Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6.git] / drivers / net / sfc / falcon.c
blob655b697b45b2db80a147722a0d1c91bedb093672
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "nic.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "workarounds.h"
31 /* Hardware control for SFC4000 (aka Falcon). */
33 static const unsigned int
34 /* "Large" EEPROM device: Atmel AT25640 or similar
35 * 8 KB, 16-bit address, 32 B write block */
36 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
37 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
38 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
39 /* Default flash device: Atmel AT25F1024
40 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
41 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
42 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
43 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
44 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
45 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
47 /**************************************************************************
49 * I2C bus - this is a bit-bashing interface using GPIO pins
50 * Note that it uses the output enables to tristate the outputs
51 * SDA is the data pin and SCL is the clock
53 **************************************************************************
55 static void falcon_setsda(void *data, int state)
57 struct efx_nic *efx = (struct efx_nic *)data;
58 efx_oword_t reg;
60 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
61 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
62 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
65 static void falcon_setscl(void *data, int state)
67 struct efx_nic *efx = (struct efx_nic *)data;
68 efx_oword_t reg;
70 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
71 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
72 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
75 static int falcon_getsda(void *data)
77 struct efx_nic *efx = (struct efx_nic *)data;
78 efx_oword_t reg;
80 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
81 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
84 static int falcon_getscl(void *data)
86 struct efx_nic *efx = (struct efx_nic *)data;
87 efx_oword_t reg;
89 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
90 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
93 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
94 .setsda = falcon_setsda,
95 .setscl = falcon_setscl,
96 .getsda = falcon_getsda,
97 .getscl = falcon_getscl,
98 .udelay = 5,
99 /* Wait up to 50 ms for slave to let us pull SCL high */
100 .timeout = DIV_ROUND_UP(HZ, 20),
103 static void falcon_push_irq_moderation(struct efx_channel *channel)
105 efx_dword_t timer_cmd;
106 struct efx_nic *efx = channel->efx;
108 /* Set timer register */
109 if (channel->irq_moderation) {
110 EFX_POPULATE_DWORD_2(timer_cmd,
111 FRF_AB_TC_TIMER_MODE,
112 FFE_BB_TIMER_MODE_INT_HLDOFF,
113 FRF_AB_TC_TIMER_VAL,
114 channel->irq_moderation - 1);
115 } else {
116 EFX_POPULATE_DWORD_2(timer_cmd,
117 FRF_AB_TC_TIMER_MODE,
118 FFE_BB_TIMER_MODE_DIS,
119 FRF_AB_TC_TIMER_VAL, 0);
121 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
122 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
123 channel->channel);
126 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
128 static void falcon_prepare_flush(struct efx_nic *efx)
130 falcon_deconfigure_mac_wrapper(efx);
132 /* Wait for the tx and rx fifo's to get to the next packet boundary
133 * (~1ms without back-pressure), then to drain the remainder of the
134 * fifo's at data path speeds (negligible), with a healthy margin. */
135 msleep(10);
138 /* Acknowledge a legacy interrupt from Falcon
140 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
143 * BIU. Interrupt acknowledge is read sensitive so must write instead
144 * (then read to ensure the BIU collector is flushed)
146 * NB most hardware supports MSI interrupts
148 inline void falcon_irq_ack_a1(struct efx_nic *efx)
150 efx_dword_t reg;
152 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
153 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
154 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
158 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
160 struct efx_nic *efx = dev_id;
161 efx_oword_t *int_ker = efx->irq_status.addr;
162 struct efx_channel *channel;
163 int syserr;
164 int queues;
166 /* Check to see if this is our interrupt. If it isn't, we
167 * exit without having touched the hardware.
169 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
171 raw_smp_processor_id());
172 return IRQ_NONE;
174 efx->last_irq_cpu = raw_smp_processor_id();
175 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
176 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
178 /* Determine interrupting queues, clear interrupt status
179 * register and acknowledge the device interrupt.
181 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
182 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
184 /* Check to see if we have a serious error condition */
185 if (queues & (1U << efx->fatal_irq_level)) {
186 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
187 if (unlikely(syserr))
188 return efx_nic_fatal_interrupt(efx);
191 EFX_ZERO_OWORD(*int_ker);
192 wmb(); /* Ensure the vector is cleared before interrupt ack */
193 falcon_irq_ack_a1(efx);
195 /* Schedule processing of any interrupting queues */
196 channel = &efx->channel[0];
197 while (queues) {
198 if (queues & 0x01)
199 efx_schedule_channel(channel);
200 channel++;
201 queues >>= 1;
204 return IRQ_HANDLED;
206 /**************************************************************************
208 * EEPROM/flash
210 **************************************************************************
213 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
215 static int falcon_spi_poll(struct efx_nic *efx)
217 efx_oword_t reg;
218 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
219 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
222 /* Wait for SPI command completion */
223 static int falcon_spi_wait(struct efx_nic *efx)
225 /* Most commands will finish quickly, so we start polling at
226 * very short intervals. Sometimes the command may have to
227 * wait for VPD or expansion ROM access outside of our
228 * control, so we allow up to 100 ms. */
229 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
230 int i;
232 for (i = 0; i < 10; i++) {
233 if (!falcon_spi_poll(efx))
234 return 0;
235 udelay(10);
238 for (;;) {
239 if (!falcon_spi_poll(efx))
