2 * Intel 5400 class Memory Controllers kernel module (Seaburg)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Copyright (c) 2008 by:
8 * Ben Woodard <woodard@redhat.com>
9 * Mauro Carvalho Chehab <mchehab@redhat.com>
11 * Red Hat Inc. http://www.redhat.com
13 * Forked and adapted from the i5000_edac driver which was
14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
16 * This module is based on the following document:
18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19 * http://developer.intel.com/design/chipsets/datashts/313070.htm
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/edac.h>
29 #include <linux/mmzone.h>
31 #include "edac_core.h"
34 * Alter this version for the I5400 module when modifications are made
36 #define I5400_REVISION " Ver: 1.0.0 " __DATE__
38 #define EDAC_MOD_STR "i5400_edac"
40 #define i5400_printk(level, fmt, arg...) \
41 edac_printk(level, "i5400", fmt, ##arg)
43 #define i5400_mc_printk(mci, level, fmt, arg...) \
44 edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
46 /* Limits for i5400 */
47 #define NUM_MTRS_PER_BRANCH 4
48 #define CHANNELS_PER_BRANCH 2
49 #define MAX_DIMMS_PER_CHANNEL NUM_MTRS_PER_BRANCH
50 #define MAX_CHANNELS 4
51 /* max possible csrows per channel */
52 #define MAX_CSROWS (MAX_DIMMS_PER_CHANNEL)
55 * Function 0: System Address
56 * Function 1: Memory Branch Map, Control, Errors Register
57 * Function 2: FSB Error Registers
59 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
60 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
61 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
62 * for device 21 (0,1).
65 /* OFFSETS for Function 0 */
66 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
67 #define MAXCH 0x56 /* Max Channel Number */
68 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
70 /* OFFSETS for Function 1 */
73 #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */
79 /* Fatal error registers */
80 #define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */
81 #define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */
83 #define NERR_FAT_FBD 0x9c
84 #define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */
86 /* Non-fatal error register */
87 #define NERR_NF_FBD 0xa4
89 /* Enable error mask */
90 #define EMASK_FBD 0xa8
95 #define MCERR_FBD 0xb8
97 /* No OFFSETS for Device 16 Function 2 */
101 * Function 0: Memory Map Branch 0
104 * Function 0: Memory Map Branch 1
107 /* OFFSETS for Function 0 */
108 #define AMBPRESENT_0 0x64
109 #define AMBPRESENT_1 0x66
115 /* OFFSETS for Function 1 */
116 #define NRECFGLOG 0x74
117 #define RECFGLOG 0x78
118 #define NRECMEMA 0xbe
119 #define NRECMEMB 0xc0
120 #define NRECFB_DIMMA 0xc4
121 #define NRECFB_DIMMB 0xc8
122 #define NRECFB_DIMMC 0xcc
123 #define NRECFB_DIMMD 0xd0
124 #define NRECFB_DIMME 0xd4
125 #define NRECFB_DIMMF 0xd8
129 #define RECFB_DIMMA 0xf8
130 #define RECFB_DIMMB 0xec
131 #define RECFB_DIMMC 0xf0
132 #define RECFB_DIMMD 0xf4
133 #define RECFB_DIMME 0xf8
134 #define RECFB_DIMMF 0xfC
137 * Error indicator bits and masks
138 * Error masks are according with Table 5-17 of i5400 datasheet
142 EMASK_M1
= 1<<0, /* Memory Write error on non-redundant retry */
143 EMASK_M2
= 1<<1, /* Memory or FB-DIMM configuration CRC read error */
144 EMASK_M3
= 1<<2, /* Reserved */
145 EMASK_M4
= 1<<3, /* Uncorrectable Data ECC on Replay */
146 EMASK_M5
= 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
147 EMASK_M6
= 1<<5, /* Unsupported on i5400 */
148 EMASK_M7
= 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
149 EMASK_M8
= 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
150 EMASK_M9
= 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
151 EMASK_M10
= 1<<9, /* Unsupported on i5400 */
152 EMASK_M11
= 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
153 EMASK_M12
= 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
154 EMASK_M13
= 1<<12, /* Memory Write error on first attempt */
155 EMASK_M14
= 1<<13, /* FB-DIMM Configuration Write error on first attempt */
156 EMASK_M15
= 1<<14, /* Memory or FB-DIMM configuration CRC read error */
157 EMASK_M16
= 1<<15, /* Channel Failed-Over Occurred */
158 EMASK_M17
= 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
159 EMASK_M18
= 1<<17, /* Unsupported on i5400 */
160 EMASK_M19
= 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
161 EMASK_M20
= 1<<19, /* Correctable Patrol Data ECC */
162 EMASK_M21
= 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
163 EMASK_M22
= 1<<21, /* SPD protocol Error */
164 EMASK_M23
= 1<<22, /* Non-Redundant Fast Reset Timeout */
165 EMASK_M24
= 1<<23, /* Refresh error */
166 EMASK_M25
= 1<<24, /* Memory Write error on redundant retry */
167 EMASK_M26
= 1<<25, /* Redundant Fast Reset Timeout */
168 EMASK_M27
= 1<<26, /* Correctable Counter Threshold Exceeded */
169 EMASK_M28
= 1<<27, /* DIMM-Spare Copy Completed */
170 EMASK_M29
