Merge tag 'arc-v3.11-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[linux-2.6.git] / kernel / fork.c
blob403d2bb8a96865ec2b62da44e48f77e3a7ae3e0c
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
82 #include <trace/events/sched.h>
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
88 * Protected counters by write_lock_irq(&tasklist_lock)
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
93 int max_threads; /* tunable limit on nr_threads */
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
102 return lockdep_is_held(&tasklist_lock);
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
107 int nr_processes(void)
109 int cpu;
110 int total = 0;
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
115 return total;
118 void __weak arch_release_task_struct(struct task_struct *tsk)
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
125 static inline struct task_struct *alloc_task_struct_node(int node)
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
130 static inline void free_task_struct(struct task_struct *tsk)
132 kmem_cache_free(task_struct_cachep, tsk);
134 #endif
136 void __weak arch_release_thread_info(struct thread_info *ti)
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
153 return page ? page_address(page) : NULL;
156 static inline void free_thread_info(struct thread_info *ti)
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
160 # else
161 static struct kmem_cache *thread_info_cache;
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
169 static void free_thread_info(struct thread_info *ti)
171 kmem_cache_free(thread_info_cache, ti);
174 void thread_info_cache_init(void)
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
180 # endif
181 #endif
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
201 static void account_kernel_stack(struct thread_info *ti, int account)
203 struct zone *zone = page_zone(virt_to_page(ti));
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
208 void free_task(struct task_struct *tsk)
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
219 EXPORT_SYMBOL(free_task);
221 static inline void free_signal_struct(struct signal_struct *sig)
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
228 static inline void put_signal_struct(struct signal_struct *sig)
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
234 void __put_task_struct(struct task_struct *tsk)
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
240 security_task_free(tsk);
241 exit_creds(tsk);
242 delayacct_tsk_free(tsk);
243 put_signal_struct(tsk->signal);
245 if (!profile_handoff_task(tsk))
246 free_task(tsk);
248 EXPORT_SYMBOL_GPL(__put_task_struct);
250 void __init __weak arch_task_cache_init(void) { }
252 void __init fork_init(unsigned long mempages)
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 #endif
258 /* create a slab on which task_structs can be allocated */
259 task_struct_cachep =
260 kmem_cache_create("task_struct", sizeof(struct task_struct),
261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
264 /* do the arch specific task caches init */
265 arch_task_cache_init();
268 * The default maximum number of threads is set to a safe
269 * value: the thread structures can take up at most half
270 * of memory.
272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
275 * we need to allow at least 20 threads to boot a system
277 if (max_threads < 20)
278 max_threads = 20;
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 init_task.signal->rlim[RLIMIT_NPROC];
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 struct task_struct *src)
289 *dst = *src;
290 return 0;
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
295 struct task_struct *tsk;
296 struct thread_info *ti;
297 unsigned long *stackend;
298 int node = tsk_fork_get_node(orig);
299 int err;
301 tsk = alloc_task_struct_node(node);
302 if (!tsk)
303 return NULL;
305 ti = alloc_thread_info_node(tsk, node);
306 if (!ti)
307 goto free_tsk;
309 err = arch_dup_task_struct(tsk, orig);
310 if (err)
311 goto free_ti;
313 tsk->stack = ti;
315 setup_thread_stack(tsk, orig);
316 clear_user_return_notifier(tsk);
317 clear_tsk_need_resched(tsk);
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 tsk->stack_canary = get_random_int();
323 #endif
326 * One for us, one for whoever does the "release_task()" (usually
327 * parent)
329 atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 tsk->btrace_seq = 0;
332 #endif
333 tsk->splice_pipe = NULL;
334 tsk->task_frag.page = NULL;
336 account_kernel_stack(ti, 1);
338 return tsk;
340 free_ti:
341 free_thread_info(ti);
342 free_tsk:
343 free_task_struct(tsk);
344 return NULL;
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
354 struct mempolicy *pol;
356 uprobe_start_dup_mmap();
357 down_write(&oldmm->mmap_sem);
358 flush_cache_dup_mm(oldmm);
359 uprobe_dup_mmap(oldmm, mm);
361 * Not linked in yet - no deadlock potential:
363 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
365 mm->locked_vm = 0;
366 mm->mmap = NULL;
367 mm->mmap_cache = NULL;
368 mm->map_count = 0;
369 cpumask_clear(mm_cpumask(mm));
370 mm->mm_rb = RB_ROOT;
371 rb_link = &mm->mm_rb.rb_node;
372 rb_parent = NULL;
373 pprev = &mm->mmap;
374 retval = ksm_fork(mm, oldmm);
375 if (retval)
376 goto out;
377 retval = khugepaged_fork(mm, oldmm);
378 if (retval)
379 goto out;
381 prev = NULL;
382 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383 struct file *file;
385 if (mpnt->vm_flags & VM_DONTCOPY) {
386 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387 -vma_pages(mpnt));
388 continue;
390 charge = 0;
391 if (mpnt->vm_flags & VM_ACCOUNT) {
392 unsigned long len = vma_pages(mpnt);
394 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395 goto fail_nomem;
396 charge = len;
398 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399 if (!tmp)
400 goto fail_nomem;
401 *tmp = *mpnt;
402 INIT_LIST_HEAD(&tmp->anon_vma_chain);
403 pol = mpol_dup(vma_policy(mpnt));
404 retval = PTR_ERR(pol);
405 if (IS_ERR(pol))
406 goto fail_nomem_policy;
407 vma_set_policy(tmp, pol);
408 tmp->vm_mm = mm;
409 if (anon_vma_fork(tmp, mpnt))
410 goto fail_nomem_anon_vma_fork;
411 tmp->vm_flags &= ~VM_LOCKED;
412 tmp->vm_next = tmp->vm_prev = NULL;
413 file = tmp->vm_file;
414 if (file) {
415 struct inode *inode = file_inode(file);
416 struct address_space *mapping = file->f_mapping;
418 get_file(file);
419 if (tmp->vm_flags & VM_DENYWRITE)
420 atomic_dec(&inode->i_writecount);
421 mutex_lock(&mapping->i_mmap_mutex);
422 if (tmp->vm_flags & VM_SHARED)
423 mapping->i_mmap_writable++;
424 flush_dcache_mmap_lock(mapping);
425 /* insert tmp into the share list, just after mpnt */
426 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
427 vma_nonlinear_insert(tmp,
428 &mapping->i_mmap_nonlinear);
429 else
430 vma_interval_tree_insert_after(tmp, mpnt,
431 &mapping->i_mmap);
432 flush_dcache_mmap_unlock(mapping);
433 mutex_unlock(&mapping->i_mmap_mutex);
437 * Clear hugetlb-related page reserves for children. This only
438 * affects MAP_PRIVATE mappings. Faults generated by the child
439 * are not guaranteed to succeed, even if read-only
441 if (is_vm_hugetlb_page(tmp))
442 reset_vma_resv_huge_pages(tmp);
445 * Link in the new vma and copy the page table entries.