240 return 0;
241 if (time_after_eq(jiffies, timeout)) {
242 EFX_ERR(efx, "timed out waiting for SPI\n");
243 return -ETIMEDOUT;
245 schedule_timeout_uninterruptible(1);
249 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
250 unsigned int command, int address,
251 const void *in, void *out, size_t len)
253 bool addressed = (address >= 0);
254 bool reading = (out != NULL);
255 efx_oword_t reg;
256 int rc;
258 /* Input validation */
259 if (len > FALCON_SPI_MAX_LEN)
260 return -EINVAL;
261 BUG_ON(!mutex_is_locked(&efx->spi_lock));
263 /* Check that previous command is not still running */
264 rc = falcon_spi_poll(efx);
265 if (rc)
266 return rc;
268 /* Program address register, if we have an address */
269 if (addressed) {
270 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
271 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
274 /* Program data register, if we have data */
275 if (in != NULL) {
276 memcpy(&reg, in, len);
277 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
280 /* Issue read/write command */
281 EFX_POPULATE_OWORD_7(reg,
282 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
283 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
284 FRF_AB_EE_SPI_HCMD_DABCNT, len,
285 FRF_AB_EE_SPI_HCMD_READ, reading,
286 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
287 FRF_AB_EE_SPI_HCMD_ADBCNT,
288 (addressed ? spi->addr_len : 0),
289 FRF_AB_EE_SPI_HCMD_ENC, command);
290 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
292 /* Wait for read/write to complete */
293 rc = falcon_spi_wait(efx);
294 if (rc)
295 return rc;
297 /* Read data */
298 if (out != NULL) {
299 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
300 memcpy(out, &reg, len);
303 return 0;
306 static size_t
307 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
309 return min(FALCON_SPI_MAX_LEN,
310 (spi->block_size - (start & (spi->block_size - 1))));
313 static inline u8
314 efx_spi_munge_command(const struct efx_spi_device *spi,
315 const u8 command, const unsigned int address)
317 return command | (((address >> 8) & spi->munge_address) << 3);
320 /* Wait up to 10 ms for buffered write completion */
322 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
324 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
325 u8 status;
326 int rc;
328 for (;;) {
329 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
330 &status, sizeof(status));
331 if (rc)
332 return rc;
333 if (!(status & SPI_STATUS_NRDY))
334 return 0;
335 if (time_after_eq(jiffies, timeout)) {
336 EFX_ERR(efx, "SPI write timeout on device %d"
337 " last status=0x%02x\n",
338 spi->device_id, status);
339 return -ETIMEDOUT;
341 schedule_timeout_uninterruptible(1);
345 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
346 loff_t start, size_t len, size_t *retlen, u8 *buffer)
348 size_t block_len, pos = 0;
349 unsigned int command;
350 int rc = 0;
352 while (pos < len) {
353 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
355 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
356 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
357 buffer + pos, block_len);
358 if (rc)
359 break;
360 pos += block_len;
362 /* Avoid locking up the system */
363 cond_resched();
364 if (signal_pending(current)) {
365 rc = -EINTR;
366 break;
370 if (retlen)
371 *retlen = pos;
372 return rc;
376 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
377 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
379 u8 verify_buffer[FALCON_SPI_MAX_LEN];
380 size_t block_len, pos = 0;
381 unsigned int command;
382 int rc = 0;
384 while (pos < len) {
385 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
386 if (rc)
387 break;
389 block_len = min(len - pos,
390 falcon_spi_write_limit(spi, start + pos));
391 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
392 rc = falcon_spi_cmd(efx, spi, command, start + pos,
393 buffer + pos, NULL, block_len);
394 if (rc)
395 break;
397 rc = falcon_spi_wait_write(efx, spi);
398 if (rc)
399 break;
401 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
402 rc = falcon_spi_cmd(efx, spi, command, start + pos,
403 NULL, verify_buffer, block_len);
404 if (memcmp(verify_buffer, buffer + pos, block_len)) {
405 rc = -EIO;
406 break;
409 pos += block_len;
411 /* Avoid locking up the system */
412 cond_resched();
413 if (signal_pending(current)) {
414 rc = -EINTR;
415 break;
419 if (retlen)
420 *retlen = pos;
421 return rc;
424 /**************************************************************************
426 * MAC wrapper
428 **************************************************************************
431 static void falcon_push_multicast_hash(struct efx_nic *efx)
433 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
435 WARN_ON(!mutex_is_locked(&efx->mac_lock));
437 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
438 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
441 static void falcon_reset_macs(struct efx_nic *efx)
443 struct falcon_nic_data *nic_data = efx->nic_data;
444 efx_oword_t reg, mac_ctrl;
445 int count;
447 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
448 /* It's not safe to use GLB_CTL_REG to reset the
449 * macs, so instead use the internal MAC resets
451 if (!EFX_IS10G(efx)) {
452 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
453 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
454 udelay(1000);
456 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
457 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
458 udelay(1000);
459 return;
460 } else {
461 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
462 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
464 for (count = 0; count < 10000; count++) {
465 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
466 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
468 return;
469 udelay(10);
472 EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
476 /* Mac stats will fail whist the TX fifo is draining */
477 WARN_ON(nic_data->stats_disable_count == 0);
479 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
480 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
481 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
483 efx_reado(efx, &reg, FR_AB_GLB_CTL);
484 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
485 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
486 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
487 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
489 count = 0;
490 while (1) {
491 efx_reado(efx, &reg, FR_AB_GLB_CTL);
492 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
