Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6.git] / drivers / net / fec.c
blob2b1651aee13f51c402f8da32fe5e8af76cd184af
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/clk.h>
42 #include <linux/platform_device.h>
43 #include <linux/phy.h>
45 #include <asm/cacheflush.h>
47 #ifndef CONFIG_ARCH_MXC
48 #include <asm/coldfire.h>
49 #include <asm/mcfsim.h>
50 #endif
52 #include "fec.h"
54 #ifdef CONFIG_ARCH_MXC
55 #include <mach/hardware.h>
56 #define FEC_ALIGNMENT 0xf
57 #else
58 #define FEC_ALIGNMENT 0x3
59 #endif
62 * Define the fixed address of the FEC hardware.
64 #if defined(CONFIG_M5272)
66 static unsigned char fec_mac_default[] = {
67 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
71 * Some hardware gets it MAC address out of local flash memory.
72 * if this is non-zero then assume it is the address to get MAC from.
74 #if defined(CONFIG_NETtel)
75 #define FEC_FLASHMAC 0xf0006006
76 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
77 #define FEC_FLASHMAC 0xf0006000
78 #elif defined(CONFIG_CANCam)
79 #define FEC_FLASHMAC 0xf0020000
80 #elif defined (CONFIG_M5272C3)
81 #define FEC_FLASHMAC (0xffe04000 + 4)
82 #elif defined(CONFIG_MOD5272)
83 #define FEC_FLASHMAC 0xffc0406b
84 #else
85 #define FEC_FLASHMAC 0
86 #endif
87 #endif /* CONFIG_M5272 */
89 /* The number of Tx and Rx buffers. These are allocated from the page
90 * pool. The code may assume these are power of two, so it it best
91 * to keep them that size.
92 * We don't need to allocate pages for the transmitter. We just use
93 * the skbuffer directly.
95 #define FEC_ENET_RX_PAGES 8
96 #define FEC_ENET_RX_FRSIZE 2048
97 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
98 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
99 #define FEC_ENET_TX_FRSIZE 2048
100 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
101 #define TX_RING_SIZE 16 /* Must be power of two */
102 #define TX_RING_MOD_MASK 15 /* for this to work */
104 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
105 #error "FEC: descriptor ring size constants too large"
106 #endif
108 /* Interrupt events/masks. */
109 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
110 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
111 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
112 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
113 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
114 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
115 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
116 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
117 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
118 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
120 /* The FEC stores dest/src/type, data, and checksum for receive packets.
122 #define PKT_MAXBUF_SIZE 1518
123 #define PKT_MINBUF_SIZE 64
124 #define PKT_MAXBLR_SIZE 1520
128 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
129 * size bits. Other FEC hardware does not, so we need to take that into
130 * account when setting it.
132 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
133 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
134 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
135 #else
136 #define OPT_FRAME_SIZE 0
137 #endif
139 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
140 * tx_bd_base always point to the base of the buffer descriptors. The
141 * cur_rx and cur_tx point to the currently available buffer.
142 * The dirty_tx tracks the current buffer that is being sent by the
143 * controller. The cur_tx and dirty_tx are equal under both completely
144 * empty and completely full conditions. The empty/ready indicator in
145 * the buffer descriptor determines the actual condition.
147 struct fec_enet_private {
148 /* Hardware registers of the FEC device */
149 void __iomem *hwp;
151 struct net_device *netdev;
153 struct clk *clk;
155 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
156 unsigned char *tx_bounce[TX_RING_SIZE];
157 struct sk_buff* tx_skbuff[TX_RING_SIZE];
158 struct sk_buff* rx_skbuff[RX_RING_SIZE];
159 ushort skb_cur;
160 ushort skb_dirty;
162 /* CPM dual port RAM relative addresses */
163 dma_addr_t bd_dma;
164 /* Address of Rx and Tx buffers */
165 struct bufdesc *rx_bd_base;
166 struct bufdesc *tx_bd_base;
167 /* The next free ring entry */
168 struct bufdesc *cur_rx, *cur_tx;
169 /* The ring entries to be free()ed */
170 struct bufdesc *dirty_tx;
172 uint tx_full;
173 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
174 spinlock_t hw_lock;
176 struct platform_device *pdev;
178 int opened;
180 /* Phylib and MDIO interface */
181 struct mii_bus *mii_bus;
182 struct phy_device *phy_dev;
183 int mii_timeout;
184 uint phy_speed;
185 int index;
186 int link;
187 int full_duplex;
190 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
191 static void fec_enet_tx(struct net_device *dev);
192 static void fec_enet_rx(struct net_device *dev);
193 static int fec_enet_close(struct net_device *dev);
194 static void fec_restart(struct net_device *dev, int duplex);
195 static void fec_stop(struct net_device *dev);
197 /* FEC MII MMFR bits definition */
198 #define FEC_MMFR_ST (1 << 30)
199 #define FEC_MMFR_OP_READ (2 << 28)
200 #define FEC_MMFR_OP_WRITE (1 << 28)
201 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
202 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
203 #define FEC_MMFR_TA (2 << 16)
204 #define FEC_MMFR_DATA(v) (v & 0xffff)
206 #define FEC_MII_TIMEOUT 10000
208 /* Transmitter timeout */
209 #define TX_TIMEOUT (2 * HZ)
211 static int
212 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
214 struct fec_enet_private *fep = netdev_priv(dev);
215 struct bufdesc *bdp;
216 void *bufaddr;
217 unsigned short status;
218 unsigned long flags;
220 if (!fep->link) {
221 /* Link is down or autonegotiation is in progress. */
222 return NETDEV_TX_BUSY;
225 spin_lock_irqsave(&fep->hw_lock, flags);
226 /* Fill in a Tx ring entry */
227 bdp = fep->cur_tx;
229 status = bdp->cbd_sc;
231 if (status & BD_ENET_TX_READY) {
232 /* Ooops. All transmit buffers are full. Bail out.
