4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
46 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
55 EXPORT_SYMBOL(init_buffer
);
57 inline void touch_buffer(struct buffer_head
*bh
)
59 trace_block_touch_buffer(bh
);
60 mark_page_accessed(bh
->b_page
);
62 EXPORT_SYMBOL(touch_buffer
);
64 static int sleep_on_buffer(void *word
)
70 void __lock_buffer(struct buffer_head
*bh
)
72 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sleep_on_buffer
,
73 TASK_UNINTERRUPTIBLE
);
75 EXPORT_SYMBOL(__lock_buffer
);
77 void unlock_buffer(struct buffer_head
*bh
)
79 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh
->b_state
, BH_Lock
);
83 EXPORT_SYMBOL(unlock_buffer
);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head
* bh
)
92 wait_on_bit(&bh
->b_state
, BH_Lock
, sleep_on_buffer
, TASK_UNINTERRUPTIBLE
);
94 EXPORT_SYMBOL(__wait_on_buffer
);
97 __clear_page_buffers(struct page
*page
)
99 ClearPagePrivate(page
);
100 set_page_private(page
, 0);
101 page_cache_release(page
);
105 static int quiet_error(struct buffer_head
*bh
)
107 if (!test_bit(BH_Quiet
, &bh
->b_state
) && printk_ratelimit())
113 static void buffer_io_error(struct buffer_head
*bh
)
115 char b
[BDEVNAME_SIZE
];
116 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
117 bdevname(bh
->b_bdev
, b
),
118 (unsigned long long)bh
->b_blocknr
);
122 * End-of-IO handler helper function which does not touch the bh after
124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125 * a race there is benign: unlock_buffer() only use the bh's address for
126 * hashing after unlocking the buffer, so it doesn't actually touch the bh
129 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
132 set_buffer_uptodate(bh
);
134 /* This happens, due to failed READA attempts. */
135 clear_buffer_uptodate(bh
);
141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
142 * unlock the buffer. This is what ll_rw_block uses too.
144 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
146 __end_buffer_read_notouch(bh
, uptodate
);
149 EXPORT_SYMBOL(end_buffer_read_sync
);
151 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
153 char b
[BDEVNAME_SIZE
];
156 set_buffer_uptodate(bh
);
158 if (!quiet_error(bh
)) {
160 printk(KERN_WARNING
"lost page write due to "
162 bdevname(bh
->b_bdev
, b
));
164 set_buffer_write_io_error(bh
);
165 clear_buffer_uptodate(bh
);
170 EXPORT_SYMBOL(end_buffer_write_sync
);
173 * Various filesystems appear to want __find_get_block to be non-blocking.
174 * But it's the page lock which protects the buffers. To get around this,
175 * we get exclusion from try_to_free_buffers with the blockdev mapping's
178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179 * may be quite high. This code could TryLock the page, and if that
180 * succeeds, there is no need to take private_lock. (But if
181 * private_lock is contended then so is mapping->tree_lock).
183 static struct buffer_head
*
184 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
186 struct inode
*bd_inode
= bdev
->bd_inode
;
187 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
188 struct buffer_head
*ret
= NULL
;
190 struct buffer_head
*bh
;
191 struct buffer_head
*head
;
195 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
196 page
= find_get_page(bd_mapping
, index
);
200 spin_lock(&bd_mapping
->private_lock
);
201 if (!page_has_buffers(page
))
203 head
= page_buffers(page
);
206 if (!buffer_mapped(bh
))
208 else if (bh
->b_blocknr
== block
) {
213 bh
= bh
->b_this_page
;
214 } while (bh
!= head
);
216 /* we might be here because some of the buffers on this page are
217 * not mapped. This is due to various races between
218 * file io on the block device and getblk. It gets dealt with
219 * elsewhere, don't buffer_error if we had some unmapped buffers
222 char b
[BDEVNAME_SIZE
];
224 printk("__find_get_block_slow() failed. "
225 "block=%llu, b_blocknr=%llu\n",
226 (unsigned long long)block
,
227 (unsigned long long)bh
->b_blocknr
);
228 printk("b_state=0x%08lx, b_size=%zu\n",
229 bh
->b_state
, bh
->b_size
);
230 printk("device %s blocksize: %d\n", bdevname(bdev
, b
),
231 1 << bd_inode
->i_blkbits
);
234 spin_unlock(&bd_mapping
->private_lock
);
235 page_cache_release(page
);
241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
243 static void free_more_memory(void)
248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
251 for_each_online_node(nid
) {
252 (void)first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
253 gfp_zone(GFP_NOFS
), NULL
,
256 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
262 * I/O completion handler for block_read_full_page() - pages
263 * which come unlocked at the end of I/O.
265 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
268 struct buffer_head
*first
;
269 struct buffer_head
*tmp
;
271 int page_uptodate
= 1;
273 BUG_ON(!buffer_async_read(bh
));
277 set_buffer_uptodate(bh
);
279 clear_buffer_uptodate(bh
);
280 if (!quiet_error(bh
))
286 * Be _very_ careful from here on. Bad things can happen if
287 * two buffer heads end IO at almost the same time and both
288 * decide that the page is now completely done.
290 first
= page_buffers(page
);
291 local_irq_save(flags
);
292 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
293 clear_buffer_async_read(bh
);
297 if (!buffer_uptodate(tmp
))
299 if (buffer_async_read(tmp
)) {
300 BUG_ON(!buffer_locked(tmp
));
303 tmp
= tmp
->b_this_page
;
305 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
306 local_irq_restore(flags
);
309 * If none of the buffers had errors and they are all
310 * uptodate then we can set the page uptodate.
312 if (page_uptodate
&& !PageError(page
))
313 SetPageUptodate(page
);
318 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
319 local_irq_restore(flags
);
324 * Completion handler for block_write_full_page() - pages which are unlocked
325 * during I/O, and which have PageWriteback cleared upon I/O completion.
327 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
329 char b
[BDEVNAME_SIZE
];
331 struct buffer_head
*first
;
332 struct buffer_head
*tmp
;
335 BUG_ON(!buffer_async_write(bh
));
339 set_buffer_uptodate(bh
);
341 if (!quiet_error(bh
)) {
343 printk(KERN_WARNING
"lost page write due to "
345 bdevname(bh
->b_bdev
, b
));
347 set_bit(AS_EIO
, &page
->mapping
->flags
);
348 set_buffer_write_io_error(bh
);
349 clear_buffer_uptodate(bh
);
353 first
= page_buffers(page
);
354 local_irq_save(flags
);
355 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
357 clear_buffer_async_write(bh
);
359 tmp
= bh
->b_this_page
;
361 if (buffer_async_write(tmp
)) {
362 BUG_ON(!buffer_locked(tmp
));
365 tmp
= tmp
->b_this_page
;
367 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
368 local_irq_restore(flags
);
369 end_page_writeback(page
);
373 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
374 local_irq_restore(flags
);
377 EXPORT_SYMBOL(end_buffer_async_write
);
380 * If a page's buffers are under async readin (end_buffer_async_read
381 * completion) then there is a possibility that another thread of
382 * control could lock one of the buffers after it has completed
383 * but while some of the other buffers have not completed. This
384 * locked buffer would confuse end_buffer_async_read() into not unlocking
385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
386 * that this buffer is not under async I/O.
388 * The page comes unlocked when it has no locked buffer_async buffers
391 * PageLocked prevents anyone starting new async I/O reads any of
394 * PageWriteback is used to prevent simultaneous writeout of the same
397 * PageLocked prevents anyone from starting writeback of a page which is
398 * under read I/O (PageWriteback is only ever set against a locked page).
400 static void mark_buffer_async_read(struct buffer_head
*bh
)
402 bh
->b_end_io
= end_buffer_async_read
;
403 set_buffer_async_read(bh
);
406 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
407 bh_end_io_t
*handler
)
409 bh
->b_end_io
= handler
;
410 set_buffer_async_write(bh
);
413 void mark_buffer_async_write(struct buffer_head
*bh
)
415 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
417 EXPORT_SYMBOL(mark_buffer_async_write
);
421 * fs/buffer.c contains helper functions for buffer-backed address space's
422 * fsync functions. A common requirement for buffer-based filesystems is
423 * that certain data from the backing blockdev needs to be written out for
424 * a successful fsync(). For example, ext2 indirect blocks need to be
425 * written back and waited upon before fsync() returns.
427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429 * management of a list of dependent buffers at ->i_mapping->private_list.
431 * Locking is a little subtle: try_to_free_buffers() will remove buffers
432 * from their controlling inode's queue when they are being freed. But
433 * try_to_free_buffers() will be operating against the *blockdev* mapping
434 * at the time, not against the S_ISREG file which depends on those buffers.
435 * So the locking for private_list is via the private_lock in the address_space
436 * which backs the buffers. Which is different from the address_space
437 * against which the buffers are listed. So for a particular address_space,
438 * mapping->private_lock does *not* protect mapping->private_list! In fact,
439 * mapping->private_list will always be protected by the backing blockdev's
442 * Which introduces a requirement: all buffers on an address_space's
443 * ->private_list must be from the same address_space: the blockdev's.
445 * address_spaces which do not place buffers at ->private_list via these
446 * utility functions are free to use private_lock and private_list for
447 * whatever they want. The only requirement is that list_empty(private_list)
448 * be true at clear_inode() time.
450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
451 * filesystems should do that. invalidate_inode_buffers() should just go
452 * BUG_ON(!list_empty).