= 1<<28, /* DIMM-Isolation Completed */
174 * Names to translate bit error into something useful
176 static const char *error_name
[] = {
177 [0] = "Memory Write error on non-redundant retry",
178 [1] = "Memory or FB-DIMM configuration CRC read error",
180 [3] = "Uncorrectable Data ECC on Replay",
181 [4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
182 /* M6 Unsupported on i5400 */
183 [6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
184 [7] = "Aliased Uncorrectable Patrol Data ECC",
185 [8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
186 /* M10 Unsupported on i5400 */
187 [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
188 [11] = "Non-Aliased Uncorrectable Patrol Data ECC",
189 [12] = "Memory Write error on first attempt",
190 [13] = "FB-DIMM Configuration Write error on first attempt",
191 [14] = "Memory or FB-DIMM configuration CRC read error",
192 [15] = "Channel Failed-Over Occurred",
193 [16] = "Correctable Non-Mirrored Demand Data ECC",
194 /* M18 Unsupported on i5400 */
195 [18] = "Correctable Resilver- or Spare-Copy Data ECC",
196 [19] = "Correctable Patrol Data ECC",
197 [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
198 [21] = "SPD protocol Error",
199 [22] = "Non-Redundant Fast Reset Timeout",
200 [23] = "Refresh error",
201 [24] = "Memory Write error on redundant retry",
202 [25] = "Redundant Fast Reset Timeout",
203 [26] = "Correctable Counter Threshold Exceeded",
204 [27] = "DIMM-Spare Copy Completed",
205 [28] = "DIMM-Isolation Completed",
209 #define ERROR_FAT_MASK (EMASK_M1 | \
213 /* Correctable errors */
214 #define ERROR_NF_CORRECTABLE (EMASK_M27 | \
220 #define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
222 #define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
223 #define ERROR_NF_NORTH_CRC (EMASK_M21)
225 /* Recoverable errors */
226 #define ERROR_NF_RECOVERABLE (EMASK_M26 | \
239 /* uncorrectable errors */
240 #define ERROR_NF_UNCORRECTABLE (EMASK_M4)
242 /* mask to all non-fatal errors */
243 #define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
244 ERROR_NF_UNCORRECTABLE | \
245 ERROR_NF_RECOVERABLE | \
246 ERROR_NF_DIMM_SPARE | \
247 ERROR_NF_SPD_PROTOCOL | \
251 * Define error masks for the several registers
254 /* Enable all fatal and non fatal errors */
255 #define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
257 /* mask for fatal error registers */
258 #define FERR_FAT_MASK ERROR_FAT_MASK
260 /* masks for non-fatal error register */
261 static inline int to_nf_mask(unsigned int mask
)
263 return (mask
& EMASK_M29
) | (mask
>> 3);
266 static inline int from_nf_ferr(unsigned int mask
)
268 return (mask
& EMASK_M29
) | /* Bit 28 */
269 (mask
& ((1 << 28) - 1) << 3); /* Bits 0 to 27 */
272 #define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK)
273 #define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE)
274 #define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE)
275 #define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL)
276 #define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC)
277 #define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE)
278 #define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE)
280 /* Defines to extract the vaious fields from the
281 * MTRx - Memory Technology Registers
283 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10))
284 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9))
285 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4)
286 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
287 #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
288 #define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1)
289 #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
290 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
291 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
292 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
293 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
295 /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
296 static inline int extract_fbdchan_indx(u32 x
)
298 return (x
>>28) & 0x3;
301 #ifdef CONFIG_EDAC_DEBUG
303 static const char *numrow_toString
[] = {
311 static const char *numcol_toString
[] = {
312 "1,024 - 10 columns",
313 "2,048 - 11 columns",
314 "4,096 - 12 columns",
319 /* Device name and register DID (Device ID) */
320 struct i5400_dev_info
{
321 const char *ctl_name
; /* name for this device */
322 u16 fsb_mapping_errors
; /* DID for the branchmap,control */
325 /* Table of devices attributes supported by this driver */
326 static const struct i5400_dev_info i5400_devs
[] = {
329 .fsb_mapping_errors
= PCI_DEVICE_ID_INTEL_5400_ERR
,
333 struct i5400_dimm_info
{
334 int megabytes
; /* size, 0 means not present */
337 /* driver private data structure */
339 struct pci_dev
*system_address
; /* 16.0 */
340 struct pci_dev
*branchmap_werrors