493 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
494 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
495 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
496 count);
497 break;
499 if (count > 20) {
500 EFX_ERR(efx, "MAC reset failed\n");
501 break;
503 count++;
504 udelay(10);
507 /* Ensure the correct MAC is selected before statistics
508 * are re-enabled by the caller */
509 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
511 /* This can run even when the GMAC is selected */
512 falcon_setup_xaui(efx);
515 void falcon_drain_tx_fifo(struct efx_nic *efx)
517 efx_oword_t reg;
519 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
520 (efx->loopback_mode != LOOPBACK_NONE))
521 return;
523 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
524 /* There is no point in draining more than once */
525 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
526 return;
528 falcon_reset_macs(efx);
531 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
533 efx_oword_t reg;
535 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
536 return;
538 /* Isolate the MAC -> RX */
539 efx_reado(efx, &reg, FR_AZ_RX_CFG);
540 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
541 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
543 /* Isolate TX -> MAC */
544 falcon_drain_tx_fifo(efx);
547 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
549 struct efx_link_state *link_state = &efx->link_state;
550 efx_oword_t reg;
551 int link_speed;
553 switch (link_state->speed) {
554 case 10000: link_speed = 3; break;
555 case 1000: link_speed = 2; break;
556 case 100: link_speed = 1; break;
557 default: link_speed = 0; break;
559 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
560 * as advertised. Disable to ensure packets are not
561 * indefinitely held and TX queue can be flushed at any point
562 * while the link is down. */
563 EFX_POPULATE_OWORD_5(reg,
564 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
565 FRF_AB_MAC_BCAD_ACPT, 1,
566 FRF_AB_MAC_UC_PROM, efx->promiscuous,
567 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
568 FRF_AB_MAC_SPEED, link_speed);
569 /* On B0, MAC backpressure can be disabled and packets get
570 * discarded. */
571 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
572 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
573 !link_state->up);
576 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
578 /* Restore the multicast hash registers. */
579 falcon_push_multicast_hash(efx);
581 efx_reado(efx, &reg, FR_AZ_RX_CFG);
582 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
583 * initialisation but it may read back as 0) */
584 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
585 /* Unisolate the MAC -> RX */
586 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
587 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
588 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
591 static void falcon_stats_request(struct efx_nic *efx)
593 struct falcon_nic_data *nic_data = efx->nic_data;
594 efx_oword_t reg;
596 WARN_ON(nic_data->stats_pending);
597 WARN_ON(nic_data->stats_disable_count);
599 if (nic_data->stats_dma_done == NULL)
600 return; /* no mac selected */
602 *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
603 nic_data->stats_pending = true;
604 wmb(); /* ensure done flag is clear */
606 /* Initiate DMA transfer of stats */
607 EFX_POPULATE_OWORD_2(reg,
608 FRF_AB_MAC_STAT_DMA_CMD, 1,
609 FRF_AB_MAC_STAT_DMA_ADR,
610 efx->stats_buffer.dma_addr);
611 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
613 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
616 static void falcon_stats_complete(struct efx_nic *efx)
618 struct falcon_nic_data *nic_data = efx->nic_data;
620 if (!nic_data->stats_pending)
621 return;
623 nic_data->stats_pending = 0;
624 if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
625 rmb(); /* read the done flag before the stats */
626 efx->mac_op->update_stats(efx);
627 } else {
628 EFX_ERR(efx, "timed out waiting for statistics\n");
632 static void falcon_stats_timer_func(unsigned long context)
634 struct efx_nic *efx = (struct efx_nic *)context;
635 struct falcon_nic_data *nic_data = efx->nic_data;
637 spin_lock(&efx->stats_lock);
639 falcon_stats_complete(efx);
640 if (nic_data->stats_disable_count == 0)
641 falcon_stats_request(efx);
643 spin_unlock(&efx->stats_lock);
646 static void falcon_switch_mac(struct efx_nic *efx);
648 static bool falcon_loopback_link_poll(struct efx_nic *efx)
650 struct efx_link_state old_state = efx->link_state;
652 WARN_ON(!mutex_is_locked(&efx->mac_lock));
653 WARN_ON(!LOOPBACK_INTERNAL(efx));
655 efx->link_state.fd = true;
656 efx->link_state.fc = efx->wanted_fc;
657 efx->link_state.up = true;
659 if (efx->loopback_mode == LOOPBACK_GMAC)
660 efx->link_state.speed = 1000;
661 else
662 efx->link_state.speed = 10000;
664 return !efx_link_state_equal(&efx->link_state, &old_state);
667 static int falcon_reconfigure_port(struct efx_nic *efx)
669 int rc;
671 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
673 /* Poll the PHY link state *before* reconfiguring it. This means we
674 * will pick up the correct speed (in loopback) to select the correct
675 * MAC.
677 if (LOOPBACK_INTERNAL(efx))
678 falcon_loopback_link_poll(efx);
679 else
680 efx->phy_op->poll(efx);
682 falcon_stop_nic_stats(efx);
683 falcon_deconfigure_mac_wrapper(efx);
685 falcon_switch_mac(efx);
687 efx->phy_op->reconfigure(efx);
688 rc = efx->mac_op->reconfigure(efx);
689 BUG_ON(rc);
691 falcon_start_nic_stats(efx);
693 /* Synchronise efx->link_state with the kernel */
694 efx_link_status_changed(efx);
696 return 0;
699 /**************************************************************************
701 * PHY access via GMII
703 **************************************************************************
706 /* Wait for GMII access to complete */
707 static int falcon_gmii_wait(struct efx_nic *efx)
709 efx_oword_t md_stat;
710 int count;
712 /* wait upto 50ms - taken max from datasheet */
713 for (count = 0; count < 5000; count++) {
714 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
715 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
716 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
717 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
718 EFX_ERR(efx, "error from GMII access "
719 EFX_OWORD_FMT"\n",
720 EFX_OWORD_VAL(md_stat));
721 return -EIO;
723 return 0;
725 udelay(10);
727 EFX_ERR(efx, "timed out waiting for GMII\n");
728 return -ETIMEDOUT;