454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
455 * take an address_space, not an inode. And it should be called
456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460 * list if it is already on a list. Because if the buffer is on a list,
461 * it *must* already be on the right one. If not, the filesystem is being
462 * silly. This will save a ton of locking. But first we have to ensure
463 * that buffers are taken *off* the old inode's list when they are freed
464 * (presumably in truncate). That requires careful auditing of all
465 * filesystems (do it inside bforget()). It could also be done by bringing
470 * The buffer's backing address_space's private_lock must be held
472 static void __remove_assoc_queue(struct buffer_head
*bh
)
474 list_del_init(&bh
->b_assoc_buffers
);
475 WARN_ON(!bh
->b_assoc_map
);
476 if (buffer_write_io_error(bh
))
477 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
478 bh
->b_assoc_map
= NULL
;
481 int inode_has_buffers(struct inode
*inode
)
483 return !list_empty(&inode
->i_data
.private_list
);
487 * osync is designed to support O_SYNC io. It waits synchronously for
488 * all already-submitted IO to complete, but does not queue any new
489 * writes to the disk.
491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492 * you dirty the buffers, and then use osync_inode_buffers to wait for
493 * completion. Any other dirty buffers which are not yet queued for
494 * write will not be flushed to disk by the osync.
496 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
498 struct buffer_head
*bh
;
504 list_for_each_prev(p
, list
) {
506 if (buffer_locked(bh
)) {
510 if (!buffer_uptodate(bh
))
521 static void do_thaw_one(struct super_block
*sb
, void *unused
)
523 char b
[BDEVNAME_SIZE
];
524 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
525 printk(KERN_WARNING
"Emergency Thaw on %s\n",
526 bdevname(sb
->s_bdev
, b
));
529 static void do_thaw_all(struct work_struct
*work
)
531 iterate_supers(do_thaw_one
, NULL
);
533 printk(KERN_WARNING
"Emergency Thaw complete\n");
537 * emergency_thaw_all -- forcibly thaw every frozen filesystem
539 * Used for emergency unfreeze of all filesystems via SysRq
541 void emergency_thaw_all(void)
543 struct work_struct
*work
;
545 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
547 INIT_WORK(work
, do_thaw_all
);
553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554 * @mapping: the mapping which wants those buffers written
556 * Starts I/O against the buffers at mapping->private_list, and waits upon
559 * Basically, this is a convenience function for fsync().
560 * @mapping is a file or directory which needs those buffers to be written for
561 * a successful fsync().
563 int sync_mapping_buffers(struct address_space
*mapping
)
565 struct address_space
*buffer_mapping
= mapping
->private_data
;
567 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
570 return fsync_buffers_list(&buffer_mapping
->private_lock
,
571 &mapping
->private_list
);
573 EXPORT_SYMBOL(sync_mapping_buffers
);
576 * Called when we've recently written block `bblock', and it is known that
577 * `bblock' was for a buffer_boundary() buffer. This means that the block at
578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
579 * dirty, schedule it for IO. So that indirects merge nicely with their data.
581 void write_boundary_block(struct block_device
*bdev
,
582 sector_t bblock
, unsigned blocksize
)
584 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
586 if (buffer_dirty(bh
))
587 ll_rw_block(WRITE
, 1, &bh
);
592 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
594 struct address_space
*mapping
= inode
->i_mapping
;
595 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
597 mark_buffer_dirty(bh
);
598 if (!mapping
->private_data
) {
599 mapping
->private_data
= buffer_mapping
;
601 BUG_ON(mapping
->private_data
!= buffer_mapping
);
603 if (!bh
->b_assoc_map
) {
604 spin_lock(&buffer_mapping
->private_lock
);
605 list_move_tail(&bh
->b_assoc_buffers
,
606 &mapping
->private_list
);
607 bh
->b_assoc_map
= mapping
;
608 spin_unlock(&buffer_mapping
->private_lock
);
611 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
617 * If warn is true, then emit a warning if the page is not uptodate and has
618 * not been truncated.
620 static void __set_page_dirty(struct page
*page
,
621 struct address_space
*mapping
, int warn
)
623 spin_lock_irq(&mapping
->tree_lock
);
624 if (page
->mapping
) { /* Race with truncate? */
625 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
626 account_page_dirtied(page
, mapping
);
627 radix_tree_tag_set(&mapping
->page_tree
,
628 page_index(page
), PAGECACHE_TAG_DIRTY
);
630 spin_unlock_irq(&mapping
->tree_lock
);
631 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
635 * Add a page to the dirty page list.
637 * It is a sad fact of life that this function is called from several places
638 * deeply under spinlocking. It may not sleep.
640 * If the page has buffers, the uptodate buffers are set dirty, to preserve
641 * dirty-state coherency between the page and the buffers. It the page does
642 * not have buffers then when they are later attached they will all be set
645 * The buffers are dirtied before the page is dirtied. There's a small race
646 * window in which a writepage caller may see the page cleanness but not the
647 * buffer dirtiness. That's fine. If this code were to set the page dirty
648 * before the buffers, a concurrent writepage caller could clear the page dirty
649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650 * page on the dirty page list.
652 * We use private_lock to lock against try_to_free_buffers while using the
653 * page's buffer list. Also use this to protect against clean buffers being
654 * added to the page after it was set dirty.
656 * FIXME: may need to call ->reservepage here as well. That's rather up to the
657 * address_space though.
659 int __set_page_dirty_buffers(struct page
*page
)
662 struct address_space
*mapping
= page_mapping(page
);
664 if (unlikely(!mapping
))
665 return !TestSetPageDirty(page
);
667 spin_lock(&mapping
->private_lock
);
668 if (page_has_buffers(page
)) {
669 struct buffer_head
*head
= page_buffers(page
);
670 struct buffer_head
*bh
= head
;
673 set_buffer_dirty(bh
);
674 bh
= bh
->b_this_page
;
675 } while (bh
!= head
);
677 newly_dirty
= !TestSetPageDirty(page
);
678 spin_unlock(&mapping
->private_lock
);
681 __set_page_dirty(page
, mapping
, 1);
684 EXPORT_SYMBOL(__set_page_dirty_buffers
);
687 * Write out and wait upon a list of buffers.
689 * We have conflicting pressures: we want to make sure that all
690 * initially dirty buffers get waited on, but that any subsequently
691 * dirtied buffers don't. After all, we don't want fsync to last
692 * forever if somebody is actively writing to the file.
694 * Do this in two main stages: first we copy dirty buffers to a
695 * temporary inode list, queueing the writes as we go. Then we clean
696 * up, waiting for those writes to complete.
698 * During this second stage, any subsequent updates to the file may end
699 * up refiling the buffer on the original inode's dirty list again, so
700 * there is a chance we will end up with a buffer queued for write but
701 * not yet completed on that list. So, as a final cleanup we go through
702 * the osync code to catch these locked, dirty buffers without requeuing
703 * any newly dirty buffers for write.
705 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
707 struct buffer_head
*bh
;
708 struct list_head tmp
;
709 struct address_space
*mapping
;
711 struct blk_plug plug
;
713 INIT_LIST_HEAD(&tmp
);
714 blk_start_plug(&plug
);
717 while (!list_empty(list
)) {
718 bh
= BH_ENTRY(list
->next
);
719 mapping
= bh
->b_assoc_map
;
720 __remove_assoc_queue(bh
);
721 /* Avoid race with mark_buffer_dirty_inode() which does
722 * a lockless check and we rely on seeing the dirty bit */
724 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
725 list_add(&bh
->b_assoc_buffers
, &tmp
);
726 bh
->b_assoc_map
= mapping
;
727 if (buffer_dirty(bh
)) {
731 * Ensure any pending I/O completes so that
732 * write_dirty_buffer() actually writes the
733 * current contents - it is a noop if I/O is
734 * still in flight on potentially older
737 write_dirty_buffer(bh
, WRITE_SYNC
);
740 * Kick off IO for the previous mapping. Note
741 * that we will not run the very last mapping,
742 * wait_on_buffer() will do that for us
743 * through sync_buffer().
752 blk_finish_plug(&plug
);
755 while (!list_empty(&tmp
)) {
756 bh
= BH_ENTRY(tmp
.prev
);
758 mapping
= bh
->b_assoc_map
;
759 __remove_assoc_queue(bh
);
760 /* Avoid race with mark_buffer_dirty_inode() which does
761 * a lockless check and we rely on seeing the dirty bit */
763 if (buffer_dirty(bh
)) {
764 list_add(&bh
->b_assoc_buffers
,
765 &mapping
->private_list
);
766 bh
->b_assoc_map
= mapping
;
770 if (!buffer_uptodate(bh
))
777 err2
= osync_buffers_list(lock
, list
);
785 * Invalidate any and all dirty buffers on a given inode. We are
786 * probably unmounting the fs, but that doesn't mean we have already
787 * done a sync(). Just drop the buffers from the inode list.
789 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
790 * assumes that all the buffers are against the blockdev. Not true
793 void invalidate_inode_buffers(struct inode
*inode
)
795 if (inode_has_buffers(inode
)) {
796 struct address_space
*mapping
= &inode
->i_data
;
797 struct list_head
*list
= &mapping
->private_list
;
798 struct address_space
*buffer_mapping
= mapping
->private_data
;
800 spin_lock(&buffer_mapping
->private_lock
);
801 while (!list_empty(list
))
802 __remove_assoc_queue(BH_ENTRY(list
->next
));
803 spin_unlock(&buffer_mapping
->private_lock
);
806 EXPORT_SYMBOL(invalidate_inode_buffers
);
809 * Remove any clean buffers from the inode's buffer list. This is called
810 * when we're trying to free the inode itself. Those buffers can pin it.
812 * Returns true if all buffers were removed.
814 int remove_inode_buffers(struct inode
*inode
)
818 if (inode_has_buffers(inode
)) {
819 struct address_space
*mapping
= &inode
->i_data
;
820 struct list_head
*list
= &mapping
->private_list
;
821 struct address_space
*buffer_mapping
= mapping
->private_data
;
823 spin_lock(&buffer_mapping
->private_lock
);
824 while (!list_empty(list
)) {
825 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
826 if (buffer_dirty(bh
)) {
830 __remove_assoc_queue(bh
);
832 spin_unlock(&buffer_mapping
->private_lock
);
838 * Create the appropriate buffers when given a page for data area and
839 * the size of each buffer.. Use the bh->b_this_page linked list to
840 * follow the buffers created. Return NULL if unable to create more
843 * The retry flag is used to differentiate async IO (paging, swapping)
844 * which may not fail from ordinary buffer allocations.