447 *pprev = tmp;
448 pprev = &tmp->vm_next;
449 tmp->vm_prev = prev;
450 prev = tmp;
452 __vma_link_rb(mm, tmp, rb_link, rb_parent);
453 rb_link = &tmp->vm_rb.rb_right;
454 rb_parent = &tmp->vm_rb;
456 mm->map_count++;
457 retval = copy_page_range(mm, oldmm, mpnt);
459 if (tmp->vm_ops && tmp->vm_ops->open)
460 tmp->vm_ops->open(tmp);
462 if (retval)
463 goto out;
465 /* a new mm has just been created */
466 arch_dup_mmap(oldmm, mm);
467 retval = 0;
468 out:
469 up_write(&mm->mmap_sem);
470 flush_tlb_mm(oldmm);
471 up_write(&oldmm->mmap_sem);
472 uprobe_end_dup_mmap();
473 return retval;
474 fail_nomem_anon_vma_fork:
475 mpol_put(pol);
476 fail_nomem_policy:
477 kmem_cache_free(vm_area_cachep, tmp);
478 fail_nomem:
479 retval = -ENOMEM;
480 vm_unacct_memory(charge);
481 goto out;
484 static inline int mm_alloc_pgd(struct mm_struct *mm)
486 mm->pgd = pgd_alloc(mm);
487 if (unlikely(!mm->pgd))
488 return -ENOMEM;
489 return 0;
492 static inline void mm_free_pgd(struct mm_struct *mm)
494 pgd_free(mm, mm->pgd);
496 #else
497 #define dup_mmap(mm, oldmm) (0)
498 #define mm_alloc_pgd(mm) (0)
499 #define mm_free_pgd(mm)
500 #endif /* CONFIG_MMU */
502 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
504 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
505 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
507 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
509 static int __init coredump_filter_setup(char *s)
511 default_dump_filter =
512 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
513 MMF_DUMP_FILTER_MASK;
514 return 1;
517 __setup("coredump_filter=", coredump_filter_setup);
519 #include <linux/init_task.h>
521 static void mm_init_aio(struct mm_struct *mm)
523 #ifdef CONFIG_AIO
524 spin_lock_init(&mm->ioctx_lock);
525 INIT_HLIST_HEAD(&mm->ioctx_list);
526 #endif
529 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
531 atomic_set(&mm->mm_users, 1);
532 atomic_set(&mm->mm_count, 1);
533 init_rwsem(&mm->mmap_sem);
534 INIT_LIST_HEAD(&mm->mmlist);
535 mm->flags = (current->mm) ?
536 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
537 mm->core_state = NULL;
538 mm->nr_ptes = 0;
539 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
540 spin_lock_init(&mm->page_table_lock);
541 mm_init_aio(mm);
542 mm_init_owner(mm, p);
544 if (likely(!mm_alloc_pgd(mm))) {
545 mm->def_flags = 0;
546 mmu_notifier_mm_init(mm);
547 return mm;
550 free_mm(mm);
551 return NULL;
554 static void check_mm(struct mm_struct *mm)
556 int i;
558 for (i = 0; i < NR_MM_COUNTERS; i++) {
559 long x = atomic_long_read(&mm->rss_stat.count[i]);
561 if (unlikely(x))
562 printk(KERN_ALERT "BUG: Bad rss-counter state "
563 "mm:%p idx:%d val:%ld\n", mm, i, x);
566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
567 VM_BUG_ON(mm->pmd_huge_pte);
568 #endif
572 * Allocate and initialize an mm_struct.
574 struct mm_struct *mm_alloc(void)
576 struct mm_struct *mm;
578 mm = allocate_mm();
579 if (!mm)
580 return NULL;
582 memset(mm, 0, sizeof(*mm));
583 mm_init_cpumask(mm);
584 return mm_init(mm, current);
588 * Called when the last reference to the mm
589 * is dropped: either by a lazy thread or by
590 * mmput. Free the page directory and the mm.
592 void __mmdrop(struct mm_struct *mm)
594 BUG_ON(mm == &init_mm);
595 mm_free_pgd(mm);
596 destroy_context(mm);
597 mmu_notifier_mm_destroy(mm);
598 check_mm(mm);
599 free_mm(mm);
601 EXPORT_SYMBOL_GPL(__mmdrop);
604 * Decrement the use count and release all resources for an mm.
606 void mmput(struct mm_struct *mm)
608 might_sleep();
610 if (atomic_dec_and_test(&mm->mm_users)) {
611 uprobe_clear_state(mm);
612 exit_aio(mm);
613 ksm_exit(mm);
614 khugepaged_exit(mm); /* must run before exit_mmap */
615 exit_mmap(mm);
616 set_mm_exe_file(mm, NULL);
617 if (!list_empty(&mm->mmlist)) {
618 spin_lock(&mmlist_lock);
619 list_del(&mm->mmlist);
620 spin_unlock(&mmlist_lock);
622 if (mm->binfmt)
623 module_put(mm->binfmt->module);
624 mmdrop(mm);
627 EXPORT_SYMBOL_GPL(mmput);
629 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
631 if (new_exe_file)
632 get_file(new_exe_file);
633 if (mm->exe_file)
634 fput(mm->exe_file);
635 mm->exe_file = new_exe_file;
638 struct file *get_mm_exe_file(struct mm_struct *mm)
640 struct file *exe_file;
642 /* We need mmap_sem to protect against races with removal of exe_file */
643 down_read(&mm->mmap_sem);
644 exe_file = mm->exe_file;
645 if (exe_file)
646 get_file(exe_file);
647 up_read(&mm->mmap_sem);
648 return exe_file;
651 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
653 /* It's safe to write the exe_file pointer without exe_file_lock because
654 * this is called during fork when the task is not yet in /proc */
655 newmm->exe_file = get_mm_exe_file(oldmm);
659 * get_task_mm - acquire a reference to the task's mm
661 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
662 * this kernel workthread has transiently adopted a user mm with use_mm,
663 * to do its AIO) is not set and if so returns a reference to it, after
664 * bumping up the use count. User must release the mm via mmput()
665 * after use. Typically used by /proc and ptrace.