; /* 16.1 */
341 struct pci_dev
*fsb_error_regs
; /* 16.2 */
342 struct pci_dev
*branch_0
; /* 21.0 */
343 struct pci_dev
*branch_1
; /* 22.0 */
345 u16 tolm
; /* top of low memory */
346 u64 ambase
; /* AMB BAR */
350 u16 b0_mtr
[NUM_MTRS_PER_BRANCH
]; /* Memory Technlogy Reg */
351 u16 b0_ambpresent0
; /* Branch 0, Channel 0 */
352 u16 b0_ambpresent1
; /* Brnach 0, Channel 1 */
354 u16 b1_mtr
[NUM_MTRS_PER_BRANCH
]; /* Memory Technlogy Reg */
355 u16 b1_ambpresent0
; /* Branch 1, Channel 8 */
356 u16 b1_ambpresent1
; /* Branch 1, Channel 1 */
358 /* DIMM information matrix, allocating architecture maximums */
359 struct i5400_dimm_info dimm_info
[MAX_CSROWS
][MAX_CHANNELS
];
361 /* Actual values for this controller */
362 int maxch
; /* Max channels */
363 int maxdimmperch
; /* Max DIMMs per channel */
366 /* I5400 MCH error information retrieved from Hardware */
367 struct i5400_error_info
{
368 /* These registers are always read from the MC */
369 u32 ferr_fat_fbd
; /* First Errors Fatal */
370 u32 nerr_fat_fbd
; /* Next Errors Fatal */
371 u32 ferr_nf_fbd
; /* First Errors Non-Fatal */
372 u32 nerr_nf_fbd
; /* Next Errors Non-Fatal */
374 /* These registers are input ONLY if there was a Recoverable Error */
375 u32 redmemb
; /* Recoverable Mem Data Error log B */
376 u16 recmema
; /* Recoverable Mem Error log A */
377 u32 recmemb
; /* Recoverable Mem Error log B */
379 /* These registers are input ONLY if there was a Non-Rec Error */
380 u16 nrecmema
; /* Non-Recoverable Mem log A */
381 u16 nrecmemb
; /* Non-Recoverable Mem log B */
385 /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
386 5400 better to use an inline function than a macro in this case */
387 static inline int nrec_bank(struct i5400_error_info
*info
)
389 return ((info
->nrecmema
) >> 12) & 0x7;
391 static inline int nrec_rank(struct i5400_error_info
*info
)
393 return ((info
->nrecmema
) >> 8) & 0xf;
395 static inline int nrec_buf_id(struct i5400_error_info
*info
)
397 return ((info
->nrecmema
)) & 0xff;
399 static inline int nrec_rdwr(struct i5400_error_info
*info
)
401 return (info
->nrecmemb
) >> 31;
403 /* This applies to both NREC and REC string so it can be used with nrec_rdwr
405 static inline const char *rdwr_str(int rdwr
)
407 return rdwr
? "Write" : "Read";
409 static inline int nrec_cas(struct i5400_error_info
*info
)
411 return ((info
->nrecmemb
) >> 16) & 0x1fff;
413 static inline int nrec_ras(struct i5400_error_info
*info
)
415 return (info
->nrecmemb
) & 0xffff;
417 static inline int rec_bank(struct i5400_error_info
*info
)
419 return ((info
->recmema
) >> 12) & 0x7;
421 static inline int rec_rank(struct i5400_error_info
*info
)
423 return ((info
->recmema
) >> 8) & 0xf;
425 static inline int rec_rdwr(struct i5400_error_info
*info
)
427 return (info
->recmemb
) >> 31;
429 static inline int rec_cas(struct i5400_error_info
*info
)
431 return ((info
->recmemb
) >> 16) & 0x1fff;
433 static inline int rec_ras(struct i5400_error_info
*info
)
435 return (info
->recmemb
) & 0xffff;
438 static struct edac_pci_ctl_info
*i5400_pci
;
441 * i5400_get_error_info Retrieve the hardware error information from
442 * the hardware and cache it in the 'info'
445 static void i5400_get_error_info(struct mem_ctl_info
*mci
,
446 struct i5400_error_info
*info
)
448 struct i5400_pvt
*pvt
;
453 /* read in the 1st FATAL error register */
454 pci_read_config_dword(pvt
->branchmap_werrors
, FERR_FAT_FBD
, &value
);
456 /* Mask only the bits that the doc says are valid
458 value
&= (FERR_FAT_FBDCHAN
| FERR_FAT_MASK
);
460 /* If there is an error, then read in the
461 NEXT FATAL error register and the Memory Error Log Register A
463 if (value
& FERR_FAT_MASK
) {
464 info
->ferr_fat_fbd
= value
;
466 /* harvest the various error data we need */
467 pci_read_config_dword(pvt
->branchmap_werrors
,
468 NERR_FAT_FBD
, &info
->nerr_fat_fbd
);
469 pci_read_config_word(pvt
->branchmap_werrors
,
470 NRECMEMA
, &info
->nrecmema
);
471 pci_read_config_word(pvt
->branchmap_werrors
,
472 NRECMEMB
, &info
->nrecmemb
);
474 /* Clear the error bits, by writing them back */
475 pci_write_config_dword(pvt
->branchmap_werrors
,
476 FERR_FAT_FBD
, value
);
478 info
->ferr_fat_fbd
= 0;
479 info
->nerr_fat_fbd
= 0;
484 /* read in the 1st NON-FATAL error register */
485 pci_read_config_dword(pvt
->branchmap_werrors
, FERR_NF_FBD
, &value
);
487 /* If there is an error, then read in the 1st NON-FATAL error
488 * register as well */
489 if (value
& FERR_NF_MASK
) {
490 info
->ferr_nf_fbd
= value
;
492 /* harvest the various error data we need */
493 pci_read_config_dword(pvt
->branchmap_werrors
,
494 NERR_NF_FBD
, &info
->nerr_nf_fbd
);
495 pci_read_config_word(pvt
->branchmap_werrors
,
496 RECMEMA
, &info
->recmema
);
497 pci_read_config_dword(pvt
->branchmap_werrors
,
498 RECMEMB
, &info
->recmemb
);
499 pci_read_config_dword(pvt
->branchmap_werrors
,
