1025 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
1027 kgid
= make_kgid(old
->user_ns
, gid
);
1028 if (!gid_valid(kgid
))
1031 new = prepare_creds();
1035 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
1036 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
1037 nsown_capable(CAP_SETGID
)) {
1038 if (!gid_eq(kgid
, old
->fsgid
)) {
1053 * sys_getpid - return the thread group id of the current process
1055 * Note, despite the name, this returns the tgid not the pid. The tgid and
1056 * the pid are identical unless CLONE_THREAD was specified on clone() in
1057 * which case the tgid is the same in all threads of the same group.
1059 * This is SMP safe as current->tgid does not change.
1061 SYSCALL_DEFINE0(getpid
)
1063 return task_tgid_vnr(current
);
1066 /* Thread ID - the internal kernel "pid" */
1067 SYSCALL_DEFINE0(gettid
)
1069 return task_pid_vnr(current
);
1073 * Accessing ->real_parent is not SMP-safe, it could
1074 * change from under us. However, we can use a stale
1075 * value of ->real_parent under rcu_read_lock(), see
1076 * release_task()->call_rcu(delayed_put_task_struct).
1078 SYSCALL_DEFINE0(getppid
)
1083 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
1089 SYSCALL_DEFINE0(getuid
)
1091 /* Only we change this so SMP safe */
1092 return from_kuid_munged(current_user_ns(), current_uid());
1095 SYSCALL_DEFINE0(geteuid
)
1097 /* Only we change this so SMP safe */
1098 return from_kuid_munged(current_user_ns(), current_euid());
1101 SYSCALL_DEFINE0(getgid
)
1103 /* Only we change this so SMP safe */
1104 return from_kgid_munged(current_user_ns(), current_gid());
1107 SYSCALL_DEFINE0(getegid
)
1109 /* Only we change this so SMP safe */
1110 return from_kgid_munged(current_user_ns(), current_egid());
1113 void do_sys_times(struct tms
*tms
)
1115 cputime_t tgutime
, tgstime
, cutime
, cstime
;
1117 spin_lock_irq(¤t
->sighand
->siglock
);
1118 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
1119 cutime
= current
->signal
->cutime
;
1120 cstime
= current
->signal
->cstime
;
1121 spin_unlock_irq(¤t
->sighand
->siglock
);
1122 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
1123 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
1124 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
1125 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
1128 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
1134 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1137 force_successful_syscall_return();
1138 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1142 * This needs some heavy checking ...
1143 * I just haven't the stomach for it. I also don't fully
1144 * understand sessions/pgrp etc. Let somebody who does explain it.
1146 * OK, I think I have the protection semantics right.... this is really
1147 * only important on a multi-user system anyway, to make sure one user
1148 * can't send a signal to a process owned by another. -TYT, 12/12/91
1150 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1153 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1155 struct task_struct
*p
;
1156 struct task_struct
*group_leader
= current
->group_leader
;
1161 pid
= task_pid_vnr(group_leader
);
1168 /* From this point forward we keep holding onto the tasklist lock
1169 * so that our parent does not change from under us. -DaveM
1171 write_lock_irq(&tasklist_lock
);
1174 p
= find_task_by_vpid(pid
);
1179 if (!thread_group_leader(p
))
1182 if (same_thread_group(p
->real_parent
, group_leader
)) {
1184 if (task_session(p
) != task_session(group_leader
))
1191 if (p
!= group_leader
)
1196 if (p
->signal
->leader
)
1201 struct task_struct
*g
;
1203 pgrp
= find_vpid(pgid
);
1204 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1205 if (!g
|| task_session(g
) != task_session(group_leader
))
1209 err
= security_task_setpgid(p
, pgid
);
1213 if (task_pgrp(p
) != pgrp
)
1214 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1218 /* All paths lead to here, thus we are safe. -DaveM */
1219 write_unlock_irq(&tasklist_lock
);
1224 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1226 struct task_struct
*p
;
1232 grp
= task_pgrp(current
);
1235 p
= find_task_by_vpid(pid
);
1242 retval
= security_task_getpgid(p
);
1246 retval
= pid_vnr(grp
);
1252 #ifdef __ARCH_WANT_SYS_GETPGRP
1254 SYSCALL_DEFINE0(getpgrp
)
1256 return sys_getpgid(0);
1261 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1263 struct task_struct
*p
;
1269 sid
= task_session(current
);
1272 p
= find_task_by_vpid(pid
);
1275 sid
= task_session(p
);
1279 retval
= security_task_getsid(p
);
1283 retval
= pid_vnr(sid
);
1289 SYSCALL_DEFINE0(setsid
)
1291 struct task_struct
*group_leader
= current
->group_leader
;
1292 struct pid
*sid
= task_pid(group_leader
);
1293 pid_t session
= pid_vnr(sid
);
1296 write_lock_irq(&tasklist_lock
);
1297 /* Fail if I am already a session leader */
1298 if (group_leader
->signal
->leader
)
1301 /* Fail if a process group id already exists that equals the
1302 * proposed session id.