846 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
849 struct buffer_head
*bh
, *head
;
855 while ((offset
-= size
) >= 0) {
856 bh
= alloc_buffer_head(GFP_NOFS
);
860 bh
->b_this_page
= head
;
866 /* Link the buffer to its page */
867 set_bh_page(bh
, page
, offset
);
871 * In case anything failed, we just free everything we got.
877 head
= head
->b_this_page
;
878 free_buffer_head(bh
);
883 * Return failure for non-async IO requests. Async IO requests
884 * are not allowed to fail, so we have to wait until buffer heads
885 * become available. But we don't want tasks sleeping with
886 * partially complete buffers, so all were released above.
891 /* We're _really_ low on memory. Now we just
892 * wait for old buffer heads to become free due to
893 * finishing IO. Since this is an async request and
894 * the reserve list is empty, we're sure there are
895 * async buffer heads in use.
900 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
903 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
905 struct buffer_head
*bh
, *tail
;
910 bh
= bh
->b_this_page
;
912 tail
->b_this_page
= head
;
913 attach_page_buffers(page
, head
);
916 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
918 sector_t retval
= ~((sector_t
)0);
919 loff_t sz
= i_size_read(bdev
->bd_inode
);
922 unsigned int sizebits
= blksize_bits(size
);
923 retval
= (sz
>> sizebits
);
929 * Initialise the state of a blockdev page's buffers.
932 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
933 sector_t block
, int size
)
935 struct buffer_head
*head
= page_buffers(page
);
936 struct buffer_head
*bh
= head
;
937 int uptodate
= PageUptodate(page
);
938 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
941 if (!buffer_mapped(bh
)) {
942 init_buffer(bh
, NULL
, NULL
);
944 bh
->b_blocknr
= block
;
946 set_buffer_uptodate(bh
);
947 if (block
< end_block
)
948 set_buffer_mapped(bh
);
951 bh
= bh
->b_this_page
;
952 } while (bh
!= head
);
955 * Caller needs to validate requested block against end of device.
961 * Create the page-cache page that contains the requested block.
963 * This is used purely for blockdev mappings.
966 grow_dev_page(struct block_device
*bdev
, sector_t block
,
967 pgoff_t index
, int size
, int sizebits
)
969 struct inode
*inode
= bdev
->bd_inode
;
971 struct buffer_head
*bh
;
973 int ret
= 0; /* Will call free_more_memory() */
975 page
= find_or_create_page(inode
->i_mapping
, index
,
976 (mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
)|__GFP_MOVABLE
);
980 BUG_ON(!PageLocked(page
));
982 if (page_has_buffers(page
)) {
983 bh
= page_buffers(page
);
984 if (bh
->b_size
== size
) {
985 end_block
= init_page_buffers(page
, bdev
,
986 index
<< sizebits
, size
);
989 if (!try_to_free_buffers(page
))
994 * Allocate some buffers for this page
996 bh
= alloc_page_buffers(page
, size
, 0);
1001 * Link the page to the buffers and initialise them. Take the
1002 * lock to be atomic wrt __find_get_block(), which does not
1003 * run under the page lock.
1005 spin_lock(&inode
->i_mapping
->private_lock
);
1006 link_dev_buffers(page
, bh
);
1007 end_block
= init_page_buffers(page
, bdev
, index
<< sizebits
, size
);
1008 spin_unlock(&inode
->i_mapping
->private_lock
);
1010 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1013 page_cache_release(page
);
1018 * Create buffers for the specified block device block's page. If
1019 * that page was dirty, the buffers are set dirty also.
1022 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1030 } while ((size
<< sizebits
) < PAGE_SIZE
);
1032 index
= block
>> sizebits
;
1035 * Check for a block which wants to lie outside our maximum possible
1036 * pagecache index. (this comparison is done using sector_t types).
1038 if (unlikely(index
!= block
>> sizebits
)) {
1039 char b
[BDEVNAME_SIZE
];
1041 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1043 __func__
, (unsigned long long)block
,
1048 /* Create a page with the proper size buffers.. */
1049 return grow_dev_page(bdev
, block
, index
, size
, sizebits
);
1052 static struct buffer_head
*
1053 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1055 /* Size must be multiple of hard sectorsize */
1056 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1057 (size
< 512 || size
> PAGE_SIZE
))) {
1058 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1060 printk(KERN_ERR
"logical block size: %d\n",
1061 bdev_logical_block_size(bdev
));
1068 struct buffer_head
*bh
;
1071 bh
= __find_get_block(bdev
, block
, size
);
1075 ret
= grow_buffers(bdev
, block
, size
);
1084 * The relationship between dirty buffers and dirty pages:
1086 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1087 * the page is tagged dirty in its radix tree.
1089 * At all times, the dirtiness of the buffers represents the dirtiness of
1090 * subsections of the page. If the page has buffers, the page dirty bit is
1091 * merely a hint about the true dirty state.
1093 * When a page is set dirty in its entirety, all its buffers are marked dirty
1094 * (if the page has buffers).
1096 * When a buffer is marked dirty, its page is dirtied, but the page's other
1099 * Also. When blockdev buffers are explicitly read with bread(), they
1100 * individually become uptodate. But their backing page remains not
1101 * uptodate - even if all of its buffers are uptodate. A subsequent
1102 * block_read_full_page() against that page will discover all the uptodate
1103 * buffers, will set the page uptodate and will perform no I/O.
1107 * mark_buffer_dirty - mark a buffer_head as needing writeout
1108 * @bh: the buffer_head to mark dirty
1110 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1111 * backing page dirty, then tag the page as dirty in its address_space's radix
1112 * tree and then attach the address_space's inode to its superblock's dirty
1115 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1116 * mapping->tree_lock and mapping->host->i_lock.
1118 void mark_buffer_dirty(struct buffer_head
*bh
)
1120 WARN_ON_ONCE(!buffer_uptodate(bh
));
1122 trace_block_dirty_buffer(bh
);
1125 * Very *carefully* optimize the it-is-already-dirty case.
1127 * Don't let the final "is it dirty" escape to before we
1128 * perhaps modified the buffer.
1130 if (buffer_dirty(bh
)) {
1132 if (buffer_dirty(bh
))
1136 if (!test_set_buffer_dirty(bh
)) {
1137 struct page
*page
= bh
->b_page
;
1138 if (!TestSetPageDirty(page
)) {
1139 struct address_space
*mapping
= page_mapping(page
);
1141 __set_page_dirty(page
, mapping
, 0);
1145 EXPORT_SYMBOL(mark_buffer_dirty
);
1148 * Decrement a buffer_head's reference count. If all buffers against a page
1149 * have zero reference count, are clean and unlocked, and if the page is clean
1150 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1151 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1152 * a page but it ends up not being freed, and buffers may later be reattached).
1154 void __brelse(struct buffer_head
* buf
)
1156 if (atomic_read(&buf
->b_count
)) {
1160 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1162 EXPORT_SYMBOL(__brelse
);
1165 * bforget() is like brelse(), except it discards any
1166 * potentially dirty data.
1168 void __bforget(struct buffer_head
*bh
)
1170 clear_buffer_dirty(bh
);
1171 if (bh
->b_assoc_map
) {
1172 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1174 spin_lock(&buffer_mapping
->private_lock
);
1175 list_del_init(&bh
->b_assoc_buffers
);
1176 bh
->b_assoc_map
= NULL
;
1177 spin_unlock(&buffer_mapping
->private_lock
);
1181 EXPORT_SYMBOL(__bforget
);
1183 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1186 if (buffer_uptodate(bh
)) {
1191 bh
->b_end_io
= end_buffer_read_sync
;
1192 submit_bh(READ
, bh
);
1194 if (buffer_uptodate(bh
))
1202 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1203 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1204 * refcount elevated by one when they're in an LRU. A buffer can only appear
1205 * once in a particular CPU's LRU. A single buffer can be present in multiple
1206 * CPU's LRUs at the same time.
1208 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1209 * sb_find_get_block().
1211 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1212 * a local interrupt disable for that.
1215 #define BH_LRU_SIZE 8
1218 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1221 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1224 #define bh_lru_lock() local_irq_disable()
1225 #define bh_lru_unlock() local_irq_enable()
1227 #define bh_lru_lock() preempt_disable()
1228 #define bh_lru_unlock() preempt_enable()
1231 static inline void check_irqs_on(void)
1233 #ifdef irqs_disabled
1234 BUG_ON(irqs_disabled());
1239 * The LRU management algorithm is dopey-but-simple. Sorry.
1241 static void bh_lru_install(struct buffer_head
*bh
)
1243 struct buffer_head
*evictee
= NULL
;
1247 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1248 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1254 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1255 struct buffer_head
*bh2
=
1256 __this_cpu_read(bh_lrus
.bhs
[in
]);
1261 if (out
>= BH_LRU_SIZE
) {
1262 BUG_ON(evictee
!= NULL
);
1269 while (out
< BH_LRU_SIZE
)
1271 memcpy(__this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1280 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1282 static struct buffer_head
*
1283 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1285 struct buffer_head
*ret
= NULL
;
1290 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1291 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1293 if (bh
&& bh
->b_bdev
== bdev
&&
1294 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1297 __this_cpu_write(bh_lrus
.bhs
[i
],
1298 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1301 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1313 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1314 * it in the LRU and mark it as accessed. If it is not present then return
1317 struct buffer_head
*
1318 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1320 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1323 bh
= __find_get_block_slow(bdev
, block
);
1331 EXPORT_SYMBOL(__find_get_block
);
1334 * __getblk will locate (and, if necessary, create) the buffer_head
1335 * which corresponds to the passed block_device, block and size. The
1336 * returned buffer has its reference count incremented.
