Merge branch 'qxl-next' of git://people.freedesktop.org/~airlied/linux into drm-next
[linux-2.6.git] / kernel / mutex.c
blobe581ada5faf42b7cad697a6a2a9522695f0210b1
1 /*
2 * kernel/mutex.c
4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
18 * Also see Documentation/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/sched.h>
22 #include <linux/sched/rt.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/debug_locks.h>
29 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
30 * which forces all calls into the slowpath:
32 #ifdef CONFIG_DEBUG_MUTEXES
33 # include "mutex-debug.h"
34 # include <asm-generic/mutex-null.h>
35 #else
36 # include "mutex.h"
37 # include <asm/mutex.h>
38 #endif
41 * A negative mutex count indicates that waiters are sleeping waiting for the
42 * mutex.
44 #define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
46 void
47 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
49 atomic_set(&lock->count, 1);
50 spin_lock_init(&lock->wait_lock);
51 INIT_LIST_HEAD(&lock->wait_list);
52 mutex_clear_owner(lock);
53 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
54 lock->spin_mlock = NULL;
55 #endif
57 debug_mutex_init(lock, name, key);
60 EXPORT_SYMBOL(__mutex_init);
62 #ifndef CONFIG_DEBUG_LOCK_ALLOC
64 * We split the mutex lock/unlock logic into separate fastpath and
65 * slowpath functions, to reduce the register pressure on the fastpath.
66 * We also put the fastpath first in the kernel image, to make sure the
67 * branch is predicted by the CPU as default-untaken.
69 static __used noinline void __sched
70 __mutex_lock_slowpath(atomic_t *lock_count);
72 /**
73 * mutex_lock - acquire the mutex
74 * @lock: the mutex to be acquired
76 * Lock the mutex exclusively for this task. If the mutex is not
77 * available right now, it will sleep until it can get it.
79 * The mutex must later on be released by the same task that
80 * acquired it. Recursive locking is not allowed. The task
81 * may not exit without first unlocking the mutex. Also, kernel
82 * memory where the mutex resides mutex must not be freed with
83 * the mutex still locked. The mutex must first be initialized
84 * (or statically defined) before it can be locked. memset()-ing
85 * the mutex to 0 is not allowed.
87 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
88 * checks that will enforce the restrictions and will also do
89 * deadlock debugging. )
91 * This function is similar to (but not equivalent to) down().
93 void __sched mutex_lock(struct mutex *lock)
95 might_sleep();
97 * The locking fastpath is the 1->0 transition from
98 * 'unlocked' into 'locked' state.
100 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
101 mutex_set_owner(lock);
104 EXPORT_SYMBOL(mutex_lock);
105 #endif
107 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
109 * In order to avoid a stampede of mutex spinners from acquiring the mutex
110 * more or less simultaneously, the spinners need to acquire a MCS lock
111 * first before spinning on the owner field.
113 * We don't inline mspin_lock() so that perf can correctly account for the
114 * time spent in this lock function.
116 struct mspin_node {
117 struct mspin_node *next ;
118 int locked; /* 1 if lock acquired */
120 #define MLOCK(mutex) ((struct mspin_node **)&((mutex)->spin_mlock))
122 static noinline
123 void mspin_lock(struct mspin_node **lock, struct mspin_node *node)
125 struct mspin_node *prev;
127 /* Init node */
128 node->locked = 0;
129 node->next = NULL;
131 prev = xchg(lock, node);
132 if (likely(prev == NULL)) {
133 /* Lock acquired */
134 node->locked = 1;
135 return;
137 ACCESS_ONCE(prev->next) = node;
138 smp_wmb();
139 /* Wait until the lock holder passes the lock down */
140 while (!ACCESS_ONCE(node->locked))
141 arch_mutex_cpu_relax();
144 static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node)
146 struct mspin_node *next = ACCESS_ONCE(node->next);
148 if (likely(!next)) {
150 * Release the lock by setting it to NULL
152 if (cmpxchg(lock, node, NULL) == node)
153 return;
154 /* Wait until the next pointer is set */
155 while (!(next = ACCESS_ONCE(node->next)))
156 arch_mutex_cpu_relax();
158 ACCESS_ONCE(next->locked) = 1;
159 smp_wmb();
163 * Mutex spinning code migrated from kernel/sched/core.c
166 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
168 if (lock->owner != owner)
169 return false;
172 * Ensure we emit the owner->on_cpu, dereference _after_ checking
173 * lock->owner still matches owner, if that fails, owner might
174 * point to free()d memory, if it still matches, the rcu_read_lock()
175 * ensures the memory stays valid.