667 struct mm_struct *get_task_mm(struct task_struct *task)
669 struct mm_struct *mm;
671 task_lock(task);
672 mm = task->mm;
673 if (mm) {
674 if (task->flags & PF_KTHREAD)
675 mm = NULL;
676 else
677 atomic_inc(&mm->mm_users);
679 task_unlock(task);
680 return mm;
682 EXPORT_SYMBOL_GPL(get_task_mm);
684 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
686 struct mm_struct *mm;
687 int err;
689 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
690 if (err)
691 return ERR_PTR(err);
693 mm = get_task_mm(task);
694 if (mm && mm != current->mm &&
695 !ptrace_may_access(task, mode)) {
696 mmput(mm);
697 mm = ERR_PTR(-EACCES);
699 mutex_unlock(&task->signal->cred_guard_mutex);
701 return mm;
704 static void complete_vfork_done(struct task_struct *tsk)
706 struct completion *vfork;
708 task_lock(tsk);
709 vfork = tsk->vfork_done;
710 if (likely(vfork)) {
711 tsk->vfork_done = NULL;
712 complete(vfork);
714 task_unlock(tsk);
717 static int wait_for_vfork_done(struct task_struct *child,
718 struct completion *vfork)
720 int killed;
722 freezer_do_not_count();
723 killed = wait_for_completion_killable(vfork);
724 freezer_count();
726 if (killed) {
727 task_lock(child);
728 child->vfork_done = NULL;
729 task_unlock(child);
732 put_task_struct(child);
733 return killed;
736 /* Please note the differences between mmput and mm_release.
737 * mmput is called whenever we stop holding onto a mm_struct,
738 * error success whatever.
740 * mm_release is called after a mm_struct has been removed
741 * from the current process.
743 * This difference is important for error handling, when we
744 * only half set up a mm_struct for a new process and need to restore
745 * the old one. Because we mmput the new mm_struct before
746 * restoring the old one. . .
747 * Eric Biederman 10 January 1998
749 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
751 /* Get rid of any futexes when releasing the mm */
752 #ifdef CONFIG_FUTEX
753 if (unlikely(tsk->robust_list)) {
754 exit_robust_list(tsk);
755 tsk->robust_list = NULL;
757 #ifdef CONFIG_COMPAT
758 if (unlikely(tsk->compat_robust_list)) {
759 compat_exit_robust_list(tsk);
760 tsk->compat_robust_list = NULL;
762 #endif
763 if (unlikely(!list_empty(&tsk->pi_state_list)))
764 exit_pi_state_list(tsk);
765 #endif
767 uprobe_free_utask(tsk);
769 /* Get rid of any cached register state */
770 deactivate_mm(tsk, mm);
773 * If we're exiting normally, clear a user-space tid field if
774 * requested. We leave this alone when dying by signal, to leave
775 * the value intact in a core dump, and to save the unnecessary
776 * trouble, say, a killed vfork parent shouldn't touch this mm.
777 * Userland only wants this done for a sys_exit.
779 if (tsk->clear_child_tid) {
780 if (!(tsk->flags & PF_SIGNALED) &&
781 atomic_read(&mm->mm_users) > 1) {
783 * We don't check the error code - if userspace has
784 * not set up a proper pointer then tough luck.
786 put_user(0, tsk->clear_child_tid);
787 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
788 1, NULL, NULL, 0);
790 tsk->clear_child_tid = NULL;
794 * All done, finally we can wake up parent and return this mm to him.
795 * Also kthread_stop() uses this completion for synchronization.
797 if (tsk->vfork_done)
798 complete_vfork_done(tsk);
802 * Allocate a new mm structure and copy contents from the
803 * mm structure of the passed in task structure.
805 struct mm_struct *dup_mm(struct task_struct *tsk)
807 struct mm_struct *mm, *oldmm = current->mm;
808 int err;
810 if (!oldmm)
811 return NULL;
813 mm = allocate_mm();
814 if (!mm)
815 goto fail_nomem;
817 memcpy(mm, oldmm, sizeof(*mm));
818 mm_init_cpumask(mm);
820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
821 mm->pmd_huge_pte = NULL;
822 #endif
823 #ifdef CONFIG_NUMA_BALANCING
824 mm->first_nid = NUMA_PTE_SCAN_INIT;
825 #endif
826 if (!mm_init(mm, tsk))
827 goto fail_nomem;
829 if (init_new_context(tsk, mm))
830 goto fail_nocontext;
832 dup_mm_exe_file(oldmm, mm);
834 err = dup_mmap(mm, oldmm);
835 if (err)
836 goto free_pt;
838 mm->hiwater_rss = get_mm_rss(mm);
839 mm->hiwater_vm = mm->total_vm;
841 if (mm->binfmt && !try_module_get(mm->binfmt->module))
842 goto free_pt;
844 return mm;
846 free_pt:
847 /* don't put binfmt in mmput, we haven't got module yet */
848 mm->binfmt = NULL;
849 mmput(mm);
851 fail_nomem:
852 return NULL;
854 fail_nocontext:
856 * If init_new_context() failed, we cannot use mmput() to free the mm
857 * because it calls destroy_context()
859 mm_free_pgd(mm);
860 free_mm(mm);
861 return NULL;
864 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
866 struct mm_struct *mm, *oldmm;
867 int retval;
869 tsk->min_flt = tsk->maj_flt = 0;
870 tsk->nvcsw = tsk->nivcsw = 0;
871 #ifdef CONFIG_DETECT_HUNG_TASK
872 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
873 #endif
875 tsk->mm = NULL;
876 tsk->active_mm = NULL;
879 * Are we cloning a kernel thread?