1304 if (pid_task(sid
, PIDTYPE_PGID
))
1307 group_leader
->signal
->leader
= 1;
1308 __set_special_pids(sid
);
1310 proc_clear_tty(group_leader
);
1314 write_unlock_irq(&tasklist_lock
);
1316 proc_sid_connector(group_leader
);
1317 sched_autogroup_create_attach(group_leader
);
1322 DECLARE_RWSEM(uts_sem
);
1324 #ifdef COMPAT_UTS_MACHINE
1325 #define override_architecture(name) \
1326 (personality(current->personality) == PER_LINUX32 && \
1327 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1328 sizeof(COMPAT_UTS_MACHINE)))
1330 #define override_architecture(name) 0
1334 * Work around broken programs that cannot handle "Linux 3.0".
1335 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1337 static int override_release(char __user
*release
, size_t len
)
1341 if (current
->personality
& UNAME26
) {
1342 const char *rest
= UTS_RELEASE
;
1343 char buf
[65] = { 0 };
1349 if (*rest
== '.' && ++ndots
>= 3)
1351 if (!isdigit(*rest
) && *rest
!= '.')
1355 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1356 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1357 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1358 ret
= copy_to_user(release
, buf
, copy
+ 1);
1363 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1367 down_read(&uts_sem
);
1368 if (copy_to_user(name
, utsname(), sizeof *name
))
1372 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1374 if (!errno
&& override_architecture(name
))
1379 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1383 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1390 down_read(&uts_sem
);
1391 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1395 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1397 if (!error
&& override_architecture(name
))
1402 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1408 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1411 down_read(&uts_sem
);
1412 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1414 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1415 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1417 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1418 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1420 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1421 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1423 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1424 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1426 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1429 if (!error
&& override_architecture(name
))
1431 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1433 return error
? -EFAULT
: 0;
1437 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1440 char tmp
[__NEW_UTS_LEN
];
1442 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1445 if (len
< 0 || len
> __NEW_UTS_LEN
)
1447 down_write(&uts_sem
);
1449 if (!copy_from_user(tmp
, name
, len
)) {
1450 struct new_utsname
*u
= utsname();
1452 memcpy(u
->nodename
, tmp
, len
);
1453 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1455 uts_proc_notify(UTS_PROC_HOSTNAME
);
1461 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1463 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1466 struct new_utsname
*u
;
1470 down_read(&uts_sem
);
1472 i
= 1 + strlen(u
->nodename
);
1476 if (copy_to_user(name
, u
->nodename
, i
))
1485 * Only setdomainname; getdomainname can be implemented by calling
1488 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1491 char tmp
[__NEW_UTS_LEN
];
1493 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1495 if (len
< 0 || len
> __NEW_UTS_LEN
)
1498 down_write(&uts_sem
);
1500 if (!copy_from_user(tmp
, name
, len
)) {
1501 struct new_utsname
*u
= utsname();
1503 memcpy(u
->domainname
, tmp
, len
);
1504 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1506 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1512 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1514 struct rlimit value
;
1517 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1519 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1524 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1527 * Back compatibility for getrlimit. Needed for some apps.