233 * This should not happen, since dev->tbusy should be set.
235 printk("%s: tx queue full!.\n", dev->name);
236 spin_unlock_irqrestore(&fep->hw_lock, flags);
237 return NETDEV_TX_BUSY;
240 /* Clear all of the status flags */
241 status &= ~BD_ENET_TX_STATS;
243 /* Set buffer length and buffer pointer */
244 bufaddr = skb->data;
245 bdp->cbd_datlen = skb->len;
248 * On some FEC implementations data must be aligned on
249 * 4-byte boundaries. Use bounce buffers to copy data
250 * and get it aligned. Ugh.
252 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
253 unsigned int index;
254 index = bdp - fep->tx_bd_base;
255 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
256 bufaddr = fep->tx_bounce[index];
259 /* Save skb pointer */
260 fep->tx_skbuff[fep->skb_cur] = skb;
262 dev->stats.tx_bytes += skb->len;
263 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
265 /* Push the data cache so the CPM does not get stale memory
266 * data.
268 bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
269 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
271 /* Send it on its way. Tell FEC it's ready, interrupt when done,
272 * it's the last BD of the frame, and to put the CRC on the end.
274 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
275 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
276 bdp->cbd_sc = status;
278 dev->trans_start = jiffies;
280 /* Trigger transmission start */
281 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
283 /* If this was the last BD in the ring, start at the beginning again. */
284 if (status & BD_ENET_TX_WRAP)
285 bdp = fep->tx_bd_base;
286 else
287 bdp++;
289 if (bdp == fep->dirty_tx) {
290 fep->tx_full = 1;
291 netif_stop_queue(dev);
294 fep->cur_tx = bdp;
296 spin_unlock_irqrestore(&fep->hw_lock, flags);
298 return NETDEV_TX_OK;
301 static void
302 fec_timeout(struct net_device *dev)
304 struct fec_enet_private *fep = netdev_priv(dev);
306 dev->stats.tx_errors++;
308 fec_restart(dev, fep->full_duplex);
309 netif_wake_queue(dev);
312 static irqreturn_t
313 fec_enet_interrupt(int irq, void * dev_id)
315 struct net_device *dev = dev_id;
316 struct fec_enet_private *fep = netdev_priv(dev);
317 uint int_events;
318 irqreturn_t ret = IRQ_NONE;
320 do {
321 int_events = readl(fep->hwp + FEC_IEVENT);
322 writel(int_events, fep->hwp + FEC_IEVENT);
324 if (int_events & FEC_ENET_RXF) {
325 ret = IRQ_HANDLED;
326 fec_enet_rx(dev);
329 /* Transmit OK, or non-fatal error. Update the buffer
330 * descriptors. FEC handles all errors, we just discover
331 * them as part of the transmit process.
333 if (int_events & FEC_ENET_TXF) {
334 ret = IRQ_HANDLED;
335 fec_enet_tx(dev);
337 } while (int_events);
339 return ret;
343 static void
344 fec_enet_tx(struct net_device *dev)
346 struct fec_enet_private *fep;
347 struct bufdesc *bdp;
348 unsigned short status;
349 struct sk_buff *skb;
351 fep = netdev_priv(dev);
352 spin_lock(&fep->hw_lock);
353 bdp = fep->dirty_tx;
355 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
356 if (bdp == fep->cur_tx && fep->tx_full == 0)
357 break;
359 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
360 bdp->cbd_bufaddr = 0;
362 skb = fep->tx_skbuff[fep->skb_dirty];
363 /* Check for errors. */
364 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
365 BD_ENET_TX_RL | BD_ENET_TX_UN |
366 BD_ENET_TX_CSL)) {
367 dev->stats.tx_errors++;
368 if (status & BD_ENET_TX_HB) /* No heartbeat */
369 dev->stats.tx_heartbeat_errors++;
370 if (status & BD_ENET_TX_LC) /* Late collision */
371 dev->stats.tx_window_errors++;
372 if (status & BD_ENET_TX_RL) /* Retrans limit */
373 dev->stats.tx_aborted_errors++;
374 if (status & BD_ENET_TX_UN) /* Underrun */
375 dev->stats.tx_fifo_errors++;
376 if (status & BD_ENET_TX_CSL) /* Carrier lost */
377 dev->stats.tx_carrier_errors++;
378 } else {
379 dev->stats.tx_packets++;
382 if (status & BD_ENET_TX_READY)
383 printk("HEY! Enet xmit interrupt and TX_READY.\n");
385 /* Deferred means some collisions occurred during transmit,
386 * but we eventually sent the packet OK.