1338 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1339 * attempt is failing. FIXME, perhaps?
1341 struct buffer_head
*
1342 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1344 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1348 bh
= __getblk_slow(bdev
, block
, size
);
1351 EXPORT_SYMBOL(__getblk
);
1354 * Do async read-ahead on a buffer..
1356 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1358 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1360 ll_rw_block(READA
, 1, &bh
);
1364 EXPORT_SYMBOL(__breadahead
);
1367 * __bread() - reads a specified block and returns the bh
1368 * @bdev: the block_device to read from
1369 * @block: number of block
1370 * @size: size (in bytes) to read
1372 * Reads a specified block, and returns buffer head that contains it.
1373 * It returns NULL if the block was unreadable.
1375 struct buffer_head
*
1376 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1378 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1380 if (likely(bh
) && !buffer_uptodate(bh
))
1381 bh
= __bread_slow(bh
);
1384 EXPORT_SYMBOL(__bread
);
1387 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1388 * This doesn't race because it runs in each cpu either in irq
1389 * or with preempt disabled.
1391 static void invalidate_bh_lru(void *arg
)
1393 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1396 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1400 put_cpu_var(bh_lrus
);
1403 static bool has_bh_in_lru(int cpu
, void *dummy
)
1405 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1408 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1416 void invalidate_bh_lrus(void)
1418 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1420 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1422 void set_bh_page(struct buffer_head
*bh
,
1423 struct page
*page
, unsigned long offset
)
1426 BUG_ON(offset
>= PAGE_SIZE
);
1427 if (PageHighMem(page
))
1429 * This catches illegal uses and preserves the offset:
1431 bh
->b_data
= (char *)(0 + offset
);
1433 bh
->b_data
= page_address(page
) + offset
;
1435 EXPORT_SYMBOL(set_bh_page
);
1438 * Called when truncating a buffer on a page completely.
1440 static void discard_buffer(struct buffer_head
* bh
)
1443 clear_buffer_dirty(bh
);
1445 clear_buffer_mapped(bh
);
1446 clear_buffer_req(bh
);
1447 clear_buffer_new(bh
);
1448 clear_buffer_delay(bh
);
1449 clear_buffer_unwritten(bh
);
1454 * block_invalidatepage - invalidate part or all of a buffer-backed page
1456 * @page: the page which is affected
1457 * @offset: the index of the truncation point
1459 * block_invalidatepage() is called when all or part of the page has become
1460 * invalidated by a truncate operation.
1462 * block_invalidatepage() does not have to release all buffers, but it must
1463 * ensure that no dirty buffer is left outside @offset and that no I/O
1464 * is underway against any of the blocks which are outside the truncation
1465 * point. Because the caller is about to free (and possibly reuse) those
1468 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1470 struct buffer_head
*head
, *bh
, *next
;
1471 unsigned int curr_off
= 0;
1473 BUG_ON(!PageLocked(page
));
1474 if (!page_has_buffers(page
))
1477 head
= page_buffers(page
);
1480 unsigned int next_off
= curr_off
+ bh
->b_size
;
1481 next
= bh
->b_this_page
;
1484 * is this block fully invalidated?
1486 if (offset
<= curr_off
)
1488 curr_off
= next_off
;
1490 } while (bh
!= head
);
1493 * We release buffers only if the entire page is being invalidated.
1494 * The get_block cached value has been unconditionally invalidated,
1495 * so real IO is not possible anymore.
1498 try_to_release_page(page
, 0);
1502 EXPORT_SYMBOL(block_invalidatepage
);
1505 * We attach and possibly dirty the buffers atomically wrt
1506 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1507 * is already excluded via the page lock.
1509 void create_empty_buffers(struct page
*page
,
1510 unsigned long blocksize
, unsigned long b_state
)
1512 struct buffer_head
*bh
, *head
, *tail
;
1514 head
= alloc_page_buffers(page
, blocksize
, 1);
1517 bh
->b_state
|= b_state
;
1519 bh
= bh
->b_this_page
;
1521 tail
->b_this_page
= head
;
1523 spin_lock(&page
->mapping
->private_lock
);
1524 if (PageUptodate(page
) || PageDirty(page
)) {
1527 if (PageDirty(page
))
1528 set_buffer_dirty(bh
);
1529 if (PageUptodate(page
))
1530 set_buffer_uptodate(bh
);
1531 bh
= bh
->b_this_page
;
1532 } while (bh
!= head
);
1534 attach_page_buffers(page
, head
);
1535 spin_unlock(&page
->mapping
->private_lock
);
1537 EXPORT_SYMBOL(create_empty_buffers
);
1540 * We are taking a block for data and we don't want any output from any
1541 * buffer-cache aliases starting from return from that function and
1542 * until the moment when something will explicitly mark the buffer
1543 * dirty (hopefully that will not happen until we will free that block ;-)
1544 * We don't even need to mark it not-uptodate - nobody can expect
1545 * anything from a newly allocated buffer anyway. We used to used
1546 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1547 * don't want to mark the alias unmapped, for example - it would confuse
1548 * anyone who might pick it with bread() afterwards...
1550 * Also.. Note that bforget() doesn't lock the buffer. So there can
1551 * be writeout I/O going on against recently-freed buffers. We don't
1552 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1553 * only if we really need to. That happens here.
1555 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1557 struct buffer_head
*old_bh
;
1561 old_bh
= __find_get_block_slow(bdev
, block
);
1563 clear_buffer_dirty(old_bh
);
1564 wait_on_buffer(old_bh
);
1565 clear_buffer_req(old_bh
);
1569 EXPORT_SYMBOL(unmap_underlying_metadata
);
1572 * Size is a power-of-two in the range 512..PAGE_SIZE,
1573 * and the case we care about most is PAGE_SIZE.
1575 * So this *could* possibly be written with those
1576 * constraints in mind (relevant mostly if some
1577 * architecture has a slow bit-scan instruction)
1579 static inline int block_size_bits(unsigned int blocksize
)
1581 return ilog2(blocksize
);
1584 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1586 BUG_ON(!PageLocked(page
));
1588 if (!page_has_buffers(page
))
1589 create_empty_buffers(page
, 1 << ACCESS_ONCE(inode
->i_blkbits
), b_state
);
1590 return page_buffers(page
);
1594 * NOTE! All mapped/uptodate combinations are valid:
1596 * Mapped Uptodate Meaning
1598 * No No "unknown" - must do get_block()
1599 * No Yes "hole" - zero-filled
1600 * Yes No "allocated" - allocated on disk, not read in
1601 * Yes Yes "valid" - allocated and up-to-date in memory.
1603 * "Dirty" is valid only with the last case (mapped+uptodate).
1607 * While block_write_full_page is writing back the dirty buffers under
1608 * the page lock, whoever dirtied the buffers may decide to clean them
1609 * again at any time. We handle that by only looking at the buffer
1610 * state inside lock_buffer().
1612 * If block_write_full_page() is called for regular writeback
1613 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614 * locked buffer. This only can happen if someone has written the buffer
1615 * directly, with submit_bh(). At the address_space level PageWriteback
1616 * prevents this contention from occurring.
1618 * If block_write_full_page() is called with wbc->sync_mode ==
1619 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1620 * causes the writes to be flagged as synchronous writes.
1622 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1623 get_block_t
*get_block
, struct writeback_control
*wbc
,
1624 bh_end_io_t
*handler
)
1628 sector_t last_block
;
1629 struct buffer_head
*bh
, *head
;
1630 unsigned int blocksize
, bbits
;
1631 int nr_underway
= 0;
1632 int write_op
= (wbc
->sync_mode
== WB_SYNC_ALL
?
1633 WRITE_SYNC
: WRITE
);
1635 head
= create_page_buffers(page
, inode
,
1636 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1639 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1640 * here, and the (potentially unmapped) buffers may become dirty at
1641 * any time. If a buffer becomes dirty here after we've inspected it
1642 * then we just miss that fact, and the page stays dirty.
1644 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1645 * handle that here by just cleaning them.
1649 blocksize
= bh
->b_size
;
1650 bbits
= block_size_bits(blocksize
);
1652 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1653 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1656 * Get all the dirty buffers mapped to disk addresses and
1657 * handle any aliases from the underlying blockdev's mapping.
1660 if (block
> last_block
) {
1662 * mapped buffers outside i_size will occur, because
1663 * this page can be outside i_size when there is a
1664 * truncate in progress.
1667 * The buffer was zeroed by block_write_full_page()
1669 clear_buffer_dirty(bh
);
1670 set_buffer_uptodate(bh
);
1671 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1673 WARN_ON(bh
->b_size
!= blocksize
);
1674 err
= get_block(inode
, block
, bh
, 1);
1677 clear_buffer_delay(bh
);
1678 if (buffer_new(bh
)) {
1679 /* blockdev mappings never come here */
1680 clear_buffer_new(bh
);
1681 unmap_underlying_metadata(bh
->b_bdev
,
1685 bh
= bh
->b_this_page
;
1687 } while (bh
!= head
);
1690 if (!buffer_mapped(bh
))
1693 * If it's a fully non-blocking write attempt and we cannot
1694 * lock the buffer then redirty the page. Note that this can
1695 * potentially cause a busy-wait loop from writeback threads
1696 * and kswapd activity, but those code paths have their own
1697 * higher-level throttling.
1699 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1701 } else if (!trylock_buffer(bh
)) {
1702 redirty_page_for_writepage(wbc
, page
);
1705 if (test_clear_buffer_dirty(bh
)) {
1706 mark_buffer_async_write_endio(bh
, handler
);
1710 } while ((bh
= bh
->b_this_page
) != head
);
1713 * The page and its buffers are protected by PageWriteback(), so we can
1714 * drop the bh refcounts early.
