UBIFS: comply with coding style
[linux-2.6.git] / fs / ubifs / debug.c
blob9f28375fc5b3c3c5a37333552c1ea542190ff0b2
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
37 static DEFINE_SPINLOCK(dbg_lock);
39 static const char *get_key_fmt(int fmt)
41 switch (fmt) {
42 case UBIFS_SIMPLE_KEY_FMT:
43 return "simple";
44 default:
45 return "unknown/invalid format";
49 static const char *get_key_hash(int hash)
51 switch (hash) {
52 case UBIFS_KEY_HASH_R5:
53 return "R5";
54 case UBIFS_KEY_HASH_TEST:
55 return "test";
56 default:
57 return "unknown/invalid name hash";
61 static const char *get_key_type(int type)
63 switch (type) {
64 case UBIFS_INO_KEY:
65 return "inode";
66 case UBIFS_DENT_KEY:
67 return "direntry";
68 case UBIFS_XENT_KEY:
69 return "xentry";
70 case UBIFS_DATA_KEY:
71 return "data";
72 case UBIFS_TRUN_KEY:
73 return "truncate";
74 default:
75 return "unknown/invalid key";
79 static const char *get_dent_type(int type)
81 switch (type) {
82 case UBIFS_ITYPE_REG:
83 return "file";
84 case UBIFS_ITYPE_DIR:
85 return "dir";
86 case UBIFS_ITYPE_LNK:
87 return "symlink";
88 case UBIFS_ITYPE_BLK:
89 return "blkdev";
90 case UBIFS_ITYPE_CHR:
91 return "char dev";
92 case UBIFS_ITYPE_FIFO:
93 return "fifo";
94 case UBIFS_ITYPE_SOCK:
95 return "socket";
96 default:
97 return "unknown/invalid type";
101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102 const union ubifs_key *key, char *buffer, int len)
104 char *p = buffer;
105 int type = key_type(c, key);
107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 switch (type) {
109 case UBIFS_INO_KEY:
110 len -= snprintf(p, len, "(%lu, %s)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type));
113 break;
114 case UBIFS_DENT_KEY:
115 case UBIFS_XENT_KEY:
116 len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_hash(c, key));
119 break;
120 case UBIFS_DATA_KEY:
121 len -= snprintf(p, len, "(%lu, %s, %u)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type), key_block(c, key));
124 break;
125 case UBIFS_TRUN_KEY:
126 len -= snprintf(p, len, "(%lu, %s)",
127 (unsigned long)key_inum(c, key),
128 get_key_type(type));
129 break;
130 default:
131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 key->u32[0], key->u32[1]);
134 } else
135 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 ubifs_assert(len > 0);
137 return p;
140 const char *dbg_ntype(int type)
142 switch (type) {
143 case UBIFS_PAD_NODE:
144 return "padding node";
145 case UBIFS_SB_NODE:
146 return "superblock node";
147 case UBIFS_MST_NODE:
148 return "master node";
149 case UBIFS_REF_NODE:
150 return "reference node";
151 case UBIFS_INO_NODE:
152 return "inode node";
153 case UBIFS_DENT_NODE:
154 return "direntry node";
155 case UBIFS_XENT_NODE:
156 return "xentry node";
157 case UBIFS_DATA_NODE:
158 return "data node";
159 case UBIFS_TRUN_NODE:
160 return "truncate node";
161 case UBIFS_IDX_NODE:
162 return "indexing node";
163 case UBIFS_CS_NODE:
164 return "commit start node";
165 case UBIFS_ORPH_NODE:
166 return "orphan node";
167 default:
168 return "unknown node";
172 static const char *dbg_gtype(int type)
174 switch (type) {
175 case UBIFS_NO_NODE_GROUP:
176 return "no node group";
177 case UBIFS_IN_NODE_GROUP:
178 return "in node group";
179 case UBIFS_LAST_OF_NODE_GROUP:
180 return "last of node group";
181 default:
182 return "unknown";
186 const char *dbg_cstate(int cmt_state)
188 switch (cmt_state) {
189 case COMMIT_RESTING:
190 return "commit resting";
191 case COMMIT_BACKGROUND:
192 return "background commit requested";
193 case COMMIT_REQUIRED:
194 return "commit required";
195 case COMMIT_RUNNING_BACKGROUND:
196 return "BACKGROUND commit running";
197 case COMMIT_RUNNING_REQUIRED:
198 return "commit running and required";
199 case COMMIT_BROKEN:
200 return "broken commit";
201 default:
202 return "unknown commit state";
206 const char *dbg_jhead(int jhead)
208 switch (jhead) {
209 case GCHD:
210 return "0 (GC)";
211 case BASEHD:
212 return "1 (base)";
213 case DATAHD:
214 return "2 (data)";
215 default:
216 return "unknown journal head";
220 static void dump_ch(const struct ubifs_ch *ch)
222 printk(KERN_ERR "\tmagic %#x\n", le32_to_cpu(ch->magic));
223 printk(KERN_ERR "\tcrc %#x\n", le32_to_cpu(ch->crc));
224 printk(KERN_ERR "\tnode_type %d (%s)\n", ch->node_type,
225 dbg_ntype(ch->node_type));
226 printk(KERN_ERR "\tgroup_type %d (%s)\n", ch->group_type,
227 dbg_gtype(ch->group_type));
228 printk(KERN_ERR "\tsqnum %llu\n",
229 (unsigned long long)le64_to_cpu(ch->sqnum));
230 printk(KERN_ERR "\tlen %u\n", le32_to_cpu(ch->len));
233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 const struct ubifs_inode *ui = ubifs_inode(inode);
236 struct qstr nm = { .name = NULL };
237 union ubifs_key key;
238 struct ubifs_dent_node *dent, *pdent = NULL;
239 int count = 2;
241 printk(KERN_ERR "Dump in-memory inode:");
242 printk(KERN_ERR "\tinode %lu\n", inode->i_ino);
243 printk(KERN_ERR "\tsize %llu\n",
244 (unsigned long long)i_size_read(inode));
245 printk(KERN_ERR "\tnlink %u\n", inode->i_nlink);
246 printk(KERN_ERR "\tuid %u\n", (unsigned int)inode->i_uid);
247 printk(KERN_ERR "\tgid %u\n", (unsigned int)inode->i_gid);
248 printk(KERN_ERR "\tatime %u.%u\n",
249 (unsigned int)inode->i_atime.tv_sec,
250 (unsigned int)inode->i_atime.tv_nsec);
251 printk(KERN_ERR "\tmtime %u.%u\n",
252 (unsigned int)inode->i_mtime.tv_sec,
253 (unsigned int)inode->i_mtime.tv_nsec);
254 printk(KERN_ERR "\tctime %u.%u\n",
255 (unsigned int)inode->i_ctime.tv_sec,
256 (unsigned int)inode->i_ctime.tv_nsec);
257 printk(KERN_ERR "\tcreat_sqnum %llu\n", ui->creat_sqnum);
258 printk(KERN_ERR "\txattr_size %u\n", ui->xattr_size);
259 printk(KERN_ERR "\txattr_cnt %u\n", ui->xattr_cnt);
260 printk(KERN_ERR "\txattr_names %u\n", ui->xattr_names);
261 printk(KERN_ERR "\tdirty %u\n", ui->dirty);
262 printk(KERN_ERR "\txattr %u\n", ui->xattr);
263 printk(KERN_ERR "\tbulk_read %u\n", ui->xattr);
264 printk(KERN_ERR "\tsynced_i_size %llu\n",
265 (unsigned long long)ui->synced_i_size);
266 printk(KERN_ERR "\tui_size %llu\n",
267 (unsigned long long)ui->ui_size);
268 printk(KERN_ERR "\tflags %d\n", ui->flags);
269 printk(KERN_ERR "\tcompr_type %d\n", ui->compr_type);
270 printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
271 printk(KERN_ERR "\tread_in_a_row %lu\n", ui->read_in_a_row);
272 printk(KERN_ERR "\tdata_len %d\n", ui->data_len);
274 if (!S_ISDIR(inode->i_mode))
275 return;
277 printk(KERN_ERR "List of directory entries:\n");
278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280 lowest_dent_key(c, &key, inode->i_ino);
281 while (1) {
282 dent = ubifs_tnc_next_ent(c, &key, &nm);
283 if (IS_ERR(dent)) {
284 if (PTR_ERR(dent) != -ENOENT)
285 printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
286 break;
289 printk(KERN_ERR "\t%d: %s (%s)\n",
290 count++, dent->name, get_dent_type(dent->type));
292 nm.name = dent->name;
293 nm.len = le16_to_cpu(dent->nlen);
294 kfree(pdent);
295 pdent = dent;
296 key_read(c, &dent->key, &key);
298 kfree(pdent);
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
308 /* If the magic is incorrect, just hexdump the first bytes */
309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310 printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312 (void *)node, UBIFS_CH_SZ, 1);
313 return;
316 spin_lock(&dbg_lock);
317 dump_ch(node);
319 switch (ch->node_type) {
320 case UBIFS_PAD_NODE:
322 const struct ubifs_pad_node *pad = node;
324 printk(KERN_ERR "\tpad_len %u\n",
325 le32_to_cpu(pad->pad_len));
326 break;
328 case UBIFS_SB_NODE:
330 const struct ubifs_sb_node *sup = node;
331 unsigned int sup_flags = le32_to_cpu(sup->flags);
333 printk(KERN_ERR "\tkey_hash %d (%s)\n",
334 (int)sup->key_hash, get_key_hash(sup->key_hash));
335 printk(KERN_ERR "\tkey_fmt %d (%s)\n",
336 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
337 printk(KERN_ERR "\tflags %#x\n", sup_flags);
338 printk(KERN_ERR "\t big_lpt %u\n",
339 !!(sup_flags & UBIFS_FLG_BIGLPT));
340 printk(KERN_ERR "\t space_fixup %u\n",
341 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
342 printk(KERN_ERR "\tmin_io_size %u\n",
343 le32_to_cpu(sup->min_io_size));
344 printk(KERN_ERR "\tleb_size %u\n",
345 le32_to_cpu(sup->leb_size));
346 printk(KERN_ERR "\tleb_cnt %u\n",
347 le32_to_cpu(sup->leb_cnt));
348 printk(KERN_ERR "\tmax_leb_cnt %u\n",
349 le32_to_cpu(sup->max_leb_cnt));
350 printk(KERN_ERR "\tmax_bud_bytes %llu\n",
351 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
352 printk(KERN_ERR "\tlog_lebs %u\n",
353 le32_to_cpu(sup->log_lebs));
354 printk(KERN_ERR "\tlpt_lebs %u\n",
355 le32_to_cpu(sup->lpt_lebs));
356 printk(KERN_ERR "\torph_lebs %u\n",
357 le32_to_cpu(sup->orph_lebs));
358 printk(KERN_ERR "\tjhead_cnt %u\n",
359 le32_to_cpu(sup->jhead_cnt));
360 printk(KERN_ERR "\tfanout %u\n",
361 le32_to_cpu(sup->fanout));
362 printk(KERN_ERR "\tlsave_cnt %u\n",
363 le32_to_cpu(sup->lsave_cnt));
364 printk(KERN_ERR "\tdefault_compr %u\n",
365 (int)le16_to_cpu(sup->default_compr));
366 printk(KERN_ERR "\trp_size %llu\n",
367 (unsigned long long)le64_to_cpu(sup->rp_size));
368 printk(KERN_ERR "\trp_uid %u\n",
369 le32_to_cpu(sup->rp_uid));
370 printk(KERN_ERR "\trp_gid %u\n",
371 le32_to_cpu(sup->rp_gid));
372 printk(KERN_ERR "\tfmt_version %u\n",
373 le32_to_cpu(sup->fmt_version));
374 printk(KERN_ERR "\ttime_gran %u\n",
375 le32_to_cpu(sup->time_gran));
376 printk(KERN_ERR "\tUUID %pUB\n",
377 sup->uuid);