1530 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1531 struct rlimit __user
*, rlim
)
1534 if (resource
>= RLIM_NLIMITS
)
1537 task_lock(current
->group_leader
);
1538 x
= current
->signal
->rlim
[resource
];
1539 task_unlock(current
->group_leader
);
1540 if (x
.rlim_cur
> 0x7FFFFFFF)
1541 x
.rlim_cur
= 0x7FFFFFFF;
1542 if (x
.rlim_max
> 0x7FFFFFFF)
1543 x
.rlim_max
= 0x7FFFFFFF;
1544 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1549 static inline bool rlim64_is_infinity(__u64 rlim64
)
1551 #if BITS_PER_LONG < 64
1552 return rlim64
>= ULONG_MAX
;
1554 return rlim64
== RLIM64_INFINITY
;
1558 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1560 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1561 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1563 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1564 if (rlim
->rlim_max
== RLIM_INFINITY
)
1565 rlim64
->rlim_max
= RLIM64_INFINITY
;
1567 rlim64
->rlim_max
= rlim
->rlim_max
;
1570 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1572 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1573 rlim
->rlim_cur
= RLIM_INFINITY
;
1575 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1576 if (rlim64_is_infinity(rlim64
->rlim_max
))
1577 rlim
->rlim_max
= RLIM_INFINITY
;
1579 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1582 /* make sure you are allowed to change @tsk limits before calling this */
1583 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1584 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1586 struct rlimit
*rlim
;
1589 if (resource
>= RLIM_NLIMITS
)
1592 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1594 if (resource
== RLIMIT_NOFILE
&&
1595 new_rlim
->rlim_max
> sysctl_nr_open
)
1599 /* protect tsk->signal and tsk->sighand from disappearing */
1600 read_lock(&tasklist_lock
);
1601 if (!tsk
->sighand
) {
1606 rlim
= tsk
->signal
->rlim
+ resource
;
1607 task_lock(tsk
->group_leader
);
1609 /* Keep the capable check against init_user_ns until
1610 cgroups can contain all limits */
1611 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1612 !capable(CAP_SYS_RESOURCE
))
1615 retval
= security_task_setrlimit(tsk
->group_leader
,
1616 resource
, new_rlim
);
1617 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1619 * The caller is asking for an immediate RLIMIT_CPU
1620 * expiry. But we use the zero value to mean "it was
1621 * never set". So let's cheat and make it one second
1624 new_rlim
->rlim_cur
= 1;
1633 task_unlock(tsk
->group_leader
);
1636 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1637 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1638 * very long-standing error, and fixing it now risks breakage of
1639 * applications, so we live with it
1641 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1642 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1643 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1645 read_unlock(&tasklist_lock
);
1649 /* rcu lock must be held */
1650 static int check_prlimit_permission(struct task_struct
*task
)
1652 const struct cred
*cred
= current_cred(), *tcred
;
1654 if (current
== task
)
1657 tcred
= __task_cred(task
);
1658 if (uid_eq(cred
->uid
, tcred
->euid
) &&
1659 uid_eq(cred
->uid
, tcred
->suid
) &&
1660 uid_eq(cred
->uid
, tcred
->uid
) &&
1661 gid_eq(cred
->gid
, tcred
->egid
) &&
1662 gid_eq(cred
->gid
, tcred
->sgid
) &&
1663 gid_eq(cred
->gid
, tcred
->gid
))
1665 if (ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1671 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1672 const struct rlimit64 __user
*, new_rlim
,
1673 struct rlimit64 __user
*, old_rlim
)
1675 struct rlimit64 old64
, new64
;
1676 struct rlimit old
, new;
1677 struct task_struct
*tsk
;
1681 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1683 rlim64_to_rlim(&new64
, &new);
1687 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1692 ret
= check_prlimit_permission(tsk
);
1697 get_task_struct(tsk
);
1700 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1701 old_rlim
? &old
: NULL
);
1703 if (!ret
&& old_rlim
) {
1704 rlim_to_rlim64(&old
, &old64
);
1705 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1709 put_task_struct(tsk
);
1713 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1715 struct rlimit new_rlim
;
1717 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1719 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1723 * It would make sense to put struct rusage in the task_struct,
1724 * except that would make the task_struct be *really big*. After
1725 * task_struct gets moved into malloc'ed memory, it would
1726 * make sense to do this. It will make moving the rest of the information
1727 * a lot simpler! (Which we're not doing right now because we're not
1728 * measuring them yet).
1730 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1731 * races with threads incrementing their own counters. But since word
1732 * reads are atomic, we either get new values or old values and we don't
1733 * care which for the sums. We always take the siglock to protect reading
1734 * the c* fields from p->signal from races with exit.c updating those
1735 * fields when reaping, so a sample either gets all the additions of a
1736 * given child after it's reaped, or none so this sample is before reaping.
