ath9k: Use ah_curchan and remove sc_curchan which is redundant
[linux-2.6.git] / drivers / net / wireless / ath9k / core.c
blob87b4ca525d25908a57afb538db585aaf55db13f3
1 /*
2 * Copyright (c) 2008, Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 /* Implementation of the main "ATH" layer. */
19 #include "core.h"
20 #include "regd.h"
22 static int ath_outdoor; /* enable outdoor use */
24 static u32 ath_chainmask_sel_up_rssi_thres =
25 ATH_CHAINMASK_SEL_UP_RSSI_THRES;
26 static u32 ath_chainmask_sel_down_rssi_thres =
27 ATH_CHAINMASK_SEL_DOWN_RSSI_THRES;
28 static u32 ath_chainmask_sel_period =
29 ATH_CHAINMASK_SEL_TIMEOUT;
31 /* return bus cachesize in 4B word units */
33 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
35 u8 u8tmp;
37 pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
38 *csz = (int)u8tmp;
41 * This check was put in to avoid "unplesant" consequences if
42 * the bootrom has not fully initialized all PCI devices.
43 * Sometimes the cache line size register is not set
46 if (*csz == 0)
47 *csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
51 * Set current operating mode
53 * This function initializes and fills the rate table in the ATH object based
54 * on the operating mode. The blink rates are also set up here, although
55 * they have been superceeded by the ath_led module.
58 static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
60 const struct ath9k_rate_table *rt;
61 int i;
63 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
64 rt = ath9k_hw_getratetable(sc->sc_ah, mode);
65 BUG_ON(!rt);
67 for (i = 0; i < rt->rateCount; i++)
68 sc->sc_rixmap[rt->info[i].rateCode] = (u8) i;
70 memzero(sc->sc_hwmap, sizeof(sc->sc_hwmap));
71 for (i = 0; i < 256; i++) {
72 u8 ix = rt->rateCodeToIndex[i];
74 if (ix == 0xff)
75 continue;
77 sc->sc_hwmap[i].ieeerate =
78 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
79 sc->sc_hwmap[i].rateKbps = rt->info[ix].rateKbps;
81 if (rt->info[ix].shortPreamble ||
82 rt->info[ix].phy == PHY_OFDM) {
83 /* XXX: Handle this */
86 /* NB: this uses the last entry if the rate isn't found */
87 /* XXX beware of overlow */
89 sc->sc_currates = rt;
90 sc->sc_curmode = mode;
92 * All protection frames are transmited at 2Mb/s for
93 * 11g, otherwise at 1Mb/s.
94 * XXX select protection rate index from rate table.
96 sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
100 * Set up rate table (legacy rates)
102 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
104 struct ath_hal *ah = sc->sc_ah;
105 const struct ath9k_rate_table *rt = NULL;
106 struct ieee80211_supported_band *sband;
107 struct ieee80211_rate *rate;
108 int i, maxrates;
110 switch (band) {
111 case IEEE80211_BAND_2GHZ:
112 rt = ath9k_hw_getratetable(ah, ATH9K_MODE_11G);
113 break;
114 case IEEE80211_BAND_5GHZ:
115 rt = ath9k_hw_getratetable(ah, ATH9K_MODE_11A);
116 break;
117 default:
118 break;
121 if (rt == NULL)
122 return;
124 sband = &sc->sbands[band];
125 rate = sc->rates[band];
127 if (rt->rateCount > ATH_RATE_MAX)
128 maxrates = ATH_RATE_MAX;
129 else
130 maxrates = rt->rateCount;
132 for (i = 0; i < maxrates; i++) {
133 rate[i].bitrate = rt->info[i].rateKbps / 100;
134 rate[i].hw_value = rt->info[i].rateCode;
135 sband->n_bitrates++;
136 DPRINTF(sc, ATH_DBG_CONFIG,
137 "%s: Rate: %2dMbps, ratecode: %2d\n",
138 __func__,
139 rate[i].bitrate / 10,
140 rate[i].hw_value);
145 * Set up channel list
147 static int ath_setup_channels(struct ath_softc *sc)
149 struct ath_hal *ah = sc->sc_ah;
150 int nchan, i, a = 0, b = 0;
151 u8 regclassids[ATH_REGCLASSIDS_MAX];
152 u32 nregclass = 0;
153 struct ieee80211_supported_band *band_2ghz;
154 struct ieee80211_supported_band *band_5ghz;
155 struct ieee80211_channel *chan_2ghz;
156 struct ieee80211_channel *chan_5ghz;
157 struct ath9k_channel *c;
159 /* Fill in ah->ah_channels */
160 if (!ath9k_regd_init_channels(ah,
161 ATH_CHAN_MAX,
162 (u32 *)&nchan,
163 regclassids,
164 ATH_REGCLASSIDS_MAX,
165 &nregclass,
166 CTRY_DEFAULT,
167 false,
168 1)) {
169 u32 rd = ah->ah_currentRD;
171 DPRINTF(sc, ATH_DBG_FATAL,
172 "%s: unable to collect channel list; "
173 "regdomain likely %u country code %u\n",
174 __func__, rd, CTRY_DEFAULT);
175 return -EINVAL;
178 band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
179 band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
180 chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
181 chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
183 for (i = 0; i < nchan; i++) {
184 c = &ah->ah_channels[i];
185 if (IS_CHAN_2GHZ(c)) {
186 chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
187 chan_2ghz[a].center_freq = c->channel;
188 chan_2ghz[a].max_power = c->maxTxPower;
190 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
191 chan_2ghz[a].flags |=
192 IEEE80211_CHAN_NO_IBSS;
193 if (c->channelFlags & CHANNEL_PASSIVE)
194 chan_2ghz[a].flags |=
195 IEEE80211_CHAN_PASSIVE_SCAN;
197 band_2ghz->n_channels = ++a;
199 DPRINTF(sc, ATH_DBG_CONFIG,
200 "%s: 2MHz channel: %d, "
201 "channelFlags: 0x%x\n",
202 __func__,
203 c->channel,
204 c->channelFlags);
205 } else if (IS_CHAN_5GHZ(c)) {
206 chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
207 chan_5ghz[b].center_freq = c->channel;
208 chan_5ghz[b].max_power = c->maxTxPower;
210 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
211 chan_5ghz[b].flags |=
212 IEEE80211_CHAN_NO_IBSS;
213 if (c->channelFlags & CHANNEL_PASSIVE)
214 chan_5ghz[b].flags |=
215 IEEE80211_CHAN_PASSIVE_SCAN;
217 band_5ghz->n_channels = ++b;
219 DPRINTF(sc, ATH_DBG_CONFIG,
220 "%s: 5MHz channel: %d, "
221 "channelFlags: 0x%x\n",
222 __func__,
223 c->channel,
224 c->channelFlags);
228 return 0;
232 * Determine mode from channel flags
234 * This routine will provide the enumerated WIRELESSS_MODE value based
235 * on the settings of the channel flags. If ho valid set of flags
236 * exist, the lowest mode (11b) is selected.