378 break;
380 case UBIFS_MST_NODE:
382 const struct ubifs_mst_node *mst = node;
384 printk(KERN_ERR "\thighest_inum %llu\n",
385 (unsigned long long)le64_to_cpu(mst->highest_inum));
386 printk(KERN_ERR "\tcommit number %llu\n",
387 (unsigned long long)le64_to_cpu(mst->cmt_no));
388 printk(KERN_ERR "\tflags %#x\n",
389 le32_to_cpu(mst->flags));
390 printk(KERN_ERR "\tlog_lnum %u\n",
391 le32_to_cpu(mst->log_lnum));
392 printk(KERN_ERR "\troot_lnum %u\n",
393 le32_to_cpu(mst->root_lnum));
394 printk(KERN_ERR "\troot_offs %u\n",
395 le32_to_cpu(mst->root_offs));
396 printk(KERN_ERR "\troot_len %u\n",
397 le32_to_cpu(mst->root_len));
398 printk(KERN_ERR "\tgc_lnum %u\n",
399 le32_to_cpu(mst->gc_lnum));
400 printk(KERN_ERR "\tihead_lnum %u\n",
401 le32_to_cpu(mst->ihead_lnum));
402 printk(KERN_ERR "\tihead_offs %u\n",
403 le32_to_cpu(mst->ihead_offs));
404 printk(KERN_ERR "\tindex_size %llu\n",
405 (unsigned long long)le64_to_cpu(mst->index_size));
406 printk(KERN_ERR "\tlpt_lnum %u\n",
407 le32_to_cpu(mst->lpt_lnum));
408 printk(KERN_ERR "\tlpt_offs %u\n",
409 le32_to_cpu(mst->lpt_offs));
410 printk(KERN_ERR "\tnhead_lnum %u\n",
411 le32_to_cpu(mst->nhead_lnum));
412 printk(KERN_ERR "\tnhead_offs %u\n",
413 le32_to_cpu(mst->nhead_offs));
414 printk(KERN_ERR "\tltab_lnum %u\n",
415 le32_to_cpu(mst->ltab_lnum));
416 printk(KERN_ERR "\tltab_offs %u\n",
417 le32_to_cpu(mst->ltab_offs));
418 printk(KERN_ERR "\tlsave_lnum %u\n",
419 le32_to_cpu(mst->lsave_lnum));
420 printk(KERN_ERR "\tlsave_offs %u\n",
421 le32_to_cpu(mst->lsave_offs));
422 printk(KERN_ERR "\tlscan_lnum %u\n",
423 le32_to_cpu(mst->lscan_lnum));
424 printk(KERN_ERR "\tleb_cnt %u\n",
425 le32_to_cpu(mst->leb_cnt));
426 printk(KERN_ERR "\tempty_lebs %u\n",
427 le32_to_cpu(mst->empty_lebs));
428 printk(KERN_ERR "\tidx_lebs %u\n",
429 le32_to_cpu(mst->idx_lebs));
430 printk(KERN_ERR "\ttotal_free %llu\n",
431 (unsigned long long)le64_to_cpu(mst->total_free));
432 printk(KERN_ERR "\ttotal_dirty %llu\n",
433 (unsigned long long)le64_to_cpu(mst->total_dirty));
434 printk(KERN_ERR "\ttotal_used %llu\n",
435 (unsigned long long)le64_to_cpu(mst->total_used));
436 printk(KERN_ERR "\ttotal_dead %llu\n",
437 (unsigned long long)le64_to_cpu(mst->total_dead));
438 printk(KERN_ERR "\ttotal_dark %llu\n",
439 (unsigned long long)le64_to_cpu(mst->total_dark));
440 break;
442 case UBIFS_REF_NODE:
444 const struct ubifs_ref_node *ref = node;
446 printk(KERN_ERR "\tlnum %u\n",
447 le32_to_cpu(ref->lnum));
448 printk(KERN_ERR "\toffs %u\n",
449 le32_to_cpu(ref->offs));
450 printk(KERN_ERR "\tjhead %u\n",
451 le32_to_cpu(ref->jhead));
452 break;
454 case UBIFS_INO_NODE:
456 const struct ubifs_ino_node *ino = node;
458 key_read(c, &ino->key, &key);
459 printk(KERN_ERR "\tkey %s\n",
460 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
461 printk(KERN_ERR "\tcreat_sqnum %llu\n",
462 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
463 printk(KERN_ERR "\tsize %llu\n",
464 (unsigned long long)le64_to_cpu(ino->size));
465 printk(KERN_ERR "\tnlink %u\n",
466 le32_to_cpu(ino->nlink));
467 printk(KERN_ERR "\tatime %lld.%u\n",
468 (long long)le64_to_cpu(ino->atime_sec),
469 le32_to_cpu(ino->atime_nsec));
470 printk(KERN_ERR "\tmtime %lld.%u\n",
471 (long long)le64_to_cpu(ino->mtime_sec),
472 le32_to_cpu(ino->mtime_nsec));
473 printk(KERN_ERR "\tctime %lld.%u\n",
474 (long long)le64_to_cpu(ino->ctime_sec),
475 le32_to_cpu(ino->ctime_nsec));
476 printk(KERN_ERR "\tuid %u\n",
477 le32_to_cpu(ino->uid));
478 printk(KERN_ERR "\tgid %u\n",
479 le32_to_cpu(ino->gid));
480 printk(KERN_ERR "\tmode %u\n",
481 le32_to_cpu(ino->mode));
482 printk(KERN_ERR "\tflags %#x\n",
483 le32_to_cpu(ino->flags));
484 printk(KERN_ERR "\txattr_cnt %u\n",
485 le32_to_cpu(ino->xattr_cnt));
486 printk(KERN_ERR "\txattr_size %u\n",
487 le32_to_cpu(ino->xattr_size));
488 printk(KERN_ERR "\txattr_names %u\n",
489 le32_to_cpu(ino->xattr_names));
490 printk(KERN_ERR "\tcompr_type %#x\n",
491 (int)le16_to_cpu(ino->compr_type));
492 printk(KERN_ERR "\tdata len %u\n",
493 le32_to_cpu(ino->data_len));
494 break;
496 case UBIFS_DENT_NODE:
497 case UBIFS_XENT_NODE:
499 const struct ubifs_dent_node *dent = node;
500 int nlen = le16_to_cpu(dent->nlen);
502 key_read(c, &dent->key, &key);
503 printk(KERN_ERR "\tkey %s\n",
504 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 printk(KERN_ERR "\tinum %llu\n",
506 (unsigned long long)le64_to_cpu(dent->inum));
507 printk(KERN_ERR "\ttype %d\n", (int)dent->type);
508 printk(KERN_ERR "\tnlen %d\n", nlen);
509 printk(KERN_ERR "\tname ");
511 if (nlen > UBIFS_MAX_NLEN)
512 printk(KERN_ERR "(bad name length, not printing, bad or corrupted node)");
513 else {
514 for (i = 0; i < nlen && dent->name[i]; i++)
515 printk(KERN_CONT "%c", dent->name[i]);
517 printk(KERN_CONT "\n");
519 break;
521 case UBIFS_DATA_NODE:
523 const struct ubifs_data_node *dn = node;
524 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
526 key_read(c, &dn->key, &key);
527 printk(KERN_ERR "\tkey %s\n",
528 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
529 printk(KERN_ERR "\tsize %u\n",
530 le32_to_cpu(dn->size));
531 printk(KERN_ERR "\tcompr_typ %d\n",
532 (int)le16_to_cpu(dn->compr_type));
533 printk(KERN_ERR "\tdata size %d\n",
534 dlen);
535 printk(KERN_ERR "\tdata:\n");
536 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
537 (void *)&dn->data, dlen, 0);
538 break;
540 case UBIFS_TRUN_NODE:
542 const struct ubifs_trun_node *trun = node;
544 printk(KERN_ERR "\tinum %u\n",
545 le32_to_cpu(trun->inum));
546 printk(KERN_ERR "\told_size %llu\n",
547 (unsigned long long)le64_to_cpu(trun->old_size));
548 printk(KERN_ERR "\tnew_size %llu\n",
549 (unsigned long long)le64_to_cpu(trun->new_size));
550 break;
552 case UBIFS_IDX_NODE:
554 const struct ubifs_idx_node *idx = node;
556 n = le16_to_cpu(idx->child_cnt);
557 printk(KERN_ERR "\tchild_cnt %d\n", n);
558 printk(KERN_ERR "\tlevel %d\n",
559 (int)le16_to_cpu(idx->level));
560 printk(KERN_ERR "\tBranches:\n");
562 for (i = 0; i < n && i < c->fanout - 1; i++) {
563 const struct ubifs_branch *br;
565 br = ubifs_idx_branch(c, idx, i);
566 key_read(c, &br->key, &key);
567 printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
568 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
569 le32_to_cpu(br->len),
570 dbg_snprintf_key(c, &key, key_buf,
571 DBG_KEY_BUF_LEN));
573 break;
575 case UBIFS_CS_NODE:
576 break;
577 case UBIFS_ORPH_NODE:
579 const struct ubifs_orph_node *orph = node;
581 printk(KERN_ERR "\tcommit number %llu\n",
582 (unsigned long long)
583 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
584 printk(KERN_ERR "\tlast node flag %llu\n",
585 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
586 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
587 printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
588 for (i = 0; i < n; i++)
589 printk(KERN_ERR "\t ino %llu\n",
590 (unsigned long long)le64_to_cpu(orph->inos[i]));
591 break;
593 default:
594 printk(KERN_ERR "node type %d was not recognized\n",
595 (int)ch->node_type);
597 spin_unlock(&dbg_lock);
600 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
602 spin_lock(&dbg_lock);
603 printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
604 req->new_ino, req->dirtied_ino);
605 printk(KERN_ERR "\tnew_ino_d %d, dirtied_ino_d %d\n",
606 req->new_ino_d, req->dirtied_ino_d);
607 printk(KERN_ERR "\tnew_page %d, dirtied_page %d\n",
608 req->new_page, req->dirtied_page);
609 printk(KERN_ERR "\tnew_dent %d, mod_dent %d\n",
610 req->new_dent, req->mod_dent);
611 printk(KERN_ERR "\tidx_growth %d\n", req->idx_growth);
612 printk(KERN_ERR "\tdata_growth %d dd_growth %d\n",
613 req->data_growth, req->dd_growth);
614 spin_unlock(&dbg_lock);
617 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
619 spin_lock(&dbg_lock);
620 printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
621 current->pid, lst->empty_lebs, lst->idx_lebs);
622 printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
623 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
624 printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
625 lst->total_used, lst->total_dark, lst->total_dead);
626 spin_unlock(&dbg_lock);
629 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
631 int i;
632 struct rb_node *rb;
633 struct ubifs_bud *bud;
634 struct ubifs_gced_idx_leb *idx_gc;
635 long long available, outstanding, free;
637 spin_lock(&c->space_lock);
638 spin_lock(&dbg_lock);
639 printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
640 current->pid, bi->data_growth + bi->dd_growth,
641 bi->data_growth + bi->dd_growth + bi->idx_growth);
642 printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
643 bi->data_growth, bi->dd_growth, bi->idx_growth);
644 printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
645 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
646 printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
647 bi->page_budget, bi->inode_budget, bi->dent_budget);
648 printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
649 bi->nospace, bi->nospace_rp);
650 printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
651 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
653 if (bi != &c->bi)
655 * If we are dumping saved budgeting data, do not print
656 * additional information which is about the current state, not
657 * the old one which corresponded to the saved budgeting data.