500 REDMEMB
, &info
->redmemb
);
502 /* Clear the error bits, by writing them back */
503 pci_write_config_dword(pvt
->branchmap_werrors
,
506 info
->ferr_nf_fbd
= 0;
507 info
->nerr_nf_fbd
= 0;
515 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
516 * struct i5400_error_info *info,
517 * int handle_errors);
519 * handle the Intel FATAL and unrecoverable errors, if any
521 static void i5400_proccess_non_recoverable_info(struct mem_ctl_info
*mci
,
522 struct i5400_error_info
*info
,
523 unsigned long allErrors
)
525 char msg
[EDAC_MC_LABEL_LEN
+ 1 + 90 + 80];
537 return; /* if no error, return now */
539 if (allErrors
& ERROR_FAT_MASK
)
541 else if (allErrors
& FERR_NF_UNCORRECTABLE
)
542 type
= "NON-FATAL uncorrected";
544 type
= "NON-FATAL recoverable";
546 /* ONLY ONE of the possible error bits will be set, as per the docs */
548 branch
= extract_fbdchan_indx(info
->ferr_fat_fbd
);
551 /* Use the NON-Recoverable macros to extract data */
552 bank
= nrec_bank(info
);
553 rank
= nrec_rank(info
);
554 buf_id
= nrec_buf_id(info
);
555 rdwr
= nrec_rdwr(info
);
556 ras
= nrec_ras(info
);
557 cas
= nrec_cas(info
);
559 debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
560 "DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
561 rank
, channel
, channel
+ 1, branch
>> 1, bank
,
562 buf_id
, rdwr_str(rdwr
), ras
, cas
);
564 /* Only 1 bit will be on */
565 errnum
= find_first_bit(&allErrors
, ARRAY_SIZE(error_name
));
567 /* Form out message */
568 snprintf(msg
, sizeof(msg
),
569 "%s (Branch=%d DRAM-Bank=%d Buffer ID = %d RDWR=%s "
570 "RAS=%d CAS=%d %s Err=0x%lx (%s))",
571 type
, branch
>> 1, bank
, buf_id
, rdwr_str(rdwr
), ras
, cas
,
572 type
, allErrors
, error_name
[errnum
]);
574 /* Call the helper to output message */
575 edac_mc_handle_fbd_ue(mci
, rank
, channel
, channel
+ 1, msg
);
579 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
580 * struct i5400_error_info *info,
581 * int handle_errors);
583 * handle the Intel NON-FATAL errors, if any
585 static void i5400_process_nonfatal_error_info(struct mem_ctl_info
*mci
,
586 struct i5400_error_info
*info
)
588 char msg
[EDAC_MC_LABEL_LEN
+ 1 + 90 + 80];
589 unsigned long allErrors
;
598 /* mask off the Error bits that are possible */
599 allErrors
= from_nf_ferr(info
->ferr_nf_fbd
& FERR_NF_MASK
);
601 return; /* if no error, return now */
603 /* ONLY ONE of the possible error bits will be set, as per the docs */
605 if (allErrors
& (ERROR_NF_UNCORRECTABLE
| ERROR_NF_RECOVERABLE
)) {
606 i5400_proccess_non_recoverable_info(mci
, info
, allErrors
);
610 /* Correctable errors */
611 if (allErrors
& ERROR_NF_CORRECTABLE
) {
612 debugf0("\tCorrected bits= 0x%lx\n", allErrors
);
614 branch
= extract_fbdchan_indx(info
->ferr_nf_fbd
);
617 if (REC_ECC_LOCATOR_ODD(info
->redmemb
))
620 /* Convert channel to be based from zero, instead of
621 * from branch base of 0 */
624 bank
= rec_bank(info
);
625 rank
= rec_rank(info
);
626 rdwr
= rec_rdwr(info
);
630 /* Only 1 bit will be on */
631 errnum
= find_first_bit(&allErrors
, ARRAY_SIZE(error_name
));
633 debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
634 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
635 rank
, channel
, branch
>> 1, bank
,
636 rdwr_str(rdwr
), ras
, cas
);
638 /* Form out message */
639 snprintf(msg
, sizeof(msg
),
640 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
641 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
642 branch
>> 1, bank
, rdwr_str(rdwr
), ras
, cas
,
643 allErrors
, error_name
[errnum
]);
645 /* Call the helper to output message */
646 edac_mc_handle_fbd_ce(mci
, rank
, channel
, msg
);
651 /* Miscelaneous errors */
652 errnum
= find_first_bit(&allErrors
, ARRAY_SIZE(error_name
));
654 branch
= extract_fbdchan_indx(info
->ferr_nf_fbd
);
656 i5400_mc_printk(mci
, KERN_EMERG
,
657 "Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
658 branch
>> 1, allErrors
, error_name
[errnum
]);
662 * i5400_process_error_info Process the error info that is
663 * in the 'info' structure, previously retrieved from hardware
665 static void i5400_process_error_info(struct mem_ctl_info
*mci
,
666 struct i5400_error_info
*info
)
669 /* First handle any fatal errors that occurred */
670 allErrors
= (info
->ferr_fat_fbd
& FERR_FAT_MASK
);
671 i5400_proccess_non_recoverable_info(mci
, info
, allErrors
);
673 /* now handle any non-fatal errors that occurred */
674 i5400_process_nonfatal_error_info(mci
, info
);
678 * i5400_clear_error Retrieve any error from the hardware
679 * but do NOT process that error.
680 * Used for 'clearing' out of previous errors
681 * Called by the Core module.
683 static void i5400_clear_error(struct mem_ctl_info
*mci
)
685 struct i5400_error_info info
;
687 i5400_get_error_info(mci
, &info
);
691 * i5400_check_error Retrieve and process errors reported by the
692 * hardware. Called by the Core module.