239 static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
241 if (chan->chanmode == CHANNEL_A)
242 return ATH9K_MODE_11A;
243 else if (chan->chanmode == CHANNEL_G)
244 return ATH9K_MODE_11G;
245 else if (chan->chanmode == CHANNEL_B)
246 return ATH9K_MODE_11B;
247 else if (chan->chanmode == CHANNEL_A_HT20)
248 return ATH9K_MODE_11NA_HT20;
249 else if (chan->chanmode == CHANNEL_G_HT20)
250 return ATH9K_MODE_11NG_HT20;
251 else if (chan->chanmode == CHANNEL_A_HT40PLUS)
252 return ATH9K_MODE_11NA_HT40PLUS;
253 else if (chan->chanmode == CHANNEL_A_HT40MINUS)
254 return ATH9K_MODE_11NA_HT40MINUS;
255 else if (chan->chanmode == CHANNEL_G_HT40PLUS)
256 return ATH9K_MODE_11NG_HT40PLUS;
257 else if (chan->chanmode == CHANNEL_G_HT40MINUS)
258 return ATH9K_MODE_11NG_HT40MINUS;
260 /* NB: should not get here */
261 return ATH9K_MODE_11B;
265 * Stop the device, grabbing the top-level lock to protect
266 * against concurrent entry through ath_init (which can happen
267 * if another thread does a system call and the thread doing the
268 * stop is preempted).
271 static int ath_stop(struct ath_softc *sc)
273 struct ath_hal *ah = sc->sc_ah;
275 DPRINTF(sc, ATH_DBG_CONFIG, "%s: invalid %ld\n",
276 __func__, sc->sc_flags & SC_OP_INVALID);
279 * Shutdown the hardware and driver:
280 * stop output from above
281 * reset 802.11 state machine
282 * (sends station deassoc/deauth frames)
283 * turn off timers
284 * disable interrupts
285 * clear transmit machinery
286 * clear receive machinery
287 * turn off the radio
288 * reclaim beacon resources
290 * Note that some of this work is not possible if the
291 * hardware is gone (invalid).
294 if (!(sc->sc_flags & SC_OP_INVALID))
295 ath9k_hw_set_interrupts(ah, 0);
296 ath_draintxq(sc, false);
297 if (!(sc->sc_flags & SC_OP_INVALID)) {
298 ath_stoprecv(sc);
299 ath9k_hw_phy_disable(ah);
300 } else
301 sc->sc_rxlink = NULL;
303 return 0;
307 * Set the current channel
309 * Set/change channels. If the channel is really being changed, it's done
310 * by reseting the chip. To accomplish this we must first cleanup any pending
311 * DMA, then restart stuff after a la ath_init.
313 int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
315 struct ath_hal *ah = sc->sc_ah;
316 bool fastcc = true, stopped;
317 enum ath9k_ht_macmode ht_macmode;
319 if (sc->sc_flags & SC_OP_INVALID) /* the device is invalid or removed */
320 return -EIO;
322 DPRINTF(sc, ATH_DBG_CONFIG,
323 "%s: %u (%u MHz) -> %u (%u MHz), cflags:%x\n",
324 __func__,
325 ath9k_hw_mhz2ieee(ah, sc->sc_ah->ah_curchan->channel,
326 sc->sc_ah->ah_curchan->channelFlags),
327 sc->sc_ah->ah_curchan->channel,
328 ath9k_hw_mhz2ieee(ah, hchan->channel, hchan->channelFlags),
329 hchan->channel, hchan->channelFlags);
331 ht_macmode = ath_cwm_macmode(sc);
333 if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
334 hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
335 (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
336 (sc->sc_flags & SC_OP_FULL_RESET)) {
337 int status;
339 * This is only performed if the channel settings have
340 * actually changed.
342 * To switch channels clear any pending DMA operations;
343 * wait long enough for the RX fifo to drain, reset the
344 * hardware at the new frequency, and then re-enable
345 * the relevant bits of the h/w.
347 ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
348 ath_draintxq(sc, false); /* clear pending tx frames */
349 stopped = ath_stoprecv(sc); /* turn off frame recv */
351 /* XXX: do not flush receive queue here. We don't want
352 * to flush data frames already in queue because of
353 * changing channel. */
355 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
356 fastcc = false;
358 spin_lock_bh(&sc->sc_resetlock);
359 if (!ath9k_hw_reset(ah, hchan,
360 ht_macmode, sc->sc_tx_chainmask,
361 sc->sc_rx_chainmask,
362 sc->sc_ht_extprotspacing,
363 fastcc, &status)) {
364 DPRINTF(sc, ATH_DBG_FATAL,
365 "%s: unable to reset channel %u (%uMhz) "
366 "flags 0x%x hal status %u\n", __func__,
367 ath9k_hw_mhz2ieee(ah, hchan->channel,
368 hchan->channelFlags),
369 hchan->channel, hchan->channelFlags, status);
370 spin_unlock_bh(&sc->sc_resetlock);
371 return -EIO;
373 spin_unlock_bh(&sc->sc_resetlock);
375 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
376 sc->sc_flags &= ~SC_OP_FULL_RESET;
378 /* Re-enable rx framework */
379 if (ath_startrecv(sc) != 0) {
380 DPRINTF(sc, ATH_DBG_FATAL,
381 "%s: unable to restart recv logic\n", __func__);
382 return -EIO;
385 * Change channels and update the h/w rate map
386 * if we're switching; e.g. 11a to 11b/g.
388 ath_setcurmode(sc, ath_chan2mode(hchan));
390 ath_update_txpow(sc); /* update tx power state */
392 * Re-enable interrupts.
394 ath9k_hw_set_interrupts(ah, sc->sc_imask);
396 return 0;
399 /**********************/
400 /* Chainmask Handling */
401 /**********************/
403 static void ath_chainmask_sel_timertimeout(unsigned long data)
405 struct ath_chainmask_sel *cm = (struct ath_chainmask_sel *)data;
406 cm->switch_allowed = 1;
409 /* Start chainmask select timer */
410 static void ath_chainmask_sel_timerstart(struct ath_chainmask_sel *cm)
412 cm->switch_allowed = 0;
413 mod_timer(&cm->timer, ath_chainmask_sel_period);
416 /* Stop chainmask select timer */
417 static void ath_chainmask_sel_timerstop(struct ath_chainmask_sel *cm)
419 cm->switch_allowed = 0;
420 del_timer_sync(&cm->timer);
423 static void ath_chainmask_sel_init(struct ath_softc *sc, struct ath_node *an)
425 struct ath_chainmask_sel *cm = &an->an_chainmask_sel;
427 memzero(cm, sizeof(struct ath_chainmask_sel));
429 cm->cur_tx_mask = sc->sc_tx_chainmask;
430 cm->cur_rx_mask = sc->sc_rx_chainmask;
431 cm->tx_avgrssi = ATH_RSSI_DUMMY_MARKER;
432 setup_timer(&cm->timer,
433 ath_chainmask_sel_timertimeout, (unsigned long) cm);
436 int ath_chainmask_sel_logic(struct ath_softc *sc, struct ath_node *an)
438 struct ath_chainmask_sel *cm = &an->an_chainmask_sel;
441 * Disable auto-swtiching in one of the following if conditions.