881 * We need to steal a active VM for that..
883 oldmm = current->mm;
884 if (!oldmm)
885 return 0;
887 if (clone_flags & CLONE_VM) {
888 atomic_inc(&oldmm->mm_users);
889 mm = oldmm;
890 goto good_mm;
893 retval = -ENOMEM;
894 mm = dup_mm(tsk);
895 if (!mm)
896 goto fail_nomem;
898 good_mm:
899 tsk->mm = mm;
900 tsk->active_mm = mm;
901 return 0;
903 fail_nomem:
904 return retval;
907 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
909 struct fs_struct *fs = current->fs;
910 if (clone_flags & CLONE_FS) {
911 /* tsk->fs is already what we want */
912 spin_lock(&fs->lock);
913 if (fs->in_exec) {
914 spin_unlock(&fs->lock);
915 return -EAGAIN;
917 fs->users++;
918 spin_unlock(&fs->lock);
919 return 0;
921 tsk->fs = copy_fs_struct(fs);
922 if (!tsk->fs)
923 return -ENOMEM;
924 return 0;
927 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
929 struct files_struct *oldf, *newf;
930 int error = 0;
933 * A background process may not have any files ...
935 oldf = current->files;
936 if (!oldf)
937 goto out;
939 if (clone_flags & CLONE_FILES) {
940 atomic_inc(&oldf->count);
941 goto out;
944 newf = dup_fd(oldf, &error);
945 if (!newf)
946 goto out;
948 tsk->files = newf;
949 error = 0;
950 out:
951 return error;
954 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
956 #ifdef CONFIG_BLOCK
957 struct io_context *ioc = current->io_context;
958 struct io_context *new_ioc;
960 if (!ioc)
961 return 0;
963 * Share io context with parent, if CLONE_IO is set
965 if (clone_flags & CLONE_IO) {
966 ioc_task_link(ioc);
967 tsk->io_context = ioc;
968 } else if (ioprio_valid(ioc->ioprio)) {
969 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
970 if (unlikely(!new_ioc))
971 return -ENOMEM;
973 new_ioc->ioprio = ioc->ioprio;
974 put_io_context(new_ioc);
976 #endif
977 return 0;
980 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
982 struct sighand_struct *sig;
984 if (clone_flags & CLONE_SIGHAND) {
985 atomic_inc(&current->sighand->count);
986 return 0;
988 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
989 rcu_assign_pointer(tsk->sighand, sig);
990 if (!sig)
991 return -ENOMEM;
992 atomic_set(&sig->count, 1);
993 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
994 return 0;
997 void __cleanup_sighand(struct sighand_struct *sighand)
999 if (atomic_dec_and_test(&sighand->count)) {
1000 signalfd_cleanup(sighand);
1001 kmem_cache_free(sighand_cachep, sighand);
1007 * Initialize POSIX timer handling for a thread group.
1009 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1011 unsigned long cpu_limit;
1013 /* Thread group counters. */
1014 thread_group_cputime_init(sig);
1016 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1017 if (cpu_limit != RLIM_INFINITY) {
1018 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1019 sig->cputimer.running = 1;
1022 /* The timer lists. */
1023 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1024 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1025 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1028 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1030 struct signal_struct *sig;
1032 if (clone_flags & CLONE_THREAD)
1033 return 0;
1035 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1036 tsk->signal = sig;
1037 if (!sig)
1038 return -ENOMEM;
1040 sig->nr_threads = 1;
1041 atomic_set(&sig->live, 1);
1042 atomic_set(&sig->sigcnt, 1);
1043 init_waitqueue_head(&sig->wait_chldexit);
1044 sig->curr_target = tsk;
1045 init_sigpending(&sig->shared_pending);
1046 INIT_LIST_HEAD(&sig->posix_timers);
1048 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1049 sig->real_timer.function = it_real_fn;
1051 task_lock(current->group_leader);
1052 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1053 task_unlock(current->group_leader);
1055 posix_cpu_timers_init_group(sig);
1057 tty_audit_fork(sig);
1058 sched_autogroup_fork(sig);
1060 #ifdef CONFIG_CGROUPS
1061 init_rwsem(&sig->group_rwsem);
1062 #endif
1064 sig->oom_score_adj = current->signal->oom_score_adj;
1065 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1067 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1068 current->signal->is_child_subreaper;
1070 mutex_init(&sig->cred_guard_mutex);
1072 return 0;
1075 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1077 unsigned long new_flags = p->flags;
1079 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1080 new_flags |= PF_FORKNOEXEC;
1081 p->flags = new_flags;
1084 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1086 current->clear_child_tid = tidptr;
1088 return task_pid_vnr(current);
1091 static void rt_mutex_init_task(struct task_struct *p)
1093 raw_spin_lock_init(&p->pi_lock);
1094 #ifdef CONFIG_RT_MUTEXES
1095 plist_head_init(&p->pi_waiters);
1096 p->pi_blocked_on = NULL;
1097 #endif
1100 #ifdef CONFIG_MM_OWNER
1101 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1103 mm->owner = p;
1105 #endif /* CONFIG_MM_OWNER */
1108 * Initialize POSIX timer handling for a single task.
1110 static void posix_cpu_timers_init(struct task_struct *tsk)
1112 tsk->cputime_expires.prof_exp = 0;
1113 tsk->cputime_expires.virt_exp = 0;
1114 tsk->cputime_expires.sched_exp = 0;
1115 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1116 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1117 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1120 static inline void
1121 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1123 task->pids[type].pid = pid;
1127 * This creates a new process as a copy of the old one,
1128 * but does not actually start it yet.
1130 * It copies the registers, and all the appropriate
1131 * parts of the process environment (as per the clone
1132 * flags). The actual kick-off is left to the caller.