659 goto out_unlock;
661 printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
662 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
663 printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
664 atomic_long_read(&c->dirty_pg_cnt),
665 atomic_long_read(&c->dirty_zn_cnt),
666 atomic_long_read(&c->clean_zn_cnt));
667 printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
668 c->gc_lnum, c->ihead_lnum);
670 /* If we are in R/O mode, journal heads do not exist */
671 if (c->jheads)
672 for (i = 0; i < c->jhead_cnt; i++)
673 printk(KERN_ERR "\tjhead %s\t LEB %d\n",
674 dbg_jhead(c->jheads[i].wbuf.jhead),
675 c->jheads[i].wbuf.lnum);
676 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
677 bud = rb_entry(rb, struct ubifs_bud, rb);
678 printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
680 list_for_each_entry(bud, &c->old_buds, list)
681 printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
682 list_for_each_entry(idx_gc, &c->idx_gc, list)
683 printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
684 idx_gc->lnum, idx_gc->unmap);
685 printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
687 /* Print budgeting predictions */
688 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
689 outstanding = c->bi.data_growth + c->bi.dd_growth;
690 free = ubifs_get_free_space_nolock(c);
691 printk(KERN_ERR "Budgeting predictions:\n");
692 printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
693 available, outstanding, free);
694 out_unlock:
695 spin_unlock(&dbg_lock);
696 spin_unlock(&c->space_lock);
699 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
701 int i, spc, dark = 0, dead = 0;
702 struct rb_node *rb;
703 struct ubifs_bud *bud;
705 spc = lp->free + lp->dirty;
706 if (spc < c->dead_wm)
707 dead = spc;
708 else
709 dark = ubifs_calc_dark(c, spc);
711 if (lp->flags & LPROPS_INDEX)
712 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
713 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
714 lp->flags);
715 else
716 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
717 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
718 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
720 if (lp->flags & LPROPS_TAKEN) {
721 if (lp->flags & LPROPS_INDEX)
722 printk(KERN_CONT "index, taken");
723 else
724 printk(KERN_CONT "taken");
725 } else {
726 const char *s;
728 if (lp->flags & LPROPS_INDEX) {
729 switch (lp->flags & LPROPS_CAT_MASK) {
730 case LPROPS_DIRTY_IDX:
731 s = "dirty index";
732 break;
733 case LPROPS_FRDI_IDX:
734 s = "freeable index";
735 break;
736 default:
737 s = "index";
739 } else {
740 switch (lp->flags & LPROPS_CAT_MASK) {
741 case LPROPS_UNCAT:
742 s = "not categorized";
743 break;
744 case LPROPS_DIRTY:
745 s = "dirty";
746 break;
747 case LPROPS_FREE:
748 s = "free";
749 break;
750 case LPROPS_EMPTY:
751 s = "empty";
752 break;
753 case LPROPS_FREEABLE:
754 s = "freeable";
755 break;
756 default:
757 s = NULL;
758 break;
761 printk(KERN_CONT "%s", s);
764 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
765 bud = rb_entry(rb, struct ubifs_bud, rb);
766 if (bud->lnum == lp->lnum) {
767 int head = 0;
768 for (i = 0; i < c->jhead_cnt; i++) {
770 * Note, if we are in R/O mode or in the middle
771 * of mounting/re-mounting, the write-buffers do
772 * not exist.
774 if (c->jheads &&
775 lp->lnum == c->jheads[i].wbuf.lnum) {
776 printk(KERN_CONT ", jhead %s",
777 dbg_jhead(i));
778 head = 1;
781 if (!head)
782 printk(KERN_CONT ", bud of jhead %s",
783 dbg_jhead(bud->jhead));
786 if (lp->lnum == c->gc_lnum)
787 printk(KERN_CONT ", GC LEB");
788 printk(KERN_CONT ")\n");
791 void ubifs_dump_lprops(struct ubifs_info *c)
793 int lnum, err;
794 struct ubifs_lprops lp;
795 struct ubifs_lp_stats lst;
797 printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
798 current->pid);
799 ubifs_get_lp_stats(c, &lst);
800 ubifs_dump_lstats(&lst);
802 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
803 err = ubifs_read_one_lp(c, lnum, &lp);
804 if (err)
805 ubifs_err("cannot read lprops for LEB %d", lnum);
807 ubifs_dump_lprop(c, &lp);
809 printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
810 current->pid);
813 void ubifs_dump_lpt_info(struct ubifs_info *c)
815 int i;
817 spin_lock(&dbg_lock);
818 printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
819 printk(KERN_ERR "\tlpt_sz: %lld\n", c->lpt_sz);
820 printk(KERN_ERR "\tpnode_sz: %d\n", c->pnode_sz);
821 printk(KERN_ERR "\tnnode_sz: %d\n", c->nnode_sz);
822 printk(KERN_ERR "\tltab_sz: %d\n", c->ltab_sz);
823 printk(KERN_ERR "\tlsave_sz: %d\n", c->lsave_sz);
824 printk(KERN_ERR "\tbig_lpt: %d\n", c->big_lpt);
825 printk(KERN_ERR "\tlpt_hght: %d\n", c->lpt_hght);
826 printk(KERN_ERR "\tpnode_cnt: %d\n", c->pnode_cnt);
827 printk(KERN_ERR "\tnnode_cnt: %d\n", c->nnode_cnt);
828 printk(KERN_ERR "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
829 printk(KERN_ERR "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
830 printk(KERN_ERR "\tlsave_cnt: %d\n", c->lsave_cnt);
831 printk(KERN_ERR "\tspace_bits: %d\n", c->space_bits);
832 printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
833 printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
834 printk(KERN_ERR "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
835 printk(KERN_ERR "\tpcnt_bits: %d\n", c->pcnt_bits);
836 printk(KERN_ERR "\tlnum_bits: %d\n", c->lnum_bits);
837 printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
838 printk(KERN_ERR "\tLPT head is at %d:%d\n",
839 c->nhead_lnum, c->nhead_offs);
840 printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
841 c->ltab_lnum, c->ltab_offs);
842 if (c->big_lpt)
843 printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
844 c->lsave_lnum, c->lsave_offs);
845 for (i = 0; i < c->lpt_lebs; i++)
846 printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
847 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
848 c->ltab[i].tgc, c->ltab[i].cmt);
849 spin_unlock(&dbg_lock);
852 void ubifs_dump_sleb(const struct ubifs_info *c,
853 const struct ubifs_scan_leb *sleb, int offs)
855 struct ubifs_scan_node *snod;
857 printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
858 current->pid, sleb->lnum, offs);
860 list_for_each_entry(snod, &sleb->nodes, list) {
861 cond_resched();
862 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n",
863 sleb->lnum, snod->offs, snod->len);
864 ubifs_dump_node(c, snod->node);
868 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
870 struct ubifs_scan_leb *sleb;
871 struct ubifs_scan_node *snod;
872 void *buf;
874 printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
875 current->pid, lnum);
877 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
878 if (!buf) {
879 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
880 return;
883 sleb = ubifs_scan(c, lnum, 0, buf, 0);
884 if (IS_ERR(sleb)) {
885 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
886 goto out;
889 printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
890 sleb->nodes_cnt, sleb->endpt);
892 list_for_each_entry(snod, &sleb->nodes, list) {
893 cond_resched();
894 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
895 snod->offs, snod->len);
896 ubifs_dump_node(c, snod->node);
899 printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
900 current->pid, lnum);
901 ubifs_scan_destroy(sleb);
903 out:
904 vfree(buf);
905 return;
908 void ubifs_dump_znode(const struct ubifs_info *c,
909 const struct ubifs_znode *znode)
911 int n;
912 const struct ubifs_zbranch *zbr;
913 char key_buf[DBG_KEY_BUF_LEN];
915 spin_lock(&dbg_lock);
916 if (znode->parent)
917 zbr = &znode->parent->zbranch[znode->iip];
918 else
919 zbr = &c->zroot;
921 printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
922 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
923 znode->level, znode->child_cnt, znode->flags);
925 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
926 spin_unlock(&dbg_lock);
927 return;
930 printk(KERN_ERR "zbranches:\n");
931 for (n = 0; n < znode->child_cnt; n++) {
932 zbr = &znode->zbranch[n];
933 if (znode->level > 0)
934 printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key %s\n",
935 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
936 dbg_snprintf_key(c, &zbr->key, key_buf,
937 DBG_KEY_BUF_LEN));
938 else
939 printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key %s\n",
940 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
941 dbg_snprintf_key(c, &zbr->key, key_buf,
942 DBG_KEY_BUF_LEN));
944 spin_unlock(&dbg_lock);
947 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
949 int i;
951 printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
952 current->pid, cat, heap->cnt);
953 for (i = 0; i < heap->cnt; i++) {
954 struct ubifs_lprops *lprops = heap->arr[i];
956 printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
957 i, lprops->lnum, lprops->hpos, lprops->free,
958 lprops->dirty, lprops->flags);
960 printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
963 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
964 struct ubifs_nnode *parent, int iip)
966 int i;
968 printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
969 printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
970 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
971 printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
972 pnode->flags, iip, pnode->level, pnode->num);
973 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
974 struct ubifs_lprops *lp = &pnode->lprops[i];
976 printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
977 i, lp->free, lp->dirty, lp->flags, lp->lnum);
981 void ubifs_dump_tnc(struct ubifs_info *c)
983 struct ubifs_znode *znode;
984 int level;
986 printk(KERN_ERR "\n");
987 printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
988 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
989 level = znode->level;
990 printk(KERN_ERR "== Level %d ==\n", level);
991 while (znode) {
992 if (level != znode->level) {
993 level = znode->level;
994 printk(KERN_ERR "== Level %d ==\n", level);
996 ubifs_dump_znode(c, znode);
997 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
999 printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1002 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1003 void *priv)
1005 ubifs_dump_znode(c, znode);
1006 return 0;
1010 * ubifs_dump_index - dump the on-flash index.
1011 * @c: UBIFS file-system description object
1013 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1014 * which dumps only in-memory znodes and does not read znodes which from flash.
1016 void ubifs_dump_index(struct ubifs_info *c)
1018 dbg_walk_index(c, NULL, dump_znode, NULL);
1022 * dbg_save_space_info - save information about flash space.
1023 * @c: UBIFS file-system description object
1025 * This function saves information about UBIFS free space, dirty space, etc, in
1026 * order to check it later.
1028 void dbg_save_space_info(struct ubifs_info *c)
1030 struct ubifs_debug_info *d = c->dbg;
1031 int freeable_cnt;
1033 spin_lock(&c->space_lock);
1034 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1035 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1036 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1039 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1040 * affects the free space calculations, and UBIFS might not know about
1041 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1042 * only when we read their lprops, and we do this only lazily, upon the
1043 * need. So at any given point of time @c->freeable_cnt might be not
1044 * exactly accurate.
1046 * Just one example about the issue we hit when we did not zero
1047 * @c->freeable_cnt.
1048 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1049 * amount of free space in @d->saved_free
1050 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1051 * information from flash, where we cache LEBs from various
1052 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1053 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1054 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1055 * -> 'ubifs_add_to_cat()').
1056 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1057 * becomes %1.
1058 * 4. We calculate the amount of free space when the re-mount is
1059 * finished in 'dbg_check_space_info()' and it does not match
1060 * @d->saved_free.
1062 freeable_cnt = c->freeable_cnt;
1063 c->freeable_cnt = 0;
1064 d->saved_free = ubifs_get_free_space_nolock(c);
1065 c->freeable_cnt = freeable_cnt;
1066 spin_unlock(&c->space_lock);
1070 * dbg_check_space_info - check flash space information.
1071 * @c: UBIFS file-system description object
1073 * This function compares current flash space information with the information
1074 * which was saved when the 'dbg_save_space_info()' function was called.
1075 * Returns zero if the information has not changed, and %-EINVAL it it has
1076 * changed.