442 * sc_chainmask_auto_sel is used for internal global auto-switching
443 * enabled/disabled setting
445 if (sc->sc_ah->ah_caps.tx_chainmask != ATH_CHAINMASK_SEL_3X3) {
446 cm->cur_tx_mask = sc->sc_tx_chainmask;
447 return cm->cur_tx_mask;
450 if (cm->tx_avgrssi == ATH_RSSI_DUMMY_MARKER)
451 return cm->cur_tx_mask;
453 if (cm->switch_allowed) {
454 /* Switch down from tx 3 to tx 2. */
455 if (cm->cur_tx_mask == ATH_CHAINMASK_SEL_3X3 &&
456 ATH_RSSI_OUT(cm->tx_avgrssi) >=
457 ath_chainmask_sel_down_rssi_thres) {
458 cm->cur_tx_mask = sc->sc_tx_chainmask;
460 /* Don't let another switch happen until
461 * this timer expires */
462 ath_chainmask_sel_timerstart(cm);
464 /* Switch up from tx 2 to 3. */
465 else if (cm->cur_tx_mask == sc->sc_tx_chainmask &&
466 ATH_RSSI_OUT(cm->tx_avgrssi) <=
467 ath_chainmask_sel_up_rssi_thres) {
468 cm->cur_tx_mask = ATH_CHAINMASK_SEL_3X3;
470 /* Don't let another switch happen
471 * until this timer expires */
472 ath_chainmask_sel_timerstart(cm);
476 return cm->cur_tx_mask;
480 * Update tx/rx chainmask. For legacy association,
481 * hard code chainmask to 1x1, for 11n association, use
482 * the chainmask configuration.
485 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
487 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
488 if (is_ht) {
489 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
490 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
491 } else {
492 sc->sc_tx_chainmask = 1;
493 sc->sc_rx_chainmask = 1;
496 DPRINTF(sc, ATH_DBG_CONFIG, "%s: tx chmask: %d, rx chmask: %d\n",
497 __func__, sc->sc_tx_chainmask, sc->sc_rx_chainmask);
500 /******************/
501 /* VAP management */
502 /******************/
505 * VAP in Listen mode
507 * This routine brings the VAP out of the down state into a "listen" state
508 * where it waits for association requests. This is used in AP and AdHoc
509 * modes.
512 int ath_vap_listen(struct ath_softc *sc, int if_id)
514 struct ath_hal *ah = sc->sc_ah;
515 struct ath_vap *avp;
516 u32 rfilt = 0;
517 DECLARE_MAC_BUF(mac);
519 avp = sc->sc_vaps[if_id];
520 if (avp == NULL) {
521 DPRINTF(sc, ATH_DBG_FATAL, "%s: invalid interface id %u\n",
522 __func__, if_id);
523 return -EINVAL;
526 #ifdef CONFIG_SLOW_ANT_DIV
527 ath_slow_ant_div_stop(&sc->sc_antdiv);
528 #endif
530 /* update ratectrl about the new state */
531 ath_rate_newstate(sc, avp);
533 rfilt = ath_calcrxfilter(sc);
534 ath9k_hw_setrxfilter(ah, rfilt);
536 if (sc->sc_ah->ah_opmode == ATH9K_M_STA ||
537 sc->sc_ah->ah_opmode == ATH9K_M_IBSS) {
538 memcpy(sc->sc_curbssid, ath_bcast_mac, ETH_ALEN);
539 ath9k_hw_write_associd(ah, sc->sc_curbssid, sc->sc_curaid);
540 } else
541 sc->sc_curaid = 0;
543 DPRINTF(sc, ATH_DBG_CONFIG,
544 "%s: RX filter 0x%x bssid %s aid 0x%x\n",
545 __func__, rfilt, print_mac(mac,
546 sc->sc_curbssid), sc->sc_curaid);
549 * XXXX
550 * Disable BMISS interrupt when we're not associated
552 ath9k_hw_set_interrupts(ah,
553 sc->sc_imask & ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS));
554 sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
555 /* need to reconfigure the beacons when it moves to RUN */
556 sc->sc_flags &= ~SC_OP_BEACONS;
558 return 0;
561 int ath_vap_attach(struct ath_softc *sc,
562 int if_id,
563 struct ieee80211_vif *if_data,
564 enum ath9k_opmode opmode)
566 struct ath_vap *avp;
568 if (if_id >= ATH_BCBUF || sc->sc_vaps[if_id] != NULL) {
569 DPRINTF(sc, ATH_DBG_FATAL,
570 "%s: Invalid interface id = %u\n", __func__, if_id);
571 return -EINVAL;
574 switch (opmode) {
575 case ATH9K_M_STA:
576 case ATH9K_M_IBSS:
577 case ATH9K_M_MONITOR:
578 break;
579 case ATH9K_M_HOSTAP:
580 /* XXX not right, beacon buffer is allocated on RUN trans */
581 if (list_empty(&sc->sc_bbuf))
582 return -ENOMEM;
583 break;
584 default:
585 return -EINVAL;
588 /* create ath_vap */
589 avp = kmalloc(sizeof(struct ath_vap), GFP_KERNEL);
590 if (avp == NULL)
591 return -ENOMEM;
593 memzero(avp, sizeof(struct ath_vap));
594 avp->av_if_data = if_data;
595 /* Set the VAP opmode */
596 avp->av_opmode = opmode;
597 avp->av_bslot = -1;
598 INIT_LIST_HEAD(&avp->av_mcastq.axq_q);
599 INIT_LIST_HEAD(&avp->av_mcastq.axq_acq);
600 spin_lock_init(&avp->av_mcastq.axq_lock);
602 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
604 sc->sc_vaps[if_id] = avp;
605 sc->sc_nvaps++;
606 /* Set the device opmode */
607 sc->sc_ah->ah_opmode = opmode;
609 /* default VAP configuration */
610 avp->av_config.av_fixed_rateset = IEEE80211_FIXED_RATE_NONE;
611 avp->av_config.av_fixed_retryset = 0x03030303;
613 return 0;
616 int ath_vap_detach(struct ath_softc *sc, int if_id)
618 struct ath_hal *ah = sc->sc_ah;
619 struct ath_vap *avp;
621 avp = sc->sc_vaps[if_id];
622 if (avp == NULL) {
623 DPRINTF(sc, ATH_DBG_FATAL, "%s: invalid interface id %u\n",
624 __func__, if_id);
625 return -EINVAL;
629 * Quiesce the hardware while we remove the vap. In
630 * particular we need to reclaim all references to the
631 * vap state by any frames pending on the tx queues.
633 * XXX can we do this w/o affecting other vap's?