177 barrier();
179 return owner->on_cpu;
183 * Look out! "owner" is an entirely speculative pointer
184 * access and not reliable.
186 static noinline
187 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
189 rcu_read_lock();
190 while (owner_running(lock, owner)) {
191 if (need_resched())
192 break;
194 arch_mutex_cpu_relax();
196 rcu_read_unlock();
199 * We break out the loop above on need_resched() and when the
200 * owner changed, which is a sign for heavy contention. Return
201 * success only when lock->owner is NULL.
203 return lock->owner == NULL;
207 * Initial check for entering the mutex spinning loop
209 static inline int mutex_can_spin_on_owner(struct mutex *lock)
211 int retval = 1;
213 rcu_read_lock();
214 if (lock->owner)
215 retval = lock->owner->on_cpu;
216 rcu_read_unlock();
218 * if lock->owner is not set, the mutex owner may have just acquired
219 * it and not set the owner yet or the mutex has been released.
221 return retval;
223 #endif
225 static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
228 * mutex_unlock - release the mutex
229 * @lock: the mutex to be released
231 * Unlock a mutex that has been locked by this task previously.
233 * This function must not be used in interrupt context. Unlocking
234 * of a not locked mutex is not allowed.
236 * This function is similar to (but not equivalent to) up().
238 void __sched mutex_unlock(struct mutex *lock)
241 * The unlocking fastpath is the 0->1 transition from 'locked'
242 * into 'unlocked' state:
244 #ifndef CONFIG_DEBUG_MUTEXES
246 * When debugging is enabled we must not clear the owner before time,
247 * the slow path will always be taken, and that clears the owner field
248 * after verifying that it was indeed current.
250 mutex_clear_owner(lock);
251 #endif
252 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
255 EXPORT_SYMBOL(mutex_unlock);
258 * ww_mutex_unlock - release the w/w mutex
259 * @lock: the mutex to be released
261 * Unlock a mutex that has been locked by this task previously with any of the
262 * ww_mutex_lock* functions (with or without an acquire context). It is
263 * forbidden to release the locks after releasing the acquire context.
265 * This function must not be used in interrupt context. Unlocking
266 * of a unlocked mutex is not allowed.
268 void __sched ww_mutex_unlock(struct ww_mutex *lock)
271 * The unlocking fastpath is the 0->1 transition from 'locked'
272 * into 'unlocked' state:
274 if (lock->ctx) {
275 #ifdef CONFIG_DEBUG_MUTEXES
276 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
277 #endif
278 if (lock->ctx->acquired > 0)
279 lock->ctx->acquired--;
280 lock->ctx = NULL;
283 #ifndef CONFIG_DEBUG_MUTEXES
285 * When debugging is enabled we must not clear the owner before time,
286 * the slow path will always be taken, and that clears the owner field
287 * after verifying that it was indeed current.
289 mutex_clear_owner(&lock->base);
290 #endif
291 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
293 EXPORT_SYMBOL(ww_mutex_unlock);
295 static inline int __sched
296 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
298 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
299 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
301 if (!hold_ctx)
302 return 0;
304 if (unlikely(ctx == hold_ctx))
305 return -EALREADY;
307 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
308 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
309 #ifdef CONFIG_DEBUG_MUTEXES
310 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
311 ctx->contending_lock = ww;
312 #endif
313 return -EDEADLK;
316 return 0;
319 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
320 struct ww_acquire_ctx *ww_ctx)
322 #ifdef CONFIG_DEBUG_MUTEXES
324 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
325 * but released with a normal mutex_unlock in this call.
327 * This should never happen, always use ww_mutex_unlock.