694 static void i5400_check_error(struct mem_ctl_info
*mci
)
696 struct i5400_error_info info
;
697 debugf4("MC%d: %s: %s()\n", mci
->mc_idx
, __FILE__
, __func__
);
698 i5400_get_error_info(mci
, &info
);
699 i5400_process_error_info(mci
, &info
);
703 * i5400_put_devices 'put' all the devices that we have
706 static void i5400_put_devices(struct mem_ctl_info
*mci
)
708 struct i5400_pvt
*pvt
;
712 /* Decrement usage count for devices */
713 pci_dev_put(pvt
->branch_1
);
714 pci_dev_put(pvt
->branch_0
);
715 pci_dev_put(pvt
->fsb_error_regs
);
716 pci_dev_put(pvt
->branchmap_werrors
);
720 * i5400_get_devices Find and perform 'get' operation on the MCH's
721 * device/functions we want to reference for this driver
723 * Need to 'get' device 16 func 1 and func 2
725 static int i5400_get_devices(struct mem_ctl_info
*mci
, int dev_idx
)
727 struct i5400_pvt
*pvt
;
728 struct pci_dev
*pdev
;
731 pvt
->branchmap_werrors
= NULL
;
732 pvt
->fsb_error_regs
= NULL
;
733 pvt
->branch_0
= NULL
;
734 pvt
->branch_1
= NULL
;
736 /* Attempt to 'get' the MCH register we want */
738 while (!pvt
->branchmap_werrors
|| !pvt
->fsb_error_regs
) {
739 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
740 PCI_DEVICE_ID_INTEL_5400_ERR
, pdev
);
742 /* End of list, leave */
743 i5400_printk(KERN_ERR
,
744 "'system address,Process Bus' "
746 "vendor 0x%x device 0x%x ERR funcs "
749 PCI_DEVICE_ID_INTEL_5400_ERR
);
753 /* Store device 16 funcs 1 and 2 */
754 switch (PCI_FUNC(pdev
->devfn
)) {
756 pvt
->branchmap_werrors
= pdev
;
759 pvt
->fsb_error_regs
= pdev
;
764 debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
765 pci_name(pvt
->system_address
),
766 pvt
->system_address
->vendor
, pvt
->system_address
->device
);
767 debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
768 pci_name(pvt
->branchmap_werrors
),
769 pvt
->branchmap_werrors
->vendor
, pvt
->branchmap_werrors
->device
);
770 debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
771 pci_name(pvt
->fsb_error_regs
),
772 pvt
->fsb_error_regs
->vendor
, pvt
->fsb_error_regs
->device
);
774 pvt
->branch_0
= pci_get_device(PCI_VENDOR_ID_INTEL
,
775 PCI_DEVICE_ID_INTEL_5400_FBD0
, NULL
);
776 if (!pvt
->branch_0
) {
777 i5400_printk(KERN_ERR
,
778 "MC: 'BRANCH 0' device not found:"
779 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
780 PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_5400_FBD0
);
784 /* If this device claims to have more than 2 channels then
785 * fetch Branch 1's information
787 if (pvt
->maxch
< CHANNELS_PER_BRANCH
)
790 pvt
->branch_1
= pci_get_device(PCI_VENDOR_ID_INTEL
,
791 PCI_DEVICE_ID_INTEL_5400_FBD1
, NULL
);
792 if (!pvt
->branch_1
) {
793 i5400_printk(KERN_ERR
,
794 "MC: 'BRANCH 1' device not found:"
795 "vendor 0x%x device 0x%x Func 0 "
798 PCI_DEVICE_ID_INTEL_5400_FBD1
);
805 i5400_put_devices(mci
);
810 * determine_amb_present
812 * the information is contained in NUM_MTRS_PER_BRANCH different
813 * registers determining which of the NUM_MTRS_PER_BRANCH requires
814 * knowing which channel is in question
816 * 2 branches, each with 2 channels
817 * b0_ambpresent0 for channel '0'
818 * b0_ambpresent1 for channel '1'
819 * b1_ambpresent0 for channel '2'
820 * b1_ambpresent1 for channel '3'
822 static int determine_amb_present_reg(struct i5400_pvt
*pvt
, int channel
)
826 if (channel
< CHANNELS_PER_BRANCH
) {
828 amb_present
= pvt
->b0_ambpresent1
;
830 amb_present
= pvt
->b0_ambpresent0
;
833 amb_present
= pvt
->b1_ambpresent1
;
835 amb_present
= pvt
->b1_ambpresent0
;
842 * determine_mtr(pvt, csrow, channel)
844 * return the proper MTR register as determine by the csrow and desired channel
846 static int determine_mtr(struct i5400_pvt
*pvt
, int csrow
, int channel
)