1134 static struct task_struct *copy_process(unsigned long clone_flags,
1135 unsigned long stack_start,
1136 unsigned long stack_size,
1137 int __user *child_tidptr,
1138 struct pid *pid,
1139 int trace)
1141 int retval;
1142 struct task_struct *p;
1144 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1145 return ERR_PTR(-EINVAL);
1147 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1148 return ERR_PTR(-EINVAL);
1151 * Thread groups must share signals as well, and detached threads
1152 * can only be started up within the thread group.
1154 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1155 return ERR_PTR(-EINVAL);
1158 * Shared signal handlers imply shared VM. By way of the above,
1159 * thread groups also imply shared VM. Blocking this case allows
1160 * for various simplifications in other code.
1162 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1163 return ERR_PTR(-EINVAL);
1166 * Siblings of global init remain as zombies on exit since they are
1167 * not reaped by their parent (swapper). To solve this and to avoid
1168 * multi-rooted process trees, prevent global and container-inits
1169 * from creating siblings.
1171 if ((clone_flags & CLONE_PARENT) &&
1172 current->signal->flags & SIGNAL_UNKILLABLE)
1173 return ERR_PTR(-EINVAL);
1176 * If the new process will be in a different pid namespace
1177 * don't allow the creation of threads.
1179 if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
1180 (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1181 return ERR_PTR(-EINVAL);
1183 retval = security_task_create(clone_flags);
1184 if (retval)
1185 goto fork_out;
1187 retval = -ENOMEM;
1188 p = dup_task_struct(current);
1189 if (!p)
1190 goto fork_out;
1192 ftrace_graph_init_task(p);
1193 get_seccomp_filter(p);
1195 rt_mutex_init_task(p);
1197 #ifdef CONFIG_PROVE_LOCKING
1198 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1199 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1200 #endif
1201 retval = -EAGAIN;
1202 if (atomic_read(&p->real_cred->user->processes) >=
1203 task_rlimit(p, RLIMIT_NPROC)) {
1204 if (p->real_cred->user != INIT_USER &&
1205 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1206 goto bad_fork_free;
1208 current->flags &= ~PF_NPROC_EXCEEDED;
1210 retval = copy_creds(p, clone_flags);
1211 if (retval < 0)
1212 goto bad_fork_free;
1215 * If multiple threads are within copy_process(), then this check
1216 * triggers too late. This doesn't hurt, the check is only there
1217 * to stop root fork bombs.
1219 retval = -EAGAIN;
1220 if (nr_threads >= max_threads)
1221 goto bad_fork_cleanup_count;
1223 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1224 goto bad_fork_cleanup_count;
1226 p->did_exec = 0;
1227 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1228 copy_flags(clone_flags, p);
1229 INIT_LIST_HEAD(&p->children);
1230 INIT_LIST_HEAD(&p->sibling);
1231 rcu_copy_process(p);
1232 p->vfork_done = NULL;
1233 spin_lock_init(&p->alloc_lock);
1235 init_sigpending(&p->pending);
1237 p->utime = p->stime = p->gtime = 0;
1238 p->utimescaled = p->stimescaled = 0;
1239 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1240 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1241 #endif
1242 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1243 seqlock_init(&p->vtime_seqlock);
1244 p->vtime_snap = 0;
1245 p->vtime_snap_whence = VTIME_SLEEPING;
1246 #endif
1248 #if defined(SPLIT_RSS_COUNTING)
1249 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1250 #endif
1252 p->default_timer_slack_ns = current->timer_slack_ns;
1254 task_io_accounting_init(&p->ioac);
1255 acct_clear_integrals(p);
1257 posix_cpu_timers_init(p);
1259 do_posix_clock_monotonic_gettime(&p->start_time);
1260 p->real_start_time = p->start_time;
1261 monotonic_to_bootbased(&p->real_start_time);
1262 p->io_context = NULL;
1263 p->audit_context = NULL;
1264 if (clone_flags & CLONE_THREAD)
1265 threadgroup_change_begin(current);
1266 cgroup_fork(p);
1267 #ifdef CONFIG_NUMA
1268 p->mempolicy = mpol_dup(p->mempolicy);
1269 if (IS_ERR(p->mempolicy)) {
1270 retval = PTR_ERR(p->mempolicy);
1271 p->mempolicy = NULL;
1272 goto bad_fork_cleanup_cgroup;
1274 mpol_fix_fork_child_flag(p);
1275 #endif
1276 #ifdef CONFIG_CPUSETS
1277 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1278 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1279 seqcount_init(&p->mems_allowed_seq);
1280 #endif
1281 #ifdef CONFIG_TRACE_IRQFLAGS
1282 p->irq_events = 0;
1283 p->hardirqs_enabled = 0;
1284 p->hardirq_enable_ip = 0;
1285 p->hardirq_enable_event = 0;
1286 p->hardirq_disable_ip = _THIS_IP_;
1287 p->hardirq_disable_event = 0;
1288 p->softirqs_enabled = 1;
1289 p->softirq_enable_ip = _THIS_IP_;
1290 p->softirq_enable_event = 0;
1291 p->softirq_disable_ip = 0;
1292 p->softirq_disable_event = 0;
1293 p->hardirq_context = 0;
1294 p->softirq_context = 0;
1295 #endif
1296 #ifdef CONFIG_LOCKDEP
1297 p->lockdep_depth = 0; /* no locks held yet */
1298 p->curr_chain_key = 0;
1299 p->lockdep_recursion = 0;
1300 #endif
1302 #ifdef CONFIG_DEBUG_MUTEXES
1303 p->blocked_on = NULL; /* not blocked yet */
1304 #endif
1305 #ifdef CONFIG_MEMCG
1306 p->memcg_batch.do_batch = 0;
1307 p->memcg_batch.memcg = NULL;
1308 #endif
1309 #ifdef CONFIG_BCACHE
1310 p->sequential_io = 0;
1311 p->sequential_io_avg = 0;
1312 #endif
1314 /* Perform scheduler related setup. Assign this task to a CPU. */
1315 sched_fork(p);
1317 retval = perf_event_init_task(p);
1318 if (retval)
1319 goto bad_fork_cleanup_policy;
1320 retval = audit_alloc(p);
1321 if (retval)
1322 goto bad_fork_cleanup_policy;
1323 /* copy all the process information */
1324 retval = copy_semundo(clone_flags, p);
1325 if (retval)
1326 goto bad_fork_cleanup_audit;
1327 retval = copy_files(clone_flags, p);
1328 if (retval)
1329 goto bad_fork_cleanup_semundo;
1330 retval = copy_fs(clone_flags, p);
1331 if (retval)
1332 goto bad_fork_cleanup_files;
1333 retval = copy_sighand(clone_flags, p);
1334 if (retval)
1335 goto bad_fork_cleanup_fs;
1336 retval = copy_signal(clone_flags, p);
1337 if (retval)
1338 goto bad_fork_cleanup_sighand;
1339 retval = copy_mm(clone_flags, p);
1340 if (retval)
1341 goto bad_fork_cleanup_signal;
1342 retval = copy_namespaces(clone_flags, p);
1343 if (retval)
1344 goto bad_fork_cleanup_mm;
1345 retval = copy_io(clone_flags, p);
1346 if (retval)
1347 goto bad_fork_cleanup_namespaces;
1348 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1349 if (retval)
1350 goto bad_fork_cleanup_io;
1352 if (pid != &init_struct_pid) {
1353 retval = -ENOMEM;
1354 pid = alloc_pid(p->nsproxy->pid_ns);
1355 if (!pid)
1356 goto bad_fork_cleanup_io;
1359 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1361 * Clear TID on mm_release()?