731 /* Write an MDIO register of a PHY connected to Falcon. */
732 static int falcon_mdio_write(struct net_device *net_dev,
733 int prtad, int devad, u16 addr, u16 value)
735 struct efx_nic *efx = netdev_priv(net_dev);
736 efx_oword_t reg;
737 int rc;
739 EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
740 prtad, devad, addr, value);
742 mutex_lock(&efx->mdio_lock);
744 /* Check MDIO not currently being accessed */
745 rc = falcon_gmii_wait(efx);
746 if (rc)
747 goto out;
749 /* Write the address/ID register */
750 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
751 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
753 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
754 FRF_AB_MD_DEV_ADR, devad);
755 efx_writeo(efx, &reg, FR_AB_MD_ID);
757 /* Write data */
758 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
759 efx_writeo(efx, &reg, FR_AB_MD_TXD);
761 EFX_POPULATE_OWORD_2(reg,
762 FRF_AB_MD_WRC, 1,
763 FRF_AB_MD_GC, 0);
764 efx_writeo(efx, &reg, FR_AB_MD_CS);
766 /* Wait for data to be written */
767 rc = falcon_gmii_wait(efx);
768 if (rc) {
769 /* Abort the write operation */
770 EFX_POPULATE_OWORD_2(reg,
771 FRF_AB_MD_WRC, 0,
772 FRF_AB_MD_GC, 1);
773 efx_writeo(efx, &reg, FR_AB_MD_CS);
774 udelay(10);
777 out:
778 mutex_unlock(&efx->mdio_lock);
779 return rc;
782 /* Read an MDIO register of a PHY connected to Falcon. */
783 static int falcon_mdio_read(struct net_device *net_dev,
784 int prtad, int devad, u16 addr)
786 struct efx_nic *efx = netdev_priv(net_dev);
787 efx_oword_t reg;
788 int rc;
790 mutex_lock(&efx->mdio_lock);
792 /* Check MDIO not currently being accessed */
793 rc = falcon_gmii_wait(efx);
794 if (rc)
795 goto out;
797 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
798 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
800 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
801 FRF_AB_MD_DEV_ADR, devad);
802 efx_writeo(efx, &reg, FR_AB_MD_ID);
804 /* Request data to be read */
805 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
806 efx_writeo(efx, &reg, FR_AB_MD_CS);
808 /* Wait for data to become available */
809 rc = falcon_gmii_wait(efx);
810 if (rc == 0) {
811 efx_reado(efx, &reg, FR_AB_MD_RXD);
812 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
813 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
814 prtad, devad, addr, rc);
815 } else {
816 /* Abort the read operation */
817 EFX_POPULATE_OWORD_2(reg,
818 FRF_AB_MD_RIC, 0,
819 FRF_AB_MD_GC, 1);
820 efx_writeo(efx, &reg, FR_AB_MD_CS);
822 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
823 prtad, devad, addr, rc);
826 out:
827 mutex_unlock(&efx->mdio_lock);
828 return rc;
831 static void falcon_clock_mac(struct efx_nic *efx)
833 unsigned strap_val;
834 efx_oword_t nic_stat;
836 /* Configure the NIC generated MAC clock correctly */
837 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
838 strap_val = EFX_IS10G(efx) ? 5 : 3;
839 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
840 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
841 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
842 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
843 } else {
844 /* Falcon A1 does not support 1G/10G speed switching
845 * and must not be used with a PHY that does. */
846 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
847 strap_val);
851 static void falcon_switch_mac(struct efx_nic *efx)
853 struct efx_mac_operations *old_mac_op = efx->mac_op;
854 struct falcon_nic_data *nic_data = efx->nic_data;
855 unsigned int stats_done_offset;
857 WARN_ON(!mutex_is_locked(&efx->mac_lock));
858 WARN_ON(nic_data->stats_disable_count == 0);
860 efx->mac_op = (EFX_IS10G(efx) ?
861 &falcon_xmac_operations : &falcon_gmac_operations);
863 if (EFX_IS10G(efx))
864 stats_done_offset = XgDmaDone_offset;
865 else
866 stats_done_offset = GDmaDone_offset;
867 nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
869 if (old_mac_op == efx->mac_op)
870 return;
872 falcon_clock_mac(efx);
874 EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
875 /* Not all macs support a mac-level link state */
876 efx->xmac_poll_required = false;
877 falcon_reset_macs(efx);
880 /* This call is responsible for hooking in the MAC and PHY operations */
881 static int falcon_probe_port(struct efx_nic *efx)
883 int rc;
885 switch (efx->phy_type) {
886 case PHY_TYPE_SFX7101:
887 efx->phy_op = &falcon_sfx7101_phy_ops;
888 break;
889 case PHY_TYPE_SFT9001A:
890 case PHY_TYPE_SFT9001B:
891 efx->phy_op = &falcon_sft9001_phy_ops;
892 break;
893 case PHY_TYPE_QT2022C2:
894 case PHY_TYPE_QT2025C:
895 efx->phy_op = &falcon_qt202x_phy_ops;
896 break;
897 default:
898 EFX_ERR(efx, "Unknown PHY type %d\n",
899 efx->phy_type);
900 return -ENODEV;
903 /* Fill out MDIO structure and loopback modes */
904 efx->mdio.mdio_read = falcon_mdio_read;
905 efx->mdio.mdio_write = falcon_mdio_write;
906 rc = efx->phy_op->probe(efx);
907 if (rc != 0)
908 return rc;
910 /* Initial assumption */
911 efx->link_state.speed = 10000;
912 efx->link_state.fd = true;
914 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
915 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
916 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
917 else
918 efx->wanted_fc = EFX_FC_RX;
919 if (efx->mdio.mmds & MDIO_DEVS_AN)
920 efx->wanted_fc |= EFX_FC_AUTO;
922 /* Allocate buffer for stats */
923 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
924 FALCON_MAC_STATS_SIZE);
925 if (rc)
926 return rc;
927 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
928 (u64)efx->stats_buffer.dma_addr,
929 efx->stats_buffer.addr,
930 (u64)virt_to_phys(efx->stats_buffer.addr));
932 return 0;
935 static void falcon_remove_port(struct efx_nic *efx)
937 efx->phy_op->remove(efx);
938 efx_nic_free_buffer(efx, &efx->stats_buffer);
941 /**************************************************************************
943 * Falcon test code
945 **************************************************************************/
947 static int
948 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
950 struct falcon_nvconfig *nvconfig;
951 struct efx_spi_device *spi;
952 void *region;
953 int rc, magic_num, struct_ver;
954 __le16 *word, *limit;
955 u32 csum;
957 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
958 if (!spi)
959 return -EINVAL;
961 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
962 if (!region)
963 return -ENOMEM;
964 nvconfig = region + FALCON_NVCONFIG_OFFSET;
966 mutex_lock(&efx->spi_lock);
967 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