851 /* There is one MTR for each slot pair of FB-DIMMs,
852 Each slot pair may be at branch 0 or branch 1.
856 if (n
>= NUM_MTRS_PER_BRANCH
) {
857 debugf0("ERROR: trying to access an invalid csrow: %d\n",
862 if (channel
< CHANNELS_PER_BRANCH
)
863 mtr
= pvt
->b0_mtr
[n
];
865 mtr
= pvt
->b1_mtr
[n
];
872 static void decode_mtr(int slot_row
, u16 mtr
)
876 ans
= MTR_DIMMS_PRESENT(mtr
);
878 debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row
, mtr
,
879 ans
? "Present" : "NOT Present");
883 debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr
));
885 debugf2("\t\tELECTRICAL THROTTLING is %s\n",
886 MTR_DIMMS_ETHROTTLE(mtr
) ? "enabled" : "disabled");
888 debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr
));
889 debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr
) ? "double" : "single");
890 debugf2("\t\tNUMROW: %s\n", numrow_toString
[MTR_DIMM_ROWS(mtr
)]);
891 debugf2("\t\tNUMCOL: %s\n", numcol_toString
[MTR_DIMM_COLS(mtr
)]);
894 static void handle_channel(struct i5400_pvt
*pvt
, int csrow
, int channel
,
895 struct i5400_dimm_info
*dinfo
)
901 mtr
= determine_mtr(pvt
, csrow
, channel
);
902 if (MTR_DIMMS_PRESENT(mtr
)) {
903 amb_present_reg
= determine_amb_present_reg(pvt
, channel
);
905 /* Determine if there is a DIMM present in this DIMM slot */
906 if (amb_present_reg
& (1 << csrow
)) {
907 /* Start with the number of bits for a Bank
909 addrBits
= MTR_DRAM_BANKS_ADDR_BITS(mtr
);
910 /* Add thenumber of ROW bits */
911 addrBits
+= MTR_DIMM_ROWS_ADDR_BITS(mtr
);
912 /* add the number of COLUMN bits */
913 addrBits
+= MTR_DIMM_COLS_ADDR_BITS(mtr
);
914 /* add the number of RANK bits */
915 addrBits
+= MTR_DIMM_RANK(mtr
);
917 addrBits
+= 6; /* add 64 bits per DIMM */
918 addrBits
-= 20; /* divide by 2^^20 */
919 addrBits
-= 3; /* 8 bits per bytes */
921 dinfo
->megabytes
= 1 << addrBits
;
927 * calculate_dimm_size
929 * also will output a DIMM matrix map, if debug is enabled, for viewing
930 * how the DIMMs are populated
932 static void calculate_dimm_size(struct i5400_pvt
*pvt
)
934 struct i5400_dimm_info
*dinfo
;
935 int csrow
, max_csrows
;
936 char *p
, *mem_buffer
;
940 /* ================= Generate some debug output ================= */
942 mem_buffer
= p
= kmalloc(space
, GFP_KERNEL
);
944 i5400_printk(KERN_ERR
, "MC: %s:%s() kmalloc() failed\n",
949 /* Scan all the actual CSROWS
950 * and calculate the information for each DIMM
951 * Start with the highest csrow first, to display it first
952 * and work toward the 0th csrow
954 max_csrows
= pvt
->maxdimmperch
;
955 for (csrow
= max_csrows
- 1; csrow
>= 0; csrow
--) {
957 /* on an odd csrow, first output a 'boundary' marker,
958 * then reset the message buffer */
960 n
= snprintf(p
, space
, "---------------------------"
961 "--------------------------------");
964 debugf2("%s\n", mem_buffer
);
968 n
= snprintf(p
, space
, "csrow %2d ", csrow
);
972 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
973 dinfo
= &pvt
->dimm_info
[csrow
][channel
];
974 handle_channel(pvt
, csrow
, channel
, dinfo
);
975 n
= snprintf(p
, space
, "%4d MB | ", dinfo
->megabytes
);
979 debugf2("%s\n", mem_buffer
);
984 /* Output the last bottom 'boundary' marker */
985 n
= snprintf(p
, space
, "---------------------------"
986 "--------------------------------");
989 debugf2("%s\n", mem_buffer
);
993 /* now output the 'channel' labels */
994 n
= snprintf(p
, space
, " ");
997 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
998 n
= snprintf(p
, space
, "channel %d | ", channel
);
1003 /* output the last message and free buffer */
1004 debugf2("%s\n", mem_buffer
);
1009 * i5400_get_mc_regs read in the necessary registers and
1012 * Fills in the private data members
1014 static void i5400_get_mc_regs(struct mem_ctl_info
*mci
)
1016 struct i5400_pvt
*pvt
;
1024 pvt
= mci
->pvt_info
;
1026 pci_read_config_dword(pvt
->system_address
, AMBASE
,
1027 (u32
*) &pvt
->ambase
);
1028 pci_read_config_dword(pvt
->system_address
, AMBASE
+ sizeof(u32
),
1029 ((u32
*) &pvt
->ambase
) + sizeof(u32
));
1031 maxdimmperch
= pvt
->maxdimmperch
;
1034 debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1035 (long unsigned int)pvt
->ambase
, pvt
->maxch
, pvt
->maxdimmperch
);
1037 /* Get the Branch Map regs */
1038 pci_read_config_word(pvt
->branchmap_werrors
, TOLM
, &pvt
->tolm
);
1040 debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt
->tolm
,
1043 actual_tolm
= (u32
) ((1000l * pvt
->tolm
) >> (30 - 28));
1044 debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1045 actual_tolm
/1000, actual_tolm
% 1000, pvt
->tolm
<< 28);
1047 pci_read_config_word(pvt
->branchmap_werrors
, MIR0
, &pvt
->mir0
);
1048 pci_read_config_word(pvt
->branchmap_werrors
, MIR1
, &pvt
->mir1
);
1050 /* Get the MIR[0-1] regs */
1051 limit
= (pvt
->mir0
>> 4) & 0x0fff;
1052 way0
= pvt
->mir0
& 0x1;
1053 way1
= pvt
->mir0
& 0x2;
1054 debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit
, way1
, way0
);
1055 limit
= (pvt
->mir1
>> 4) & 0xfff;