1363 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1364 #ifdef CONFIG_BLOCK
1365 p->plug = NULL;
1366 #endif
1367 #ifdef CONFIG_FUTEX
1368 p->robust_list = NULL;
1369 #ifdef CONFIG_COMPAT
1370 p->compat_robust_list = NULL;
1371 #endif
1372 INIT_LIST_HEAD(&p->pi_state_list);
1373 p->pi_state_cache = NULL;
1374 #endif
1375 uprobe_copy_process(p);
1377 * sigaltstack should be cleared when sharing the same VM
1379 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1380 p->sas_ss_sp = p->sas_ss_size = 0;
1383 * Syscall tracing and stepping should be turned off in the
1384 * child regardless of CLONE_PTRACE.
1386 user_disable_single_step(p);
1387 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1388 #ifdef TIF_SYSCALL_EMU
1389 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1390 #endif
1391 clear_all_latency_tracing(p);
1393 /* ok, now we should be set up.. */
1394 p->pid = pid_nr(pid);
1395 if (clone_flags & CLONE_THREAD) {
1396 p->exit_signal = -1;
1397 p->group_leader = current->group_leader;
1398 p->tgid = current->tgid;
1399 } else {
1400 if (clone_flags & CLONE_PARENT)
1401 p->exit_signal = current->group_leader->exit_signal;
1402 else
1403 p->exit_signal = (clone_flags & CSIGNAL);
1404 p->group_leader = p;
1405 p->tgid = p->pid;
1408 p->pdeath_signal = 0;
1409 p->exit_state = 0;
1411 p->nr_dirtied = 0;
1412 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1413 p->dirty_paused_when = 0;
1415 INIT_LIST_HEAD(&p->thread_group);
1416 p->task_works = NULL;
1419 * Make it visible to the rest of the system, but dont wake it up yet.
1420 * Need tasklist lock for parent etc handling!
1422 write_lock_irq(&tasklist_lock);
1424 /* CLONE_PARENT re-uses the old parent */
1425 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1426 p->real_parent = current->real_parent;
1427 p->parent_exec_id = current->parent_exec_id;
1428 } else {
1429 p->real_parent = current;
1430 p->parent_exec_id = current->self_exec_id;
1433 spin_lock(&current->sighand->siglock);
1436 * Process group and session signals need to be delivered to just the
1437 * parent before the fork or both the parent and the child after the
1438 * fork. Restart if a signal comes in before we add the new process to
1439 * it's process group.
1440 * A fatal signal pending means that current will exit, so the new
1441 * thread can't slip out of an OOM kill (or normal SIGKILL).
1443 recalc_sigpending();
1444 if (signal_pending(current)) {
1445 spin_unlock(&current->sighand->siglock);
1446 write_unlock_irq(&tasklist_lock);
1447 retval = -ERESTARTNOINTR;
1448 goto bad_fork_free_pid;
1451 if (likely(p->pid)) {
1452 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1454 init_task_pid(p, PIDTYPE_PID, pid);
1455 if (thread_group_leader(p)) {
1456 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1457 init_task_pid(p, PIDTYPE_SID, task_session(current));
1459 if (is_child_reaper(pid)) {
1460 ns_of_pid(pid)->child_reaper = p;
1461 p->signal->flags |= SIGNAL_UNKILLABLE;
1464 p->signal->leader_pid = pid;
1465 p->signal->tty = tty_kref_get(current->signal->tty);
1466 list_add_tail(&p->sibling, &p->real_parent->children);
1467 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1468 attach_pid(p, PIDTYPE_PGID);
1469 attach_pid(p, PIDTYPE_SID);
1470 __this_cpu_inc(process_counts);
1471 } else {
1472 current->signal->nr_threads++;
1473 atomic_inc(&current->signal->live);
1474 atomic_inc(&current->signal->sigcnt);
1475 list_add_tail_rcu(&p->thread_group,
1476 &p->group_leader->thread_group);
1478 attach_pid(p, PIDTYPE_PID);
1479 nr_threads++;
1482 total_forks++;
1483 spin_unlock(&current->sighand->siglock);
1484 write_unlock_irq(&tasklist_lock);
1485 proc_fork_connector(p);
1486 cgroup_post_fork(p);
1487 if (clone_flags & CLONE_THREAD)
1488 threadgroup_change_end(current);
1489 perf_event_fork(p);
1491 trace_task_newtask(p, clone_flags);
1493 return p;
1495 bad_fork_free_pid:
1496 if (pid != &init_struct_pid)
1497 free_pid(pid);
1498 bad_fork_cleanup_io:
1499 if (p->io_context)
1500 exit_io_context(p);
1501 bad_fork_cleanup_namespaces:
1502 exit_task_namespaces(p);
1503 bad_fork_cleanup_mm:
1504 if (p->mm)
1505 mmput(p->mm);
1506 bad_fork_cleanup_signal:
1507 if (!(clone_flags & CLONE_THREAD))
1508 free_signal_struct(p->signal);
1509 bad_fork_cleanup_sighand:
1510 __cleanup_sighand(p->sighand);
1511 bad_fork_cleanup_fs:
1512 exit_fs(p); /* blocking */
1513 bad_fork_cleanup_files:
1514 exit_files(p); /* blocking */
1515 bad_fork_cleanup_semundo:
1516 exit_sem(p);
1517 bad_fork_cleanup_audit:
1518 audit_free(p);
1519 bad_fork_cleanup_policy:
1520 perf_event_free_task(p);
1521 #ifdef CONFIG_NUMA
1522 mpol_put(p->mempolicy);
1523 bad_fork_cleanup_cgroup:
1524 #endif
1525 if (clone_flags & CLONE_THREAD)
1526 threadgroup_change_end(current);
1527 cgroup_exit(p, 0);
1528 delayacct_tsk_free(p);
1529 module_put(task_thread_info(p)->exec_domain->module);
1530 bad_fork_cleanup_count:
1531 atomic_dec(&p->cred->user->processes);
1532 exit_creds(p);
1533 bad_fork_free:
1534 free_task(p);
1535 fork_out:
1536 return ERR_PTR(retval);