1739 * We need to take the siglock for CHILDEREN, SELF and BOTH
1740 * for the cases current multithreaded, non-current single threaded
1741 * non-current multithreaded. Thread traversal is now safe with
1743 * Strictly speaking, we donot need to take the siglock if we are current and
1744 * single threaded, as no one else can take our signal_struct away, no one
1745 * else can reap the children to update signal->c* counters, and no one else
1746 * can race with the signal-> fields. If we do not take any lock, the
1747 * signal-> fields could be read out of order while another thread was just
1748 * exiting. So we should place a read memory barrier when we avoid the lock.
1749 * On the writer side, write memory barrier is implied in __exit_signal
1750 * as __exit_signal releases the siglock spinlock after updating the signal->
1751 * fields. But we don't do this yet to keep things simple.
1755 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1757 r
->ru_nvcsw
+= t
->nvcsw
;
1758 r
->ru_nivcsw
+= t
->nivcsw
;
1759 r
->ru_minflt
+= t
->min_flt
;
1760 r
->ru_majflt
+= t
->maj_flt
;
1761 r
->ru_inblock
+= task_io_get_inblock(t
);
1762 r
->ru_oublock
+= task_io_get_oublock(t
);
1765 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1767 struct task_struct
*t
;
1768 unsigned long flags
;
1769 cputime_t tgutime
, tgstime
, utime
, stime
;
1770 unsigned long maxrss
= 0;
1772 memset((char *) r
, 0, sizeof *r
);
1775 if (who
== RUSAGE_THREAD
) {
1776 task_cputime_adjusted(current
, &utime
, &stime
);
1777 accumulate_thread_rusage(p
, r
);
1778 maxrss
= p
->signal
->maxrss
;
1782 if (!lock_task_sighand(p
, &flags
))
1787 case RUSAGE_CHILDREN
:
1788 utime
= p
->signal
->cutime
;
1789 stime
= p
->signal
->cstime
;
1790 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1791 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1792 r
->ru_minflt
= p
->signal
->cmin_flt
;
1793 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1794 r
->ru_inblock
= p
->signal
->cinblock
;
1795 r
->ru_oublock
= p
->signal
->coublock
;
1796 maxrss
= p
->signal
->cmaxrss
;
1798 if (who
== RUSAGE_CHILDREN
)
1802 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1805 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1806 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1807 r
->ru_minflt
+= p
->signal
->min_flt
;
1808 r
->ru_majflt
+= p
->signal
->maj_flt
;
1809 r
->ru_inblock
+= p
->signal
->inblock
;
1810 r
->ru_oublock
+= p
->signal
->oublock
;
1811 if (maxrss
< p
->signal
->maxrss
)
1812 maxrss
= p
->signal
->maxrss
;
1815 accumulate_thread_rusage(t
, r
);
1823 unlock_task_sighand(p
, &flags
);
1826 cputime_to_timeval(utime
, &r
->ru_utime
);
1827 cputime_to_timeval(stime
, &r
->ru_stime
);
1829 if (who
!= RUSAGE_CHILDREN
) {
1830 struct mm_struct
*mm
= get_task_mm(p
);
1832 setmax_mm_hiwater_rss(&maxrss
, mm
);
1836 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1839 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1842 k_getrusage(p
, who
, &r
);
1843 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1846 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1848 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1849 who
!= RUSAGE_THREAD
)
1851 return getrusage(current
, who
, ru
);
1854 #ifdef CONFIG_COMPAT
1855 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1859 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1860 who
!= RUSAGE_THREAD
)
1863 k_getrusage(current
, who
, &r
);
1864 return put_compat_rusage(&r
, ru
);
1868 SYSCALL_DEFINE1(umask
, int, mask
)
1870 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1874 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1877 struct inode
*inode
;
1884 inode
= file_inode(exe
.file
);
1887 * Because the original mm->exe_file points to executable file, make
1888 * sure that this one is executable as well, to avoid breaking an
1892 if (!S_ISREG(inode
->i_mode
) ||
1893 exe
.file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
1896 err
= inode_permission(inode
, MAY_EXEC
);
1900 down_write(&mm
->mmap_sem
);
1903 * Forbid mm->exe_file change if old file still mapped.