388 if (status & BD_ENET_TX_DEF)
389 dev->stats.collisions++;
391 /* Free the sk buffer associated with this last transmit */
392 dev_kfree_skb_any(skb);
393 fep->tx_skbuff[fep->skb_dirty] = NULL;
394 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
396 /* Update pointer to next buffer descriptor to be transmitted */
397 if (status & BD_ENET_TX_WRAP)
398 bdp = fep->tx_bd_base;
399 else
400 bdp++;
402 /* Since we have freed up a buffer, the ring is no longer full
404 if (fep->tx_full) {
405 fep->tx_full = 0;
406 if (netif_queue_stopped(dev))
407 netif_wake_queue(dev);
410 fep->dirty_tx = bdp;
411 spin_unlock(&fep->hw_lock);
415 /* During a receive, the cur_rx points to the current incoming buffer.
416 * When we update through the ring, if the next incoming buffer has
417 * not been given to the system, we just set the empty indicator,
418 * effectively tossing the packet.
420 static void
421 fec_enet_rx(struct net_device *dev)
423 struct fec_enet_private *fep = netdev_priv(dev);
424 struct bufdesc *bdp;
425 unsigned short status;
426 struct sk_buff *skb;
427 ushort pkt_len;
428 __u8 *data;
430 #ifdef CONFIG_M532x
431 flush_cache_all();
432 #endif
434 spin_lock(&fep->hw_lock);
436 /* First, grab all of the stats for the incoming packet.
437 * These get messed up if we get called due to a busy condition.
439 bdp = fep->cur_rx;
441 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
443 /* Since we have allocated space to hold a complete frame,
444 * the last indicator should be set.
446 if ((status & BD_ENET_RX_LAST) == 0)
447 printk("FEC ENET: rcv is not +last\n");
449 if (!fep->opened)
450 goto rx_processing_done;
452 /* Check for errors. */
453 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
454 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
455 dev->stats.rx_errors++;
456 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
457 /* Frame too long or too short. */
458 dev->stats.rx_length_errors++;
460 if (status & BD_ENET_RX_NO) /* Frame alignment */
461 dev->stats.rx_frame_errors++;
462 if (status & BD_ENET_RX_CR) /* CRC Error */
463 dev->stats.rx_crc_errors++;
464 if (status & BD_ENET_RX_OV) /* FIFO overrun */
465 dev->stats.rx_fifo_errors++;
468 /* Report late collisions as a frame error.
469 * On this error, the BD is closed, but we don't know what we
470 * have in the buffer. So, just drop this frame on the floor.
472 if (status & BD_ENET_RX_CL) {
473 dev->stats.rx_errors++;
474 dev->stats.rx_frame_errors++;
475 goto rx_processing_done;
478 /* Process the incoming frame. */
479 dev->stats.rx_packets++;
480 pkt_len = bdp->cbd_datlen;
481 dev->stats.rx_bytes += pkt_len;
482 data = (__u8*)__va(bdp->cbd_bufaddr);
484 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
485 DMA_FROM_DEVICE);
487 /* This does 16 byte alignment, exactly what we need.
488 * The packet length includes FCS, but we don't want to
489 * include that when passing upstream as it messes up
490 * bridging applications.
492 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
494 if (unlikely(!skb)) {
495 printk("%s: Memory squeeze, dropping packet.\n",
496 dev->name);
497 dev->stats.rx_dropped++;
498 } else {
499 skb_reserve(skb, NET_IP_ALIGN);
500 skb_put(skb, pkt_len - 4); /* Make room */
501 skb_copy_to_linear_data(skb, data, pkt_len - 4);
502 skb->protocol = eth_type_trans(skb, dev);
503 netif_rx(skb);
506 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
507 DMA_FROM_DEVICE);
508 rx_processing_done:
509 /* Clear the status flags for this buffer */
510 status &= ~BD_ENET_RX_STATS;
512 /* Mark the buffer empty */
513 status |= BD_ENET_RX_EMPTY;
514 bdp->cbd_sc = status;
516 /* Update BD pointer to next entry */
517 if (status & BD_ENET_RX_WRAP)
518 bdp = fep->rx_bd_base;
519 else
520 bdp++;
521 /* Doing this here will keep the FEC running while we process
522 * incoming frames. On a heavily loaded network, we should be
523 * able to keep up at the expense of system resources.