635 ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
636 ath_draintxq(sc, false); /* stop xmit side */
637 ath_stoprecv(sc); /* stop recv side */
638 ath_flushrecv(sc); /* flush recv queue */
640 /* Reclaim any pending mcast bufs on the vap. */
641 ath_tx_draintxq(sc, &avp->av_mcastq, false);
643 kfree(avp);
644 sc->sc_vaps[if_id] = NULL;
645 sc->sc_nvaps--;
647 return 0;
650 int ath_vap_config(struct ath_softc *sc,
651 int if_id, struct ath_vap_config *if_config)
653 struct ath_vap *avp;
655 if (if_id >= ATH_BCBUF) {
656 DPRINTF(sc, ATH_DBG_FATAL,
657 "%s: Invalid interface id = %u\n", __func__, if_id);
658 return -EINVAL;
661 avp = sc->sc_vaps[if_id];
662 ASSERT(avp != NULL);
664 if (avp)
665 memcpy(&avp->av_config, if_config, sizeof(avp->av_config));
667 return 0;
670 /********/
671 /* Core */
672 /********/
674 int ath_open(struct ath_softc *sc, struct ath9k_channel *initial_chan)
676 struct ath_hal *ah = sc->sc_ah;
677 int status;
678 int error = 0;
679 enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
681 DPRINTF(sc, ATH_DBG_CONFIG, "%s: mode %d\n",
682 __func__, sc->sc_ah->ah_opmode);
685 * Stop anything previously setup. This is safe
686 * whether this is the first time through or not.
688 ath_stop(sc);
690 /* Initialize chanmask selection */
691 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
692 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
694 /* Reset SERDES registers */
695 ath9k_hw_configpcipowersave(ah, 0);
698 * The basic interface to setting the hardware in a good
699 * state is ``reset''. On return the hardware is known to
700 * be powered up and with interrupts disabled. This must
701 * be followed by initialization of the appropriate bits
702 * and then setup of the interrupt mask.
705 spin_lock_bh(&sc->sc_resetlock);
706 if (!ath9k_hw_reset(ah, initial_chan, ht_macmode,
707 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
708 sc->sc_ht_extprotspacing, false, &status)) {
709 DPRINTF(sc, ATH_DBG_FATAL,
710 "%s: unable to reset hardware; hal status %u "
711 "(freq %u flags 0x%x)\n", __func__, status,
712 initial_chan->channel, initial_chan->channelFlags);
713 error = -EIO;
714 spin_unlock_bh(&sc->sc_resetlock);
715 goto done;
717 spin_unlock_bh(&sc->sc_resetlock);
719 * This is needed only to setup initial state
720 * but it's best done after a reset.
722 ath_update_txpow(sc);
725 * Setup the hardware after reset:
726 * The receive engine is set going.
727 * Frame transmit is handled entirely
728 * in the frame output path; there's nothing to do
729 * here except setup the interrupt mask.
731 if (ath_startrecv(sc) != 0) {
732 DPRINTF(sc, ATH_DBG_FATAL,
733 "%s: unable to start recv logic\n", __func__);
734 error = -EIO;
735 goto done;
737 /* Setup our intr mask. */
738 sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
739 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
740 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
742 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
743 sc->sc_imask |= ATH9K_INT_GTT;
745 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
746 sc->sc_imask |= ATH9K_INT_CST;
749 * Enable MIB interrupts when there are hardware phy counters.
750 * Note we only do this (at the moment) for station mode.
752 if (ath9k_hw_phycounters(ah) &&
753 ((sc->sc_ah->ah_opmode == ATH9K_M_STA) ||
754 (sc->sc_ah->ah_opmode == ATH9K_M_IBSS)))
755 sc->sc_imask |= ATH9K_INT_MIB;
757 * Some hardware processes the TIM IE and fires an
758 * interrupt when the TIM bit is set. For hardware
759 * that does, if not overridden by configuration,
760 * enable the TIM interrupt when operating as station.
762 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
763 (sc->sc_ah->ah_opmode == ATH9K_M_STA) &&
764 !sc->sc_config.swBeaconProcess)
765 sc->sc_imask |= ATH9K_INT_TIM;
767 * Don't enable interrupts here as we've not yet built our
768 * vap and node data structures, which will be needed as soon
769 * as we start receiving.
771 ath_setcurmode(sc, ath_chan2mode(initial_chan));
773 /* XXX: we must make sure h/w is ready and clear invalid flag
774 * before turning on interrupt. */
775 sc->sc_flags &= ~SC_OP_INVALID;
776 done:
777 return error;
780 int ath_reset(struct ath_softc *sc, bool retry_tx)
782 struct ath_hal *ah = sc->sc_ah;
783 int status;
784 int error = 0;
785 enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
787 ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
788 ath_draintxq(sc, retry_tx); /* stop xmit */
789 ath_stoprecv(sc); /* stop recv */
790 ath_flushrecv(sc); /* flush recv queue */
792 /* Reset chip */
793 spin_lock_bh(&sc->sc_resetlock);
794 if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
795 ht_macmode,
796 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
797 sc->sc_ht_extprotspacing, false, &status)) {
798 DPRINTF(sc, ATH_DBG_FATAL,
799 "%s: unable to reset hardware; hal status %u\n",
800 __func__, status);
801 error = -EIO;
803 spin_unlock_bh(&sc->sc_resetlock);
805 if (ath_startrecv(sc) != 0) /* restart recv */
806 DPRINTF(sc, ATH_DBG_FATAL,
807 "%s: unable to start recv logic\n", __func__);
810 * We may be doing a reset in response to a request
811 * that changes the channel so update any state that
812 * might change as a result.
814 ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
816 ath_update_txpow(sc);
818 if (sc->sc_flags & SC_OP_BEACONS)
819 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
821 ath9k_hw_set_interrupts(ah, sc->sc_imask);
823 /* Restart the txq */
824 if (retry_tx) {
825 int i;
826 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
827 if (ATH_TXQ_SETUP(sc, i)) {
828 spin_lock_bh(&sc->sc_txq[i].axq_lock);
829 ath_txq_schedule(sc, &sc->sc_txq[i]);
830 spin_unlock_bh(&sc->sc_txq[i].axq_lock);
835 return error;
838 int ath_suspend(struct ath_softc *sc)
840 struct ath_hal *ah = sc->sc_ah;
842 /* No I/O if device has been surprise removed */
843 if (sc->sc_flags & SC_OP_INVALID)
844 return -EIO;
846 /* Shut off the interrupt before setting sc->sc_invalid to '1' */
847 ath9k_hw_set_interrupts(ah, 0);
849 /* XXX: we must make sure h/w will not generate any interrupt
850 * before setting the invalid flag. */
851 sc->sc_flags |= SC_OP_INVALID;
853 /* disable HAL and put h/w to sleep */
854 ath9k_hw_disable(sc->sc_ah);
856 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
858 return 0;
861 /* Interrupt handler. Most of the actual processing is deferred.
862 * It's the caller's responsibility to ensure the chip is awake. */
864 irqreturn_t ath_isr(int irq, void *dev)
866 struct ath_softc *sc = dev;
867 struct ath_hal *ah = sc->sc_ah;
868 enum ath9k_int status;
869 bool sched = false;
871 do {
872 if (sc->sc_flags & SC_OP_INVALID) {
874 * The hardware is not ready/present, don't
875 * touch anything. Note this can happen early
876 * on if the IRQ is shared.
878 return IRQ_NONE;
880 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
881 return IRQ_NONE;
885 * Figure out the reason(s) for the interrupt. Note
886 * that the hal returns a pseudo-ISR that may include
887 * bits we haven't explicitly enabled so we mask the
888 * value to insure we only process bits we requested.
890 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
892 status &= sc->sc_imask; /* discard unasked-for bits */
895 * If there are no status bits set, then this interrupt was not
896 * for me (should have been caught above).