968 mutex_unlock(&efx->spi_lock);
969 if (rc) {
970 EFX_ERR(efx, "Failed to read %s\n",
971 efx->spi_flash ? "flash" : "EEPROM");
972 rc = -EIO;
973 goto out;
976 magic_num = le16_to_cpu(nvconfig->board_magic_num);
977 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
979 rc = -EINVAL;
980 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
981 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
982 goto out;
984 if (struct_ver < 2) {
985 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
986 goto out;
987 } else if (struct_ver < 4) {
988 word = &nvconfig->board_magic_num;
989 limit = (__le16 *) (nvconfig + 1);
990 } else {
991 word = region;
992 limit = region + FALCON_NVCONFIG_END;
994 for (csum = 0; word < limit; ++word)
995 csum += le16_to_cpu(*word);
997 if (~csum & 0xffff) {
998 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
999 goto out;
1002 rc = 0;
1003 if (nvconfig_out)
1004 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1006 out:
1007 kfree(region);
1008 return rc;
1011 static int falcon_test_nvram(struct efx_nic *efx)
1013 return falcon_read_nvram(efx, NULL);
1016 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1017 { FR_AZ_ADR_REGION,
1018 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1019 { FR_AZ_RX_CFG,
1020 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1021 { FR_AZ_TX_CFG,
1022 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1023 { FR_AZ_TX_RESERVED,
1024 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1025 { FR_AB_MAC_CTRL,
1026 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1027 { FR_AZ_SRM_TX_DC_CFG,
1028 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1029 { FR_AZ_RX_DC_CFG,
1030 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1031 { FR_AZ_RX_DC_PF_WM,
1032 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1033 { FR_BZ_DP_CTRL,
1034 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1035 { FR_AB_GM_CFG2,
1036 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1037 { FR_AB_GMF_CFG0,
1038 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1039 { FR_AB_XM_GLB_CFG,
1040 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1041 { FR_AB_XM_TX_CFG,
1042 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1043 { FR_AB_XM_RX_CFG,
1044 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1045 { FR_AB_XM_RX_PARAM,
1046 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1047 { FR_AB_XM_FC,
1048 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1049 { FR_AB_XM_ADR_LO,
1050 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1051 { FR_AB_XX_SD_CTL,
1052 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1055 static int falcon_b0_test_registers(struct efx_nic *efx)
1057 return efx_nic_test_registers(efx, falcon_b0_register_tests,
1058 ARRAY_SIZE(falcon_b0_register_tests));
1061 /**************************************************************************
1063 * Device reset
1065 **************************************************************************
1068 /* Resets NIC to known state. This routine must be called in process
1069 * context and is allowed to sleep. */
1070 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1072 struct falcon_nic_data *nic_data = efx->nic_data;
1073 efx_oword_t glb_ctl_reg_ker;
1074 int rc;
1076 EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
1078 /* Initiate device reset */
1079 if (method == RESET_TYPE_WORLD) {
1080 rc = pci_save_state(efx->pci_dev);
1081 if (rc) {
1082 EFX_ERR(efx, "failed to backup PCI state of primary "
1083 "function prior to hardware reset\n");
1084 goto fail1;
1086 if (efx_nic_is_dual_func(efx)) {
1087 rc = pci_save_state(nic_data->pci_dev2);
1088 if (rc) {
1089 EFX_ERR(efx, "failed to backup PCI state of "
1090 "secondary function prior to "
1091 "hardware reset\n");
1092 goto fail2;
1096 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1097 FRF_AB_EXT_PHY_RST_DUR,
1098 FFE_AB_EXT_PHY_RST_DUR_10240US,
1099 FRF_AB_SWRST, 1);
1100 } else {
1101 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1102 /* exclude PHY from "invisible" reset */
1103 FRF_AB_EXT_PHY_RST_CTL,
1104 method == RESET_TYPE_INVISIBLE,
1105 /* exclude EEPROM/flash and PCIe */
1106 FRF_AB_PCIE_CORE_RST_CTL, 1,
1107 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1108 FRF_AB_PCIE_SD_RST_CTL, 1,
1109 FRF_AB_EE_RST_CTL, 1,
1110 FRF_AB_EXT_PHY_RST_DUR,
1111 FFE_AB_EXT_PHY_RST_DUR_10240US,
1112 FRF_AB_SWRST, 1);
1114 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1116 EFX_LOG(efx, "waiting for hardware reset\n");
1117 schedule_timeout_uninterruptible(HZ / 20);
1119 /* Restore PCI configuration if needed */
1120 if (method == RESET_TYPE_WORLD) {
1121 if (efx_nic_is_dual_func(efx)) {
1122 rc = pci_restore_state(nic_data->pci_dev2);
1123 if (rc) {
1124 EFX_ERR(efx, "failed to restore PCI config for "
1125 "the secondary function\n");
1126 goto fail3;
1129 rc = pci_restore_state(efx->pci_dev);
1130 if (rc) {
1131 EFX_ERR(efx, "failed to restore PCI config for the "
1132 "primary function\n");
1133 goto fail4;
1135 EFX_LOG(efx, "successfully restored PCI config\n");
1138 /* Assert that reset complete */
1139 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1140 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1141 rc = -ETIMEDOUT;
1142 EFX_ERR(efx, "timed out waiting for hardware reset\n");
1143 goto fail5;
1145 EFX_LOG(efx, "hardware reset complete\n");
1147 return 0;
1149 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1150 fail2:
1151 fail3:
1152 pci_restore_state(efx->pci_dev);
1153 fail1:
1154 fail4:
1155 fail5:
1156 return rc;
1159 static void falcon_monitor(struct efx_nic *efx)
1161 bool link_changed;
1162 int rc;
1164 BUG_ON(!mutex_is_locked(&efx->mac_lock));
1166 rc = falcon_board(efx)->type->monitor(efx);
1167 if (rc) {
1168 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1169 (rc == -ERANGE) ? "reported fault" : "failed");
1170 efx->phy_mode |= PHY_MODE_LOW_POWER;
1171 rc = __efx_reconfigure_port(efx);
1172 WARN_ON(rc);
1175 if (LOOPBACK_INTERNAL(efx))
1176 link_changed = falcon_loopback_link_poll(efx);
1177 else
1178 link_changed = efx->phy_op->poll(efx);
1180 if (link_changed) {
1181 falcon_stop_nic_stats(efx);
1182 falcon_deconfigure_mac_wrapper(efx);
1184 falcon_switch_mac(efx);
1185 rc = efx->mac_op->reconfigure(efx);
1186 BUG_ON(rc);
1188 falcon_start_nic_stats(efx);
1190 efx_link_status_changed(efx);
1193 if (EFX_IS10G(efx))
1194 falcon_poll_xmac(efx);
1197 /* Zeroes out the SRAM contents. This routine must be called in
1198 * process context and is allowed to sleep.