525 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
527 fep->cur_rx = bdp;
529 spin_unlock(&fep->hw_lock);
532 /* ------------------------------------------------------------------------- */
533 #ifdef CONFIG_M5272
534 static void __inline__ fec_get_mac(struct net_device *dev)
536 struct fec_enet_private *fep = netdev_priv(dev);
537 unsigned char *iap, tmpaddr[ETH_ALEN];
539 if (FEC_FLASHMAC) {
541 * Get MAC address from FLASH.
542 * If it is all 1's or 0's, use the default.
544 iap = (unsigned char *)FEC_FLASHMAC;
545 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
546 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
547 iap = fec_mac_default;
548 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
549 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
550 iap = fec_mac_default;
551 } else {
552 *((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
553 *((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
554 iap = &tmpaddr[0];
557 memcpy(dev->dev_addr, iap, ETH_ALEN);
559 /* Adjust MAC if using default MAC address */
560 if (iap == fec_mac_default)
561 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
563 #endif
565 /* ------------------------------------------------------------------------- */
568 * Phy section
570 static void fec_enet_adjust_link(struct net_device *dev)
572 struct fec_enet_private *fep = netdev_priv(dev);
573 struct phy_device *phy_dev = fep->phy_dev;
574 unsigned long flags;
576 int status_change = 0;
578 spin_lock_irqsave(&fep->hw_lock, flags);
580 /* Prevent a state halted on mii error */
581 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
582 phy_dev->state = PHY_RESUMING;
583 goto spin_unlock;
586 /* Duplex link change */
587 if (phy_dev->link) {
588 if (fep->full_duplex != phy_dev->duplex) {
589 fec_restart(dev, phy_dev->duplex);
590 status_change = 1;
594 /* Link on or off change */
595 if (phy_dev->link != fep->link) {
596 fep->link = phy_dev->link;
597 if (phy_dev->link)
598 fec_restart(dev, phy_dev->duplex);
599 else
600 fec_stop(dev);
601 status_change = 1;
604 spin_unlock:
605 spin_unlock_irqrestore(&fep->hw_lock, flags);
607 if (status_change)
608 phy_print_status(phy_dev);
612 * NOTE: a MII transaction is during around 25 us, so polling it...
614 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
616 struct fec_enet_private *fep = bus->priv;
617 int timeout = FEC_MII_TIMEOUT;
619 fep->mii_timeout = 0;
621 /* clear MII end of transfer bit*/
622 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
624 /* start a read op */
625 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
626 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
627 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
629 /* wait for end of transfer */
630 while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) {
631 cpu_relax();
632 if (timeout-- < 0) {
633 fep->mii_timeout = 1;
634 printk(KERN_ERR "FEC: MDIO read timeout\n");
635 return -ETIMEDOUT;
639 /* return value */
640 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
643 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
644 u16 value)
646 struct fec_enet_private *fep = bus->priv;
647 int timeout = FEC_MII_TIMEOUT;
649 fep->mii_timeout = 0;
651 /* clear MII end of transfer bit*/
652 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
654 /* start a read op */
655 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
656 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
657 FEC_MMFR_TA | FEC_MMFR_DATA(value),
658 fep->hwp + FEC_MII_DATA);
660 /* wait for end of transfer */
661 while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) {
662 cpu_relax();
663 if (timeout-- < 0) {
664 fep->mii_timeout = 1;
665 printk(KERN_ERR "FEC: MDIO write timeout\n");
666 return -ETIMEDOUT;
670 return 0;
673 static int fec_enet_mdio_reset(struct mii_bus *bus)
675 return 0;
678 static int fec_enet_mii_probe(struct net_device *dev)
680 struct fec_enet_private *fep = netdev_priv(dev);
681 struct phy_device *phy_dev = NULL;
682 int phy_addr;
684 /* find the first phy */
685 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
686 if (fep->mii_bus->phy_map[phy_addr]) {
687 phy_dev = fep->mii_bus->phy_map[phy_addr];
688 break;
692 if (!phy_dev) {
693 printk(KERN_ERR "%s: no PHY found\n", dev->name);
694 return -ENODEV;
697 /* attach the mac to the phy */
698 phy_dev = phy_connect(dev, dev_name(&phy_dev->dev),
699 &fec_enet_adjust_link, 0,
700 PHY_INTERFACE_MODE_MII);
701 if (IS_ERR(phy_dev)) {
702 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
703 return PTR_ERR(phy_dev);
706 /* mask with MAC supported features */
707 phy_dev->supported &= PHY_BASIC_FEATURES;
708 phy_dev->advertising = phy_dev->supported;
710 fep->phy_dev = phy_dev;
711 fep->link = 0;