1539 static inline void init_idle_pids(struct pid_link *links)
1541 enum pid_type type;
1543 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1544 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1545 links[type].pid = &init_struct_pid;
1549 struct task_struct *fork_idle(int cpu)
1551 struct task_struct *task;
1552 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1553 if (!IS_ERR(task)) {
1554 init_idle_pids(task->pids);
1555 init_idle(task, cpu);
1558 return task;
1562 * Ok, this is the main fork-routine.
1564 * It copies the process, and if successful kick-starts
1565 * it and waits for it to finish using the VM if required.
1567 long do_fork(unsigned long clone_flags,
1568 unsigned long stack_start,
1569 unsigned long stack_size,
1570 int __user *parent_tidptr,
1571 int __user *child_tidptr)
1573 struct task_struct *p;
1574 int trace = 0;
1575 long nr;
1578 * Do some preliminary argument and permissions checking before we
1579 * actually start allocating stuff
1581 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1582 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1583 return -EINVAL;
1587 * Determine whether and which event to report to ptracer. When
1588 * called from kernel_thread or CLONE_UNTRACED is explicitly
1589 * requested, no event is reported; otherwise, report if the event
1590 * for the type of forking is enabled.
1592 if (!(clone_flags & CLONE_UNTRACED)) {
1593 if (clone_flags & CLONE_VFORK)
1594 trace = PTRACE_EVENT_VFORK;
1595 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1596 trace = PTRACE_EVENT_CLONE;
1597 else
1598 trace = PTRACE_EVENT_FORK;
1600 if (likely(!ptrace_event_enabled(current, trace)))
1601 trace = 0;
1604 p = copy_process(clone_flags, stack_start, stack_size,
1605 child_tidptr, NULL, trace);
1607 * Do this prior waking up the new thread - the thread pointer
1608 * might get invalid after that point, if the thread exits quickly.
1610 if (!IS_ERR(p)) {
1611 struct completion vfork;
1613 trace_sched_process_fork(current, p);
1615 nr = task_pid_vnr(p);
1617 if (clone_flags & CLONE_PARENT_SETTID)
1618 put_user(nr, parent_tidptr);
1620 if (clone_flags & CLONE_VFORK) {
1621 p->vfork_done = &vfork;
1622 init_completion(&vfork);
1623 get_task_struct(p);
1626 wake_up_new_task(p);
1628 /* forking complete and child started to run, tell ptracer */
1629 if (unlikely(trace))
1630 ptrace_event(trace, nr);
1632 if (clone_flags & CLONE_VFORK) {
1633 if (!wait_for_vfork_done(p, &vfork))
1634 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1636 } else {
1637 nr = PTR_ERR(p);
1639 return nr;
1643 * Create a kernel thread.
1645 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1647 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1648 (unsigned long)arg, NULL, NULL);
1651 #ifdef __ARCH_WANT_SYS_FORK
1652 SYSCALL_DEFINE0(fork)
1654 #ifdef CONFIG_MMU
1655 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1656 #else
1657 /* can not support in nommu mode */
1658 return(-EINVAL);
1659 #endif
1661 #endif
1663 #ifdef __ARCH_WANT_SYS_VFORK
1664 SYSCALL_DEFINE0(vfork)
1666 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1667 0, NULL, NULL);
1669 #endif
1671 #ifdef __ARCH_WANT_SYS_CLONE
1672 #ifdef CONFIG_CLONE_BACKWARDS
1673 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1674 int __user *, parent_tidptr,
1675 int, tls_val,
1676 int __user *, child_tidptr)
1677 #elif defined(CONFIG_CLONE_BACKWARDS2)
1678 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1679 int __user *, parent_tidptr,
1680 int __user *, child_tidptr,
1681 int, tls_val)
1682 #else
1683 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1684 int __user *, parent_tidptr,
1685 int __user *, child_tidptr,
1686 int, tls_val)
1687 #endif
1689 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1691 #endif
1693 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1694 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1695 #endif
1697 static void sighand_ctor(void *data)
1699 struct sighand_struct *sighand = data;
1701 spin_lock_init(&sighand->siglock);
1702 init_waitqueue_head(&sighand->signalfd_wqh);
1705 void __init proc_caches_init(void)
1707 sighand_cachep = kmem_cache_create("sighand_cache",
1708 sizeof(struct sighand_struct), 0,
1709 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1710 SLAB_NOTRACK, sighand_ctor);
1711 signal_cachep = kmem_cache_create("signal_cache",
1712 sizeof(struct signal_struct), 0,
1713 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1714 files_cachep = kmem_cache_create("files_cache",
1715 sizeof(struct files_struct), 0,
1716 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1717 fs_cachep = kmem_cache_create("fs_cache",
1718 sizeof(struct fs_struct), 0,
1719 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1721 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1722 * whole struct cpumask for the OFFSTACK case. We could change
1723 * this to *only* allocate as much of it as required by the
1724 * maximum number of CPU's we can ever have. The cpumask_allocation
1725 * is at the end of the structure, exactly for that reason.