1200 static int falcon_reset_sram(struct efx_nic *efx)
1202 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1203 int count;
1205 /* Set the SRAM wake/sleep GPIO appropriately. */
1206 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1207 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1208 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1209 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1211 /* Initiate SRAM reset */
1212 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1213 FRF_AZ_SRM_INIT_EN, 1,
1214 FRF_AZ_SRM_NB_SZ, 0);
1215 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1217 /* Wait for SRAM reset to complete */
1218 count = 0;
1219 do {
1220 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
1222 /* SRAM reset is slow; expect around 16ms */
1223 schedule_timeout_uninterruptible(HZ / 50);
1225 /* Check for reset complete */
1226 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1227 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1228 EFX_LOG(efx, "SRAM reset complete\n");
1230 return 0;
1232 } while (++count < 20); /* wait upto 0.4 sec */
1234 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
1235 return -ETIMEDOUT;
1238 static int falcon_spi_device_init(struct efx_nic *efx,
1239 struct efx_spi_device **spi_device_ret,
1240 unsigned int device_id, u32 device_type)
1242 struct efx_spi_device *spi_device;
1244 if (device_type != 0) {
1245 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
1246 if (!spi_device)
1247 return -ENOMEM;
1248 spi_device->device_id = device_id;
1249 spi_device->size =
1250 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1251 spi_device->addr_len =
1252 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1253 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1254 spi_device->addr_len == 1);
1255 spi_device->erase_command =
1256 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1257 spi_device->erase_size =
1258 1 << SPI_DEV_TYPE_FIELD(device_type,
1259 SPI_DEV_TYPE_ERASE_SIZE);
1260 spi_device->block_size =
1261 1 << SPI_DEV_TYPE_FIELD(device_type,
1262 SPI_DEV_TYPE_BLOCK_SIZE);
1263 } else {
1264 spi_device = NULL;
1267 kfree(*spi_device_ret);
1268 *spi_device_ret = spi_device;
1269 return 0;
1272 static void falcon_remove_spi_devices(struct efx_nic *efx)
1274 kfree(efx->spi_eeprom);
1275 efx->spi_eeprom = NULL;
1276 kfree(efx->spi_flash);
1277 efx->spi_flash = NULL;
1280 /* Extract non-volatile configuration */
1281 static int falcon_probe_nvconfig(struct efx_nic *efx)
1283 struct falcon_nvconfig *nvconfig;
1284 int board_rev;
1285 int rc;
1287 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1288 if (!nvconfig)
1289 return -ENOMEM;
1291 rc = falcon_read_nvram(efx, nvconfig);
1292 if (rc == -EINVAL) {
1293 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
1294 efx->phy_type = PHY_TYPE_NONE;
1295 efx->mdio.prtad = MDIO_PRTAD_NONE;
1296 board_rev = 0;
1297 rc = 0;
1298 } else if (rc) {
1299 goto fail1;
1300 } else {
1301 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
1302 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
1304 efx->phy_type = v2->port0_phy_type;
1305 efx->mdio.prtad = v2->port0_phy_addr;
1306 board_rev = le16_to_cpu(v2->board_revision);
1308 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1309 rc = falcon_spi_device_init(
1310 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1311 le32_to_cpu(v3->spi_device_type
1312 [FFE_AB_SPI_DEVICE_FLASH]));
1313 if (rc)
1314 goto fail2;
1315 rc = falcon_spi_device_init(
1316 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1317 le32_to_cpu(v3->spi_device_type
1318 [FFE_AB_SPI_DEVICE_EEPROM]));
1319 if (rc)
1320 goto fail2;
1324 /* Read the MAC addresses */
1325 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
1327 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
1329 rc = falcon_probe_board(efx, board_rev);
1330 if (rc)
1331 goto fail2;
1333 kfree(nvconfig);
1334 return 0;
1336 fail2:
1337 falcon_remove_spi_devices(efx);
1338 fail1:
1339 kfree(nvconfig);
1340 return rc;
1343 /* Probe all SPI devices on the NIC */
1344 static void falcon_probe_spi_devices(struct efx_nic *efx)
1346 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1347 int boot_dev;
1349 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1350 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1351 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1353 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1354 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1355 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1356 EFX_LOG(efx, "Booted from %s\n",
1357 boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
1358 } else {
1359 /* Disable VPD and set clock dividers to safe
1360 * values for initial programming. */
1361 boot_dev = -1;
1362 EFX_LOG(efx, "Booted from internal ASIC settings;"
1363 " setting SPI config\n");
1364 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1365 /* 125 MHz / 7 ~= 20 MHz */
1366 FRF_AB_EE_SF_CLOCK_DIV, 7,
1367 /* 125 MHz / 63 ~= 2 MHz */
1368 FRF_AB_EE_EE_CLOCK_DIV, 63);
1369 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1372 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1373 falcon_spi_device_init(efx, &efx->spi_flash,
1374 FFE_AB_SPI_DEVICE_FLASH,
1375 default_flash_type);
1376 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1377 falcon_spi_device_init(efx, &efx->spi_eeprom,
1378 FFE_AB_SPI_DEVICE_EEPROM,
1379 large_eeprom_type);
1382 static int falcon_probe_nic(struct efx_nic *efx)
1384 struct falcon_nic_data *nic_data;
1385 struct falcon_board *board;
1386 int rc;
1388 /* Allocate storage for hardware specific data */
1389 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1390 if (!nic_data)
1391 return -ENOMEM;
1392 efx->nic_data = nic_data;
1394 rc = -ENODEV;
1396 if (efx_nic_fpga_ver(efx) != 0) {
1397 EFX_ERR(efx, "Falcon FPGA not supported\n");
1398 goto fail1;
1401 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1402 efx_oword_t nic_stat;
1403 struct pci_dev *dev;
1404 u8 pci_rev = efx->pci_dev->revision;
1406 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1407 EFX_ERR(efx, "Falcon rev A0 not supported\n");
1408 goto fail1;
1410 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1411 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1412 EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
1413 goto fail1;
1415 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1416 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
1417 goto fail1;