1056 way0
= pvt
->mir1
& 0x1;
1057 way1
= pvt
->mir1
& 0x2;
1058 debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit
, way1
, way0
);
1060 /* Get the set of MTR[0-3] regs by each branch */
1061 for (slot_row
= 0; slot_row
< NUM_MTRS_PER_BRANCH
; slot_row
++) {
1062 int where
= MTR0
+ (slot_row
* sizeof(u16
));
1064 /* Branch 0 set of MTR registers */
1065 pci_read_config_word(pvt
->branch_0
, where
,
1066 &pvt
->b0_mtr
[slot_row
]);
1068 debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row
, where
,
1069 pvt
->b0_mtr
[slot_row
]);
1071 if (pvt
->maxch
< CHANNELS_PER_BRANCH
) {
1072 pvt
->b1_mtr
[slot_row
] = 0;
1076 /* Branch 1 set of MTR registers */
1077 pci_read_config_word(pvt
->branch_1
, where
,
1078 &pvt
->b1_mtr
[slot_row
]);
1079 debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row
, where
,
1080 pvt
->b1_mtr
[slot_row
]);
1083 /* Read and dump branch 0's MTRs */
1084 debugf2("\nMemory Technology Registers:\n");
1085 debugf2(" Branch 0:\n");
1086 for (slot_row
= 0; slot_row
< NUM_MTRS_PER_BRANCH
; slot_row
++)
1087 decode_mtr(slot_row
, pvt
->b0_mtr
[slot_row
]);
1089 pci_read_config_word(pvt
->branch_0
, AMBPRESENT_0
,
1090 &pvt
->b0_ambpresent0
);
1091 debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt
->b0_ambpresent0
);
1092 pci_read_config_word(pvt
->branch_0
, AMBPRESENT_1
,
1093 &pvt
->b0_ambpresent1
);
1094 debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt
->b0_ambpresent1
);
1096 /* Only if we have 2 branchs (4 channels) */
1097 if (pvt
->maxch
< CHANNELS_PER_BRANCH
) {
1098 pvt
->b1_ambpresent0
= 0;
1099 pvt
->b1_ambpresent1
= 0;
1101 /* Read and dump branch 1's MTRs */
1102 debugf2(" Branch 1:\n");
1103 for (slot_row
= 0; slot_row
< NUM_MTRS_PER_BRANCH
; slot_row
++)
1104 decode_mtr(slot_row
, pvt
->b1_mtr
[slot_row
]);
1106 pci_read_config_word(pvt
->branch_1
, AMBPRESENT_0
,
1107 &pvt
->b1_ambpresent0
);
1108 debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1109 pvt
->b1_ambpresent0
);
1110 pci_read_config_word(pvt
->branch_1
, AMBPRESENT_1
,
1111 &pvt
->b1_ambpresent1
);
1112 debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1113 pvt
->b1_ambpresent1
);
1116 /* Go and determine the size of each DIMM and place in an
1118 calculate_dimm_size(pvt
);
1122 * i5400_init_csrows Initialize the 'csrows' table within
1123 * the mci control structure with the
1124 * addressing of memory.
1128 * 1 no actual memory found on this MC
1130 static int i5400_init_csrows(struct mem_ctl_info
*mci
)
1132 struct i5400_pvt
*pvt
;
1133 struct csrow_info
*p_csrow
;
1134 int empty
, channel_count
;
1141 pvt
= mci
->pvt_info
;
1143 channel_count
= pvt
->maxch
;
1144 max_csrows
= pvt
->maxdimmperch
;
1146 empty
= 1; /* Assume NO memory */
1148 for (csrow
= 0; csrow
< max_csrows
; csrow
++) {
1149 p_csrow
= &mci
->csrows
[csrow
];
1151 p_csrow
->csrow_idx
= csrow
;
1153 /* use branch 0 for the basis */
1154 mtr
= determine_mtr(pvt
, csrow
, 0);
1156 /* if no DIMMS on this row, continue */
1157 if (!MTR_DIMMS_PRESENT(mtr
))
1160 /* FAKE OUT VALUES, FIXME */
1161 p_csrow
->first_page
= 0 + csrow
* 20;
1162 p_csrow
->last_page
= 9 + csrow
* 20;
1163 p_csrow
->page_mask
= 0xFFF;
1168 for (channel
= 0; channel
< pvt
->maxch
; channel
++)
1169 csrow_megs
+= pvt
->dimm_info
[csrow
][channel
].megabytes
;
1171 p_csrow
->nr_pages
= csrow_megs
<< 8;
1173 /* Assume DDR2 for now */
1174 p_csrow
->mtype
= MEM_FB_DDR2
;
1176 /* ask what device type on this row */
1177 if (MTR_DRAM_WIDTH(mtr
))
1178 p_csrow
->dtype
= DEV_X8
;
1180 p_csrow
->dtype
= DEV_X4
;
1182 p_csrow
->edac_mode
= EDAC_S8ECD8ED
;
1191 * i5400_enable_error_reporting
1192 * Turn on the memory reporting features of the hardware
1194 static void i5400_enable_error_reporting(struct mem_ctl_info
*mci
)
1196 struct i5400_pvt
*pvt
;
1199 pvt
= mci
->pvt_info
;
1201 /* Read the FBD Error Mask Register */
1202 pci_read_config_dword(pvt
->branchmap_werrors
, EMASK_FBD
,
1205 /* Enable with a '0' */
1206 fbd_error_mask
&= ~(ENABLE_EMASK_ALL
);
1208 pci_write_config_dword(pvt
->branchmap_werrors
, EMASK_FBD
,
1213 * i5400_probe1 Probe for ONE instance of device to see if it is
1216 * 0 for FOUND a device
1217 * < 0 for error code
1219 static int i5400_probe1(struct pci_dev
*pdev
, int dev_idx
)
1221 struct mem_ctl_info
*mci
;
1222 struct i5400_pvt
*pvt
;
1224 int num_dimms_per_channel
;
1227 if (dev_idx
>= ARRAY_SIZE(i5400_devs
))
1230 debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1233 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1235 /* We only are looking for func 0 of the set */
1236 if (PCI_FUNC(pdev
->devfn
) != 0)
1239 /* As we don't have a motherboard identification routine to determine
1240 * actual number of slots/dimms per channel, we thus utilize the
1241 * resource as specified by the chipset. Thus, we might have
1242 * have more DIMMs per channel than actually on the mobo, but this
1243 * allows the driver to support upto the chipset max, without
1244 * some fancy mobo determination.