329 DEBUG_LOCKS_WARN_ON(ww->ctx);
332 * Not quite done after calling ww_acquire_done() ?
334 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
336 if (ww_ctx->contending_lock) {
338 * After -EDEADLK you tried to
339 * acquire a different ww_mutex? Bad!
341 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
344 * You called ww_mutex_lock after receiving -EDEADLK,
345 * but 'forgot' to unlock everything else first?
347 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
348 ww_ctx->contending_lock = NULL;
352 * Naughty, using a different class will lead to undefined behavior!
354 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
355 #endif
356 ww_ctx->acquired++;
360 * after acquiring lock with fastpath or when we lost out in contested
361 * slowpath, set ctx and wake up any waiters so they can recheck.
363 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
364 * as the fastpath and opportunistic spinning are disabled in that case.
366 static __always_inline void
367 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
368 struct ww_acquire_ctx *ctx)
370 unsigned long flags;
371 struct mutex_waiter *cur;
373 ww_mutex_lock_acquired(lock, ctx);
375 lock->ctx = ctx;
378 * The lock->ctx update should be visible on all cores before
379 * the atomic read is done, otherwise contended waiters might be
380 * missed. The contended waiters will either see ww_ctx == NULL
381 * and keep spinning, or it will acquire wait_lock, add itself
382 * to waiter list and sleep.
384 smp_mb(); /* ^^^ */
387 * Check if lock is contended, if not there is nobody to wake up
389 if (likely(atomic_read(&lock->base.count) == 0))
390 return;
393 * Uh oh, we raced in fastpath, wake up everyone in this case,
394 * so they can see the new lock->ctx.
396 spin_lock_mutex(&lock->base.wait_lock, flags);
397 list_for_each_entry(cur, &lock->base.wait_list, list) {
398 debug_mutex_wake_waiter(&lock->base, cur);
399 wake_up_process(cur->task);
401 spin_unlock_mutex(&lock->base.wait_lock, flags);
405 * Lock a mutex (possibly interruptible), slowpath:
407 static __always_inline int __sched
408 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
409 struct lockdep_map *nest_lock, unsigned long ip,
410 struct ww_acquire_ctx *ww_ctx)
412 struct task_struct *task = current;
413 struct mutex_waiter waiter;
414 unsigned long flags;
415 int ret;
417 preempt_disable();
418 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
420 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
422 * Optimistic spinning.
424 * We try to spin for acquisition when we find that there are no
425 * pending waiters and the lock owner is currently running on a
426 * (different) CPU.
428 * The rationale is that if the lock owner is running, it is likely to
429 * release the lock soon.
431 * Since this needs the lock owner, and this mutex implementation
432 * doesn't track the owner atomically in the lock field, we need to
433 * track it non-atomically.
435 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
436 * to serialize everything.
438 * The mutex spinners are queued up using MCS lock so that only one
439 * spinner can compete for the mutex. However, if mutex spinning isn't
440 * going to happen, there is no point in going through the lock/unlock
441 * overhead.
443 if (!mutex_can_spin_on_owner(lock))
444 goto slowpath;
446 for (;;) {
447 struct task_struct *owner;
448 struct mspin_node node;
450 if (!__builtin_constant_p(ww_ctx == NULL) && ww_ctx->acquired > 0) {
451 struct ww_mutex *ww;
453 ww = container_of(lock, struct ww_mutex, base);
455 * If ww->ctx is set the contents are undefined, only
456 * by acquiring wait_lock there is a guarantee that
457 * they are not invalid when reading.
459 * As such, when deadlock detection needs to be
460 * performed the optimistic spinning cannot be done.
462 if (ACCESS_ONCE(ww->ctx))
463 break;
467 * If there's an owner, wait for it to either
468 * release the lock or go to sleep.