1078 int dbg_check_space_info(struct ubifs_info *c)
1080 struct ubifs_debug_info *d = c->dbg;
1081 struct ubifs_lp_stats lst;
1082 long long free;
1083 int freeable_cnt;
1085 spin_lock(&c->space_lock);
1086 freeable_cnt = c->freeable_cnt;
1087 c->freeable_cnt = 0;
1088 free = ubifs_get_free_space_nolock(c);
1089 c->freeable_cnt = freeable_cnt;
1090 spin_unlock(&c->space_lock);
1092 if (free != d->saved_free) {
1093 ubifs_err("free space changed from %lld to %lld",
1094 d->saved_free, free);
1095 goto out;
1098 return 0;
1100 out:
1101 ubifs_msg("saved lprops statistics dump");
1102 ubifs_dump_lstats(&d->saved_lst);
1103 ubifs_msg("saved budgeting info dump");
1104 ubifs_dump_budg(c, &d->saved_bi);
1105 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1106 ubifs_msg("current lprops statistics dump");
1107 ubifs_get_lp_stats(c, &lst);
1108 ubifs_dump_lstats(&lst);
1109 ubifs_msg("current budgeting info dump");
1110 ubifs_dump_budg(c, &c->bi);
1111 dump_stack();
1112 return -EINVAL;
1116 * dbg_check_synced_i_size - check synchronized inode size.
1117 * @c: UBIFS file-system description object
1118 * @inode: inode to check
1120 * If inode is clean, synchronized inode size has to be equivalent to current
1121 * inode size. This function has to be called only for locked inodes (@i_mutex
1122 * has to be locked). Returns %0 if synchronized inode size if correct, and
1123 * %-EINVAL if not.
1125 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1127 int err = 0;
1128 struct ubifs_inode *ui = ubifs_inode(inode);
1130 if (!dbg_is_chk_gen(c))
1131 return 0;
1132 if (!S_ISREG(inode->i_mode))
1133 return 0;
1135 mutex_lock(&ui->ui_mutex);
1136 spin_lock(&ui->ui_lock);
1137 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1138 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
1139 ui->ui_size, ui->synced_i_size);
1140 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1141 inode->i_mode, i_size_read(inode));
1142 dump_stack();
1143 err = -EINVAL;
1145 spin_unlock(&ui->ui_lock);
1146 mutex_unlock(&ui->ui_mutex);
1147 return err;
1151 * dbg_check_dir - check directory inode size and link count.
1152 * @c: UBIFS file-system description object
1153 * @dir: the directory to calculate size for
1154 * @size: the result is returned here
1156 * This function makes sure that directory size and link count are correct.
1157 * Returns zero in case of success and a negative error code in case of
1158 * failure.
1160 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1161 * calling this function.
1163 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1165 unsigned int nlink = 2;
1166 union ubifs_key key;
1167 struct ubifs_dent_node *dent, *pdent = NULL;
1168 struct qstr nm = { .name = NULL };
1169 loff_t size = UBIFS_INO_NODE_SZ;
1171 if (!dbg_is_chk_gen(c))
1172 return 0;
1174 if (!S_ISDIR(dir->i_mode))
1175 return 0;
1177 lowest_dent_key(c, &key, dir->i_ino);
1178 while (1) {
1179 int err;
1181 dent = ubifs_tnc_next_ent(c, &key, &nm);
1182 if (IS_ERR(dent)) {
1183 err = PTR_ERR(dent);
1184 if (err == -ENOENT)
1185 break;
1186 return err;
1189 nm.name = dent->name;
1190 nm.len = le16_to_cpu(dent->nlen);
1191 size += CALC_DENT_SIZE(nm.len);
1192 if (dent->type == UBIFS_ITYPE_DIR)
1193 nlink += 1;
1194 kfree(pdent);
1195 pdent = dent;
1196 key_read(c, &dent->key, &key);
1198 kfree(pdent);
1200 if (i_size_read(dir) != size) {
1201 ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
1202 dir->i_ino, (unsigned long long)i_size_read(dir),
1203 (unsigned long long)size);
1204 ubifs_dump_inode(c, dir);
1205 dump_stack();
1206 return -EINVAL;
1208 if (dir->i_nlink != nlink) {
1209 ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
1210 dir->i_ino, dir->i_nlink, nlink);
1211 ubifs_dump_inode(c, dir);
1212 dump_stack();
1213 return -EINVAL;
1216 return 0;
1220 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1221 * @c: UBIFS file-system description object
1222 * @zbr1: first zbranch
1223 * @zbr2: following zbranch
1225 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1226 * names of the direntries/xentries which are referred by the keys. This
1227 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1228 * sure the name of direntry/xentry referred by @zbr1 is less than
1229 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1230 * and a negative error code in case of failure.
1232 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1233 struct ubifs_zbranch *zbr2)
1235 int err, nlen1, nlen2, cmp;
1236 struct ubifs_dent_node *dent1, *dent2;
1237 union ubifs_key key;
1238 char key_buf[DBG_KEY_BUF_LEN];
1240 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1241 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1242 if (!dent1)
1243 return -ENOMEM;
1244 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1245 if (!dent2) {
1246 err = -ENOMEM;
1247 goto out_free;
1250 err = ubifs_tnc_read_node(c, zbr1, dent1);
1251 if (err)
1252 goto out_free;
1253 err = ubifs_validate_entry(c, dent1);
1254 if (err)
1255 goto out_free;
1257 err = ubifs_tnc_read_node(c, zbr2, dent2);
1258 if (err)
1259 goto out_free;
1260 err = ubifs_validate_entry(c, dent2);
1261 if (err)
1262 goto out_free;
1264 /* Make sure node keys are the same as in zbranch */
1265 err = 1;
1266 key_read(c, &dent1->key, &key);
1267 if (keys_cmp(c, &zbr1->key, &key)) {
1268 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1269 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1270 DBG_KEY_BUF_LEN));
1271 ubifs_err("but it should have key %s according to tnc",
1272 dbg_snprintf_key(c, &zbr1->key, key_buf,
1273 DBG_KEY_BUF_LEN));
1274 ubifs_dump_node(c, dent1);
1275 goto out_free;
1278 key_read(c, &dent2->key, &key);
1279 if (keys_cmp(c, &zbr2->key, &key)) {
1280 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1281 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1282 DBG_KEY_BUF_LEN));
1283 ubifs_err("but it should have key %s according to tnc",
1284 dbg_snprintf_key(c, &zbr2->key, key_buf,
1285 DBG_KEY_BUF_LEN));
1286 ubifs_dump_node(c, dent2);
1287 goto out_free;
1290 nlen1 = le16_to_cpu(dent1->nlen);
1291 nlen2 = le16_to_cpu(dent2->nlen);
1293 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1294 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1295 err = 0;
1296 goto out_free;
1298 if (cmp == 0 && nlen1 == nlen2)
1299 ubifs_err("2 xent/dent nodes with the same name");
1300 else
1301 ubifs_err("bad order of colliding key %s",
1302 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1304 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1305 ubifs_dump_node(c, dent1);
1306 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1307 ubifs_dump_node(c, dent2);
1309 out_free:
1310 kfree(dent2);
1311 kfree(dent1);
1312 return err;
1316 * dbg_check_znode - check if znode is all right.
1317 * @c: UBIFS file-system description object
1318 * @zbr: zbranch which points to this znode
1320 * This function makes sure that znode referred to by @zbr is all right.
1321 * Returns zero if it is, and %-EINVAL if it is not.
1323 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1325 struct ubifs_znode *znode = zbr->znode;
1326 struct ubifs_znode *zp = znode->parent;
1327 int n, err, cmp;
1329 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1330 err = 1;
1331 goto out;
1333 if (znode->level < 0) {
1334 err = 2;
1335 goto out;
1337 if (znode->iip < 0 || znode->iip >= c->fanout) {
1338 err = 3;
1339 goto out;
1342 if (zbr->len == 0)
1343 /* Only dirty zbranch may have no on-flash nodes */
1344 if (!ubifs_zn_dirty(znode)) {
1345 err = 4;
1346 goto out;
1349 if (ubifs_zn_dirty(znode)) {
1351 * If znode is dirty, its parent has to be dirty as well. The
1352 * order of the operation is important, so we have to have
1353 * memory barriers.
1355 smp_mb();
1356 if (zp && !ubifs_zn_dirty(zp)) {
1358 * The dirty flag is atomic and is cleared outside the
1359 * TNC mutex, so znode's dirty flag may now have
1360 * been cleared. The child is always cleared before the
1361 * parent, so we just need to check again.
1363 smp_mb();
1364 if (ubifs_zn_dirty(znode)) {
1365 err = 5;
1366 goto out;
1371 if (zp) {
1372 const union ubifs_key *min, *max;
1374 if (znode->level != zp->level - 1) {
1375 err = 6;
1376 goto out;
1379 /* Make sure the 'parent' pointer in our znode is correct */
1380 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1381 if (!err) {
1382 /* This zbranch does not exist in the parent */
1383 err = 7;
1384 goto out;
1387 if (znode->iip >= zp->child_cnt) {
1388 err = 8;
1389 goto out;
1392 if (znode->iip != n) {
1393 /* This may happen only in case of collisions */
1394 if (keys_cmp(c, &zp->zbranch[n].key,
1395 &zp->zbranch[znode->iip].key)) {
1396 err = 9;
1397 goto out;
1399 n = znode->iip;
1403 * Make sure that the first key in our znode is greater than or
1404 * equal to the key in the pointing zbranch.
1406 min = &zbr->key;
1407 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1408 if (cmp == 1) {
1409 err = 10;
1410 goto out;
1413 if (n + 1 < zp->child_cnt) {
1414 max = &zp->zbranch[n + 1].key;
1417 * Make sure the last key in our znode is less or
1418 * equivalent than the key in the zbranch which goes
1419 * after our pointing zbranch.
1421 cmp = keys_cmp(c, max,
1422 &znode->zbranch[znode->child_cnt - 1].key);
1423 if (cmp == -1) {
1424 err = 11;
1425 goto out;
1428 } else {
1429 /* This may only be root znode */
1430 if (zbr != &c->zroot) {
1431 err = 12;
1432 goto out;
1437 * Make sure that next key is greater or equivalent then the previous
1438 * one.
1440 for (n = 1; n < znode->child_cnt; n++) {
1441 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1442 &znode->zbranch[n].key);
1443 if (cmp > 0) {
1444 err = 13;
1445 goto out;
1447 if (cmp == 0) {
1448 /* This can only be keys with colliding hash */
1449 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1450 err = 14;
1451 goto out;
1454 if (znode->level != 0 || c->replaying)
1455 continue;
1458 * Colliding keys should follow binary order of
1459 * corresponding xentry/dentry names.
1461 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1462 &znode->zbranch[n]);
1463 if (err < 0)
1464 return err;
1465 if (err) {
1466 err = 15;
1467 goto out;
1472 for (n = 0; n < znode->child_cnt; n++) {
1473 if (!znode->zbranch[n].znode &&
1474 (znode->zbranch[n].lnum == 0 ||
1475 znode->zbranch[n].len == 0)) {
1476 err = 16;
1477 goto out;
1480 if (znode->zbranch[n].lnum != 0 &&
1481 znode->zbranch[n].len == 0) {
1482 err = 17;
1483 goto out;
1486 if (znode->zbranch[n].lnum == 0 &&
1487 znode->zbranch[n].len != 0) {
1488 err = 18;
1489 goto out;
1492 if (znode->zbranch[n].lnum == 0 &&
1493 znode->zbranch[n].offs != 0) {
1494 err = 19;
1495 goto out;
1498 if (znode->level != 0 && znode->zbranch[n].znode)
1499 if (znode->zbranch[n].znode->parent != znode) {
1500 err = 20;
1501 goto out;
1505 return 0;
1507 out:
1508 ubifs_err("failed, error %d", err);
1509 ubifs_msg("dump of the znode");
1510 ubifs_dump_znode(c, znode);
1511 if (zp) {
1512 ubifs_msg("dump of the parent znode");
1513 ubifs_dump_znode(c, zp);
1515 dump_stack();
1516 return -EINVAL;
1520 * dbg_check_tnc - check TNC tree.
1521 * @c: UBIFS file-system description object
1522 * @extra: do extra checks that are possible at start commit
1524 * This function traverses whole TNC tree and checks every znode. Returns zero
1525 * if everything is all right and %-EINVAL if something is wrong with TNC.