1716 BUG_ON(PageWriteback(page
));
1717 set_page_writeback(page
);
1720 struct buffer_head
*next
= bh
->b_this_page
;
1721 if (buffer_async_write(bh
)) {
1722 submit_bh(write_op
, bh
);
1726 } while (bh
!= head
);
1731 if (nr_underway
== 0) {
1733 * The page was marked dirty, but the buffers were
1734 * clean. Someone wrote them back by hand with
1735 * ll_rw_block/submit_bh. A rare case.
1737 end_page_writeback(page
);
1740 * The page and buffer_heads can be released at any time from
1748 * ENOSPC, or some other error. We may already have added some
1749 * blocks to the file, so we need to write these out to avoid
1750 * exposing stale data.
1751 * The page is currently locked and not marked for writeback
1754 /* Recovery: lock and submit the mapped buffers */
1756 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1757 !buffer_delay(bh
)) {
1759 mark_buffer_async_write_endio(bh
, handler
);
1762 * The buffer may have been set dirty during
1763 * attachment to a dirty page.
1765 clear_buffer_dirty(bh
);
1767 } while ((bh
= bh
->b_this_page
) != head
);
1769 BUG_ON(PageWriteback(page
));
1770 mapping_set_error(page
->mapping
, err
);
1771 set_page_writeback(page
);
1773 struct buffer_head
*next
= bh
->b_this_page
;
1774 if (buffer_async_write(bh
)) {
1775 clear_buffer_dirty(bh
);
1776 submit_bh(write_op
, bh
);
1780 } while (bh
!= head
);
1786 * If a page has any new buffers, zero them out here, and mark them uptodate
1787 * and dirty so they'll be written out (in order to prevent uninitialised
1788 * block data from leaking). And clear the new bit.
1790 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1792 unsigned int block_start
, block_end
;
1793 struct buffer_head
*head
, *bh
;
1795 BUG_ON(!PageLocked(page
));
1796 if (!page_has_buffers(page
))
1799 bh
= head
= page_buffers(page
);
1802 block_end
= block_start
+ bh
->b_size
;
1804 if (buffer_new(bh
)) {
1805 if (block_end
> from
&& block_start
< to
) {
1806 if (!PageUptodate(page
)) {
1807 unsigned start
, size
;
1809 start
= max(from
, block_start
);
1810 size
= min(to
, block_end
) - start
;
1812 zero_user(page
, start
, size
);
1813 set_buffer_uptodate(bh
);
1816 clear_buffer_new(bh
);
1817 mark_buffer_dirty(bh
);
1821 block_start
= block_end
;
1822 bh
= bh
->b_this_page
;
1823 } while (bh
!= head
);
1825 EXPORT_SYMBOL(page_zero_new_buffers
);
1827 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1828 get_block_t
*get_block
)
1830 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1831 unsigned to
= from
+ len
;
1832 struct inode
*inode
= page
->mapping
->host
;
1833 unsigned block_start
, block_end
;
1836 unsigned blocksize
, bbits
;
1837 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1839 BUG_ON(!PageLocked(page
));
1840 BUG_ON(from
> PAGE_CACHE_SIZE
);
1841 BUG_ON(to
> PAGE_CACHE_SIZE
);
1844 head
= create_page_buffers(page
, inode
, 0);
1845 blocksize
= head
->b_size
;
1846 bbits
= block_size_bits(blocksize
);
1848 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1850 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1851 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1852 block_end
= block_start
+ blocksize
;
1853 if (block_end
<= from
|| block_start
>= to
) {
1854 if (PageUptodate(page
)) {
1855 if (!buffer_uptodate(bh
))
1856 set_buffer_uptodate(bh
);
1861 clear_buffer_new(bh
);
1862 if (!buffer_mapped(bh
)) {
1863 WARN_ON(bh
->b_size
!= blocksize
);
1864 err
= get_block(inode
, block
, bh
, 1);
1867 if (buffer_new(bh
)) {
1868 unmap_underlying_metadata(bh
->b_bdev
,
1870 if (PageUptodate(page
)) {
1871 clear_buffer_new(bh
);
1872 set_buffer_uptodate(bh
);
1873 mark_buffer_dirty(bh
);
1876 if (block_end
> to
|| block_start
< from
)
1877 zero_user_segments(page
,
1883 if (PageUptodate(page
)) {
1884 if (!buffer_uptodate(bh
))
1885 set_buffer_uptodate(bh
);
1888 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1889 !buffer_unwritten(bh
) &&
1890 (block_start
< from
|| block_end
> to
)) {
1891 ll_rw_block(READ
, 1, &bh
);
1896 * If we issued read requests - let them complete.
1898 while(wait_bh
> wait
) {
1899 wait_on_buffer(*--wait_bh
);
1900 if (!buffer_uptodate(*wait_bh
))
1904 page_zero_new_buffers(page
, from
, to
);
1907 EXPORT_SYMBOL(__block_write_begin
);
1909 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1910 unsigned from
, unsigned to
)
1912 unsigned block_start
, block_end
;
1915 struct buffer_head
*bh
, *head
;
1917 bh
= head
= page_buffers(page
);
1918 blocksize
= bh
->b_size
;
1922 block_end
= block_start
+ blocksize
;
1923 if (block_end
<= from
|| block_start
>= to
) {
1924 if (!buffer_uptodate(bh
))
1927 set_buffer_uptodate(bh
);
1928 mark_buffer_dirty(bh
);
1930 clear_buffer_new(bh
);
1932 block_start
= block_end
;
1933 bh
= bh
->b_this_page
;
1934 } while (bh
!= head
);
1937 * If this is a partial write which happened to make all buffers
1938 * uptodate then we can optimize away a bogus readpage() for
1939 * the next read(). Here we 'discover' whether the page went
1940 * uptodate as a result of this (potentially partial) write.
1943 SetPageUptodate(page
);
1948 * block_write_begin takes care of the basic task of block allocation and
1949 * bringing partial write blocks uptodate first.
1951 * The filesystem needs to handle block truncation upon failure.
1953 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
1954 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
1956 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1960 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1964 status
= __block_write_begin(page
, pos
, len
, get_block
);
1965 if (unlikely(status
)) {
1967 page_cache_release(page
);
1974 EXPORT_SYMBOL(block_write_begin
);
1976 int block_write_end(struct file
*file
, struct address_space
*mapping
,
1977 loff_t pos
, unsigned len
, unsigned copied
,
1978 struct page
*page
, void *fsdata
)
1980 struct inode
*inode
= mapping
->host
;
1983 start
= pos
& (PAGE_CACHE_SIZE
- 1);
1985 if (unlikely(copied
< len
)) {
1987 * The buffers that were written will now be uptodate, so we
1988 * don't have to worry about a readpage reading them and
1989 * overwriting a partial write. However if we have encountered
1990 * a short write and only partially written into a buffer, it
1991 * will not be marked uptodate, so a readpage might come in and
1992 * destroy our partial write.
1994 * Do the simplest thing, and just treat any short write to a
1995 * non uptodate page as a zero-length write, and force the
1996 * caller to redo the whole thing.
1998 if (!PageUptodate(page
))
2001 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2003 flush_dcache_page(page
);
2005 /* This could be a short (even 0-length) commit */
2006 __block_commit_write(inode
, page
, start
, start
+copied
);
2010 EXPORT_SYMBOL(block_write_end
);
2012 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2013 loff_t pos
, unsigned len
, unsigned copied
,
2014 struct page
*page
, void *fsdata
)
2016 struct inode
*inode
= mapping
->host
;
2017 int i_size_changed
= 0;
2019 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2022 * No need to use i_size_read() here, the i_size
2023 * cannot change under us because we hold i_mutex.
2025 * But it's important to update i_size while still holding page lock:
2026 * page writeout could otherwise come in and zero beyond i_size.
2028 if (pos
+copied
> inode
->i_size
) {
2029 i_size_write(inode
, pos
+copied
);
2034 page_cache_release(page
);
2037 * Don't mark the inode dirty under page lock. First, it unnecessarily
2038 * makes the holding time of page lock longer. Second, it forces lock
2039 * ordering of page lock and transaction start for journaling
2043 mark_inode_dirty(inode
);
2047 EXPORT_SYMBOL(generic_write_end
);
2050 * block_is_partially_uptodate checks whether buffers within a page are
2053 * Returns true if all buffers which correspond to a file portion
2054 * we want to read are uptodate.
2056 int block_is_partially_uptodate(struct page
*page
, read_descriptor_t
*desc
,
2059 unsigned block_start
, block_end
, blocksize
;
2061 struct buffer_head
*bh
, *head
;
2064 if (!page_has_buffers(page
))
2067 head
= page_buffers(page
);
2068 blocksize
= head
->b_size
;
2069 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, desc
->count
);
2071 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
2077 block_end
= block_start
+ blocksize
;
2078 if (block_end
> from
&& block_start
< to
) {
2079 if (!buffer_uptodate(bh
)) {
2083 if (block_end
>= to
)
2086 block_start
= block_end
;
2087 bh
= bh
->b_this_page
;
2088 } while (bh
!= head
);
2092 EXPORT_SYMBOL(block_is_partially_uptodate
);
2095 * Generic "read page" function for block devices that have the normal
2096 * get_block functionality. This is most of the block device filesystems.
2097 * Reads the page asynchronously --- the unlock_buffer() and
2098 * set/clear_buffer_uptodate() functions propagate buffer state into the
2099 * page struct once IO has completed.