1907 struct vm_area_struct
*vma
;
1909 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
1911 path_equal(&vma
->vm_file
->f_path
,
1912 &mm
->exe_file
->f_path
))
1917 * The symlink can be changed only once, just to disallow arbitrary
1918 * transitions malicious software might bring in. This means one
1919 * could make a snapshot over all processes running and monitor
1920 * /proc/pid/exe changes to notice unusual activity if needed.
1923 if (test_and_set_bit(MMF_EXE_FILE_CHANGED
, &mm
->flags
))
1927 set_mm_exe_file(mm
, exe
.file
); /* this grabs a reference to exe.file */
1929 up_write(&mm
->mmap_sem
);
1936 static int prctl_set_mm(int opt
, unsigned long addr
,
1937 unsigned long arg4
, unsigned long arg5
)
1939 unsigned long rlim
= rlimit(RLIMIT_DATA
);
1940 struct mm_struct
*mm
= current
->mm
;
1941 struct vm_area_struct
*vma
;
1944 if (arg5
|| (arg4
&& opt
!= PR_SET_MM_AUXV
))
1947 if (!capable(CAP_SYS_RESOURCE
))
1950 if (opt
== PR_SET_MM_EXE_FILE
)
1951 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
1953 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
1958 down_read(&mm
->mmap_sem
);
1959 vma
= find_vma(mm
, addr
);
1962 case PR_SET_MM_START_CODE
:
1963 mm
->start_code
= addr
;
1965 case PR_SET_MM_END_CODE
:
1966 mm
->end_code
= addr
;
1968 case PR_SET_MM_START_DATA
:
1969 mm
->start_data
= addr
;
1971 case PR_SET_MM_END_DATA
:
1972 mm
->end_data
= addr
;
1975 case PR_SET_MM_START_BRK
:
1976 if (addr
<= mm
->end_data
)
1979 if (rlim
< RLIM_INFINITY
&&
1981 (mm
->end_data
- mm
->start_data
) > rlim
)
1984 mm
->start_brk
= addr
;
1988 if (addr
<= mm
->end_data
)
1991 if (rlim
< RLIM_INFINITY
&&
1992 (addr
- mm
->start_brk
) +
1993 (mm
->end_data
- mm
->start_data
) > rlim
)
2000 * If command line arguments and environment
2001 * are placed somewhere else on stack, we can
2002 * set them up here, ARG_START/END to setup
2003 * command line argumets and ENV_START/END
2006 case PR_SET_MM_START_STACK
:
2007 case PR_SET_MM_ARG_START
:
2008 case PR_SET_MM_ARG_END
:
2009 case PR_SET_MM_ENV_START
:
2010 case PR_SET_MM_ENV_END
:
2015 if (opt
== PR_SET_MM_START_STACK
)
2016 mm
->start_stack
= addr
;
2017 else if (opt
== PR_SET_MM_ARG_START
)
2018 mm
->arg_start
= addr
;
2019 else if (opt
== PR_SET_MM_ARG_END
)
2021 else if (opt
== PR_SET_MM_ENV_START
)
2022 mm
->env_start
= addr
;
2023 else if (opt
== PR_SET_MM_ENV_END
)
2028 * This doesn't move auxiliary vector itself
2029 * since it's pinned to mm_struct, but allow
2030 * to fill vector with new values. It's up
2031 * to a caller to provide sane values here
2032 * otherwise user space tools which use this
2033 * vector might be unhappy.