899 if (!status)
900 return IRQ_NONE;
902 sc->sc_intrstatus = status;
904 if (status & ATH9K_INT_FATAL) {
905 /* need a chip reset */
906 sched = true;
907 } else if (status & ATH9K_INT_RXORN) {
908 /* need a chip reset */
909 sched = true;
910 } else {
911 if (status & ATH9K_INT_SWBA) {
912 /* schedule a tasklet for beacon handling */
913 tasklet_schedule(&sc->bcon_tasklet);
915 if (status & ATH9K_INT_RXEOL) {
917 * NB: the hardware should re-read the link when
918 * RXE bit is written, but it doesn't work
919 * at least on older hardware revs.
921 sched = true;
924 if (status & ATH9K_INT_TXURN)
925 /* bump tx trigger level */
926 ath9k_hw_updatetxtriglevel(ah, true);
927 /* XXX: optimize this */
928 if (status & ATH9K_INT_RX)
929 sched = true;
930 if (status & ATH9K_INT_TX)
931 sched = true;
932 if (status & ATH9K_INT_BMISS)
933 sched = true;
934 /* carrier sense timeout */
935 if (status & ATH9K_INT_CST)
936 sched = true;
937 if (status & ATH9K_INT_MIB) {
939 * Disable interrupts until we service the MIB
940 * interrupt; otherwise it will continue to
941 * fire.
943 ath9k_hw_set_interrupts(ah, 0);
945 * Let the hal handle the event. We assume
946 * it will clear whatever condition caused
947 * the interrupt.
949 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
950 ath9k_hw_set_interrupts(ah, sc->sc_imask);
952 if (status & ATH9K_INT_TIM_TIMER) {
953 if (!(ah->ah_caps.hw_caps &
954 ATH9K_HW_CAP_AUTOSLEEP)) {
955 /* Clear RxAbort bit so that we can
956 * receive frames */
957 ath9k_hw_setrxabort(ah, 0);
958 sched = true;
962 } while (0);
964 if (sched) {
965 /* turn off every interrupt except SWBA */
966 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
967 tasklet_schedule(&sc->intr_tq);
970 return IRQ_HANDLED;
973 /* Deferred interrupt processing */
975 static void ath9k_tasklet(unsigned long data)
977 struct ath_softc *sc = (struct ath_softc *)data;
978 u32 status = sc->sc_intrstatus;
980 if (status & ATH9K_INT_FATAL) {
981 /* need a chip reset */
982 ath_reset(sc, false);
983 return;
984 } else {
986 if (status &
987 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
988 /* XXX: fill me in */
990 if (status & ATH9K_INT_RXORN) {
992 if (status & ATH9K_INT_RXEOL) {
995 spin_lock_bh(&sc->sc_rxflushlock);
996 ath_rx_tasklet(sc, 0);
997 spin_unlock_bh(&sc->sc_rxflushlock);
999 /* XXX: optimize this */
1000 if (status & ATH9K_INT_TX)
1001 ath_tx_tasklet(sc);
1002 /* XXX: fill me in */
1004 if (status & ATH9K_INT_BMISS) {
1006 if (status & (ATH9K_INT_TIM | ATH9K_INT_DTIMSYNC)) {
1007 if (status & ATH9K_INT_TIM) {
1009 if (status & ATH9K_INT_DTIMSYNC) {
1015 /* re-enable hardware interrupt */
1016 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1019 int ath_init(u16 devid, struct ath_softc *sc)
1021 struct ath_hal *ah = NULL;
1022 int status;
1023 int error = 0, i;
1024 int csz = 0;
1025 u32 rd;
1027 /* XXX: hardware will not be ready until ath_open() being called */
1028 sc->sc_flags |= SC_OP_INVALID;
1030 sc->sc_debug = DBG_DEFAULT;
1031 DPRINTF(sc, ATH_DBG_CONFIG, "%s: devid 0x%x\n", __func__, devid);
1033 /* Initialize tasklet */
1034 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1035 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1036 (unsigned long)sc);
1039 * Cache line size is used to size and align various
1040 * structures used to communicate with the hardware.
1042 bus_read_cachesize(sc, &csz);
1043 /* XXX assert csz is non-zero */
1044 sc->sc_cachelsz = csz << 2; /* convert to bytes */
1046 spin_lock_init(&sc->sc_resetlock);
1048 ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1049 if (ah == NULL) {
1050 DPRINTF(sc, ATH_DBG_FATAL,
1051 "%s: unable to attach hardware; HAL status %u\n",
1052 __func__, status);
1053 error = -ENXIO;
1054 goto bad;
1056 sc->sc_ah = ah;
1058 /* Get the chipset-specific aggr limit. */
1059 sc->sc_rtsaggrlimit = ah->ah_caps.rts_aggr_limit;
1061 /* Get the hardware key cache size. */
1062 sc->sc_keymax = ah->ah_caps.keycache_size;
1063 if (sc->sc_keymax > ATH_KEYMAX) {
1064 DPRINTF(sc, ATH_DBG_KEYCACHE,
1065 "%s: Warning, using only %u entries in %u key cache\n",
1066 __func__, ATH_KEYMAX, sc->sc_keymax);
1067 sc->sc_keymax = ATH_KEYMAX;
1071 * Reset the key cache since some parts do not
1072 * reset the contents on initial power up.
1074 for (i = 0; i < sc->sc_keymax; i++)
1075 ath9k_hw_keyreset(ah, (u16) i);
1077 * Mark key cache slots associated with global keys
1078 * as in use. If we knew TKIP was not to be used we
1079 * could leave the +32, +64, and +32+64 slots free.
1080 * XXX only for splitmic.
1082 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1083 set_bit(i, sc->sc_keymap);
1084 set_bit(i + 32, sc->sc_keymap);
1085 set_bit(i + 64, sc->sc_keymap);
1086 set_bit(i + 32 + 64, sc->sc_keymap);
1089 * Collect the channel list using the default country
1090 * code and including outdoor channels. The 802.11 layer
1091 * is resposible for filtering this list based on settings
1092 * like the phy mode.
1094 rd = ah->ah_currentRD;
1096 error = ath_setup_channels(sc);
1097 if (error)
1098 goto bad;
1100 /* default to STA mode */
1101 sc->sc_ah->ah_opmode = ATH9K_M_MONITOR;
1103 /* Setup rate tables */
1105 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1106 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1108 /* NB: setup here so ath_rate_update is happy */
1109 ath_setcurmode(sc, ATH9K_MODE_11A);
1112 * Allocate hardware transmit queues: one queue for
1113 * beacon frames and one data queue for each QoS
1114 * priority. Note that the hal handles reseting
1115 * these queues at the needed time.