2101 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2103 struct inode
*inode
= page
->mapping
->host
;
2104 sector_t iblock
, lblock
;
2105 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2106 unsigned int blocksize
, bbits
;
2108 int fully_mapped
= 1;
2110 head
= create_page_buffers(page
, inode
, 0);
2111 blocksize
= head
->b_size
;
2112 bbits
= block_size_bits(blocksize
);
2114 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
2115 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2121 if (buffer_uptodate(bh
))
2124 if (!buffer_mapped(bh
)) {
2128 if (iblock
< lblock
) {
2129 WARN_ON(bh
->b_size
!= blocksize
);
2130 err
= get_block(inode
, iblock
, bh
, 0);
2134 if (!buffer_mapped(bh
)) {
2135 zero_user(page
, i
* blocksize
, blocksize
);
2137 set_buffer_uptodate(bh
);
2141 * get_block() might have updated the buffer
2144 if (buffer_uptodate(bh
))
2148 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2151 SetPageMappedToDisk(page
);
2155 * All buffers are uptodate - we can set the page uptodate
2156 * as well. But not if get_block() returned an error.
2158 if (!PageError(page
))
2159 SetPageUptodate(page
);
2164 /* Stage two: lock the buffers */
2165 for (i
= 0; i
< nr
; i
++) {
2168 mark_buffer_async_read(bh
);
2172 * Stage 3: start the IO. Check for uptodateness
2173 * inside the buffer lock in case another process reading
2174 * the underlying blockdev brought it uptodate (the sct fix).
2176 for (i
= 0; i
< nr
; i
++) {
2178 if (buffer_uptodate(bh
))
2179 end_buffer_async_read(bh
, 1);
2181 submit_bh(READ
, bh
);
2185 EXPORT_SYMBOL(block_read_full_page
);
2187 /* utility function for filesystems that need to do work on expanding
2188 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2189 * deal with the hole.
2191 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2193 struct address_space
*mapping
= inode
->i_mapping
;
2198 err
= inode_newsize_ok(inode
, size
);
2202 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2203 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2208 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2214 EXPORT_SYMBOL(generic_cont_expand_simple
);
2216 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2217 loff_t pos
, loff_t
*bytes
)
2219 struct inode
*inode
= mapping
->host
;
2220 unsigned blocksize
= 1 << inode
->i_blkbits
;
2223 pgoff_t index
, curidx
;
2225 unsigned zerofrom
, offset
, len
;
2228 index
= pos
>> PAGE_CACHE_SHIFT
;
2229 offset
= pos
& ~PAGE_CACHE_MASK
;
2231 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2232 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2233 if (zerofrom
& (blocksize
-1)) {
2234 *bytes
|= (blocksize
-1);
2237 len
= PAGE_CACHE_SIZE
- zerofrom
;
2239 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2240 AOP_FLAG_UNINTERRUPTIBLE
,
2244 zero_user(page
, zerofrom
, len
);
2245 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2252 balance_dirty_pages_ratelimited(mapping
);
2255 /* page covers the boundary, find the boundary offset */
2256 if (index
== curidx
) {
2257 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2258 /* if we will expand the thing last block will be filled */
2259 if (offset
<= zerofrom
) {
2262 if (zerofrom
& (blocksize
-1)) {
2263 *bytes
|= (blocksize
-1);
2266 len
= offset
- zerofrom
;
2268 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2269 AOP_FLAG_UNINTERRUPTIBLE
,
2273 zero_user(page
, zerofrom
, len
);
2274 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2286 * For moronic filesystems that do not allow holes in file.
2287 * We may have to extend the file.
2289 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2290 loff_t pos
, unsigned len
, unsigned flags
,
2291 struct page
**pagep
, void **fsdata
,
2292 get_block_t
*get_block
, loff_t
*bytes
)
2294 struct inode
*inode
= mapping
->host
;
2295 unsigned blocksize
= 1 << inode
->i_blkbits
;
2299 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2303 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2304 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2305 *bytes
|= (blocksize
-1);
2309 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2311 EXPORT_SYMBOL(cont_write_begin
);
2313 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2315 struct inode
*inode
= page
->mapping
->host
;
2316 __block_commit_write(inode
,page
,from
,to
);
2319 EXPORT_SYMBOL(block_commit_write
);
2322 * block_page_mkwrite() is not allowed to change the file size as it gets
2323 * called from a page fault handler when a page is first dirtied. Hence we must
2324 * be careful to check for EOF conditions here. We set the page up correctly
2325 * for a written page which means we get ENOSPC checking when writing into
2326 * holes and correct delalloc and unwritten extent mapping on filesystems that
2327 * support these features.
2329 * We are not allowed to take the i_mutex here so we have to play games to
2330 * protect against truncate races as the page could now be beyond EOF. Because
2331 * truncate writes the inode size before removing pages, once we have the
2332 * page lock we can determine safely if the page is beyond EOF. If it is not
2333 * beyond EOF, then the page is guaranteed safe against truncation until we
2336 * Direct callers of this function should protect against filesystem freezing
2337 * using sb_start_write() - sb_end_write() functions.
2339 int __block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2340 get_block_t get_block
)
2342 struct page
*page
= vmf
->page
;
2343 struct inode
*inode
= file_inode(vma
->vm_file
);
2349 size
= i_size_read(inode
);
2350 if ((page
->mapping
!= inode
->i_mapping
) ||
2351 (page_offset(page
) > size
)) {
2352 /* We overload EFAULT to mean page got truncated */
2357 /* page is wholly or partially inside EOF */
2358 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2359 end
= size
& ~PAGE_CACHE_MASK
;
2361 end
= PAGE_CACHE_SIZE
;
2363 ret
= __block_write_begin(page
, 0, end
, get_block
);
2365 ret
= block_commit_write(page
, 0, end
);
2367 if (unlikely(ret
< 0))
2369 set_page_dirty(page
);
2370 wait_for_stable_page(page
);
2376 EXPORT_SYMBOL(__block_page_mkwrite
);
2378 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2379 get_block_t get_block
)
2382 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
2384 sb_start_pagefault(sb
);
2387 * Update file times before taking page lock. We may end up failing the
2388 * fault so this update may be superfluous but who really cares...
2390 file_update_time(vma
->vm_file
);
2392 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
2393 sb_end_pagefault(sb
);
2394 return block_page_mkwrite_return(ret
);
2396 EXPORT_SYMBOL(block_page_mkwrite
);
2399 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2400 * immediately, while under the page lock. So it needs a special end_io
2401 * handler which does not touch the bh after unlocking it.
2403 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2405 __end_buffer_read_notouch(bh
, uptodate
);
2409 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2410 * the page (converting it to circular linked list and taking care of page
2413 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2415 struct buffer_head
*bh
;
2417 BUG_ON(!PageLocked(page
));
2419 spin_lock(&page
->mapping
->private_lock
);
2422 if (PageDirty(page
))
2423 set_buffer_dirty(bh
);
2424 if (!bh
->b_this_page
)
2425 bh
->b_this_page
= head
;
2426 bh
= bh
->b_this_page
;
2427 } while (bh
!= head
);
2428 attach_page_buffers(page
, head
);
2429 spin_unlock(&page
->mapping
->private_lock
);
2433 * On entry, the page is fully not uptodate.
2434 * On exit the page is fully uptodate in the areas outside (from,to)
2435 * The filesystem needs to handle block truncation upon failure.
2437 int nobh_write_begin(struct address_space
*mapping
,
2438 loff_t pos
, unsigned len
, unsigned flags
,
2439 struct page
**pagep
, void **fsdata
,
2440 get_block_t
*get_block
)
2442 struct inode
*inode
= mapping
->host
;
2443 const unsigned blkbits
= inode
->i_blkbits
;
2444 const unsigned blocksize
= 1 << blkbits
;
2445 struct buffer_head
*head
, *bh
;
2449 unsigned block_in_page
;
2450 unsigned block_start
, block_end
;
2451 sector_t block_in_file
;
2454 int is_mapped_to_disk
= 1;
2456 index
= pos
>> PAGE_CACHE_SHIFT
;
2457 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2460 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2466 if (page_has_buffers(page
)) {
2467 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2473 if (PageMappedToDisk(page
))
2477 * Allocate buffers so that we can keep track of state, and potentially
2478 * attach them to the page if an error occurs. In the common case of
2479 * no error, they will just be freed again without ever being attached
2480 * to the page (which is all OK, because we're under the page lock).
2482 * Be careful: the buffer linked list is a NULL terminated one, rather
2483 * than the circular one we're used to.
2485 head
= alloc_page_buffers(page
, blocksize
, 0);
2491 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2494 * We loop across all blocks in the page, whether or not they are
2495 * part of the affected region. This is so we can discover if the
2496 * page is fully mapped-to-disk.
2498 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2499 block_start
< PAGE_CACHE_SIZE
;
2500 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2503 block_end
= block_start
+ blocksize
;
2506 if (block_start
>= to
)
2508 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2512 if (!buffer_mapped(bh
))
2513 is_mapped_to_disk
= 0;
2515 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2516 if (PageUptodate(page
)) {
2517 set_buffer_uptodate(bh
);
2520 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2521 zero_user_segments(page
, block_start
, from
,
2525 if (buffer_uptodate(bh
))
2526 continue; /* reiserfs does this */
2527 if (block_start
< from
|| block_end
> to
) {
2529 bh
->b_end_io
= end_buffer_read_nobh
;
2530 submit_bh(READ
, bh
);
2537 * The page is locked, so these buffers are protected from
2538 * any VM or truncate activity. Hence we don't need to care
2539 * for the buffer_head refcounts.
2541 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2543 if (!buffer_uptodate(bh
))
2550 if (is_mapped_to_disk
)
2551 SetPageMappedToDisk(page
);
2553 *fsdata
= head
; /* to be released by nobh_write_end */
2560 * Error recovery is a bit difficult. We need to zero out blocks that
2561 * were newly allocated, and dirty them to ensure they get written out.
2562 * Buffers need to be attached to the page at this point, otherwise
2563 * the handling of potential IO errors during writeout would be hard
2564 * (could try doing synchronous writeout, but what if that fails too?)