712 fep->full_duplex = 0;
714 return 0;
717 static int fec_enet_mii_init(struct platform_device *pdev)
719 struct net_device *dev = platform_get_drvdata(pdev);
720 struct fec_enet_private *fep = netdev_priv(dev);
721 int err = -ENXIO, i;
723 fep->mii_timeout = 0;
726 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
728 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
729 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
731 fep->mii_bus = mdiobus_alloc();
732 if (fep->mii_bus == NULL) {
733 err = -ENOMEM;
734 goto err_out;
737 fep->mii_bus->name = "fec_enet_mii_bus";
738 fep->mii_bus->read = fec_enet_mdio_read;
739 fep->mii_bus->write = fec_enet_mdio_write;
740 fep->mii_bus->reset = fec_enet_mdio_reset;
741 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id);
742 fep->mii_bus->priv = fep;
743 fep->mii_bus->parent = &pdev->dev;
745 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
746 if (!fep->mii_bus->irq) {
747 err = -ENOMEM;
748 goto err_out_free_mdiobus;
751 for (i = 0; i < PHY_MAX_ADDR; i++)
752 fep->mii_bus->irq[i] = PHY_POLL;
754 platform_set_drvdata(dev, fep->mii_bus);
756 if (mdiobus_register(fep->mii_bus))
757 goto err_out_free_mdio_irq;
759 if (fec_enet_mii_probe(dev) != 0)
760 goto err_out_unregister_bus;
762 return 0;
764 err_out_unregister_bus:
765 mdiobus_unregister(fep->mii_bus);
766 err_out_free_mdio_irq:
767 kfree(fep->mii_bus->irq);
768 err_out_free_mdiobus:
769 mdiobus_free(fep->mii_bus);
770 err_out:
771 return err;
774 static void fec_enet_mii_remove(struct fec_enet_private *fep)
776 if (fep->phy_dev)
777 phy_disconnect(fep->phy_dev);
778 mdiobus_unregister(fep->mii_bus);
779 kfree(fep->mii_bus->irq);
780 mdiobus_free(fep->mii_bus);
783 static int fec_enet_get_settings(struct net_device *dev,
784 struct ethtool_cmd *cmd)
786 struct fec_enet_private *fep = netdev_priv(dev);
787 struct phy_device *phydev = fep->phy_dev;
789 if (!phydev)
790 return -ENODEV;
792 return phy_ethtool_gset(phydev, cmd);
795 static int fec_enet_set_settings(struct net_device *dev,
796 struct ethtool_cmd *cmd)
798 struct fec_enet_private *fep = netdev_priv(dev);
799 struct phy_device *phydev = fep->phy_dev;
801 if (!phydev)
802 return -ENODEV;
804 return phy_ethtool_sset(phydev, cmd);
807 static void fec_enet_get_drvinfo(struct net_device *dev,
808 struct ethtool_drvinfo *info)
810 struct fec_enet_private *fep = netdev_priv(dev);
812 strcpy(info->driver, fep->pdev->dev.driver->name);
813 strcpy(info->version, "Revision: 1.0");
814 strcpy(info->bus_info, dev_name(&dev->dev));
817 static struct ethtool_ops fec_enet_ethtool_ops = {
818 .get_settings = fec_enet_get_settings,
819 .set_settings = fec_enet_set_settings,
820 .get_drvinfo = fec_enet_get_drvinfo,
821 .get_link = ethtool_op_get_link,
824 static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
826 struct fec_enet_private *fep = netdev_priv(dev);
827 struct phy_device *phydev = fep->phy_dev;
829 if (!netif_running(dev))
830 return -EINVAL;
832 if (!phydev)
833 return -ENODEV;
835 return phy_mii_ioctl(phydev, if_mii(rq), cmd);
838 static void fec_enet_free_buffers(struct net_device *dev)
840 struct fec_enet_private *fep = netdev_priv(dev);
841 int i;
842 struct sk_buff *skb;
843 struct bufdesc *bdp;
845 bdp = fep->rx_bd_base;
846 for (i = 0; i < RX_RING_SIZE; i++) {
847 skb = fep->rx_skbuff[i];
849 if (bdp->cbd_bufaddr)
850 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
851 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
852 if (skb)
853 dev_kfree_skb(skb);
854 bdp++;
857 bdp = fep->tx_bd_base;
858 for (i = 0; i < TX_RING_SIZE; i++)
859 kfree(fep->tx_bounce[i]);
862 static int fec_enet_alloc_buffers(struct net_device *dev)
864 struct fec_enet_private *fep = netdev_priv(dev);
865 int i;
866 struct sk_buff *skb;
867 struct bufdesc *bdp;
869 bdp = fep->rx_bd_base;
870 for (i = 0; i < RX_RING_SIZE; i++) {
871 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
872 if (!skb) {
873 fec_enet_free_buffers(dev);
874 return -ENOMEM;
876 fep->rx_skbuff[i] = skb;
878 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
879 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
880 bdp->cbd_sc = BD_ENET_RX_EMPTY;
881 bdp++;
884 /* Set the last buffer to wrap. */
885 bdp--;
886 bdp->cbd_sc |= BD_SC_WRAP;
888 bdp = fep->tx_bd_base;
889 for (i = 0; i < TX_RING_SIZE; i++) {
890 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
892 bdp->cbd_sc = 0;
893 bdp->cbd_bufaddr = 0;
894 bdp++;
897 /* Set the last buffer to wrap. */
898 bdp--;
899 bdp->cbd_sc |= BD_SC_WRAP;
901 return 0;
904 static int
905 fec_enet_open(struct net_device *dev)
907 struct fec_enet_private *fep = netdev_priv(dev);
908 int ret;
910 /* I should reset the ring buffers here, but I don't yet know
911 * a simple way to do that.