1246 num_dimms_per_channel
= MAX_DIMMS_PER_CHANNEL
;
1247 num_channels
= MAX_CHANNELS
;
1248 num_csrows
= num_dimms_per_channel
;
1250 debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
1251 __func__
, num_channels
, num_dimms_per_channel
, num_csrows
);
1253 /* allocate a new MC control structure */
1254 mci
= edac_mc_alloc(sizeof(*pvt
), num_csrows
, num_channels
, 0);
1259 debugf0("MC: %s: %s(): mci = %p\n", __FILE__
, __func__
, mci
);
1261 mci
->dev
= &pdev
->dev
; /* record ptr to the generic device */
1263 pvt
= mci
->pvt_info
;
1264 pvt
->system_address
= pdev
; /* Record this device in our private */
1265 pvt
->maxch
= num_channels
;
1266 pvt
->maxdimmperch
= num_dimms_per_channel
;
1268 /* 'get' the pci devices we want to reserve for our use */
1269 if (i5400_get_devices(mci
, dev_idx
))
1272 /* Time to get serious */
1273 i5400_get_mc_regs(mci
); /* retrieve the hardware registers */
1276 mci
->mtype_cap
= MEM_FLAG_FB_DDR2
;
1277 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
1278 mci
->edac_cap
= EDAC_FLAG_NONE
;
1279 mci
->mod_name
= "i5400_edac.c";
1280 mci
->mod_ver
= I5400_REVISION
;
1281 mci
->ctl_name
= i5400_devs
[dev_idx
].ctl_name
;
1282 mci
->dev_name
= pci_name(pdev
);
1283 mci
->ctl_page_to_phys
= NULL
;
1285 /* Set the function pointer to an actual operation function */
1286 mci
->edac_check
= i5400_check_error
;
1288 /* initialize the MC control structure 'csrows' table
1289 * with the mapping and control information */
1290 if (i5400_init_csrows(mci
)) {
1291 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1292 " because i5400_init_csrows() returned nonzero "
1294 mci
->edac_cap
= EDAC_FLAG_NONE
; /* no csrows found */
1296 debugf1("MC: Enable error reporting now\n");
1297 i5400_enable_error_reporting(mci
);
1300 /* add this new MC control structure to EDAC's list of MCs */
1301 if (edac_mc_add_mc(mci
)) {
1302 debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n",
1303 __FILE__
, __func__
);
1304 /* FIXME: perhaps some code should go here that disables error
1305 * reporting if we just enabled it
1310 i5400_clear_error(mci
);
1312 /* allocating generic PCI control info */
1313 i5400_pci
= edac_pci_create_generic_ctl(&pdev
->dev
, EDAC_MOD_STR
);
1316 "%s(): Unable to create PCI control\n",
1319 "%s(): PCI error report via EDAC not setup\n",
1325 /* Error exit unwinding stack */
1328 i5400_put_devices(mci
);
1336 * i5400_init_one constructor for one instance of device
1342 static int __devinit
i5400_init_one(struct pci_dev
*pdev
,
1343 const struct pci_device_id
*id
)
1347 debugf0("MC: %s: %s()\n", __FILE__
, __func__
);
1349 /* wake up device */
1350 rc
= pci_enable_device(pdev
);
1354 /* now probe and enable the device */
1355 return i5400_probe1(pdev
, id
->driver_data
);
1359 * i5400_remove_one destructor for one instance of device
1362 static void __devexit
i5400_remove_one(struct pci_dev
*pdev
)
1364 struct mem_ctl_info
*mci
;
1366 debugf0("%s: %s()\n", __FILE__
, __func__
);
1369 edac_pci_release_generic_ctl(i5400_pci
);
1371 mci
= edac_mc_del_mc(&pdev
->dev
);
1375 /* retrieve references to resources, and free those resources */
1376 i5400_put_devices(mci
);
1382 * pci_device_id table for which devices we are looking for
1384 * The "E500P" device is the first device supported.
1386 static const struct pci_device_id i5400_pci_tbl
[] __devinitdata
= {
1387 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_5400_ERR
)},
1388 {0,} /* 0 terminated list. */
1391 MODULE_DEVICE_TABLE(pci
, i5400_pci_tbl
);
1394 * i5400_driver pci_driver structure for this module
1397 static struct pci_driver i5400_driver
= {
1398 .name
= "i5400_edac",
1399 .probe
= i5400_init_one
,
1400 .remove
= __devexit_p(i5400_remove_one
),
1401 .id_table
= i5400_pci_tbl
,
1405 * i5400_init Module entry function
1406 * Try to initialize this module for its devices
1408 static int __init
i5400_init(void)
1412 debugf2("MC: %s: %s()\n", __FILE__
, __func__
);
1414 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1417 pci_rc
= pci_register_driver(&i5400_driver
);
1419 return (pci_rc
< 0) ? pci_rc
: 0;
1423 * i5400_exit() Module exit function
1424 * Unregister the driver
1426 static void __exit
i5400_exit(void)
1428 debugf2("MC: %s: %s()\n", __FILE__
, __func__
);
1429 pci_unregister_driver(&i5400_driver
);
1432 module_init(i5400_init
);
1433 module_exit(i5400_exit
);
1435 MODULE_LICENSE("GPL");
1436 MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1437 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1438 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1439 MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1442 module_param(edac_op_state
, int, 0444);
1443 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");