2566 attach_nobh_buffers(page
, head
);
2567 page_zero_new_buffers(page
, from
, to
);
2571 page_cache_release(page
);
2576 EXPORT_SYMBOL(nobh_write_begin
);
2578 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2579 loff_t pos
, unsigned len
, unsigned copied
,
2580 struct page
*page
, void *fsdata
)
2582 struct inode
*inode
= page
->mapping
->host
;
2583 struct buffer_head
*head
= fsdata
;
2584 struct buffer_head
*bh
;
2585 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2587 if (unlikely(copied
< len
) && head
)
2588 attach_nobh_buffers(page
, head
);
2589 if (page_has_buffers(page
))
2590 return generic_write_end(file
, mapping
, pos
, len
,
2591 copied
, page
, fsdata
);
2593 SetPageUptodate(page
);
2594 set_page_dirty(page
);
2595 if (pos
+copied
> inode
->i_size
) {
2596 i_size_write(inode
, pos
+copied
);
2597 mark_inode_dirty(inode
);
2601 page_cache_release(page
);
2605 head
= head
->b_this_page
;
2606 free_buffer_head(bh
);
2611 EXPORT_SYMBOL(nobh_write_end
);
2614 * nobh_writepage() - based on block_full_write_page() except
2615 * that it tries to operate without attaching bufferheads to
2618 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2619 struct writeback_control
*wbc
)
2621 struct inode
* const inode
= page
->mapping
->host
;
2622 loff_t i_size
= i_size_read(inode
);
2623 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2627 /* Is the page fully inside i_size? */
2628 if (page
->index
< end_index
)
2631 /* Is the page fully outside i_size? (truncate in progress) */
2632 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2633 if (page
->index
>= end_index
+1 || !offset
) {
2635 * The page may have dirty, unmapped buffers. For example,
2636 * they may have been added in ext3_writepage(). Make them
2637 * freeable here, so the page does not leak.
2640 /* Not really sure about this - do we need this ? */
2641 if (page
->mapping
->a_ops
->invalidatepage
)
2642 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2645 return 0; /* don't care */
2649 * The page straddles i_size. It must be zeroed out on each and every
2650 * writepage invocation because it may be mmapped. "A file is mapped
2651 * in multiples of the page size. For a file that is not a multiple of
2652 * the page size, the remaining memory is zeroed when mapped, and
2653 * writes to that region are not written out to the file."
2655 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2657 ret
= mpage_writepage(page
, get_block
, wbc
);
2659 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2660 end_buffer_async_write
);
2663 EXPORT_SYMBOL(nobh_writepage
);
2665 int nobh_truncate_page(struct address_space
*mapping
,
2666 loff_t from
, get_block_t
*get_block
)
2668 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2669 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2672 unsigned length
, pos
;
2673 struct inode
*inode
= mapping
->host
;
2675 struct buffer_head map_bh
;
2678 blocksize
= 1 << inode
->i_blkbits
;
2679 length
= offset
& (blocksize
- 1);
2681 /* Block boundary? Nothing to do */
2685 length
= blocksize
- length
;
2686 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2688 page
= grab_cache_page(mapping
, index
);
2693 if (page_has_buffers(page
)) {
2696 page_cache_release(page
);
2697 return block_truncate_page(mapping
, from
, get_block
);
2700 /* Find the buffer that contains "offset" */
2702 while (offset
>= pos
) {
2707 map_bh
.b_size
= blocksize
;
2709 err
= get_block(inode
, iblock
, &map_bh
, 0);
2712 /* unmapped? It's a hole - nothing to do */
2713 if (!buffer_mapped(&map_bh
))
2716 /* Ok, it's mapped. Make sure it's up-to-date */
2717 if (!PageUptodate(page
)) {
2718 err
= mapping
->a_ops
->readpage(NULL
, page
);
2720 page_cache_release(page
);
2724 if (!PageUptodate(page
)) {
2728 if (page_has_buffers(page
))
2731 zero_user(page
, offset
, length
);
2732 set_page_dirty(page
);
2737 page_cache_release(page
);
2741 EXPORT_SYMBOL(nobh_truncate_page
);
2743 int block_truncate_page(struct address_space
*mapping
,
2744 loff_t from
, get_block_t
*get_block
)
2746 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2747 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2750 unsigned length
, pos
;
2751 struct inode
*inode
= mapping
->host
;
2753 struct buffer_head
*bh
;
2756 blocksize
= 1 << inode
->i_blkbits
;
2757 length
= offset
& (blocksize
- 1);
2759 /* Block boundary? Nothing to do */
2763 length
= blocksize
- length
;
2764 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2766 page
= grab_cache_page(mapping
, index
);
2771 if (!page_has_buffers(page
))
2772 create_empty_buffers(page
, blocksize
, 0);
2774 /* Find the buffer that contains "offset" */
2775 bh
= page_buffers(page
);
2777 while (offset
>= pos
) {
2778 bh
= bh
->b_this_page
;
2784 if (!buffer_mapped(bh
)) {
2785 WARN_ON(bh
->b_size
!= blocksize
);
2786 err
= get_block(inode
, iblock
, bh
, 0);
2789 /* unmapped? It's a hole - nothing to do */
2790 if (!buffer_mapped(bh
))
2794 /* Ok, it's mapped. Make sure it's up-to-date */
2795 if (PageUptodate(page
))
2796 set_buffer_uptodate(bh
);
2798 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2800 ll_rw_block(READ
, 1, &bh
);
2802 /* Uhhuh. Read error. Complain and punt. */
2803 if (!buffer_uptodate(bh
))
2807 zero_user(page
, offset
, length
);
2808 mark_buffer_dirty(bh
);
2813 page_cache_release(page
);
2817 EXPORT_SYMBOL(block_truncate_page
);
2820 * The generic ->writepage function for buffer-backed address_spaces
2821 * this form passes in the end_io handler used to finish the IO.
2823 int block_write_full_page_endio(struct page
*page
, get_block_t
*get_block
,
2824 struct writeback_control
*wbc
, bh_end_io_t
*handler
)
2826 struct inode
* const inode
= page
->mapping
->host
;
2827 loff_t i_size
= i_size_read(inode
);
2828 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2831 /* Is the page fully inside i_size? */
2832 if (page
->index
< end_index
)
2833 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2836 /* Is the page fully outside i_size? (truncate in progress) */
2837 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2838 if (page
->index
>= end_index
+1 || !offset
) {
2840 * The page may have dirty, unmapped buffers. For example,
2841 * they may have been added in ext3_writepage(). Make them
2842 * freeable here, so the page does not leak.
2844 do_invalidatepage(page
, 0);
2846 return 0; /* don't care */
2850 * The page straddles i_size. It must be zeroed out on each and every
2851 * writepage invocation because it may be mmapped. "A file is mapped
2852 * in multiples of the page size. For a file that is not a multiple of
2853 * the page size, the remaining memory is zeroed when mapped, and
2854 * writes to that region are not written out to the file."
2856 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2857 return __block_write_full_page(inode
, page
, get_block
, wbc
, handler
);
2859 EXPORT_SYMBOL(block_write_full_page_endio
);
2862 * The generic ->writepage function for buffer-backed address_spaces
2864 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2865 struct writeback_control
*wbc
)
2867 return block_write_full_page_endio(page
, get_block
, wbc
,
2868 end_buffer_async_write
);
2870 EXPORT_SYMBOL(block_write_full_page
);
2872 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2873 get_block_t
*get_block
)
2875 struct buffer_head tmp
;
2876 struct inode
*inode
= mapping
->host
;
2879 tmp
.b_size
= 1 << inode
->i_blkbits
;
2880 get_block(inode
, block
, &tmp
, 0);
2881 return tmp
.b_blocknr
;
2883 EXPORT_SYMBOL(generic_block_bmap
);
2885 static void end_bio_bh_io_sync(struct bio
*bio
, int err
)
2887 struct buffer_head
*bh
= bio
->bi_private
;
2889 if (err
== -EOPNOTSUPP
) {
2890 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2893 if (unlikely (test_bit(BIO_QUIET
,&bio
->bi_flags
)))
2894 set_bit(BH_Quiet
, &bh
->b_state
);
2896 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2901 * This allows us to do IO even on the odd last sectors
2902 * of a device, even if the bh block size is some multiple
2903 * of the physical sector size.
2905 * We'll just truncate the bio to the size of the device,
2906 * and clear the end of the buffer head manually.
2908 * Truly out-of-range accesses will turn into actual IO
2909 * errors, this only handles the "we need to be able to
2910 * do IO at the final sector" case.