1727 mm_cachep = kmem_cache_create("mm_struct",
1728 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1729 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1730 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1731 mmap_init();
1732 nsproxy_cache_init();
1736 * Check constraints on flags passed to the unshare system call.
1738 static int check_unshare_flags(unsigned long unshare_flags)
1740 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1741 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1742 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1743 CLONE_NEWUSER|CLONE_NEWPID))
1744 return -EINVAL;
1746 * Not implemented, but pretend it works if there is nothing to
1747 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1748 * needs to unshare vm.
1750 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1751 /* FIXME: get_task_mm() increments ->mm_users */
1752 if (atomic_read(&current->mm->mm_users) > 1)
1753 return -EINVAL;
1756 return 0;
1760 * Unshare the filesystem structure if it is being shared
1762 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1764 struct fs_struct *fs = current->fs;
1766 if (!(unshare_flags & CLONE_FS) || !fs)
1767 return 0;
1769 /* don't need lock here; in the worst case we'll do useless copy */
1770 if (fs->users == 1)
1771 return 0;
1773 *new_fsp = copy_fs_struct(fs);
1774 if (!*new_fsp)
1775 return -ENOMEM;
1777 return 0;
1781 * Unshare file descriptor table if it is being shared
1783 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1785 struct files_struct *fd = current->files;
1786 int error = 0;
1788 if ((unshare_flags & CLONE_FILES) &&
1789 (fd && atomic_read(&fd->count) > 1)) {
1790 *new_fdp = dup_fd(fd, &error);
1791 if (!*new_fdp)
1792 return error;
1795 return 0;
1799 * unshare allows a process to 'unshare' part of the process
1800 * context which was originally shared using clone. copy_*
1801 * functions used by do_fork() cannot be used here directly
1802 * because they modify an inactive task_struct that is being
1803 * constructed. Here we are modifying the current, active,
1804 * task_struct.
1806 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1808 struct fs_struct *fs, *new_fs = NULL;
1809 struct files_struct *fd, *new_fd = NULL;
1810 struct cred *new_cred = NULL;
1811 struct nsproxy *new_nsproxy = NULL;
1812 int do_sysvsem = 0;
1813 int err;
1816 * If unsharing a user namespace must also unshare the thread.
1818 if (unshare_flags & CLONE_NEWUSER)
1819 unshare_flags |= CLONE_THREAD | CLONE_FS;
1821 * If unsharing a pid namespace must also unshare the thread.
1823 if (unshare_flags & CLONE_NEWPID)
1824 unshare_flags |= CLONE_THREAD;
1826 * If unsharing a thread from a thread group, must also unshare vm.
1828 if (unshare_flags & CLONE_THREAD)
1829 unshare_flags |= CLONE_VM;
1831 * If unsharing vm, must also unshare signal handlers.
1833 if (unshare_flags & CLONE_VM)
1834 unshare_flags |= CLONE_SIGHAND;
1836 * If unsharing namespace, must also unshare filesystem information.
1838 if (unshare_flags & CLONE_NEWNS)
1839 unshare_flags |= CLONE_FS;
1841 err = check_unshare_flags(unshare_flags);
1842 if (err)
1843 goto bad_unshare_out;
1845 * CLONE_NEWIPC must also detach from the undolist: after switching
1846 * to a new ipc namespace, the semaphore arrays from the old
1847 * namespace are unreachable.
1849 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1850 do_sysvsem = 1;
1851 err = unshare_fs(unshare_flags, &new_fs);
1852 if (err)
1853 goto bad_unshare_out;
1854 err = unshare_fd(unshare_flags, &new_fd);
1855 if (err)
1856 goto bad_unshare_cleanup_fs;
1857 err = unshare_userns(unshare_flags, &new_cred);
1858 if (err)
1859 goto bad_unshare_cleanup_fd;
1860 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1861 new_cred, new_fs);
1862 if (err)
1863 goto bad_unshare_cleanup_cred;
1865 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1866 if (do_sysvsem) {
1868 * CLONE_SYSVSEM is equivalent to sys_exit().
1870 exit_sem(current);
1873 if (new_nsproxy)
1874 switch_task_namespaces(current, new_nsproxy);
1876 task_lock(current);
1878 if (new_fs) {
1879 fs = current->fs;
1880 spin_lock(&fs->lock);
1881 current->fs = new_fs;
1882 if (--fs->users)
1883 new_fs = NULL;
1884 else
1885 new_fs = fs;
1886 spin_unlock(&fs->lock);
1889 if (new_fd) {
1890 fd = current->files;
1891 current->files = new_fd;
1892 new_fd = fd;
1895 task_unlock(current);
1897 if (new_cred) {
1898 /* Install the new user namespace */
1899 commit_creds(new_cred);
1900 new_cred = NULL;
1904 bad_unshare_cleanup_cred:
1905 if (new_cred)
1906 put_cred(new_cred);
1907 bad_unshare_cleanup_fd:
1908 if (new_fd)
1909 put_files_struct(new_fd);
1911 bad_unshare_cleanup_fs:
1912 if (new_fs)
1913 free_fs_struct(new_fs);
1915 bad_unshare_out:
1916 return err;
1920 * Helper to unshare the files of the current task.
1921 * We don't want to expose copy_files internals to
1922 * the exec layer of the kernel.
1925 int unshare_files(struct files_struct **displaced)
1927 struct task_struct *task = current;
1928 struct files_struct *copy = NULL;
1929 int error;
1931 error = unshare_fd(CLONE_FILES, &copy);
1932 if (error || !copy) {
1933 *displaced = NULL;
1934 return error;
1936 *displaced = task->files;
1937 task_lock(task);
1938 task->files = copy;
1939 task_unlock(task);
1940 return 0;