1117 sc->sc_bhalq = ath_beaconq_setup(ah);
1118 if (sc->sc_bhalq == -1) {
1119 DPRINTF(sc, ATH_DBG_FATAL,
1120 "%s: unable to setup a beacon xmit queue\n", __func__);
1121 error = -EIO;
1122 goto bad2;
1124 sc->sc_cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1125 if (sc->sc_cabq == NULL) {
1126 DPRINTF(sc, ATH_DBG_FATAL,
1127 "%s: unable to setup CAB xmit queue\n", __func__);
1128 error = -EIO;
1129 goto bad2;
1132 sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1133 ath_cabq_update(sc);
1135 for (i = 0; i < ARRAY_SIZE(sc->sc_haltype2q); i++)
1136 sc->sc_haltype2q[i] = -1;
1138 /* Setup data queues */
1139 /* NB: ensure BK queue is the lowest priority h/w queue */
1140 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1141 DPRINTF(sc, ATH_DBG_FATAL,
1142 "%s: unable to setup xmit queue for BK traffic\n",
1143 __func__);
1144 error = -EIO;
1145 goto bad2;
1148 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1149 DPRINTF(sc, ATH_DBG_FATAL,
1150 "%s: unable to setup xmit queue for BE traffic\n",
1151 __func__);
1152 error = -EIO;
1153 goto bad2;
1155 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1156 DPRINTF(sc, ATH_DBG_FATAL,
1157 "%s: unable to setup xmit queue for VI traffic\n",
1158 __func__);
1159 error = -EIO;
1160 goto bad2;
1162 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1163 DPRINTF(sc, ATH_DBG_FATAL,
1164 "%s: unable to setup xmit queue for VO traffic\n",
1165 __func__);
1166 error = -EIO;
1167 goto bad2;
1170 sc->sc_rc = ath_rate_attach(ah);
1171 if (sc->sc_rc == NULL) {
1172 error = EIO;
1173 goto bad2;
1176 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1177 ATH9K_CIPHER_TKIP, NULL)) {
1179 * Whether we should enable h/w TKIP MIC.
1180 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1181 * report WMM capable, so it's always safe to turn on
1182 * TKIP MIC in this case.
1184 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1185 0, 1, NULL);
1189 * Check whether the separate key cache entries
1190 * are required to handle both tx+rx MIC keys.
1191 * With split mic keys the number of stations is limited
1192 * to 27 otherwise 59.
1194 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1195 ATH9K_CIPHER_TKIP, NULL)
1196 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1197 ATH9K_CIPHER_MIC, NULL)
1198 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1199 0, NULL))
1200 sc->sc_splitmic = 1;
1202 /* turn on mcast key search if possible */
1203 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1204 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1205 1, NULL);
1207 sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1208 sc->sc_config.txpowlimit_override = 0;
1210 /* 11n Capabilities */
1211 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1212 sc->sc_flags |= SC_OP_TXAGGR;
1213 sc->sc_flags |= SC_OP_RXAGGR;
1216 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1217 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1219 /* Configuration for rx chain detection */
1220 sc->sc_rxchaindetect_ref = 0;
1221 sc->sc_rxchaindetect_thresh5GHz = 35;
1222 sc->sc_rxchaindetect_thresh2GHz = 35;
1223 sc->sc_rxchaindetect_delta5GHz = 30;
1224 sc->sc_rxchaindetect_delta2GHz = 30;
1226 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1227 sc->sc_defant = ath9k_hw_getdefantenna(ah);
1229 ath9k_hw_getmac(ah, sc->sc_myaddr);
1230 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1231 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1232 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1233 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1235 sc->sc_slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1237 /* initialize beacon slots */
1238 for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++)
1239 sc->sc_bslot[i] = ATH_IF_ID_ANY;
1241 /* save MISC configurations */
1242 sc->sc_config.swBeaconProcess = 1;
1244 #ifdef CONFIG_SLOW_ANT_DIV
1245 /* range is 40 - 255, we use something in the middle */
1246 ath_slow_ant_div_init(&sc->sc_antdiv, sc, 0x127);
1247 #endif
1249 return 0;
1250 bad2:
1251 /* cleanup tx queues */
1252 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1253 if (ATH_TXQ_SETUP(sc, i))
1254 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
1255 bad:
1256 if (ah)
1257 ath9k_hw_detach(ah);
1258 return error;
1261 void ath_deinit(struct ath_softc *sc)
1263 struct ath_hal *ah = sc->sc_ah;
1264 int i;
1266 DPRINTF(sc, ATH_DBG_CONFIG, "%s\n", __func__);
1268 ath_stop(sc);
1269 if (!(sc->sc_flags & SC_OP_INVALID))
1270 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1271 ath_rate_detach(sc->sc_rc);
1272 /* cleanup tx queues */
1273 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1274 if (ATH_TXQ_SETUP(sc, i))
1275 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
1276 ath9k_hw_detach(ah);
1279 /*******************/
1280 /* Node Management */
1281 /*******************/
1283 struct ath_node *ath_node_attach(struct ath_softc *sc, u8 *addr, int if_id)
1285 struct ath_vap *avp;
1286 struct ath_node *an;
1287 DECLARE_MAC_BUF(mac);
1289 avp = sc->sc_vaps[if_id];
1290 ASSERT(avp != NULL);
1292 /* mac80211 sta_notify callback is from an IRQ context, so no sleep */
1293 an = kmalloc(sizeof(struct ath_node), GFP_ATOMIC);
1294 if (an == NULL)
1295 return NULL;
1296 memzero(an, sizeof(*an));
1298 an->an_sc = sc;
1299 memcpy(an->an_addr, addr, ETH_ALEN);
1300 atomic_set(&an->an_refcnt, 1);
1302 /* set up per-node tx/rx state */
1303 ath_tx_node_init(sc, an);
1304 ath_rx_node_init(sc, an);
1306 ath_chainmask_sel_init(sc, an);
1307 ath_chainmask_sel_timerstart(&an->an_chainmask_sel);
1308 list_add(&an->list, &sc->node_list);
1310 return an;
1313 void ath_node_detach(struct ath_softc *sc, struct ath_node *an, bool bh_flag)
1315 unsigned long flags;
1317 DECLARE_MAC_BUF(mac);
1319 ath_chainmask_sel_timerstop(&an->an_chainmask_sel);
1320 an->an_flags |= ATH_NODE_CLEAN;
1321 ath_tx_node_cleanup(sc, an, bh_flag);
1322 ath_rx_node_cleanup(sc, an);
1324 ath_tx_node_free(sc, an);
1325 ath_rx_node_free(sc, an);
1327 spin_lock_irqsave(&sc->node_lock, flags);
1329 list_del(&an->list);
1331 spin_unlock_irqrestore(&sc->node_lock, flags);
1333 kfree(an);
1336 /* Finds a node and increases the refcnt if found */
1338 struct ath_node *ath_node_get(struct ath_softc *sc, u8 *addr)
1340 struct ath_node *an = NULL, *an_found = NULL;
1342 if (list_empty(&sc->node_list)) /* FIXME */
1343 goto out;
1344 list_for_each_entry(an, &sc->node_list, list) {
1345 if (!compare_ether_addr(an->an_addr, addr)) {
1346 atomic_inc(&an->an_refcnt);
1347 an_found = an;
1348 break;
1351 out:
1352 return an_found;
1355 /* Decrements the refcnt and if it drops to zero, detach the node */
1357 void ath_node_put(struct ath_softc *sc, struct ath_node *an, bool bh_flag)
1359 if (atomic_dec_and_test(&an->an_refcnt))
1360 ath_node_detach(sc, an, bh_flag);
1363 /* Finds a node, doesn't increment refcnt. Caller must hold sc->node_lock */
1364 struct ath_node *ath_node_find(struct ath_softc *sc, u8 *addr)
1366 struct ath_node *an = NULL, *an_found = NULL;
1368 if (list_empty(&sc->node_list))
1369 return NULL;
1371 list_for_each_entry(an, &sc->node_list, list)
1372 if (!compare_ether_addr(an->an_addr, addr)) {
1373 an_found = an;
1374 break;
1377 return an_found;
1381 * Set up New Node
1383 * Setup driver-specific state for a newly associated node. This routine
1384 * really only applies if compression or XR are enabled, there is no code
1385 * covering any other cases.