470 mspin_lock(MLOCK(lock), &node);
471 owner = ACCESS_ONCE(lock->owner);
472 if (owner && !mutex_spin_on_owner(lock, owner)) {
473 mspin_unlock(MLOCK(lock), &node);
474 break;
477 if ((atomic_read(&lock->count) == 1) &&
478 (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
479 lock_acquired(&lock->dep_map, ip);
480 if (!__builtin_constant_p(ww_ctx == NULL)) {
481 struct ww_mutex *ww;
482 ww = container_of(lock, struct ww_mutex, base);
484 ww_mutex_set_context_fastpath(ww, ww_ctx);
487 mutex_set_owner(lock);
488 mspin_unlock(MLOCK(lock), &node);
489 preempt_enable();
490 return 0;
492 mspin_unlock(MLOCK(lock), &node);
495 * When there's no owner, we might have preempted between the
496 * owner acquiring the lock and setting the owner field. If
497 * we're an RT task that will live-lock because we won't let
498 * the owner complete.
500 if (!owner && (need_resched() || rt_task(task)))
501 break;
504 * The cpu_relax() call is a compiler barrier which forces
505 * everything in this loop to be re-loaded. We don't need
506 * memory barriers as we'll eventually observe the right
507 * values at the cost of a few extra spins.
509 arch_mutex_cpu_relax();
511 slowpath:
512 #endif
513 spin_lock_mutex(&lock->wait_lock, flags);
515 debug_mutex_lock_common(lock, &waiter);
516 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
518 /* add waiting tasks to the end of the waitqueue (FIFO): */
519 list_add_tail(&waiter.list, &lock->wait_list);
520 waiter.task = task;
522 if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, -1) == 1))
523 goto done;
525 lock_contended(&lock->dep_map, ip);
527 for (;;) {
529 * Lets try to take the lock again - this is needed even if
530 * we get here for the first time (shortly after failing to
531 * acquire the lock), to make sure that we get a wakeup once
532 * it's unlocked. Later on, if we sleep, this is the
533 * operation that gives us the lock. We xchg it to -1, so
534 * that when we release the lock, we properly wake up the
535 * other waiters:
537 if (MUTEX_SHOW_NO_WAITER(lock) &&
538 (atomic_xchg(&lock->count, -1) == 1))
539 break;
542 * got a signal? (This code gets eliminated in the
543 * TASK_UNINTERRUPTIBLE case.)
545 if (unlikely(signal_pending_state(state, task))) {
546 ret = -EINTR;
547 goto err;
550 if (!__builtin_constant_p(ww_ctx == NULL) && ww_ctx->acquired > 0) {
551 ret = __mutex_lock_check_stamp(lock, ww_ctx);
552 if (ret)
553 goto err;
556 __set_task_state(task, state);
558 /* didn't get the lock, go to sleep: */
559 spin_unlock_mutex(&lock->wait_lock, flags);
560 schedule_preempt_disabled();
561 spin_lock_mutex(&lock->wait_lock, flags);
564 done:
565 lock_acquired(&lock->dep_map, ip);
566 /* got the lock - rejoice! */
567 mutex_remove_waiter(lock, &waiter, current_thread_info());
568 mutex_set_owner(lock);
570 if (!__builtin_constant_p(ww_ctx == NULL)) {
571 struct ww_mutex *ww = container_of(lock,
572 struct ww_mutex,
573 base);
574 struct mutex_waiter *cur;
577 * This branch gets optimized out for the common case,
578 * and is only important for ww_mutex_lock.
581 ww_mutex_lock_acquired(ww, ww_ctx);
582 ww->ctx = ww_ctx;
585 * Give any possible sleeping processes the chance to wake up,
586 * so they can recheck if they have to back off.