1527 int dbg_check_tnc(struct ubifs_info *c, int extra)
1529 struct ubifs_znode *znode;
1530 long clean_cnt = 0, dirty_cnt = 0;
1531 int err, last;
1533 if (!dbg_is_chk_index(c))
1534 return 0;
1536 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1537 if (!c->zroot.znode)
1538 return 0;
1540 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1541 while (1) {
1542 struct ubifs_znode *prev;
1543 struct ubifs_zbranch *zbr;
1545 if (!znode->parent)
1546 zbr = &c->zroot;
1547 else
1548 zbr = &znode->parent->zbranch[znode->iip];
1550 err = dbg_check_znode(c, zbr);
1551 if (err)
1552 return err;
1554 if (extra) {
1555 if (ubifs_zn_dirty(znode))
1556 dirty_cnt += 1;
1557 else
1558 clean_cnt += 1;
1561 prev = znode;
1562 znode = ubifs_tnc_postorder_next(znode);
1563 if (!znode)
1564 break;
1567 * If the last key of this znode is equivalent to the first key
1568 * of the next znode (collision), then check order of the keys.
1570 last = prev->child_cnt - 1;
1571 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1572 !keys_cmp(c, &prev->zbranch[last].key,
1573 &znode->zbranch[0].key)) {
1574 err = dbg_check_key_order(c, &prev->zbranch[last],
1575 &znode->zbranch[0]);
1576 if (err < 0)
1577 return err;
1578 if (err) {
1579 ubifs_msg("first znode");
1580 ubifs_dump_znode(c, prev);
1581 ubifs_msg("second znode");
1582 ubifs_dump_znode(c, znode);
1583 return -EINVAL;
1588 if (extra) {
1589 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1590 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1591 atomic_long_read(&c->clean_zn_cnt),
1592 clean_cnt);
1593 return -EINVAL;
1595 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1596 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1597 atomic_long_read(&c->dirty_zn_cnt),
1598 dirty_cnt);
1599 return -EINVAL;
1603 return 0;
1607 * dbg_walk_index - walk the on-flash index.
1608 * @c: UBIFS file-system description object
1609 * @leaf_cb: called for each leaf node
1610 * @znode_cb: called for each indexing node
1611 * @priv: private data which is passed to callbacks
1613 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1614 * node and @znode_cb for each indexing node. Returns zero in case of success
1615 * and a negative error code in case of failure.
1617 * It would be better if this function removed every znode it pulled to into
1618 * the TNC, so that the behavior more closely matched the non-debugging
1619 * behavior.
1621 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1622 dbg_znode_callback znode_cb, void *priv)
1624 int err;
1625 struct ubifs_zbranch *zbr;
1626 struct ubifs_znode *znode, *child;
1628 mutex_lock(&c->tnc_mutex);
1629 /* If the root indexing node is not in TNC - pull it */
1630 if (!c->zroot.znode) {
1631 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1632 if (IS_ERR(c->zroot.znode)) {
1633 err = PTR_ERR(c->zroot.znode);
1634 c->zroot.znode = NULL;
1635 goto out_unlock;
1640 * We are going to traverse the indexing tree in the postorder manner.
1641 * Go down and find the leftmost indexing node where we are going to
1642 * start from.
1644 znode = c->zroot.znode;
1645 while (znode->level > 0) {
1646 zbr = &znode->zbranch[0];
1647 child = zbr->znode;
1648 if (!child) {
1649 child = ubifs_load_znode(c, zbr, znode, 0);
1650 if (IS_ERR(child)) {
1651 err = PTR_ERR(child);
1652 goto out_unlock;
1654 zbr->znode = child;
1657 znode = child;
1660 /* Iterate over all indexing nodes */
1661 while (1) {
1662 int idx;
1664 cond_resched();
1666 if (znode_cb) {
1667 err = znode_cb(c, znode, priv);
1668 if (err) {
1669 ubifs_err("znode checking function returned error %d",
1670 err);
1671 ubifs_dump_znode(c, znode);
1672 goto out_dump;
1675 if (leaf_cb && znode->level == 0) {
1676 for (idx = 0; idx < znode->child_cnt; idx++) {
1677 zbr = &znode->zbranch[idx];
1678 err = leaf_cb(c, zbr, priv);
1679 if (err) {
1680 ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1681 err, zbr->lnum, zbr->offs);
1682 goto out_dump;
1687 if (!znode->parent)
1688 break;
1690 idx = znode->iip + 1;
1691 znode = znode->parent;
1692 if (idx < znode->child_cnt) {
1693 /* Switch to the next index in the parent */
1694 zbr = &znode->zbranch[idx];
1695 child = zbr->znode;
1696 if (!child) {
1697 child = ubifs_load_znode(c, zbr, znode, idx);
1698 if (IS_ERR(child)) {
1699 err = PTR_ERR(child);
1700 goto out_unlock;
1702 zbr->znode = child;
1704 znode = child;
1705 } else
1707 * This is the last child, switch to the parent and
1708 * continue.
1710 continue;
1712 /* Go to the lowest leftmost znode in the new sub-tree */
1713 while (znode->level > 0) {
1714 zbr = &znode->zbranch[0];
1715 child = zbr->znode;
1716 if (!child) {
1717 child = ubifs_load_znode(c, zbr, znode, 0);
1718 if (IS_ERR(child)) {
1719 err = PTR_ERR(child);
1720 goto out_unlock;
1722 zbr->znode = child;
1724 znode = child;
1728 mutex_unlock(&c->tnc_mutex);
1729 return 0;
1731 out_dump:
1732 if (znode->parent)
1733 zbr = &znode->parent->zbranch[znode->iip];
1734 else
1735 zbr = &c->zroot;
1736 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1737 ubifs_dump_znode(c, znode);
1738 out_unlock:
1739 mutex_unlock(&c->tnc_mutex);
1740 return err;
1744 * add_size - add znode size to partially calculated index size.
1745 * @c: UBIFS file-system description object
1746 * @znode: znode to add size for
1747 * @priv: partially calculated index size
1749 * This is a helper function for 'dbg_check_idx_size()' which is called for
1750 * every indexing node and adds its size to the 'long long' variable pointed to
1751 * by @priv.
1753 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1755 long long *idx_size = priv;
1756 int add;
1758 add = ubifs_idx_node_sz(c, znode->child_cnt);
1759 add = ALIGN(add, 8);
1760 *idx_size += add;
1761 return 0;
1765 * dbg_check_idx_size - check index size.
1766 * @c: UBIFS file-system description object
1767 * @idx_size: size to check
1769 * This function walks the UBIFS index, calculates its size and checks that the
1770 * size is equivalent to @idx_size. Returns zero in case of success and a
1771 * negative error code in case of failure.
1773 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1775 int err;
1776 long long calc = 0;
1778 if (!dbg_is_chk_index(c))
1779 return 0;
1781 err = dbg_walk_index(c, NULL, add_size, &calc);
1782 if (err) {
1783 ubifs_err("error %d while walking the index", err);
1784 return err;
1787 if (calc != idx_size) {
1788 ubifs_err("index size check failed: calculated size is %lld, should be %lld",
1789 calc, idx_size);
1790 dump_stack();
1791 return -EINVAL;
1794 return 0;
1798 * struct fsck_inode - information about an inode used when checking the file-system.
1799 * @rb: link in the RB-tree of inodes
1800 * @inum: inode number
1801 * @mode: inode type, permissions, etc
1802 * @nlink: inode link count
1803 * @xattr_cnt: count of extended attributes
1804 * @references: how many directory/xattr entries refer this inode (calculated
1805 * while walking the index)
1806 * @calc_cnt: for directory inode count of child directories
1807 * @size: inode size (read from on-flash inode)
1808 * @xattr_sz: summary size of all extended attributes (read from on-flash
1809 * inode)
1810 * @calc_sz: for directories calculated directory size
1811 * @calc_xcnt: count of extended attributes
1812 * @calc_xsz: calculated summary size of all extended attributes
1813 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1814 * inode (read from on-flash inode)
1815 * @calc_xnms: calculated sum of lengths of all extended attribute names
1817 struct fsck_inode {
1818 struct rb_node rb;
1819 ino_t inum;
1820 umode_t mode;
1821 unsigned int nlink;
1822 unsigned int xattr_cnt;
1823 int references;
1824 int calc_cnt;
1825 long long size;
1826 unsigned int xattr_sz;
1827 long long calc_sz;
1828 long long calc_xcnt;
1829 long long calc_xsz;
1830 unsigned int xattr_nms;
1831 long long calc_xnms;
1835 * struct fsck_data - private FS checking information.
1836 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1838 struct fsck_data {
1839 struct rb_root inodes;
1843 * add_inode - add inode information to RB-tree of inodes.
1844 * @c: UBIFS file-system description object
1845 * @fsckd: FS checking information
1846 * @ino: raw UBIFS inode to add
1848 * This is a helper function for 'check_leaf()' which adds information about
1849 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1850 * case of success and a negative error code in case of failure.
1852 static struct fsck_inode *add_inode(struct ubifs_info *c,
1853 struct fsck_data *fsckd,
1854 struct ubifs_ino_node *ino)
1856 struct rb_node **p, *parent = NULL;
1857 struct fsck_inode *fscki;
1858 ino_t inum = key_inum_flash(c, &ino->key);
1859 struct inode *inode;
1860 struct ubifs_inode *ui;
1862 p = &fsckd->inodes.rb_node;
1863 while (*p) {
1864 parent = *p;
1865 fscki = rb_entry(parent, struct fsck_inode, rb);
1866 if (inum < fscki->inum)
1867 p = &(*p)->rb_left;
1868 else if (inum > fscki->inum)
1869 p = &(*p)->rb_right;
1870 else
1871 return fscki;
1874 if (inum > c->highest_inum) {
1875 ubifs_err("too high inode number, max. is %lu",
1876 (unsigned long)c->highest_inum);
1877 return ERR_PTR(-EINVAL);
1880 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1881 if (!fscki)
1882 return ERR_PTR(-ENOMEM);
1884 inode = ilookup(c->vfs_sb, inum);
1886 fscki->inum = inum;
1888 * If the inode is present in the VFS inode cache, use it instead of
1889 * the on-flash inode which might be out-of-date. E.g., the size might
1890 * be out-of-date. If we do not do this, the following may happen, for
1891 * example:
1892 * 1. A power cut happens
1893 * 2. We mount the file-system R/O, the replay process fixes up the
1894 * inode size in the VFS cache, but on on-flash.
1895 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1896 * size.
1898 if (!inode) {
1899 fscki->nlink = le32_to_cpu(ino->nlink);
1900 fscki->size = le64_to_cpu(ino->size);
1901 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1902 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1903 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1904 fscki->mode = le32_to_cpu(ino->mode);
1905 } else {
1906 ui = ubifs_inode(inode);
1907 fscki->nlink = inode->i_nlink;
1908 fscki->size = inode->i_size;
1909 fscki->xattr_cnt = ui->xattr_cnt;
1910 fscki->xattr_sz = ui->xattr_size;
1911 fscki->xattr_nms = ui->xattr_names;
1912 fscki->mode = inode->i_mode;
1913 iput(inode);
1916 if (S_ISDIR(fscki->mode)) {
1917 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1918 fscki->calc_cnt = 2;
1921 rb_link_node(&fscki->rb, parent, p);
1922 rb_insert_color(&fscki->rb, &fsckd->inodes);
1924 return fscki;
1928 * search_inode - search inode in the RB-tree of inodes.
1929 * @fsckd: FS checking information
1930 * @inum: inode number to search
1932 * This is a helper function for 'check_leaf()' which searches inode @inum in
1933 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1934 * the inode was not found.