1420 dev = pci_dev_get(efx->pci_dev);
1421 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
1422 dev))) {
1423 if (dev->bus == efx->pci_dev->bus &&
1424 dev->devfn == efx->pci_dev->devfn + 1) {
1425 nic_data->pci_dev2 = dev;
1426 break;
1429 if (!nic_data->pci_dev2) {
1430 EFX_ERR(efx, "failed to find secondary function\n");
1431 rc = -ENODEV;
1432 goto fail2;
1436 /* Now we can reset the NIC */
1437 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
1438 if (rc) {
1439 EFX_ERR(efx, "failed to reset NIC\n");
1440 goto fail3;
1443 /* Allocate memory for INT_KER */
1444 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1445 if (rc)
1446 goto fail4;
1447 BUG_ON(efx->irq_status.dma_addr & 0x0f);
1449 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
1450 (u64)efx->irq_status.dma_addr,
1451 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
1453 falcon_probe_spi_devices(efx);
1455 /* Read in the non-volatile configuration */
1456 rc = falcon_probe_nvconfig(efx);
1457 if (rc)
1458 goto fail5;
1460 /* Initialise I2C adapter */
1461 board = falcon_board(efx);
1462 board->i2c_adap.owner = THIS_MODULE;
1463 board->i2c_data = falcon_i2c_bit_operations;
1464 board->i2c_data.data = efx;
1465 board->i2c_adap.algo_data = &board->i2c_data;
1466 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1467 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1468 sizeof(board->i2c_adap.name));
1469 rc = i2c_bit_add_bus(&board->i2c_adap);
1470 if (rc)
1471 goto fail5;
1473 rc = falcon_board(efx)->type->init(efx);
1474 if (rc) {
1475 EFX_ERR(efx, "failed to initialise board\n");
1476 goto fail6;
1479 nic_data->stats_disable_count = 1;
1480 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1481 (unsigned long)efx);
1483 return 0;
1485 fail6:
1486 BUG_ON(i2c_del_adapter(&board->i2c_adap));
1487 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1488 fail5:
1489 falcon_remove_spi_devices(efx);
1490 efx_nic_free_buffer(efx, &efx->irq_status);
1491 fail4:
1492 fail3:
1493 if (nic_data->pci_dev2) {
1494 pci_dev_put(nic_data->pci_dev2);
1495 nic_data->pci_dev2 = NULL;
1497 fail2:
1498 fail1:
1499 kfree(efx->nic_data);
1500 return rc;
1503 static void falcon_init_rx_cfg(struct efx_nic *efx)
1505 /* Prior to Siena the RX DMA engine will split each frame at
1506 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1507 * be so large that that never happens. */
1508 const unsigned huge_buf_size = (3 * 4096) >> 5;
1509 /* RX control FIFO thresholds (32 entries) */
1510 const unsigned ctrl_xon_thr = 20;
1511 const unsigned ctrl_xoff_thr = 25;
1512 /* RX data FIFO thresholds (256-byte units; size varies) */
1513 int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
1514 int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
1515 efx_oword_t reg;
1517 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1518 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1519 /* Data FIFO size is 5.5K */
1520 if (data_xon_thr < 0)
1521 data_xon_thr = 512 >> 8;
1522 if (data_xoff_thr < 0)
1523 data_xoff_thr = 2048 >> 8;
1524 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1525 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1526 huge_buf_size);
1527 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
1528 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
1529 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1530 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1531 } else {
1532 /* Data FIFO size is 80K; register fields moved */
1533 if (data_xon_thr < 0)
1534 data_xon_thr = 27648 >> 8; /* ~3*max MTU */
1535 if (data_xoff_thr < 0)
1536 data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
1537 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1538 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1539 huge_buf_size);
1540 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
1541 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
1542 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1543 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1544 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1546 /* Always enable XOFF signal from RX FIFO. We enable
1547 * or disable transmission of pause frames at the MAC. */
1548 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1549 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1552 /* This call performs hardware-specific global initialisation, such as
1553 * defining the descriptor cache sizes and number of RSS channels.
1554 * It does not set up any buffers, descriptor rings or event queues.
1556 static int falcon_init_nic(struct efx_nic *efx)
1558 efx_oword_t temp;
1559 int rc;
1561 /* Use on-chip SRAM */
1562 efx_reado(efx, &temp, FR_AB_NIC_STAT);
1563 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1564 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1566 /* Set the source of the GMAC clock */
1567 if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
1568 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
1569 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
1570 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
1573 /* Select the correct MAC */
1574 falcon_clock_mac(efx);
1576 rc = falcon_reset_sram(efx);
1577 if (rc)
1578 return rc;
1580 /* Clear the parity enables on the TX data fifos as
1581 * they produce false parity errors because of timing issues
1583 if (EFX_WORKAROUND_5129(efx)) {
1584 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1585 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1586 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1589 if (EFX_WORKAROUND_7244(efx)) {
1590 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1591 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1592 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1593 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1594 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1595 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1598 /* XXX This is documented only for Falcon A0/A1 */
1599 /* Setup RX. Wait for descriptor is broken and must
1600 * be disabled. RXDP recovery shouldn't be needed, but is.
1602 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1603 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1604 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1605 if (EFX_WORKAROUND_5583(efx))
1606 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1607 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1609 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1610 * descriptors (which is bad).