588 list_for_each_entry(cur, &lock->wait_list, list) {
589 debug_mutex_wake_waiter(lock, cur);
590 wake_up_process(cur->task);
594 /* set it to 0 if there are no waiters left: */
595 if (likely(list_empty(&lock->wait_list)))
596 atomic_set(&lock->count, 0);
598 spin_unlock_mutex(&lock->wait_lock, flags);
600 debug_mutex_free_waiter(&waiter);
601 preempt_enable();
603 return 0;
605 err:
606 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
607 spin_unlock_mutex(&lock->wait_lock, flags);
608 debug_mutex_free_waiter(&waiter);
609 mutex_release(&lock->dep_map, 1, ip);
610 preempt_enable();
611 return ret;
614 #ifdef CONFIG_DEBUG_LOCK_ALLOC
615 void __sched
616 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
618 might_sleep();
619 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
620 subclass, NULL, _RET_IP_, NULL);
623 EXPORT_SYMBOL_GPL(mutex_lock_nested);
625 void __sched
626 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
628 might_sleep();
629 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
630 0, nest, _RET_IP_, NULL);
633 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
635 int __sched
636 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
638 might_sleep();
639 return __mutex_lock_common(lock, TASK_KILLABLE,
640 subclass, NULL, _RET_IP_, NULL);
642 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
644 int __sched
645 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
647 might_sleep();
648 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
649 subclass, NULL, _RET_IP_, NULL);
652 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
654 static inline int
655 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
657 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
658 unsigned tmp;
660 if (ctx->deadlock_inject_countdown-- == 0) {
661 tmp = ctx->deadlock_inject_interval;
662 if (tmp > UINT_MAX/4)
663 tmp = UINT_MAX;
664 else
665 tmp = tmp*2 + tmp + tmp/2;
667 ctx->deadlock_inject_interval = tmp;
668 ctx->deadlock_inject_countdown = tmp;
669 ctx->contending_lock = lock;
671 ww_mutex_unlock(lock);
673 return -EDEADLK;
675 #endif
677 return 0;
680 int __sched
681 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
683 int ret;
685 might_sleep();
686 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
687 0, &ctx->dep_map, _RET_IP_, ctx);
688 if (!ret && ctx->acquired > 0)
689 return ww_mutex_deadlock_injection(lock, ctx);
691 return ret;
693 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
695 int __sched
696 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
698 int ret;
700 might_sleep();
701 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
702 0, &ctx->dep_map, _RET_IP_, ctx);
704 if (!ret && ctx->acquired > 0)
705 return ww_mutex_deadlock_injection(lock, ctx);
707 return ret;
709 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
711 #endif
714 * Release the lock, slowpath:
716 static inline void
717 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
719 struct mutex *lock = container_of(lock_count, struct mutex, count);
720 unsigned long flags;
722 spin_lock_mutex(&lock->wait_lock, flags);
723 mutex_release(&lock->dep_map, nested, _RET_IP_);
724 debug_mutex_unlock(lock);
727 * some architectures leave the lock unlocked in the fastpath failure
728 * case, others need to leave it locked. In the later case we have to
729 * unlock it here
731 if (__mutex_slowpath_needs_to_unlock())
732 atomic_set(&lock->count, 1);
734 if (!list_empty(&lock->wait_list)) {
735 /* get the first entry from the wait-list: */
736 struct mutex_waiter *waiter =
737 list_entry(lock->wait_list.next,
738 struct mutex_waiter, list);
740 debug_mutex_wake_waiter(lock, waiter);
742 wake_up_process(waiter->task);
745 spin_unlock_mutex(&lock->wait_lock, flags);
749 * Release the lock, slowpath:
751 static __used noinline void
752 __mutex_unlock_slowpath(atomic_t *lock_count)
754 __mutex_unlock_common_slowpath(lock_count, 1);
757 #ifndef CONFIG_DEBUG_LOCK_ALLOC
759 * Here come the less common (and hence less performance-critical) APIs:
760 * mutex_lock_interruptible() and mutex_trylock().
762 static noinline int __sched
763 __mutex_lock_killable_slowpath(struct mutex *lock);
765 static noinline int __sched
766 __mutex_lock_interruptible_slowpath(struct mutex *lock);
769 * mutex_lock_interruptible - acquire the mutex, interruptible
770 * @lock: the mutex to be acquired
772 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
773 * been acquired or sleep until the mutex becomes available. If a
774 * signal arrives while waiting for the lock then this function
775 * returns -EINTR.
777 * This function is similar to (but not equivalent to) down_interruptible().