2035 case PR_SET_MM_AUXV
: {
2036 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2038 if (arg4
> sizeof(user_auxv
))
2040 up_read(&mm
->mmap_sem
);
2042 if (copy_from_user(user_auxv
, (const void __user
*)addr
, arg4
))
2045 /* Make sure the last entry is always AT_NULL */
2046 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2047 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2049 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2052 memcpy(mm
->saved_auxv
, user_auxv
, arg4
);
2053 task_unlock(current
);
2063 up_read(&mm
->mmap_sem
);
2067 #ifdef CONFIG_CHECKPOINT_RESTORE
2068 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2070 return put_user(me
->clear_child_tid
, tid_addr
);
2073 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2079 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2080 unsigned long, arg4
, unsigned long, arg5
)
2082 struct task_struct
*me
= current
;
2083 unsigned char comm
[sizeof(me
->comm
)];
2086 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2087 if (error
!= -ENOSYS
)
2092 case PR_SET_PDEATHSIG
:
2093 if (!valid_signal(arg2
)) {
2097 me
->pdeath_signal
= arg2
;
2099 case PR_GET_PDEATHSIG
:
2100 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2102 case PR_GET_DUMPABLE
:
2103 error
= get_dumpable(me
->mm
);
2105 case PR_SET_DUMPABLE
:
2106 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2110 set_dumpable(me
->mm
, arg2
);
2113 case PR_SET_UNALIGN
:
2114 error
= SET_UNALIGN_CTL(me
, arg2
);
2116 case PR_GET_UNALIGN
:
2117 error
= GET_UNALIGN_CTL(me
, arg2
);
2120 error
= SET_FPEMU_CTL(me
, arg2
);
2123 error
= GET_FPEMU_CTL(me
, arg2
);
2126 error
= SET_FPEXC_CTL(me
, arg2
);
2129 error
= GET_FPEXC_CTL(me
, arg2
);
2132 error
= PR_TIMING_STATISTICAL
;
2135 if (arg2
!= PR_TIMING_STATISTICAL
)
2139 comm
[sizeof(me
->comm
) - 1] = 0;
2140 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2141 sizeof(me
->comm
) - 1) < 0)
2143 set_task_comm(me
, comm
);
2144 proc_comm_connector(me
);
2147 get_task_comm(comm
, me
);
2148 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2152 error
= GET_ENDIAN(me
, arg2
);
2155 error
= SET_ENDIAN(me
, arg2
);
2157 case PR_GET_SECCOMP
:
2158 error
= prctl_get_seccomp();
2160 case PR_SET_SECCOMP
:
2161 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2164 error
= GET_TSC_CTL(arg2
);
2167 error
= SET_TSC_CTL(arg2
);
2169 case PR_TASK_PERF_EVENTS_DISABLE
:
2170 error
= perf_event_task_disable();
2172 case PR_TASK_PERF_EVENTS_ENABLE
:
2173 error
= perf_event_task_enable();
2175 case PR_GET_TIMERSLACK
:
2176 error
= current
->timer_slack_ns
;
2178 case PR_SET_TIMERSLACK
:
2180 current
->timer_slack_ns
=
2181 current
->default_timer_slack_ns
;
2183 current
->timer_slack_ns
= arg2
;
2189 case PR_MCE_KILL_CLEAR
:
2192 current
->flags
&= ~PF_MCE_PROCESS
;
2194 case PR_MCE_KILL_SET
:
2195 current
->flags
|= PF_MCE_PROCESS
;
2196 if (arg3
== PR_MCE_KILL_EARLY
)
2197 current
->flags
|= PF_MCE_EARLY
;
2198 else if (arg3
== PR_MCE_KILL_LATE
)
2199 current
->flags
&= ~PF_MCE_EARLY
;
2200 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2202 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2210 case PR_MCE_KILL_GET
:
2211 if (arg2
| arg3
| arg4
| arg5
)
2213 if (current
->flags
& PF_MCE_PROCESS
)
2214 error
= (current
->flags
& PF_MCE_EARLY
) ?
2215 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2217 error
= PR_MCE_KILL_DEFAULT
;
2220 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2222 case PR_GET_TID_ADDRESS
:
2223 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2225 case PR_SET_CHILD_SUBREAPER
:
2226 me
->signal
->is_child_subreaper
= !!arg2
;
2228 case PR_GET_CHILD_SUBREAPER
:
2229 error
= put_user(me
->signal
->is_child_subreaper
,
2230 (int __user
*)arg2
);
2232 case PR_SET_NO_NEW_PRIVS
:
2233 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2236 current
->no_new_privs
= 1;
2238 case PR_GET_NO_NEW_PRIVS
:
2239 if (arg2
|| arg3
|| arg4
|| arg5
)
2241 return current
->no_new_privs
? 1 : 0;
2249 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2250 struct getcpu_cache __user
*, unused
)
2253 int cpu
= raw_smp_processor_id();
2255 err
|= put_user(cpu
, cpup
);
2257 err
|= put_user(cpu_to_node(cpu
), nodep
);
2258 return err
? -EFAULT
: 0;
2261 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
2263 static int __orderly_poweroff(bool force
)
2266 static char *envp
[] = {
2268 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2273 argv
= argv_split(GFP_KERNEL
, poweroff_cmd
, NULL
);
2275 ret
= call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
2278 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
2279 __func__
, poweroff_cmd
);
2284 printk(KERN_WARNING
"Failed to start orderly shutdown: "
2285 "forcing the issue\n");
2287 * I guess this should try to kick off some daemon to sync and
2288 * poweroff asap. Or not even bother syncing if we're doing an
2289 * emergency shutdown?
