2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 * (C) SGI 2006, Christoph Lameter
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
12 #include <linux/gfp.h>
13 #include <linux/types.h>
14 #include <linux/workqueue.h>
18 * Flags to pass to kmem_cache_create().
19 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
21 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
22 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
23 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
24 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
25 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
26 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
27 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
29 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
31 * This delays freeing the SLAB page by a grace period, it does _NOT_
32 * delay object freeing. This means that if you do kmem_cache_free()
33 * that memory location is free to be reused at any time. Thus it may
34 * be possible to see another object there in the same RCU grace period.
36 * This feature only ensures the memory location backing the object
37 * stays valid, the trick to using this is relying on an independent
38 * object validation pass. Something like:
42 * obj = lockless_lookup(key);
44 * if (!try_get_ref(obj)) // might fail for free objects
47 * if (obj->key != key) { // not the object we expected
54 * See also the comment on struct slab_rcu in mm/slab.c.
56 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
57 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
58 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
60 /* Flag to prevent checks on free */
61 #ifdef CONFIG_DEBUG_OBJECTS
62 # define SLAB_DEBUG_OBJECTS 0x00400000UL
64 # define SLAB_DEBUG_OBJECTS 0x00000000UL
67 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
69 /* Don't track use of uninitialized memory */
70 #ifdef CONFIG_KMEMCHECK
71 # define SLAB_NOTRACK 0x01000000UL
73 # define SLAB_NOTRACK 0x00000000UL
75 #ifdef CONFIG_FAILSLAB
76 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
78 # define SLAB_FAILSLAB 0x00000000UL
81 /* The following flags affect the page allocator grouping pages by mobility */
82 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
83 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
85 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
87 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
89 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
90 * Both make kfree a no-op.
92 #define ZERO_SIZE_PTR ((void *)16)
94 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
95 (unsigned long)ZERO_SIZE_PTR)
100 * struct kmem_cache related prototypes
102 void __init
kmem_cache_init(void);
103 int slab_is_available(void);
105 struct kmem_cache
*kmem_cache_create(const char *, size_t, size_t,
109 kmem_cache_create_memcg(struct mem_cgroup
*, const char *, size_t, size_t,
110 unsigned long, void (*)(void *), struct kmem_cache
*);
111 void kmem_cache_destroy(struct kmem_cache
*);
112 int kmem_cache_shrink(struct kmem_cache
*);
113 void kmem_cache_free(struct kmem_cache
*, void *);
116 * Please use this macro to create slab caches. Simply specify the
117 * name of the structure and maybe some flags that are listed above.
119 * The alignment of the struct determines object alignment. If you
120 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
121 * then the objects will be properly aligned in SMP configurations.
123 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
124 sizeof(struct __struct), __alignof__(struct __struct),\
128 * Common kmalloc functions provided by all allocators
130 void * __must_check
__krealloc(const void *, size_t, gfp_t
);
131 void * __must_check
krealloc(const void *, size_t, gfp_t
);
132 void kfree(const void *);
133 void kzfree(const void *);
134 size_t ksize(const void *);
137 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
138 * alignment larger than the alignment of a 64-bit integer.
139 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
141 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
142 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
143 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
144 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
146 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151 * Common fields provided in kmem_cache by all slab allocators
152 * This struct is either used directly by the allocator (SLOB)
153 * or the allocator must include definitions for all fields
154 * provided in kmem_cache_common in their definition of kmem_cache.
156 * Once we can do anonymous structs (C11 standard) we could put a
157 * anonymous struct definition in these allocators so that the
158 * separate allocations in the kmem_cache structure of SLAB and
159 * SLUB is no longer needed.
162 unsigned int object_size
;/* The original size of the object */
163 unsigned int size
; /* The aligned/padded/added on size */
164 unsigned int align
; /* Alignment as calculated */
165 unsigned long flags
; /* Active flags on the slab */
166 const char *name
; /* Slab name for sysfs */
167 int refcount
; /* Use counter */
168 void (*ctor
)(void *); /* Called on object slot creation */
169 struct list_head list
; /* List of all slab caches on the system */
172 #define KMALLOC_MAX_SIZE (1UL << 30)
174 #include <linux/slob_def.h>
176 #else /* CONFIG_SLOB */
179 * Kmalloc array related definitions
184 * The largest kmalloc size supported by the SLAB allocators is
185 * 32 megabyte (2^25) or the maximum allocatable page order if that is
188 * WARNING: Its not easy to increase this value since the allocators have
189 * to do various tricks to work around compiler limitations in order to
190 * ensure proper constant folding.
192 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
193 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
194 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
195 #ifndef KMALLOC_SHIFT_LOW
196 #define KMALLOC_SHIFT_LOW 5
200 * SLUB allocates up to order 2 pages directly and otherwise
201 * passes the request to the page allocator.