1936 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1938 struct rb_node *p;
1939 struct fsck_inode *fscki;
1941 p = fsckd->inodes.rb_node;
1942 while (p) {
1943 fscki = rb_entry(p, struct fsck_inode, rb);
1944 if (inum < fscki->inum)
1945 p = p->rb_left;
1946 else if (inum > fscki->inum)
1947 p = p->rb_right;
1948 else
1949 return fscki;
1951 return NULL;
1955 * read_add_inode - read inode node and add it to RB-tree of inodes.
1956 * @c: UBIFS file-system description object
1957 * @fsckd: FS checking information
1958 * @inum: inode number to read
1960 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1961 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1962 * information pointer in case of success and a negative error code in case of
1963 * failure.
1965 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1966 struct fsck_data *fsckd, ino_t inum)
1968 int n, err;
1969 union ubifs_key key;
1970 struct ubifs_znode *znode;
1971 struct ubifs_zbranch *zbr;
1972 struct ubifs_ino_node *ino;
1973 struct fsck_inode *fscki;
1975 fscki = search_inode(fsckd, inum);
1976 if (fscki)
1977 return fscki;
1979 ino_key_init(c, &key, inum);
1980 err = ubifs_lookup_level0(c, &key, &znode, &n);
1981 if (!err) {
1982 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1983 return ERR_PTR(-ENOENT);
1984 } else if (err < 0) {
1985 ubifs_err("error %d while looking up inode %lu",
1986 err, (unsigned long)inum);
1987 return ERR_PTR(err);
1990 zbr = &znode->zbranch[n];
1991 if (zbr->len < UBIFS_INO_NODE_SZ) {
1992 ubifs_err("bad node %lu node length %d",
1993 (unsigned long)inum, zbr->len);
1994 return ERR_PTR(-EINVAL);
1997 ino = kmalloc(zbr->len, GFP_NOFS);
1998 if (!ino)
1999 return ERR_PTR(-ENOMEM);
2001 err = ubifs_tnc_read_node(c, zbr, ino);
2002 if (err) {
2003 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2004 zbr->lnum, zbr->offs, err);
2005 kfree(ino);
2006 return ERR_PTR(err);
2009 fscki = add_inode(c, fsckd, ino);
2010 kfree(ino);
2011 if (IS_ERR(fscki)) {
2012 ubifs_err("error %ld while adding inode %lu node",
2013 PTR_ERR(fscki), (unsigned long)inum);
2014 return fscki;
2017 return fscki;
2021 * check_leaf - check leaf node.
2022 * @c: UBIFS file-system description object
2023 * @zbr: zbranch of the leaf node to check
2024 * @priv: FS checking information
2026 * This is a helper function for 'dbg_check_filesystem()' which is called for
2027 * every single leaf node while walking the indexing tree. It checks that the
2028 * leaf node referred from the indexing tree exists, has correct CRC, and does
2029 * some other basic validation. This function is also responsible for building
2030 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2031 * calculates reference count, size, etc for each inode in order to later
2032 * compare them to the information stored inside the inodes and detect possible
2033 * inconsistencies. Returns zero in case of success and a negative error code
2034 * in case of failure.
2036 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2037 void *priv)
2039 ino_t inum;
2040 void *node;
2041 struct ubifs_ch *ch;
2042 int err, type = key_type(c, &zbr->key);
2043 struct fsck_inode *fscki;
2045 if (zbr->len < UBIFS_CH_SZ) {
2046 ubifs_err("bad leaf length %d (LEB %d:%d)",
2047 zbr->len, zbr->lnum, zbr->offs);
2048 return -EINVAL;
2051 node = kmalloc(zbr->len, GFP_NOFS);
2052 if (!node)
2053 return -ENOMEM;
2055 err = ubifs_tnc_read_node(c, zbr, node);
2056 if (err) {
2057 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2058 zbr->lnum, zbr->offs, err);
2059 goto out_free;
2062 /* If this is an inode node, add it to RB-tree of inodes */
2063 if (type == UBIFS_INO_KEY) {
2064 fscki = add_inode(c, priv, node);
2065 if (IS_ERR(fscki)) {
2066 err = PTR_ERR(fscki);
2067 ubifs_err("error %d while adding inode node", err);
2068 goto out_dump;
2070 goto out;
2073 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2074 type != UBIFS_DATA_KEY) {
2075 ubifs_err("unexpected node type %d at LEB %d:%d",
2076 type, zbr->lnum, zbr->offs);
2077 err = -EINVAL;
2078 goto out_free;
2081 ch = node;
2082 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2083 ubifs_err("too high sequence number, max. is %llu",
2084 c->max_sqnum);
2085 err = -EINVAL;
2086 goto out_dump;
2089 if (type == UBIFS_DATA_KEY) {
2090 long long blk_offs;
2091 struct ubifs_data_node *dn = node;
2094 * Search the inode node this data node belongs to and insert
2095 * it to the RB-tree of inodes.
2097 inum = key_inum_flash(c, &dn->key);
2098 fscki = read_add_inode(c, priv, inum);
2099 if (IS_ERR(fscki)) {
2100 err = PTR_ERR(fscki);
2101 ubifs_err("error %d while processing data node and trying to find inode node %lu",
2102 err, (unsigned long)inum);
2103 goto out_dump;
2106 /* Make sure the data node is within inode size */
2107 blk_offs = key_block_flash(c, &dn->key);
2108 blk_offs <<= UBIFS_BLOCK_SHIFT;
2109 blk_offs += le32_to_cpu(dn->size);
2110 if (blk_offs > fscki->size) {
2111 ubifs_err("data node at LEB %d:%d is not within inode size %lld",
2112 zbr->lnum, zbr->offs, fscki->size);
2113 err = -EINVAL;
2114 goto out_dump;
2116 } else {
2117 int nlen;
2118 struct ubifs_dent_node *dent = node;
2119 struct fsck_inode *fscki1;
2121 err = ubifs_validate_entry(c, dent);
2122 if (err)
2123 goto out_dump;
2126 * Search the inode node this entry refers to and the parent
2127 * inode node and insert them to the RB-tree of inodes.
2129 inum = le64_to_cpu(dent->inum);
2130 fscki = read_add_inode(c, priv, inum);
2131 if (IS_ERR(fscki)) {
2132 err = PTR_ERR(fscki);
2133 ubifs_err("error %d while processing entry node and trying to find inode node %lu",
2134 err, (unsigned long)inum);
2135 goto out_dump;
2138 /* Count how many direntries or xentries refers this inode */
2139 fscki->references += 1;
2141 inum = key_inum_flash(c, &dent->key);
2142 fscki1 = read_add_inode(c, priv, inum);
2143 if (IS_ERR(fscki1)) {
2144 err = PTR_ERR(fscki1);
2145 ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
2146 err, (unsigned long)inum);
2147 goto out_dump;
2150 nlen = le16_to_cpu(dent->nlen);
2151 if (type == UBIFS_XENT_KEY) {
2152 fscki1->calc_xcnt += 1;
2153 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2154 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2155 fscki1->calc_xnms += nlen;
2156 } else {
2157 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2158 if (dent->type == UBIFS_ITYPE_DIR)
2159 fscki1->calc_cnt += 1;
2163 out:
2164 kfree(node);
2165 return 0;
2167 out_dump:
2168 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2169 ubifs_dump_node(c, node);
2170 out_free:
2171 kfree(node);
2172 return err;
2176 * free_inodes - free RB-tree of inodes.
2177 * @fsckd: FS checking information
2179 static void free_inodes(struct fsck_data *fsckd)
2181 struct rb_node *this = fsckd->inodes.rb_node;
2182 struct fsck_inode *fscki;
2184 while (this) {
2185 if (this->rb_left)
2186 this = this->rb_left;
2187 else if (this->rb_right)
2188 this = this->rb_right;
2189 else {
2190 fscki = rb_entry(this, struct fsck_inode, rb);
2191 this = rb_parent(this);
2192 if (this) {
2193 if (this->rb_left == &fscki->rb)
2194 this->rb_left = NULL;
2195 else
2196 this->rb_right = NULL;
2198 kfree(fscki);
2204 * check_inodes - checks all inodes.
2205 * @c: UBIFS file-system description object
2206 * @fsckd: FS checking information
2208 * This is a helper function for 'dbg_check_filesystem()' which walks the
2209 * RB-tree of inodes after the index scan has been finished, and checks that
2210 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2211 * %-EINVAL if not, and a negative error code in case of failure.
2213 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2215 int n, err;
2216 union ubifs_key key;
2217 struct ubifs_znode *znode;
2218 struct ubifs_zbranch *zbr;
2219 struct ubifs_ino_node *ino;
2220 struct fsck_inode *fscki;
2221 struct rb_node *this = rb_first(&fsckd->inodes);
2223 while (this) {
2224 fscki = rb_entry(this, struct fsck_inode, rb);
2225 this = rb_next(this);
2227 if (S_ISDIR(fscki->mode)) {
2229 * Directories have to have exactly one reference (they
2230 * cannot have hardlinks), although root inode is an
2231 * exception.
2233 if (fscki->inum != UBIFS_ROOT_INO &&
2234 fscki->references != 1) {
2235 ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
2236 (unsigned long)fscki->inum,
2237 fscki->references);
2238 goto out_dump;
2240 if (fscki->inum == UBIFS_ROOT_INO &&
2241 fscki->references != 0) {
2242 ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
2243 (unsigned long)fscki->inum,
2244 fscki->references);
2245 goto out_dump;
2247 if (fscki->calc_sz != fscki->size) {
2248 ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
2249 (unsigned long)fscki->inum,
2250 fscki->size, fscki->calc_sz);
2251 goto out_dump;
2253 if (fscki->calc_cnt != fscki->nlink) {
2254 ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
2255 (unsigned long)fscki->inum,
2256 fscki->nlink, fscki->calc_cnt);
2257 goto out_dump;
2259 } else {
2260 if (fscki->references != fscki->nlink) {
2261 ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
2262 (unsigned long)fscki->inum,
2263 fscki->nlink, fscki->references);
2264 goto out_dump;
2267 if (fscki->xattr_sz != fscki->calc_xsz) {
2268 ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
2269 (unsigned long)fscki->inum, fscki->xattr_sz,
2270 fscki->calc_xsz);
2271 goto out_dump;
2273 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2274 ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
2275 (unsigned long)fscki->inum,
2276 fscki->xattr_cnt, fscki->calc_xcnt);
2277 goto out_dump;
2279 if (fscki->xattr_nms != fscki->calc_xnms) {
2280 ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
2281 (unsigned long)fscki->inum, fscki->xattr_nms,
2282 fscki->calc_xnms);
2283 goto out_dump;
2287 return 0;
2289 out_dump:
2290 /* Read the bad inode and dump it */
2291 ino_key_init(c, &key, fscki->inum);
2292 err = ubifs_lookup_level0(c, &key, &znode, &n);
2293 if (!err) {
2294 ubifs_err("inode %lu not found in index",
2295 (unsigned long)fscki->inum);
2296 return -ENOENT;
2297 } else if (err < 0) {
2298 ubifs_err("error %d while looking up inode %lu",
2299 err, (unsigned long)fscki->inum);
2300 return err;
2303 zbr = &znode->zbranch[n];
2304 ino = kmalloc(zbr->len, GFP_NOFS);
2305 if (!ino)
2306 return -ENOMEM;
2308 err = ubifs_tnc_read_node(c, zbr, ino);
2309 if (err) {
2310 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2311 zbr->lnum, zbr->offs, err);
2312 kfree(ino);
2313 return err;
2316 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2317 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2318 ubifs_dump_node(c, ino);
2319 kfree(ino);
2320 return -EINVAL;
2324 * dbg_check_filesystem - check the file-system.
2325 * @c: UBIFS file-system description object
2327 * This function checks the file system, namely:
2328 * o makes sure that all leaf nodes exist and their CRCs are correct;
2329 * o makes sure inode nlink, size, xattr size/count are correct (for all
2330 * inodes).
2332 * The function reads whole indexing tree and all nodes, so it is pretty
2333 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2334 * not, and a negative error code in case of failure.