2912 static void guard_bh_eod(int rw
, struct bio
*bio
, struct buffer_head
*bh
)
2917 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
2922 * If the *whole* IO is past the end of the device,
2923 * let it through, and the IO layer will turn it into
2926 if (unlikely(bio
->bi_sector
>= maxsector
))
2929 maxsector
-= bio
->bi_sector
;
2930 bytes
= bio
->bi_size
;
2931 if (likely((bytes
>> 9) <= maxsector
))
2934 /* Uhhuh. We've got a bh that straddles the device size! */
2935 bytes
= maxsector
<< 9;
2937 /* Truncate the bio.. */
2938 bio
->bi_size
= bytes
;
2939 bio
->bi_io_vec
[0].bv_len
= bytes
;
2941 /* ..and clear the end of the buffer for reads */
2942 if ((rw
& RW_MASK
) == READ
) {
2943 void *kaddr
= kmap_atomic(bh
->b_page
);
2944 memset(kaddr
+ bh_offset(bh
) + bytes
, 0, bh
->b_size
- bytes
);
2945 kunmap_atomic(kaddr
);
2946 flush_dcache_page(bh
->b_page
);
2950 int _submit_bh(int rw
, struct buffer_head
*bh
, unsigned long bio_flags
)
2955 BUG_ON(!buffer_locked(bh
));
2956 BUG_ON(!buffer_mapped(bh
));
2957 BUG_ON(!bh
->b_end_io
);
2958 BUG_ON(buffer_delay(bh
));
2959 BUG_ON(buffer_unwritten(bh
));
2962 * Only clear out a write error when rewriting
2964 if (test_set_buffer_req(bh
) && (rw
& WRITE
))
2965 clear_buffer_write_io_error(bh
);
2968 * from here on down, it's all bio -- do the initial mapping,
2969 * submit_bio -> generic_make_request may further map this bio around
2971 bio
= bio_alloc(GFP_NOIO
, 1);
2973 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2974 bio
->bi_bdev
= bh
->b_bdev
;
2975 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2976 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2977 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2980 bio
->bi_size
= bh
->b_size
;
2982 bio
->bi_end_io
= end_bio_bh_io_sync
;
2983 bio
->bi_private
= bh
;
2984 bio
->bi_flags
|= bio_flags
;
2986 /* Take care of bh's that straddle the end of the device */
2987 guard_bh_eod(rw
, bio
, bh
);
2989 if (buffer_meta(bh
))
2991 if (buffer_prio(bh
))
2995 submit_bio(rw
, bio
);
2997 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
3003 EXPORT_SYMBOL_GPL(_submit_bh
);
3005 int submit_bh(int rw
, struct buffer_head
*bh
)
3007 return _submit_bh(rw
, bh
, 0);
3009 EXPORT_SYMBOL(submit_bh
);
3012 * ll_rw_block: low-level access to block devices (DEPRECATED)
3013 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3014 * @nr: number of &struct buffer_heads in the array
3015 * @bhs: array of pointers to &struct buffer_head
3017 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3018 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3019 * %READA option is described in the documentation for generic_make_request()
3020 * which ll_rw_block() calls.
3022 * This function drops any buffer that it cannot get a lock on (with the
3023 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3024 * request, and any buffer that appears to be up-to-date when doing read
3025 * request. Further it marks as clean buffers that are processed for
3026 * writing (the buffer cache won't assume that they are actually clean
3027 * until the buffer gets unlocked).
3029 * ll_rw_block sets b_end_io to simple completion handler that marks
3030 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3033 * All of the buffers must be for the same device, and must also be a
3034 * multiple of the current approved size for the device.
3036 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
3040 for (i
= 0; i
< nr
; i
++) {
3041 struct buffer_head
*bh
= bhs
[i
];
3043 if (!trylock_buffer(bh
))
3046 if (test_clear_buffer_dirty(bh
)) {
3047 bh
->b_end_io
= end_buffer_write_sync
;
3049 submit_bh(WRITE
, bh
);
3053 if (!buffer_uptodate(bh
)) {
3054 bh
->b_end_io
= end_buffer_read_sync
;
3063 EXPORT_SYMBOL(ll_rw_block
);
3065 void write_dirty_buffer(struct buffer_head
*bh
, int rw
)
3068 if (!test_clear_buffer_dirty(bh
)) {
3072 bh
->b_end_io
= end_buffer_write_sync
;
3076 EXPORT_SYMBOL(write_dirty_buffer
);
3079 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3080 * and then start new I/O and then wait upon it. The caller must have a ref on
3083 int __sync_dirty_buffer(struct buffer_head
*bh
, int rw
)
3087 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3089 if (test_clear_buffer_dirty(bh
)) {
3091 bh
->b_end_io
= end_buffer_write_sync
;
3092 ret
= submit_bh(rw
, bh
);
3094 if (!ret
&& !buffer_uptodate(bh
))
3101 EXPORT_SYMBOL(__sync_dirty_buffer
);
3103 int sync_dirty_buffer(struct buffer_head
*bh
)
3105 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3107 EXPORT_SYMBOL(sync_dirty_buffer
);
3110 * try_to_free_buffers() checks if all the buffers on this particular page
3111 * are unused, and releases them if so.
3113 * Exclusion against try_to_free_buffers may be obtained by either
3114 * locking the page or by holding its mapping's private_lock.
3116 * If the page is dirty but all the buffers are clean then we need to
3117 * be sure to mark the page clean as well. This is because the page
3118 * may be against a block device, and a later reattachment of buffers
3119 * to a dirty page will set *all* buffers dirty. Which would corrupt
3120 * filesystem data on the same device.
3122 * The same applies to regular filesystem pages: if all the buffers are
3123 * clean then we set the page clean and proceed. To do that, we require
3124 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3127 * try_to_free_buffers() is non-blocking.
3129 static inline int buffer_busy(struct buffer_head
*bh
)
3131 return atomic_read(&bh
->b_count
) |
3132 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3136 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3138 struct buffer_head
*head
= page_buffers(page
);
3139 struct buffer_head
*bh
;
3143 if (buffer_write_io_error(bh
) && page
->mapping
)
3144 set_bit(AS_EIO
, &page
->mapping
->flags
);
3145 if (buffer_busy(bh
))
3147 bh
= bh
->b_this_page
;
3148 } while (bh
!= head
);
3151 struct buffer_head
*next
= bh
->b_this_page
;
3153 if (bh
->b_assoc_map
)
3154 __remove_assoc_queue(bh
);
3156 } while (bh
!= head
);
3157 *buffers_to_free
= head
;
3158 __clear_page_buffers(page
);
3164 int try_to_free_buffers(struct page
*page
)
3166 struct address_space
* const mapping
= page
->mapping
;
3167 struct buffer_head
*buffers_to_free
= NULL
;
3170 BUG_ON(!PageLocked(page
));
3171 if (PageWriteback(page
))
3174 if (mapping
== NULL
) { /* can this still happen? */
3175 ret
= drop_buffers(page
, &buffers_to_free
);
3179 spin_lock(&mapping
->private_lock
);
3180 ret
= drop_buffers(page
, &buffers_to_free
);
3183 * If the filesystem writes its buffers by hand (eg ext3)
3184 * then we can have clean buffers against a dirty page. We
3185 * clean the page here; otherwise the VM will never notice
3186 * that the filesystem did any IO at all.
3188 * Also, during truncate, discard_buffer will have marked all
3189 * the page's buffers clean. We discover that here and clean
3192 * private_lock must be held over this entire operation in order
3193 * to synchronise against __set_page_dirty_buffers and prevent the
3194 * dirty bit from being lost.
3197 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
3198 spin_unlock(&mapping
->private_lock
);
3200 if (buffers_to_free
) {
3201 struct buffer_head
*bh
= buffers_to_free
;
3204 struct buffer_head
*next
= bh
->b_this_page
;
3205 free_buffer_head(bh
);
3207 } while (bh
!= buffers_to_free
);
3211 EXPORT_SYMBOL(try_to_free_buffers
);
3214 * There are no bdflush tunables left. But distributions are
3215 * still running obsolete flush daemons, so we terminate them here.
3217 * Use of bdflush() is deprecated and will be removed in a future kernel.
3218 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3220 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3222 static int msg_count
;
3224 if (!capable(CAP_SYS_ADMIN
))
3227 if (msg_count
< 5) {
3230 "warning: process `%s' used the obsolete bdflush"
3231 " system call\n", current
->comm
);
3232 printk(KERN_INFO
"Fix your initscripts?\n");
3241 * Buffer-head allocation
3243 static struct kmem_cache
*bh_cachep __read_mostly
;
3246 * Once the number of bh's in the machine exceeds this level, we start
3247 * stripping them in writeback.
3249 static unsigned long max_buffer_heads
;
3251 int buffer_heads_over_limit
;
3253 struct bh_accounting
{
3254 int nr
; /* Number of live bh's */
3255 int ratelimit
; /* Limit cacheline bouncing */
3258 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3260 static void recalc_bh_state(void)
3265 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3267 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3268 for_each_online_cpu(i
)
3269 tot
+= per_cpu(bh_accounting
, i
).nr
;
3270 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3273 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3275 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3277 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3279 __this_cpu_inc(bh_accounting
.nr
);
3285 EXPORT_SYMBOL(alloc_buffer_head
);
3287 void free_buffer_head(struct buffer_head
*bh
)
3289 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3290 kmem_cache_free(bh_cachep
, bh
);
3292 __this_cpu_dec(bh_accounting
.nr
);
3296 EXPORT_SYMBOL(free_buffer_head
);
3298 static void buffer_exit_cpu(int cpu
)
3301 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3303 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3307 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3308 per_cpu(bh_accounting
, cpu
).nr
= 0;
3311 static int buffer_cpu_notify(struct notifier_block
*self
,
3312 unsigned long action
, void *hcpu
)
3314 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3315 buffer_exit_cpu((unsigned long)hcpu
);
3320 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3321 * @bh: struct buffer_head
3323 * Return true if the buffer is up-to-date and false,
3324 * with the buffer locked, if not.
3326 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3328 if (!buffer_uptodate(bh
)) {
3330 if (!buffer_uptodate(bh
))
3336 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3339 * bh_submit_read - Submit a locked buffer for reading
3340 * @bh: struct buffer_head
3342 * Returns zero on success and -EIO on error.
3344 int bh_submit_read(struct buffer_head
*bh
)
3346 BUG_ON(!buffer_locked(bh
));
3348 if (buffer_uptodate(bh
)) {
3354 bh
->b_end_io
= end_buffer_read_sync
;
3355 submit_bh(READ
, bh
);
3357 if (buffer_uptodate(bh
))
3361 EXPORT_SYMBOL(bh_submit_read
);
3363 void __init
buffer_init(void)
3365 unsigned long nrpages
;
3367 bh_cachep
= kmem_cache_create("buffer_head",
3368 sizeof(struct buffer_head
), 0,
3369 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3374 * Limit the bh occupancy to 10% of ZONE_NORMAL
3376 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3377 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3378 hotcpu_notifier(buffer_cpu_notify
, 0);