914 ret = fec_enet_alloc_buffers(dev);
915 if (ret)
916 return ret;
918 /* schedule a link state check */
919 phy_start(fep->phy_dev);
920 netif_start_queue(dev);
921 fep->opened = 1;
922 return 0;
925 static int
926 fec_enet_close(struct net_device *dev)
928 struct fec_enet_private *fep = netdev_priv(dev);
930 /* Don't know what to do yet. */
931 fep->opened = 0;
932 phy_stop(fep->phy_dev);
933 netif_stop_queue(dev);
934 fec_stop(dev);
936 fec_enet_free_buffers(dev);
938 return 0;
941 /* Set or clear the multicast filter for this adaptor.
942 * Skeleton taken from sunlance driver.
943 * The CPM Ethernet implementation allows Multicast as well as individual
944 * MAC address filtering. Some of the drivers check to make sure it is
945 * a group multicast address, and discard those that are not. I guess I
946 * will do the same for now, but just remove the test if you want
947 * individual filtering as well (do the upper net layers want or support
948 * this kind of feature?).
951 #define HASH_BITS 6 /* #bits in hash */
952 #define CRC32_POLY 0xEDB88320
954 static void set_multicast_list(struct net_device *dev)
956 struct fec_enet_private *fep = netdev_priv(dev);
957 struct netdev_hw_addr *ha;
958 unsigned int i, bit, data, crc, tmp;
959 unsigned char hash;
961 if (dev->flags & IFF_PROMISC) {
962 tmp = readl(fep->hwp + FEC_R_CNTRL);
963 tmp |= 0x8;
964 writel(tmp, fep->hwp + FEC_R_CNTRL);
965 return;
968 tmp = readl(fep->hwp + FEC_R_CNTRL);
969 tmp &= ~0x8;
970 writel(tmp, fep->hwp + FEC_R_CNTRL);
972 if (dev->flags & IFF_ALLMULTI) {
973 /* Catch all multicast addresses, so set the
974 * filter to all 1's
976 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
977 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
979 return;
982 /* Clear filter and add the addresses in hash register
984 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
985 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
987 netdev_for_each_mc_addr(ha, dev) {
988 /* Only support group multicast for now */
989 if (!(ha->addr[0] & 1))
990 continue;
992 /* calculate crc32 value of mac address */
993 crc = 0xffffffff;
995 for (i = 0; i < dev->addr_len; i++) {
996 data = ha->addr[i];
997 for (bit = 0; bit < 8; bit++, data >>= 1) {
998 crc = (crc >> 1) ^
999 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1003 /* only upper 6 bits (HASH_BITS) are used
1004 * which point to specific bit in he hash registers
1006 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1008 if (hash > 31) {
1009 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1010 tmp |= 1 << (hash - 32);
1011 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1012 } else {
1013 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1014 tmp |= 1 << hash;
1015 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1020 /* Set a MAC change in hardware. */
1021 static int
1022 fec_set_mac_address(struct net_device *dev, void *p)
1024 struct fec_enet_private *fep = netdev_priv(dev);
1025 struct sockaddr *addr = p;
1027 if (!is_valid_ether_addr(addr->sa_data))
1028 return -EADDRNOTAVAIL;
1030 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1032 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1033 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1034 fep->hwp + FEC_ADDR_LOW);
1035 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
1036 fep + FEC_ADDR_HIGH);
1037 return 0;
1040 static const struct net_device_ops fec_netdev_ops = {
1041 .ndo_open = fec_enet_open,
1042 .ndo_stop = fec_enet_close,
1043 .ndo_start_xmit = fec_enet_start_xmit,
1044 .ndo_set_multicast_list = set_multicast_list,
1045 .ndo_change_mtu = eth_change_mtu,
1046 .ndo_validate_addr = eth_validate_addr,
1047 .ndo_tx_timeout = fec_timeout,
1048 .ndo_set_mac_address = fec_set_mac_address,
1049 .ndo_do_ioctl = fec_enet_ioctl,
1053 * XXX: We need to clean up on failure exits here.