1388 void ath_newassoc(struct ath_softc *sc,
1389 struct ath_node *an, int isnew, int isuapsd)
1391 int tidno;
1393 /* if station reassociates, tear down the aggregation state. */
1394 if (!isnew) {
1395 for (tidno = 0; tidno < WME_NUM_TID; tidno++) {
1396 if (sc->sc_flags & SC_OP_TXAGGR)
1397 ath_tx_aggr_teardown(sc, an, tidno);
1398 if (sc->sc_flags & SC_OP_RXAGGR)
1399 ath_rx_aggr_teardown(sc, an, tidno);
1402 an->an_flags = 0;
1405 /**************/
1406 /* Encryption */
1407 /**************/
1409 void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot)
1411 ath9k_hw_keyreset(sc->sc_ah, keyix);
1412 if (freeslot)
1413 clear_bit(keyix, sc->sc_keymap);
1416 int ath_keyset(struct ath_softc *sc,
1417 u16 keyix,
1418 struct ath9k_keyval *hk,
1419 const u8 mac[ETH_ALEN])
1421 bool status;
1423 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
1424 keyix, hk, mac, false);
1426 return status != false;
1429 /***********************/
1430 /* TX Power/Regulatory */
1431 /***********************/
1434 * Set Transmit power in HAL
1436 * This routine makes the actual HAL calls to set the new transmit power
1437 * limit.
1440 void ath_update_txpow(struct ath_softc *sc)
1442 struct ath_hal *ah = sc->sc_ah;
1443 u32 txpow;
1445 if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
1446 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
1447 /* read back in case value is clamped */
1448 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
1449 sc->sc_curtxpow = txpow;
1453 /* Return the current country and domain information */
1454 void ath_get_currentCountry(struct ath_softc *sc,
1455 struct ath9k_country_entry *ctry)
1457 ath9k_regd_get_current_country(sc->sc_ah, ctry);
1459 /* If HAL not specific yet, since it is band dependent,
1460 * use the one we passed in. */
1461 if (ctry->countryCode == CTRY_DEFAULT) {
1462 ctry->iso[0] = 0;
1463 ctry->iso[1] = 0;
1464 } else if (ctry->iso[0] && ctry->iso[1]) {
1465 if (!ctry->iso[2]) {
1466 if (ath_outdoor)
1467 ctry->iso[2] = 'O';
1468 else
1469 ctry->iso[2] = 'I';
1474 /**************************/
1475 /* Slow Antenna Diversity */
1476 /**************************/
1478 void ath_slow_ant_div_init(struct ath_antdiv *antdiv,
1479 struct ath_softc *sc,
1480 int32_t rssitrig)
1482 int trig;
1484 /* antdivf_rssitrig can range from 40 - 0xff */
1485 trig = (rssitrig > 0xff) ? 0xff : rssitrig;
1486 trig = (rssitrig < 40) ? 40 : rssitrig;
1488 antdiv->antdiv_sc = sc;
1489 antdiv->antdivf_rssitrig = trig;
1492 void ath_slow_ant_div_start(struct ath_antdiv *antdiv,
1493 u8 num_antcfg,
1494 const u8 *bssid)
1496 antdiv->antdiv_num_antcfg =
1497 num_antcfg < ATH_ANT_DIV_MAX_CFG ?
1498 num_antcfg : ATH_ANT_DIV_MAX_CFG;
1499 antdiv->antdiv_state = ATH_ANT_DIV_IDLE;
1500 antdiv->antdiv_curcfg = 0;
1501 antdiv->antdiv_bestcfg = 0;
1502 antdiv->antdiv_laststatetsf = 0;
1504 memcpy(antdiv->antdiv_bssid, bssid, sizeof(antdiv->antdiv_bssid));
1506 antdiv->antdiv_start = 1;
1509 void ath_slow_ant_div_stop(struct ath_antdiv *antdiv)
1511 antdiv->antdiv_start = 0;
1514 static int32_t ath_find_max_val(int32_t *val,
1515 u8 num_val, u8 *max_index)
1517 u32 MaxVal = *val++;
1518 u32 cur_index = 0;
1520 *max_index = 0;
1521 while (++cur_index < num_val) {
1522 if (*val > MaxVal) {
1523 MaxVal = *val;
1524 *max_index = cur_index;
1527 val++;
1530 return MaxVal;
1533 void ath_slow_ant_div(struct ath_antdiv *antdiv,
1534 struct ieee80211_hdr *hdr,
1535 struct ath_rx_status *rx_stats)
1537 struct ath_softc *sc = antdiv->antdiv_sc;
1538 struct ath_hal *ah = sc->sc_ah;
1539 u64 curtsf = 0;
1540 u8 bestcfg, curcfg = antdiv->antdiv_curcfg;
1541 __le16 fc = hdr->frame_control;
1543 if (antdiv->antdiv_start && ieee80211_is_beacon(fc)
1544 && !compare_ether_addr(hdr->addr3, antdiv->antdiv_bssid)) {
1545 antdiv->antdiv_lastbrssi[curcfg] = rx_stats->rs_rssi;
1546 antdiv->antdiv_lastbtsf[curcfg] = ath9k_hw_gettsf64(sc->sc_ah);
1547 curtsf = antdiv->antdiv_lastbtsf[curcfg];
1548 } else {
1549 return;
1552 switch (antdiv->antdiv_state) {
1553 case ATH_ANT_DIV_IDLE:
1554 if ((antdiv->antdiv_lastbrssi[curcfg] <
1555 antdiv->antdivf_rssitrig)
1556 && ((curtsf - antdiv->antdiv_laststatetsf) >
1557 ATH_ANT_DIV_MIN_IDLE_US)) {
1559 curcfg++;
1560 if (curcfg == antdiv->antdiv_num_antcfg)
1561 curcfg = 0;
1563 if (!ath9k_hw_select_antconfig(ah, curcfg)) {
1564 antdiv->antdiv_bestcfg = antdiv->antdiv_curcfg;
1565 antdiv->antdiv_curcfg = curcfg;
1566 antdiv->antdiv_laststatetsf = curtsf;
1567 antdiv->antdiv_state = ATH_ANT_DIV_SCAN;
1570 break;
1572 case ATH_ANT_DIV_SCAN:
1573 if ((curtsf - antdiv->antdiv_laststatetsf) <
1574 ATH_ANT_DIV_MIN_SCAN_US)
1575 break;
1577 curcfg++;
1578 if (curcfg == antdiv->antdiv_num_antcfg)
1579 curcfg = 0;
1581 if (curcfg == antdiv->antdiv_bestcfg) {
1582 ath_find_max_val(antdiv->antdiv_lastbrssi,
1583 antdiv->antdiv_num_antcfg, &bestcfg);
1584 if (!ath9k_hw_select_antconfig(ah, bestcfg)) {
1585 antdiv->antdiv_bestcfg = bestcfg;
1586 antdiv->antdiv_curcfg = bestcfg;
1587 antdiv->antdiv_laststatetsf = curtsf;
1588 antdiv->antdiv_state = ATH_ANT_DIV_IDLE;
1590 } else {
1591 if (!ath9k_hw_select_antconfig(ah, curcfg)) {
1592 antdiv->antdiv_curcfg = curcfg;
1593 antdiv->antdiv_laststatetsf = curtsf;
1594 antdiv->antdiv_state = ATH_ANT_DIV_SCAN;
1598 break;
1602 /***********************/
1603 /* Descriptor Handling */
1604 /***********************/
1607 * Set up DMA descriptors
1609 * This function will allocate both the DMA descriptor structure, and the
1610 * buffers it contains. These are used to contain the descriptors used
1611 * by the system.