203 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
204 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
205 #ifndef KMALLOC_SHIFT_LOW
206 #define KMALLOC_SHIFT_LOW 3
210 /* Maximum allocatable size */
211 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
212 /* Maximum size for which we actually use a slab cache */
213 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
214 /* Maximum order allocatable via the slab allocagtor */
215 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
220 #ifndef KMALLOC_MIN_SIZE
221 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
224 extern struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
225 #ifdef CONFIG_ZONE_DMA
226 extern struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
230 * Figure out which kmalloc slab an allocation of a certain size
234 * 2 = 120 .. 192 bytes
235 * n = 2^(n-1) .. 2^n -1
237 static __always_inline
int kmalloc_index(size_t size
)
242 if (size
<= KMALLOC_MIN_SIZE
)
243 return KMALLOC_SHIFT_LOW
;
245 if (KMALLOC_MIN_SIZE
<= 32 && size
> 64 && size
<= 96)
247 if (KMALLOC_MIN_SIZE
<= 64 && size
> 128 && size
<= 192)
249 if (size
<= 8) return 3;
250 if (size
<= 16) return 4;
251 if (size
<= 32) return 5;
252 if (size
<= 64) return 6;
253 if (size
<= 128) return 7;
254 if (size
<= 256) return 8;
255 if (size
<= 512) return 9;
256 if (size
<= 1024) return 10;
257 if (size
<= 2 * 1024) return 11;
258 if (size
<= 4 * 1024) return 12;
259 if (size
<= 8 * 1024) return 13;
260 if (size
<= 16 * 1024) return 14;
261 if (size
<= 32 * 1024) return 15;
262 if (size
<= 64 * 1024) return 16;
263 if (size
<= 128 * 1024) return 17;
264 if (size
<= 256 * 1024) return 18;
265 if (size
<= 512 * 1024) return 19;
266 if (size
<= 1024 * 1024) return 20;
267 if (size
<= 2 * 1024 * 1024) return 21;
268 if (size
<= 4 * 1024 * 1024) return 22;
269 if (size
<= 8 * 1024 * 1024) return 23;
270 if (size
<= 16 * 1024 * 1024) return 24;
271 if (size
<= 32 * 1024 * 1024) return 25;
272 if (size
<= 64 * 1024 * 1024) return 26;
275 /* Will never be reached. Needed because the compiler may complain */
280 #include <linux/slab_def.h>
281 #elif defined(CONFIG_SLUB)
282 #include <linux/slub_def.h>
284 #error "Unknown slab allocator"
288 * Determine size used for the nth kmalloc cache.
289 * return size or 0 if a kmalloc cache for that
290 * size does not exist
292 static __always_inline
int kmalloc_size(int n
)
297 if (n
== 1 && KMALLOC_MIN_SIZE
<= 32)
300 if (n
== 2 && KMALLOC_MIN_SIZE
<= 64)
305 #endif /* !CONFIG_SLOB */
308 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
309 * Intended for arches that get misalignment faults even for 64 bit integer
312 #ifndef ARCH_SLAB_MINALIGN
313 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
316 * This is the main placeholder for memcg-related information in kmem caches.
317 * struct kmem_cache will hold a pointer to it, so the memory cost while
318 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
319 * would otherwise be if that would be bundled in kmem_cache: we'll need an
320 * extra pointer chase. But the trade off clearly lays in favor of not
321 * penalizing non-users.
323 * Both the root cache and the child caches will have it. For the root cache,
324 * this will hold a dynamically allocated array large enough to hold
325 * information about the currently limited memcgs in the system.
327 * Child caches will hold extra metadata needed for its operation. Fields are:
329 * @memcg: pointer to the memcg this cache belongs to
330 * @list: list_head for the list of all caches in this memcg
331 * @root_cache: pointer to the global, root cache, this cache was derived from
332 * @dead: set to true after the memcg dies; the cache may still be around.
333 * @nr_pages: number of pages that belongs to this cache.
334 * @destroy: worker to be called whenever we are ready, or believe we may be
335 * ready, to destroy this cache.
337 struct memcg_cache_params
{
340 struct kmem_cache
*memcg_caches
[0];
342 struct mem_cgroup
*memcg
;
343 struct list_head list
;
344 struct kmem_cache
*root_cache
;
347 struct work_struct destroy
;
352 int memcg_update_all_caches(int num_memcgs
);
355 int cache_show(struct kmem_cache
*s
, struct seq_file
*m
);
356 void print_slabinfo_header(struct seq_file
*m
);
359 * kmalloc_array - allocate memory for an array.
360 * @n: number of elements.
361 * @size: element size.
362 * @flags: the type of memory to allocate.
364 * The @flags argument may be one of:
366 * %GFP_USER - Allocate memory on behalf of user. May sleep.
368 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
370 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
371 * For example, use this inside interrupt handlers.
373 * %GFP_HIGHUSER - Allocate pages from high memory.
375 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
377 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
379 * %GFP_NOWAIT - Allocation will not sleep.