2336 int dbg_check_filesystem(struct ubifs_info *c)
2338 int err;
2339 struct fsck_data fsckd;
2341 if (!dbg_is_chk_fs(c))
2342 return 0;
2344 fsckd.inodes = RB_ROOT;
2345 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2346 if (err)
2347 goto out_free;
2349 err = check_inodes(c, &fsckd);
2350 if (err)
2351 goto out_free;
2353 free_inodes(&fsckd);
2354 return 0;
2356 out_free:
2357 ubifs_err("file-system check failed with error %d", err);
2358 dump_stack();
2359 free_inodes(&fsckd);
2360 return err;
2364 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2365 * @c: UBIFS file-system description object
2366 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2368 * This function returns zero if the list of data nodes is sorted correctly,
2369 * and %-EINVAL if not.
2371 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2373 struct list_head *cur;
2374 struct ubifs_scan_node *sa, *sb;
2376 if (!dbg_is_chk_gen(c))
2377 return 0;
2379 for (cur = head->next; cur->next != head; cur = cur->next) {
2380 ino_t inuma, inumb;
2381 uint32_t blka, blkb;
2383 cond_resched();
2384 sa = container_of(cur, struct ubifs_scan_node, list);
2385 sb = container_of(cur->next, struct ubifs_scan_node, list);
2387 if (sa->type != UBIFS_DATA_NODE) {
2388 ubifs_err("bad node type %d", sa->type);
2389 ubifs_dump_node(c, sa->node);
2390 return -EINVAL;
2392 if (sb->type != UBIFS_DATA_NODE) {
2393 ubifs_err("bad node type %d", sb->type);
2394 ubifs_dump_node(c, sb->node);
2395 return -EINVAL;
2398 inuma = key_inum(c, &sa->key);
2399 inumb = key_inum(c, &sb->key);
2401 if (inuma < inumb)
2402 continue;
2403 if (inuma > inumb) {
2404 ubifs_err("larger inum %lu goes before inum %lu",
2405 (unsigned long)inuma, (unsigned long)inumb);
2406 goto error_dump;
2409 blka = key_block(c, &sa->key);
2410 blkb = key_block(c, &sb->key);
2412 if (blka > blkb) {
2413 ubifs_err("larger block %u goes before %u", blka, blkb);
2414 goto error_dump;
2416 if (blka == blkb) {
2417 ubifs_err("two data nodes for the same block");
2418 goto error_dump;
2422 return 0;
2424 error_dump:
2425 ubifs_dump_node(c, sa->node);
2426 ubifs_dump_node(c, sb->node);
2427 return -EINVAL;
2431 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2432 * @c: UBIFS file-system description object
2433 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2435 * This function returns zero if the list of non-data nodes is sorted correctly,
2436 * and %-EINVAL if not.
2438 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2440 struct list_head *cur;
2441 struct ubifs_scan_node *sa, *sb;
2443 if (!dbg_is_chk_gen(c))
2444 return 0;
2446 for (cur = head->next; cur->next != head; cur = cur->next) {
2447 ino_t inuma, inumb;
2448 uint32_t hasha, hashb;
2450 cond_resched();
2451 sa = container_of(cur, struct ubifs_scan_node, list);
2452 sb = container_of(cur->next, struct ubifs_scan_node, list);
2454 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2455 sa->type != UBIFS_XENT_NODE) {
2456 ubifs_err("bad node type %d", sa->type);
2457 ubifs_dump_node(c, sa->node);
2458 return -EINVAL;
2460 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2461 sa->type != UBIFS_XENT_NODE) {
2462 ubifs_err("bad node type %d", sb->type);
2463 ubifs_dump_node(c, sb->node);
2464 return -EINVAL;
2467 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2468 ubifs_err("non-inode node goes before inode node");
2469 goto error_dump;
2472 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2473 continue;
2475 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2476 /* Inode nodes are sorted in descending size order */
2477 if (sa->len < sb->len) {
2478 ubifs_err("smaller inode node goes first");
2479 goto error_dump;
2481 continue;
2485 * This is either a dentry or xentry, which should be sorted in
2486 * ascending (parent ino, hash) order.
2488 inuma = key_inum(c, &sa->key);
2489 inumb = key_inum(c, &sb->key);
2491 if (inuma < inumb)
2492 continue;
2493 if (inuma > inumb) {
2494 ubifs_err("larger inum %lu goes before inum %lu",
2495 (unsigned long)inuma, (unsigned long)inumb);
2496 goto error_dump;
2499 hasha = key_block(c, &sa->key);
2500 hashb = key_block(c, &sb->key);
2502 if (hasha > hashb) {
2503 ubifs_err("larger hash %u goes before %u",
2504 hasha, hashb);
2505 goto error_dump;
2509 return 0;
2511 error_dump:
2512 ubifs_msg("dumping first node");
2513 ubifs_dump_node(c, sa->node);
2514 ubifs_msg("dumping second node");
2515 ubifs_dump_node(c, sb->node);
2516 return -EINVAL;
2517 return 0;
2520 static inline int chance(unsigned int n, unsigned int out_of)
2522 return !!((random32() % out_of) + 1 <= n);
2526 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2528 struct ubifs_debug_info *d = c->dbg;
2530 ubifs_assert(dbg_is_tst_rcvry(c));
2532 if (!d->pc_cnt) {
2533 /* First call - decide delay to the power cut */
2534 if (chance(1, 2)) {
2535 unsigned long delay;
2537 if (chance(1, 2)) {
2538 d->pc_delay = 1;
2539 /* Fail withing 1 minute */
2540 delay = random32() % 60000;
2541 d->pc_timeout = jiffies;
2542 d->pc_timeout += msecs_to_jiffies(delay);
2543 ubifs_warn("failing after %lums", delay);
2544 } else {
2545 d->pc_delay = 2;
2546 delay = random32() % 10000;
2547 /* Fail within 10000 operations */
2548 d->pc_cnt_max = delay;
2549 ubifs_warn("failing after %lu calls", delay);
2553 d->pc_cnt += 1;
2556 /* Determine if failure delay has expired */
2557 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2558 return 0;
2559 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2560 return 0;
2562 if (lnum == UBIFS_SB_LNUM) {
2563 if (write && chance(1, 2))
2564 return 0;
2565 if (chance(19, 20))
2566 return 0;
2567 ubifs_warn("failing in super block LEB %d", lnum);
2568 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2569 if (chance(19, 20))
2570 return 0;
2571 ubifs_warn("failing in master LEB %d", lnum);
2572 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2573 if (write && chance(99, 100))
2574 return 0;
2575 if (chance(399, 400))
2576 return 0;
2577 ubifs_warn("failing in log LEB %d", lnum);
2578 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2579 if (write && chance(7, 8))
2580 return 0;
2581 if (chance(19, 20))
2582 return 0;
2583 ubifs_warn("failing in LPT LEB %d", lnum);
2584 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2585 if (write && chance(1, 2))
2586 return 0;
2587 if (chance(9, 10))
2588 return 0;
2589 ubifs_warn("failing in orphan LEB %d", lnum);
2590 } else if (lnum == c->ihead_lnum) {
2591 if (chance(99, 100))
2592 return 0;
2593 ubifs_warn("failing in index head LEB %d", lnum);
2594 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2595 if (chance(9, 10))
2596 return 0;
2597 ubifs_warn("failing in GC head LEB %d", lnum);
2598 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2599 !ubifs_search_bud(c, lnum)) {
2600 if (chance(19, 20))
2601 return 0;
2602 ubifs_warn("failing in non-bud LEB %d", lnum);
2603 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2604 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2605 if (chance(999, 1000))
2606 return 0;
2607 ubifs_warn("failing in bud LEB %d commit running", lnum);
2608 } else {
2609 if (chance(9999, 10000))
2610 return 0;
2611 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2614 d->pc_happened = 1;
2615 ubifs_warn("========== Power cut emulated ==========");
2616 dump_stack();
2617 return 1;
2620 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2621 unsigned int len)
2623 unsigned int from, to, i, ffs = chance(1, 2);
2624 unsigned char *p = (void *)buf;
2626 from = random32() % (len + 1);
2627 /* Corruption may only span one max. write unit */
2628 to = min(len, ALIGN(from, c->max_write_size));
2630 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2631 ffs ? "0xFFs" : "random data");
2633 if (ffs)
2634 for (i = from; i < to; i++)
2635 p[i] = 0xFF;
2636 else
2637 for (i = from; i < to; i++)
2638 p[i] = random32() % 0x100;
2640 return to;
2643 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2644 int offs, int len)
2646 int err, failing;
2648 if (c->dbg->pc_happened)
2649 return -EROFS;
2651 failing = power_cut_emulated(c, lnum, 1);
2652 if (failing)
2653 len = corrupt_data(c, buf, len);
2654 ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2655 len, lnum, offs);
2656 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2657 if (err)
2658 return err;
2659 if (failing)
2660 return -EROFS;
2661 return 0;
2664 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2665 int len)
2667 int err;
2669 if (c->dbg->pc_happened)
2670 return -EROFS;
2671 if (power_cut_emulated(c, lnum, 1))
2672 return -EROFS;
2673 err = ubi_leb_change(c->ubi, lnum, buf, len);
2674 if (err)
2675 return err;
2676 if (power_cut_emulated(c, lnum, 1))
2677 return -EROFS;
2678 return 0;
2681 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2683 int err;
2685 if (c->dbg->pc_happened)
2686 return -EROFS;
2687 if (power_cut_emulated(c, lnum, 0))
2688 return -EROFS;
2689 err = ubi_leb_unmap(c->ubi, lnum);
2690 if (err)
2691 return err;
2692 if (power_cut_emulated(c, lnum, 0))
2693 return -EROFS;
2694 return 0;
2697 int dbg_leb_map(struct ubifs_info *c, int lnum)
2699 int err;
2701 if (c->dbg->pc_happened)
2702 return -EROFS;
2703 if (power_cut_emulated(c, lnum, 0))
2704 return -EROFS;
2705 err = ubi_leb_map(c->ubi, lnum);
2706 if (err)
2707 return err;
2708 if (power_cut_emulated(c, lnum, 0))
2709 return -EROFS;
2710 return 0;
2714 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2715 * contain the stuff specific to particular file-system mounts.
2717 static struct dentry *dfs_rootdir;
2719 static int dfs_file_open(struct inode *inode, struct file *file)
2721 file->private_data = inode->i_private;
2722 return nonseekable_open(inode, file);
2726 * provide_user_output - provide output to the user reading a debugfs file.
2727 * @val: boolean value for the answer
2728 * @u: the buffer to store the answer at
2729 * @count: size of the buffer
2730 * @ppos: position in the @u output buffer
2732 * This is a simple helper function which stores @val boolean value in the user
2733 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2734 * bytes written to @u in case of success and a negative error code in case of
2735 * failure.
2737 static int provide_user_output(int val, char __user *u, size_t count,
2738 loff_t *ppos)
2740 char buf[3];
2742 if (val)
2743 buf[0] = '1';
2744 else
2745 buf[0] = '0';
2746 buf[1] = '\n';
2747 buf[2] = 0x00;
2749 return simple_read_from_buffer(u, count, ppos, buf, 2);
2752 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2753 loff_t *ppos)
2755 struct dentry *dent = file->f_path.dentry;
2756 struct ubifs_info *c = file->private_data;
2757 struct ubifs_debug_info *d = c->dbg;
2758 int val;
2760 if (dent == d->dfs_chk_gen)
2761 val = d->chk_gen;
2762 else if (dent == d->dfs_chk_index)
2763 val = d->chk_index;
2764 else if (dent == d->dfs_chk_orph)
2765 val = d->chk_orph;
2766 else if (dent == d->dfs_chk_lprops)
2767 val = d->chk_lprops;
2768 else if (dent == d->dfs_chk_fs)
2769 val = d->chk_fs;
2770 else if (dent == d->dfs_tst_rcvry)
2771 val = d->tst_rcvry;
2772 else if (dent == d->dfs_ro_error)
2773 val = c->ro_error;
2774 else
2775 return -EINVAL;
2777 return provide_user_output(val, u, count, ppos);
2781 * interpret_user_input - interpret user debugfs file input.