779 int __sched mutex_lock_interruptible(struct mutex *lock)
781 int ret;
783 might_sleep();
784 ret = __mutex_fastpath_lock_retval(&lock->count);
785 if (likely(!ret)) {
786 mutex_set_owner(lock);
787 return 0;
788 } else
789 return __mutex_lock_interruptible_slowpath(lock);
792 EXPORT_SYMBOL(mutex_lock_interruptible);
794 int __sched mutex_lock_killable(struct mutex *lock)
796 int ret;
798 might_sleep();
799 ret = __mutex_fastpath_lock_retval(&lock->count);
800 if (likely(!ret)) {
801 mutex_set_owner(lock);
802 return 0;
803 } else
804 return __mutex_lock_killable_slowpath(lock);
806 EXPORT_SYMBOL(mutex_lock_killable);
808 static __used noinline void __sched
809 __mutex_lock_slowpath(atomic_t *lock_count)
811 struct mutex *lock = container_of(lock_count, struct mutex, count);
813 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
814 NULL, _RET_IP_, NULL);
817 static noinline int __sched
818 __mutex_lock_killable_slowpath(struct mutex *lock)
820 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
821 NULL, _RET_IP_, NULL);
824 static noinline int __sched
825 __mutex_lock_interruptible_slowpath(struct mutex *lock)
827 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
828 NULL, _RET_IP_, NULL);
831 static noinline int __sched
832 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
834 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
835 NULL, _RET_IP_, ctx);
838 static noinline int __sched
839 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
840 struct ww_acquire_ctx *ctx)
842 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
843 NULL, _RET_IP_, ctx);
846 #endif
849 * Spinlock based trylock, we take the spinlock and check whether we
850 * can get the lock:
852 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
854 struct mutex *lock = container_of(lock_count, struct mutex, count);
855 unsigned long flags;
856 int prev;
858 spin_lock_mutex(&lock->wait_lock, flags);
860 prev = atomic_xchg(&lock->count, -1);
861 if (likely(prev == 1)) {
862 mutex_set_owner(lock);
863 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
866 /* Set it back to 0 if there are no waiters: */
867 if (likely(list_empty(&lock->wait_list)))
868 atomic_set(&lock->count, 0);
870 spin_unlock_mutex(&lock->wait_lock, flags);
872 return prev == 1;
876 * mutex_trylock - try to acquire the mutex, without waiting
877 * @lock: the mutex to be acquired
879 * Try to acquire the mutex atomically. Returns 1 if the mutex
880 * has been acquired successfully, and 0 on contention.
882 * NOTE: this function follows the spin_trylock() convention, so
883 * it is negated from the down_trylock() return values! Be careful
884 * about this when converting semaphore users to mutexes.
886 * This function must not be used in interrupt context. The
887 * mutex must be released by the same task that acquired it.
889 int __sched mutex_trylock(struct mutex *lock)
891 int ret;
893 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
894 if (ret)
895 mutex_set_owner(lock);
897 return ret;
899 EXPORT_SYMBOL(mutex_trylock);
901 #ifndef CONFIG_DEBUG_LOCK_ALLOC
902 int __sched
903 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
905 int ret;
907 might_sleep();
909 ret = __mutex_fastpath_lock_retval(&lock->base.count);
911 if (likely(!ret)) {
912 ww_mutex_set_context_fastpath(lock, ctx);
913 mutex_set_owner(&lock->base);
914 } else
915 ret = __ww_mutex_lock_slowpath(lock, ctx);
916 return ret;
918 EXPORT_SYMBOL(__ww_mutex_lock);
920 int __sched
921 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
923 int ret;
925 might_sleep();
927 ret = __mutex_fastpath_lock_retval(&lock->base.count);
929 if (likely(!ret)) {
930 ww_mutex_set_context_fastpath(lock, ctx);
931 mutex_set_owner(&lock->base);
932 } else
933 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
934 return ret;
936 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
938 #endif
941 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
942 * @cnt: the atomic which we are to dec
943 * @lock: the mutex to return holding if we dec to 0
945 * return true and hold lock if we dec to 0, return false otherwise
947 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
949 /* dec if we can't possibly hit 0 */
950 if (atomic_add_unless(cnt, -1, 1))
951 return 0;
952 /* we might hit 0, so take the lock */
953 mutex_lock(lock);
954 if (!atomic_dec_and_test(cnt)) {
955 /* when we actually did the dec, we didn't hit 0 */
956 mutex_unlock(lock);
957 return 0;
959 /* we hit 0, and we hold the lock */
960 return 1;
962 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);