1614 int ath_descdma_setup(struct ath_softc *sc,
1615 struct ath_descdma *dd,
1616 struct list_head *head,
1617 const char *name,
1618 int nbuf,
1619 int ndesc)
1621 #define DS2PHYS(_dd, _ds) \
1622 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1623 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1624 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1626 struct ath_desc *ds;
1627 struct ath_buf *bf;
1628 int i, bsize, error;
1630 DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA: %u buffers %u desc/buf\n",
1631 __func__, name, nbuf, ndesc);
1633 /* ath_desc must be a multiple of DWORDs */
1634 if ((sizeof(struct ath_desc) % 4) != 0) {
1635 DPRINTF(sc, ATH_DBG_FATAL, "%s: ath_desc not DWORD aligned\n",
1636 __func__);
1637 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1638 error = -ENOMEM;
1639 goto fail;
1642 dd->dd_name = name;
1643 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1646 * Need additional DMA memory because we can't use
1647 * descriptors that cross the 4K page boundary. Assume
1648 * one skipped descriptor per 4K page.
1650 if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1651 u32 ndesc_skipped =
1652 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1653 u32 dma_len;
1655 while (ndesc_skipped) {
1656 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1657 dd->dd_desc_len += dma_len;
1659 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1663 /* allocate descriptors */
1664 dd->dd_desc = pci_alloc_consistent(sc->pdev,
1665 dd->dd_desc_len,
1666 &dd->dd_desc_paddr);
1667 if (dd->dd_desc == NULL) {
1668 error = -ENOMEM;
1669 goto fail;
1671 ds = dd->dd_desc;
1672 DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA map: %p (%u) -> %llx (%u)\n",
1673 __func__, dd->dd_name, ds, (u32) dd->dd_desc_len,
1674 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1676 /* allocate buffers */
1677 bsize = sizeof(struct ath_buf) * nbuf;
1678 bf = kmalloc(bsize, GFP_KERNEL);
1679 if (bf == NULL) {
1680 error = -ENOMEM;
1681 goto fail2;
1683 memzero(bf, bsize);
1684 dd->dd_bufptr = bf;
1686 INIT_LIST_HEAD(head);
1687 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1688 bf->bf_desc = ds;
1689 bf->bf_daddr = DS2PHYS(dd, ds);
1691 if (!(sc->sc_ah->ah_caps.hw_caps &
1692 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1694 * Skip descriptor addresses which can cause 4KB
1695 * boundary crossing (addr + length) with a 32 dword
1696 * descriptor fetch.
1698 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1699 ASSERT((caddr_t) bf->bf_desc <
1700 ((caddr_t) dd->dd_desc +
1701 dd->dd_desc_len));
1703 ds += ndesc;
1704 bf->bf_desc = ds;
1705 bf->bf_daddr = DS2PHYS(dd, ds);
1708 list_add_tail(&bf->list, head);
1710 return 0;
1711 fail2:
1712 pci_free_consistent(sc->pdev,
1713 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1714 fail:
1715 memzero(dd, sizeof(*dd));
1716 return error;
1717 #undef ATH_DESC_4KB_BOUND_CHECK
1718 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1719 #undef DS2PHYS
1723 * Cleanup DMA descriptors
1725 * This function will free the DMA block that was allocated for the descriptor
1726 * pool. Since this was allocated as one "chunk", it is freed in the same
1727 * manner.
1730 void ath_descdma_cleanup(struct ath_softc *sc,
1731 struct ath_descdma *dd,
1732 struct list_head *head)
1734 /* Free memory associated with descriptors */
1735 pci_free_consistent(sc->pdev,
1736 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1738 INIT_LIST_HEAD(head);
1739 kfree(dd->dd_bufptr);
1740 memzero(dd, sizeof(*dd));
1743 /*************/
1744 /* Utilities */
1745 /*************/
1747 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1749 int qnum;
1751 switch (queue) {
1752 case 0:
1753 qnum = sc->sc_haltype2q[ATH9K_WME_AC_VO];
1754 break;
1755 case 1:
1756 qnum = sc->sc_haltype2q[ATH9K_WME_AC_VI];
1757 break;
1758 case 2:
1759 qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
1760 break;
1761 case 3:
1762 qnum = sc->sc_haltype2q[ATH9K_WME_AC_BK];
1763 break;
1764 default:
1765 qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
1766 break;
1769 return qnum;
1772 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1774 int qnum;
1776 switch (queue) {
1777 case ATH9K_WME_AC_VO:
1778 qnum = 0;
1779 break;
1780 case ATH9K_WME_AC_VI:
1781 qnum = 1;
1782 break;
1783 case ATH9K_WME_AC_BE:
1784 qnum = 2;
1785 break;
1786 case ATH9K_WME_AC_BK:
1787 qnum = 3;
1788 break;
1789 default:
1790 qnum = -1;
1791 break;
1794 return qnum;
1799 * Expand time stamp to TSF
1801 * Extend 15-bit time stamp from rx descriptor to
1802 * a full 64-bit TSF using the current h/w TSF.
1805 u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp)
1807 u64 tsf;
1809 tsf = ath9k_hw_gettsf64(sc->sc_ah);
1810 if ((tsf & 0x7fff) < rstamp)
1811 tsf -= 0x8000;
1812 return (tsf & ~0x7fff) | rstamp;
1816 * Set Default Antenna
1818 * Call into the HAL to set the default antenna to use. Not really valid for
1819 * MIMO technology.
1822 void ath_setdefantenna(void *context, u32 antenna)
1824 struct ath_softc *sc = (struct ath_softc *)context;
1825 struct ath_hal *ah = sc->sc_ah;
1827 /* XXX block beacon interrupts */
1828 ath9k_hw_setantenna(ah, antenna);
1829 sc->sc_defant = antenna;
1830 sc->sc_rxotherant = 0;
1834 * Set Slot Time
1836 * This will wake up the chip if required, and set the slot time for the
1837 * frame (maximum transmit time). Slot time is assumed to be already set
1838 * in the ATH object member sc_slottime
1841 void ath_setslottime(struct ath_softc *sc)
1843 ath9k_hw_setslottime(sc->sc_ah, sc->sc_slottime);
1844 sc->sc_updateslot = OK;