1055 * index is only used in legacy code
1057 static int fec_enet_init(struct net_device *dev, int index)
1059 struct fec_enet_private *fep = netdev_priv(dev);
1060 struct bufdesc *cbd_base;
1061 struct bufdesc *bdp;
1062 int i;
1064 /* Allocate memory for buffer descriptors. */
1065 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1066 GFP_KERNEL);
1067 if (!cbd_base) {
1068 printk("FEC: allocate descriptor memory failed?\n");
1069 return -ENOMEM;
1072 spin_lock_init(&fep->hw_lock);
1074 fep->index = index;
1075 fep->hwp = (void __iomem *)dev->base_addr;
1076 fep->netdev = dev;
1078 /* Set the Ethernet address */
1079 #ifdef CONFIG_M5272
1080 fec_get_mac(dev);
1081 #else
1083 unsigned long l;
1084 l = readl(fep->hwp + FEC_ADDR_LOW);
1085 dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1086 dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1087 dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1088 dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
1089 l = readl(fep->hwp + FEC_ADDR_HIGH);
1090 dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1091 dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1093 #endif
1095 /* Set receive and transmit descriptor base. */
1096 fep->rx_bd_base = cbd_base;
1097 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1099 /* The FEC Ethernet specific entries in the device structure */
1100 dev->watchdog_timeo = TX_TIMEOUT;
1101 dev->netdev_ops = &fec_netdev_ops;
1102 dev->ethtool_ops = &fec_enet_ethtool_ops;
1104 /* Initialize the receive buffer descriptors. */
1105 bdp = fep->rx_bd_base;
1106 for (i = 0; i < RX_RING_SIZE; i++) {
1108 /* Initialize the BD for every fragment in the page. */
1109 bdp->cbd_sc = 0;
1110 bdp++;
1113 /* Set the last buffer to wrap */
1114 bdp--;
1115 bdp->cbd_sc |= BD_SC_WRAP;
1117 /* ...and the same for transmit */
1118 bdp = fep->tx_bd_base;
1119 for (i = 0; i < TX_RING_SIZE; i++) {
1121 /* Initialize the BD for every fragment in the page. */
1122 bdp->cbd_sc = 0;
1123 bdp->cbd_bufaddr = 0;
1124 bdp++;
1127 /* Set the last buffer to wrap */
1128 bdp--;
1129 bdp->cbd_sc |= BD_SC_WRAP;
1131 fec_restart(dev, 0);
1133 return 0;
1136 /* This function is called to start or restart the FEC during a link
1137 * change. This only happens when switching between half and full
1138 * duplex.
1140 static void
1141 fec_restart(struct net_device *dev, int duplex)
1143 struct fec_enet_private *fep = netdev_priv(dev);
1144 int i;
1146 /* Whack a reset. We should wait for this. */
1147 writel(1, fep->hwp + FEC_ECNTRL);
1148 udelay(10);
1150 /* Clear any outstanding interrupt. */
1151 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1153 /* Reset all multicast. */
1154 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1155 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1156 #ifndef CONFIG_M5272
1157 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1158 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1159 #endif
1161 /* Set maximum receive buffer size. */
1162 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1164 /* Set receive and transmit descriptor base. */
1165 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
1166 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
1167 fep->hwp + FEC_X_DES_START);
1169 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1170 fep->cur_rx = fep->rx_bd_base;
1172 /* Reset SKB transmit buffers. */
1173 fep->skb_cur = fep->skb_dirty = 0;
1174 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1175 if (fep->tx_skbuff[i]) {
1176 dev_kfree_skb_any(fep->tx_skbuff[i]);
1177 fep->tx_skbuff[i] = NULL;
1181 /* Enable MII mode */
1182 if (duplex) {
1183 /* MII enable / FD enable */
1184 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1185 writel(0x04, fep->hwp + FEC_X_CNTRL);
1186 } else {
1187 /* MII enable / No Rcv on Xmit */
1188 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1189 writel(0x0, fep->hwp + FEC_X_CNTRL);
1191 fep->full_duplex = duplex;
1193 /* Set MII speed */
1194 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1196 /* And last, enable the transmit and receive processing */
1197 writel(2, fep->hwp + FEC_ECNTRL);
1198 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1200 /* Enable interrupts we wish to service */
1201 writel(FEC_ENET_TXF | FEC_ENET_RXF, fep->hwp + FEC_IMASK);
1204 static void
1205 fec_stop(struct net_device *dev)
1207 struct fec_enet_private *fep = netdev_priv(dev);