1612 efx_reado(efx, &temp, FR_AZ_TX_CFG);
1613 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1614 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1616 falcon_init_rx_cfg(efx);
1618 /* Set destination of both TX and RX Flush events */
1619 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1620 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1621 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1624 efx_nic_init_common(efx);
1626 return 0;
1629 static void falcon_remove_nic(struct efx_nic *efx)
1631 struct falcon_nic_data *nic_data = efx->nic_data;
1632 struct falcon_board *board = falcon_board(efx);
1633 int rc;
1635 board->type->fini(efx);
1637 /* Remove I2C adapter and clear it in preparation for a retry */
1638 rc = i2c_del_adapter(&board->i2c_adap);
1639 BUG_ON(rc);
1640 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1642 falcon_remove_spi_devices(efx);
1643 efx_nic_free_buffer(efx, &efx->irq_status);
1645 falcon_reset_hw(efx, RESET_TYPE_ALL);
1647 /* Release the second function after the reset */
1648 if (nic_data->pci_dev2) {
1649 pci_dev_put(nic_data->pci_dev2);
1650 nic_data->pci_dev2 = NULL;
1653 /* Tear down the private nic state */
1654 kfree(efx->nic_data);
1655 efx->nic_data = NULL;
1658 static void falcon_update_nic_stats(struct efx_nic *efx)
1660 struct falcon_nic_data *nic_data = efx->nic_data;
1661 efx_oword_t cnt;
1663 if (nic_data->stats_disable_count)
1664 return;
1666 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1667 efx->n_rx_nodesc_drop_cnt +=
1668 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1670 if (nic_data->stats_pending &&
1671 *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1672 nic_data->stats_pending = false;
1673 rmb(); /* read the done flag before the stats */
1674 efx->mac_op->update_stats(efx);
1678 void falcon_start_nic_stats(struct efx_nic *efx)
1680 struct falcon_nic_data *nic_data = efx->nic_data;
1682 spin_lock_bh(&efx->stats_lock);
1683 if (--nic_data->stats_disable_count == 0)
1684 falcon_stats_request(efx);
1685 spin_unlock_bh(&efx->stats_lock);
1688 void falcon_stop_nic_stats(struct efx_nic *efx)
1690 struct falcon_nic_data *nic_data = efx->nic_data;
1691 int i;
1693 might_sleep();
1695 spin_lock_bh(&efx->stats_lock);
1696 ++nic_data->stats_disable_count;
1697 spin_unlock_bh(&efx->stats_lock);
1699 del_timer_sync(&nic_data->stats_timer);
1701 /* Wait enough time for the most recent transfer to
1702 * complete. */
1703 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1704 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1705 break;
1706 msleep(1);
1709 spin_lock_bh(&efx->stats_lock);
1710 falcon_stats_complete(efx);
1711 spin_unlock_bh(&efx->stats_lock);
1714 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1716 falcon_board(efx)->type->set_id_led(efx, mode);
1719 /**************************************************************************
1721 * Wake on LAN
1723 **************************************************************************
1726 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1728 wol->supported = 0;
1729 wol->wolopts = 0;
1730 memset(&wol->sopass, 0, sizeof(wol->sopass));
1733 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1735 if (type != 0)
1736 return -EINVAL;
1737 return 0;
1740 /**************************************************************************
1742 * Revision-dependent attributes used by efx.c and nic.c
1744 **************************************************************************
1747 struct efx_nic_type falcon_a1_nic_type = {
1748 .probe = falcon_probe_nic,
1749 .remove = falcon_remove_nic,
1750 .init = falcon_init_nic,
1751 .fini = efx_port_dummy_op_void,
1752 .monitor = falcon_monitor,
1753 .reset = falcon_reset_hw,
1754 .probe_port = falcon_probe_port,
1755 .remove_port = falcon_remove_port,
1756 .prepare_flush = falcon_prepare_flush,
1757 .update_stats = falcon_update_nic_stats,
1758 .start_stats = falcon_start_nic_stats,
1759 .stop_stats = falcon_stop_nic_stats,
1760 .set_id_led = falcon_set_id_led,
1761 .push_irq_moderation = falcon_push_irq_moderation,
1762 .push_multicast_hash = falcon_push_multicast_hash,
1763 .reconfigure_port = falcon_reconfigure_port,
1764 .get_wol = falcon_get_wol,
1765 .set_wol = falcon_set_wol,
1766 .resume_wol = efx_port_dummy_op_void,
1767 .test_nvram = falcon_test_nvram,
1768 .default_mac_ops = &falcon_xmac_operations,
1770 .revision = EFX_REV_FALCON_A1,
1771 .mem_map_size = 0x20000,
1772 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1773 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1774 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1775 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1776 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1777 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1778 .rx_buffer_padding = 0x24,
1779 .max_interrupt_mode = EFX_INT_MODE_MSI,
1780 .phys_addr_channels = 4,
1781 .tx_dc_base = 0x130000,
1782 .rx_dc_base = 0x100000,
1783 .offload_features = NETIF_F_IP_CSUM,
1784 .reset_world_flags = ETH_RESET_IRQ,
1787 struct efx_nic_type falcon_b0_nic_type = {
1788 .probe = falcon_probe_nic,
1789 .remove = falcon_remove_nic,
1790 .init = falcon_init_nic,
1791 .fini = efx_port_dummy_op_void,
1792 .monitor = falcon_monitor,
1793 .reset = falcon_reset_hw,
1794 .probe_port = falcon_probe_port,
1795 .remove_port = falcon_remove_port,
1796 .prepare_flush = falcon_prepare_flush,
1797 .update_stats = falcon_update_nic_stats,
1798 .start_stats = falcon_start_nic_stats,
1799 .stop_stats = falcon_stop_nic_stats,
1800 .set_id_led = falcon_set_id_led,
1801 .push_irq_moderation = falcon_push_irq_moderation,
1802 .push_multicast_hash = falcon_push_multicast_hash,
1803 .reconfigure_port = falcon_reconfigure_port,
1804 .get_wol = falcon_get_wol,
1805 .set_wol = falcon_set_wol,
1806 .resume_wol = efx_port_dummy_op_void,
1807 .test_registers = falcon_b0_test_registers,
1808 .test_nvram = falcon_test_nvram,
1809 .default_mac_ops = &falcon_xmac_operations,
1811 .revision = EFX_REV_FALCON_B0,
1812 /* Map everything up to and including the RSS indirection
1813 * table. Don't map MSI-X table, MSI-X PBA since Linux
1814 * requires that they not be mapped. */
1815 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1816 FR_BZ_RX_INDIRECTION_TBL_STEP *
1817 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1818 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1819 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1820 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1821 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1822 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1823 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1824 .rx_buffer_padding = 0,
1825 .max_interrupt_mode = EFX_INT_MODE_MSIX,
1826 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1827 * interrupt handler only supports 32
1828 * channels */
1829 .tx_dc_base = 0x130000,
1830 .rx_dc_base = 0x100000,
1831 .offload_features = NETIF_F_IP_CSUM,
1832 .reset_world_flags = ETH_RESET_IRQ,