381 * %GFP_THISNODE - Allocate node-local memory only.
383 * %GFP_DMA - Allocation suitable for DMA.
384 * Should only be used for kmalloc() caches. Otherwise, use a
385 * slab created with SLAB_DMA.
387 * Also it is possible to set different flags by OR'ing
388 * in one or more of the following additional @flags:
390 * %__GFP_COLD - Request cache-cold pages instead of
391 * trying to return cache-warm pages.
393 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
395 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
396 * (think twice before using).
398 * %__GFP_NORETRY - If memory is not immediately available,
399 * then give up at once.
401 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
403 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
405 * There are other flags available as well, but these are not intended
406 * for general use, and so are not documented here. For a full list of
407 * potential flags, always refer to linux/gfp.h.
409 static inline void *kmalloc_array(size_t n
, size_t size
, gfp_t flags
)
411 if (size
!= 0 && n
> SIZE_MAX
/ size
)
413 return __kmalloc(n
* size
, flags
);
417 * kcalloc - allocate memory for an array. The memory is set to zero.
418 * @n: number of elements.
419 * @size: element size.
420 * @flags: the type of memory to allocate (see kmalloc).
422 static inline void *kcalloc(size_t n
, size_t size
, gfp_t flags
)
424 return kmalloc_array(n
, size
, flags
| __GFP_ZERO
);
427 #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
429 * kmalloc_node - allocate memory from a specific node
430 * @size: how many bytes of memory are required.
431 * @flags: the type of memory to allocate (see kcalloc).
432 * @node: node to allocate from.
434 * kmalloc() for non-local nodes, used to allocate from a specific node
435 * if available. Equivalent to kmalloc() in the non-NUMA single-node
438 static inline void *kmalloc_node(size_t size
, gfp_t flags
, int node
)
440 return kmalloc(size
, flags
);
443 static inline void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
445 return __kmalloc(size
, flags
);
448 void *kmem_cache_alloc(struct kmem_cache
*, gfp_t
);
450 static inline void *kmem_cache_alloc_node(struct kmem_cache
*cachep
,
451 gfp_t flags
, int node
)
453 return kmem_cache_alloc(cachep
, flags
);
455 #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
458 * kmalloc_track_caller is a special version of kmalloc that records the
459 * calling function of the routine calling it for slab leak tracking instead
460 * of just the calling function (confusing, eh?).
461 * It's useful when the call to kmalloc comes from a widely-used standard
462 * allocator where we care about the real place the memory allocation
463 * request comes from.
465 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
466 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
467 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
468 extern void *__kmalloc_track_caller(size_t, gfp_t
, unsigned long);
469 #define kmalloc_track_caller(size, flags) \
470 __kmalloc_track_caller(size, flags, _RET_IP_)
472 #define kmalloc_track_caller(size, flags) \
473 __kmalloc(size, flags)
474 #endif /* DEBUG_SLAB */
478 * kmalloc_node_track_caller is a special version of kmalloc_node that
479 * records the calling function of the routine calling it for slab leak
480 * tracking instead of just the calling function (confusing, eh?).
481 * It's useful when the call to kmalloc_node comes from a widely-used
482 * standard allocator where we care about the real place the memory
483 * allocation request comes from.
485 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
486 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
487 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
488 extern void *__kmalloc_node_track_caller(size_t, gfp_t
, int, unsigned long);
489 #define kmalloc_node_track_caller(size, flags, node) \
490 __kmalloc_node_track_caller(size, flags, node, \
493 #define kmalloc_node_track_caller(size, flags, node) \
494 __kmalloc_node(size, flags, node)
497 #else /* CONFIG_NUMA */
499 #define kmalloc_node_track_caller(size, flags, node) \
500 kmalloc_track_caller(size, flags)
502 #endif /* CONFIG_NUMA */
507 static inline void *kmem_cache_zalloc(struct kmem_cache
*k
, gfp_t flags
)
509 return kmem_cache_alloc(k
, flags
| __GFP_ZERO
);
513 * kzalloc - allocate memory. The memory is set to zero.
514 * @size: how many bytes of memory are required.
515 * @flags: the type of memory to allocate (see kmalloc).
517 static inline void *kzalloc(size_t size
, gfp_t flags
)
519 return kmalloc(size
, flags
| __GFP_ZERO
);
523 * kzalloc_node - allocate zeroed memory from a particular memory node.
524 * @size: how many bytes of memory are required.
525 * @flags: the type of memory to allocate (see kmalloc).
526 * @node: memory node from which to allocate
528 static inline void *kzalloc_node(size_t size
, gfp_t flags
, int node
)
530 return kmalloc_node(size
, flags
| __GFP_ZERO
, node
);
534 * Determine the size of a slab object
536 static inline unsigned int kmem_cache_size(struct kmem_cache
*s
)
538 return s
->object_size
;
541 void __init
kmem_cache_init_late(void);
543 #endif /* _LINUX_SLAB_H */