2782 * @u: user-provided buffer with the input
2783 * @count: buffer size
2785 * This is a helper function which interpret user input to a boolean UBIFS
2786 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2787 * in case of failure.
2789 static int interpret_user_input(const char __user *u, size_t count)
2791 size_t buf_size;
2792 char buf[8];
2794 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2795 if (copy_from_user(buf, u, buf_size))
2796 return -EFAULT;
2798 if (buf[0] == '1')
2799 return 1;
2800 else if (buf[0] == '0')
2801 return 0;
2803 return -EINVAL;
2806 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2807 size_t count, loff_t *ppos)
2809 struct ubifs_info *c = file->private_data;
2810 struct ubifs_debug_info *d = c->dbg;
2811 struct dentry *dent = file->f_path.dentry;
2812 int val;
2815 * TODO: this is racy - the file-system might have already been
2816 * unmounted and we'd oops in this case. The plan is to fix it with
2817 * help of 'iterate_supers_type()' which we should have in v3.0: when
2818 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2819 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2820 * superblocks and fine the one with the same UUID, and take the
2821 * locking right.
2823 * The other way to go suggested by Al Viro is to create a separate
2824 * 'ubifs-debug' file-system instead.
2826 if (file->f_path.dentry == d->dfs_dump_lprops) {
2827 ubifs_dump_lprops(c);
2828 return count;
2830 if (file->f_path.dentry == d->dfs_dump_budg) {
2831 ubifs_dump_budg(c, &c->bi);
2832 return count;
2834 if (file->f_path.dentry == d->dfs_dump_tnc) {
2835 mutex_lock(&c->tnc_mutex);
2836 ubifs_dump_tnc(c);
2837 mutex_unlock(&c->tnc_mutex);
2838 return count;
2841 val = interpret_user_input(u, count);
2842 if (val < 0)
2843 return val;
2845 if (dent == d->dfs_chk_gen)
2846 d->chk_gen = val;
2847 else if (dent == d->dfs_chk_index)
2848 d->chk_index = val;
2849 else if (dent == d->dfs_chk_orph)
2850 d->chk_orph = val;
2851 else if (dent == d->dfs_chk_lprops)
2852 d->chk_lprops = val;
2853 else if (dent == d->dfs_chk_fs)
2854 d->chk_fs = val;
2855 else if (dent == d->dfs_tst_rcvry)
2856 d->tst_rcvry = val;
2857 else if (dent == d->dfs_ro_error)
2858 c->ro_error = !!val;
2859 else
2860 return -EINVAL;
2862 return count;
2865 static const struct file_operations dfs_fops = {
2866 .open = dfs_file_open,
2867 .read = dfs_file_read,
2868 .write = dfs_file_write,
2869 .owner = THIS_MODULE,
2870 .llseek = no_llseek,
2874 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2875 * @c: UBIFS file-system description object
2877 * This function creates all debugfs files for this instance of UBIFS. Returns
2878 * zero in case of success and a negative error code in case of failure.
2880 * Note, the only reason we have not merged this function with the
2881 * 'ubifs_debugging_init()' function is because it is better to initialize
2882 * debugfs interfaces at the very end of the mount process, and remove them at
2883 * the very beginning of the mount process.
2885 int dbg_debugfs_init_fs(struct ubifs_info *c)
2887 int err, n;
2888 const char *fname;
2889 struct dentry *dent;
2890 struct ubifs_debug_info *d = c->dbg;
2892 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2893 return 0;
2895 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2896 c->vi.ubi_num, c->vi.vol_id);
2897 if (n == UBIFS_DFS_DIR_LEN) {
2898 /* The array size is too small */
2899 fname = UBIFS_DFS_DIR_NAME;
2900 dent = ERR_PTR(-EINVAL);
2901 goto out;
2904 fname = d->dfs_dir_name;
2905 dent = debugfs_create_dir(fname, dfs_rootdir);
2906 if (IS_ERR_OR_NULL(dent))
2907 goto out;
2908 d->dfs_dir = dent;
2910 fname = "dump_lprops";
2911 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2912 if (IS_ERR_OR_NULL(dent))
2913 goto out_remove;
2914 d->dfs_dump_lprops = dent;
2916 fname = "dump_budg";
2917 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2918 if (IS_ERR_OR_NULL(dent))
2919 goto out_remove;
2920 d->dfs_dump_budg = dent;
2922 fname = "dump_tnc";
2923 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2924 if (IS_ERR_OR_NULL(dent))
2925 goto out_remove;
2926 d->dfs_dump_tnc = dent;
2928 fname = "chk_general";
2929 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2930 &dfs_fops);
2931 if (IS_ERR_OR_NULL(dent))
2932 goto out_remove;
2933 d->dfs_chk_gen = dent;
2935 fname = "chk_index";
2936 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2937 &dfs_fops);
2938 if (IS_ERR_OR_NULL(dent))
2939 goto out_remove;
2940 d->dfs_chk_index = dent;
2942 fname = "chk_orphans";
2943 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2944 &dfs_fops);
2945 if (IS_ERR_OR_NULL(dent))
2946 goto out_remove;
2947 d->dfs_chk_orph = dent;
2949 fname = "chk_lprops";
2950 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2951 &dfs_fops);
2952 if (IS_ERR_OR_NULL(dent))
2953 goto out_remove;
2954 d->dfs_chk_lprops = dent;
2956 fname = "chk_fs";
2957 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2958 &dfs_fops);
2959 if (IS_ERR_OR_NULL(dent))
2960 goto out_remove;
2961 d->dfs_chk_fs = dent;
2963 fname = "tst_recovery";
2964 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2965 &dfs_fops);
2966 if (IS_ERR_OR_NULL(dent))
2967 goto out_remove;
2968 d->dfs_tst_rcvry = dent;
2970 fname = "ro_error";
2971 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2972 &dfs_fops);
2973 if (IS_ERR_OR_NULL(dent))
2974 goto out_remove;
2975 d->dfs_ro_error = dent;
2977 return 0;
2979 out_remove:
2980 debugfs_remove_recursive(d->dfs_dir);
2981 out:
2982 err = dent ? PTR_ERR(dent) : -ENODEV;
2983 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2984 fname, err);
2985 return err;
2989 * dbg_debugfs_exit_fs - remove all debugfs files.
2990 * @c: UBIFS file-system description object
2992 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2994 if (IS_ENABLED(CONFIG_DEBUG_FS))
2995 debugfs_remove_recursive(c->dbg->dfs_dir);
2998 struct ubifs_global_debug_info ubifs_dbg;
3000 static struct dentry *dfs_chk_gen;
3001 static struct dentry *dfs_chk_index;
3002 static struct dentry *dfs_chk_orph;
3003 static struct dentry *dfs_chk_lprops;
3004 static struct dentry *dfs_chk_fs;
3005 static struct dentry *dfs_tst_rcvry;
3007 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3008 size_t count, loff_t *ppos)
3010 struct dentry *dent = file->f_path.dentry;
3011 int val;
3013 if (dent == dfs_chk_gen)
3014 val = ubifs_dbg.chk_gen;
3015 else if (dent == dfs_chk_index)
3016 val = ubifs_dbg.chk_index;
3017 else if (dent == dfs_chk_orph)
3018 val = ubifs_dbg.chk_orph;
3019 else if (dent == dfs_chk_lprops)
3020 val = ubifs_dbg.chk_lprops;
3021 else if (dent == dfs_chk_fs)
3022 val = ubifs_dbg.chk_fs;
3023 else if (dent == dfs_tst_rcvry)
3024 val = ubifs_dbg.tst_rcvry;
3025 else
3026 return -EINVAL;
3028 return provide_user_output(val, u, count, ppos);
3031 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3032 size_t count, loff_t *ppos)
3034 struct dentry *dent = file->f_path.dentry;
3035 int val;
3037 val = interpret_user_input(u, count);
3038 if (val < 0)
3039 return val;
3041 if (dent == dfs_chk_gen)
3042 ubifs_dbg.chk_gen = val;
3043 else if (dent == dfs_chk_index)
3044 ubifs_dbg.chk_index = val;
3045 else if (dent == dfs_chk_orph)
3046 ubifs_dbg.chk_orph = val;
3047 else if (dent == dfs_chk_lprops)
3048 ubifs_dbg.chk_lprops = val;
3049 else if (dent == dfs_chk_fs)
3050 ubifs_dbg.chk_fs = val;
3051 else if (dent == dfs_tst_rcvry)
3052 ubifs_dbg.tst_rcvry = val;
3053 else
3054 return -EINVAL;
3056 return count;
3059 static const struct file_operations dfs_global_fops = {
3060 .read = dfs_global_file_read,
3061 .write = dfs_global_file_write,
3062 .owner = THIS_MODULE,
3063 .llseek = no_llseek,
3067 * dbg_debugfs_init - initialize debugfs file-system.
3069 * UBIFS uses debugfs file-system to expose various debugging knobs to
3070 * user-space. This function creates "ubifs" directory in the debugfs
3071 * file-system. Returns zero in case of success and a negative error code in
3072 * case of failure.
3074 int dbg_debugfs_init(void)
3076 int err;
3077 const char *fname;
3078 struct dentry *dent;
3080 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3081 return 0;
3083 fname = "ubifs";
3084 dent = debugfs_create_dir(fname, NULL);
3085 if (IS_ERR_OR_NULL(dent))
3086 goto out;
3087 dfs_rootdir = dent;
3089 fname = "chk_general";
3090 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3091 &dfs_global_fops);
3092 if (IS_ERR_OR_NULL(dent))
3093 goto out_remove;
3094 dfs_chk_gen = dent;
3096 fname = "chk_index";
3097 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3098 &dfs_global_fops);
3099 if (IS_ERR_OR_NULL(dent))
3100 goto out_remove;
3101 dfs_chk_index = dent;
3103 fname = "chk_orphans";
3104 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3105 &dfs_global_fops);
3106 if (IS_ERR_OR_NULL(dent))
3107 goto out_remove;
3108 dfs_chk_orph = dent;
3110 fname = "chk_lprops";
3111 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3112 &dfs_global_fops);
3113 if (IS_ERR_OR_NULL(dent))
3114 goto out_remove;
3115 dfs_chk_lprops = dent;
3117 fname = "chk_fs";
3118 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3119 &dfs_global_fops);
3120 if (IS_ERR_OR_NULL(dent))
3121 goto out_remove;
3122 dfs_chk_fs = dent;
3124 fname = "tst_recovery";
3125 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3126 &dfs_global_fops);
3127 if (IS_ERR_OR_NULL(dent))
3128 goto out_remove;
3129 dfs_tst_rcvry = dent;
3131 return 0;
3133 out_remove:
3134 debugfs_remove_recursive(dfs_rootdir);
3135 out:
3136 err = dent ? PTR_ERR(dent) : -ENODEV;
3137 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3138 fname, err);
3139 return err;
3143 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3145 void dbg_debugfs_exit(void)
3147 if (IS_ENABLED(CONFIG_DEBUG_FS))
3148 debugfs_remove_recursive(dfs_rootdir);
3152 * ubifs_debugging_init - initialize UBIFS debugging.
3153 * @c: UBIFS file-system description object
3155 * This function initializes debugging-related data for the file system.
3156 * Returns zero in case of success and a negative error code in case of
3157 * failure.
3159 int ubifs_debugging_init(struct ubifs_info *c)
3161 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3162 if (!c->dbg)
3163 return -ENOMEM;
3165 return 0;
3169 * ubifs_debugging_exit - free debugging data.
3170 * @c: UBIFS file-system description object
3172 void ubifs_debugging_exit(struct ubifs_info *c)
3174 kfree(c->dbg);