2298 static bool poweroff_force
;
2300 static void poweroff_work_func(struct work_struct
*work
)
2302 __orderly_poweroff(poweroff_force
);
2305 static DECLARE_WORK(poweroff_work
, poweroff_work_func
);
2308 * orderly_poweroff - Trigger an orderly system poweroff
2309 * @force: force poweroff if command execution fails
2311 * This may be called from any context to trigger a system shutdown.
2312 * If the orderly shutdown fails, it will force an immediate shutdown.
2314 int orderly_poweroff(bool force
)
2316 if (force
) /* do not override the pending "true" */
2317 poweroff_force
= true;
2318 schedule_work(&poweroff_work
);
2321 EXPORT_SYMBOL_GPL(orderly_poweroff
);
2324 * do_sysinfo - fill in sysinfo struct
2325 * @info: pointer to buffer to fill
2327 static int do_sysinfo(struct sysinfo
*info
)
2329 unsigned long mem_total
, sav_total
;
2330 unsigned int mem_unit
, bitcount
;
2333 memset(info
, 0, sizeof(struct sysinfo
));
2336 monotonic_to_bootbased(&tp
);
2337 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2339 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2341 info
->procs
= nr_threads
;
2347 * If the sum of all the available memory (i.e. ram + swap)
2348 * is less than can be stored in a 32 bit unsigned long then
2349 * we can be binary compatible with 2.2.x kernels. If not,
2350 * well, in that case 2.2.x was broken anyways...
2352 * -Erik Andersen <andersee@debian.org>
2355 mem_total
= info
->totalram
+ info
->totalswap
;
2356 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2359 mem_unit
= info
->mem_unit
;
2360 while (mem_unit
> 1) {
2363 sav_total
= mem_total
;
2365 if (mem_total
< sav_total
)
2370 * If mem_total did not overflow, multiply all memory values by
2371 * info->mem_unit and set it to 1. This leaves things compatible
2372 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2377 info
->totalram
<<= bitcount
;
2378 info
->freeram
<<= bitcount
;
2379 info
->sharedram
<<= bitcount
;
2380 info
->bufferram
<<= bitcount
;
2381 info
->totalswap
<<= bitcount
;
2382 info
->freeswap
<<= bitcount
;
2383 info
->totalhigh
<<= bitcount
;
2384 info
->freehigh
<<= bitcount
;
2390 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2396 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2402 #ifdef CONFIG_COMPAT
2403 struct compat_sysinfo
{
2417 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2420 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2426 /* Check to see if any memory value is too large for 32-bit and scale
2429 if ((s
.totalram
>> 32) || (s
.totalswap
>> 32)) {
2432 while (s
.mem_unit
< PAGE_SIZE
) {
2437 s
.totalram
>>= bitcount
;
2438 s
.freeram
>>= bitcount
;
2439 s
.sharedram
>>= bitcount
;
2440 s
.bufferram
>>= bitcount
;
2441 s
.totalswap
>>= bitcount
;
2442 s
.freeswap
>>= bitcount
;
2443 s
.totalhigh
>>= bitcount
;
2444 s
.freehigh
>>= bitcount
;
2447 if (!access_ok(VERIFY_WRITE
, info
, sizeof(struct compat_sysinfo
)) ||
2448 __put_user(s
.uptime
, &info
->uptime
) ||
2449 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2450 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2451 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2452 __put_user(s
.totalram
, &info
->totalram
) ||
2453 __put_user(s
.freeram
, &info
->freeram
) ||
2454 __put_user(s
.sharedram
, &info
->sharedram
) ||
2455 __put_user(s
.bufferram
, &info
->bufferram
) ||
2456 __put_user(s
.totalswap
, &info
->totalswap
) ||
2457 __put_user(s
.freeswap
, &info
->freeswap
) ||
2458 __put_user(s
.procs
, &info
->procs
) ||
2459 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2460 __put_user(s
.freehigh
, &info
->freehigh
) ||
2461 __put_user(s
.mem_unit
, &info
->mem_unit
))
2466 #endif /* CONFIG_COMPAT */