1209 /* We cannot expect a graceful transmit stop without link !!! */
1210 if (fep->link) {
1211 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1212 udelay(10);
1213 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1214 printk("fec_stop : Graceful transmit stop did not complete !\n");
1217 /* Whack a reset. We should wait for this. */
1218 writel(1, fep->hwp + FEC_ECNTRL);
1219 udelay(10);
1221 /* Clear outstanding MII command interrupts. */
1222 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1224 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1227 static int __devinit
1228 fec_probe(struct platform_device *pdev)
1230 struct fec_enet_private *fep;
1231 struct net_device *ndev;
1232 int i, irq, ret = 0;
1233 struct resource *r;
1235 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1236 if (!r)
1237 return -ENXIO;
1239 r = request_mem_region(r->start, resource_size(r), pdev->name);
1240 if (!r)
1241 return -EBUSY;
1243 /* Init network device */
1244 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1245 if (!ndev)
1246 return -ENOMEM;
1248 SET_NETDEV_DEV(ndev, &pdev->dev);
1250 /* setup board info structure */
1251 fep = netdev_priv(ndev);
1252 memset(fep, 0, sizeof(*fep));
1254 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
1255 fep->pdev = pdev;
1257 if (!ndev->base_addr) {
1258 ret = -ENOMEM;
1259 goto failed_ioremap;
1262 platform_set_drvdata(pdev, ndev);
1264 /* This device has up to three irqs on some platforms */
1265 for (i = 0; i < 3; i++) {
1266 irq = platform_get_irq(pdev, i);
1267 if (i && irq < 0)
1268 break;
1269 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1270 if (ret) {
1271 while (i >= 0) {
1272 irq = platform_get_irq(pdev, i);
1273 free_irq(irq, ndev);
1274 i--;
1276 goto failed_irq;
1280 fep->clk = clk_get(&pdev->dev, "fec_clk");
1281 if (IS_ERR(fep->clk)) {
1282 ret = PTR_ERR(fep->clk);
1283 goto failed_clk;
1285 clk_enable(fep->clk);
1287 ret = fec_enet_init(ndev, 0);
1288 if (ret)
1289 goto failed_init;
1291 ret = fec_enet_mii_init(pdev);
1292 if (ret)
1293 goto failed_mii_init;
1295 ret = register_netdev(ndev);
1296 if (ret)
1297 goto failed_register;
1299 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
1300 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
1301 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1302 fep->phy_dev->irq);
1304 return 0;
1306 failed_register:
1307 fec_enet_mii_remove(fep);
1308 failed_mii_init:
1309 failed_init:
1310 clk_disable(fep->clk);
1311 clk_put(fep->clk);
1312 failed_clk:
1313 for (i = 0; i < 3; i++) {
1314 irq = platform_get_irq(pdev, i);
1315 if (irq > 0)
1316 free_irq(irq, ndev);
1318 failed_irq:
1319 iounmap((void __iomem *)ndev->base_addr);
1320 failed_ioremap:
1321 free_netdev(ndev);
1323 return ret;
1326 static int __devexit
1327 fec_drv_remove(struct platform_device *pdev)
1329 struct net_device *ndev = platform_get_drvdata(pdev);
1330 struct fec_enet_private *fep = netdev_priv(ndev);
1332 platform_set_drvdata(pdev, NULL);
1334 fec_stop(ndev);
1335 fec_enet_mii_remove(fep);
1336 clk_disable(fep->clk);
1337 clk_put(fep->clk);
1338 iounmap((void __iomem *)ndev->base_addr);
1339 unregister_netdev(ndev);
1340 free_netdev(ndev);
1341 return 0;
1344 static int
1345 fec_suspend(struct platform_device *dev, pm_message_t state)
1347 struct net_device *ndev = platform_get_drvdata(dev);
1348 struct fec_enet_private *fep;
1350 if (ndev) {
1351 fep = netdev_priv(ndev);
1352 if (netif_running(ndev)) {
1353 netif_device_detach(ndev);
1354 fec_stop(ndev);
1357 return 0;
1360 static int
1361 fec_resume(struct platform_device *dev)
1363 struct net_device *ndev = platform_get_drvdata(dev);
1365 if (ndev) {
1366 if (netif_running(ndev)) {
1367 fec_enet_init(ndev, 0);
1368 netif_device_attach(ndev);
1371 return 0;
1374 static struct platform_driver fec_driver = {
1375 .driver = {
1376 .name = "fec",
1377 .owner = THIS_MODULE,
1379 .probe = fec_probe,
1380 .remove = __devexit_p(fec_drv_remove),
1381 .suspend = fec_suspend,
1382 .resume = fec_resume,
1385 static int __init
1386 fec_enet_module_init(void)
1388 printk(KERN_INFO "FEC Ethernet Driver\n");
1390 return platform_driver_register(&fec_driver);
1393 static void __exit
1394 fec_enet_cleanup(void)
1396 platform_driver_unregister(&fec_driver);
1399 module_exit(fec_enet_cleanup);
1400 module_init(fec_enet_module_init);
1402 MODULE_LICENSE("GPL");