1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
37 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
44 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
47 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
49 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
50 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
);
53 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
54 * @hw: pointer to hardware structure
56 * Starts the hardware by filling the bus info structure and media type, clears
57 * all on chip counters, initializes receive address registers, multicast
58 * table, VLAN filter table, calls routine to set up link and flow control
59 * settings, and leaves transmit and receive units disabled and uninitialized
61 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
65 /* Set the media type */
66 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
68 /* Identify the PHY */
69 hw
->phy
.ops
.identify(hw
);
71 /* Clear the VLAN filter table */
72 hw
->mac
.ops
.clear_vfta(hw
);
74 /* Clear statistics registers */
75 hw
->mac
.ops
.clear_hw_cntrs(hw
);
77 /* Set No Snoop Disable */
78 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
79 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
80 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
81 IXGBE_WRITE_FLUSH(hw
);
83 /* Setup flow control */
84 ixgbe_setup_fc(hw
, 0);
86 /* Clear adapter stopped flag */
87 hw
->adapter_stopped
= false;
93 * ixgbe_init_hw_generic - Generic hardware initialization
94 * @hw: pointer to hardware structure
96 * Initialize the hardware by resetting the hardware, filling the bus info
97 * structure and media type, clears all on chip counters, initializes receive
98 * address registers, multicast table, VLAN filter table, calls routine to set
99 * up link and flow control settings, and leaves transmit and receive units
100 * disabled and uninitialized
102 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
106 /* Reset the hardware */
107 status
= hw
->mac
.ops
.reset_hw(hw
);
111 status
= hw
->mac
.ops
.start_hw(hw
);
118 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
119 * @hw: pointer to hardware structure
121 * Clears all hardware statistics counters by reading them from the hardware
122 * Statistics counters are clear on read.
124 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
128 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
129 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
130 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
131 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
132 for (i
= 0; i
< 8; i
++)
133 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
135 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
136 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
137 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
138 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
139 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
140 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
141 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
143 for (i
= 0; i
< 8; i
++) {
144 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
145 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
146 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
147 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
150 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
151 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
152 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
153 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
154 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
155 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
156 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
157 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
158 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
159 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
160 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
161 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
162 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
163 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
164 for (i
= 0; i
< 8; i
++)
165 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
166 IXGBE_READ_REG(hw
, IXGBE_RUC
);
167 IXGBE_READ_REG(hw
, IXGBE_RFC
);
168 IXGBE_READ_REG(hw
, IXGBE_ROC
);
169 IXGBE_READ_REG(hw
, IXGBE_RJC
);
170 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
171 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
172 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
173 IXGBE_READ_REG(hw
, IXGBE_TORL
);
174 IXGBE_READ_REG(hw
, IXGBE_TORH
);
175 IXGBE_READ_REG(hw
, IXGBE_TPR
);
176 IXGBE_READ_REG(hw
, IXGBE_TPT
);
177 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
178 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
179 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
180 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
181 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
182 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
183 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
184 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
185 for (i
= 0; i
< 16; i
++) {
186 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
187 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
188 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
189 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
196 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
197 * @hw: pointer to hardware structure
198 * @pba_num: stores the part number string from the EEPROM
199 * @pba_num_size: part number string buffer length
201 * Reads the part number string from the EEPROM.
203 s32
ixgbe_read_pba_string_generic(struct ixgbe_hw
*hw
, u8
*pba_num
,
212 if (pba_num
== NULL
) {
213 hw_dbg(hw
, "PBA string buffer was null\n");
214 return IXGBE_ERR_INVALID_ARGUMENT
;
217 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
219 hw_dbg(hw
, "NVM Read Error\n");
223 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &pba_ptr
);
225 hw_dbg(hw
, "NVM Read Error\n");
230 * if data is not ptr guard the PBA must be in legacy format which
231 * means pba_ptr is actually our second data word for the PBA number
232 * and we can decode it into an ascii string
234 if (data
!= IXGBE_PBANUM_PTR_GUARD
) {
235 hw_dbg(hw
, "NVM PBA number is not stored as string\n");
237 /* we will need 11 characters to store the PBA */
238 if (pba_num_size
< 11) {
239 hw_dbg(hw
, "PBA string buffer too small\n");
240 return IXGBE_ERR_NO_SPACE
;
243 /* extract hex string from data and pba_ptr */
244 pba_num
[0] = (data
>> 12) & 0xF;
245 pba_num
[1] = (data
>> 8) & 0xF;
246 pba_num
[2] = (data
>> 4) & 0xF;
247 pba_num
[3] = data
& 0xF;
248 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
249 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
252 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
253 pba_num
[9] = pba_ptr
& 0xF;
255 /* put a null character on the end of our string */
258 /* switch all the data but the '-' to hex char */
259 for (offset
= 0; offset
< 10; offset
++) {
260 if (pba_num
[offset
] < 0xA)
261 pba_num
[offset
] += '0';
262 else if (pba_num
[offset
] < 0x10)
263 pba_num
[offset
] += 'A' - 0xA;
269 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
, &length
);
271 hw_dbg(hw
, "NVM Read Error\n");
275 if (length
== 0xFFFF || length
== 0) {
276 hw_dbg(hw
, "NVM PBA number section invalid length\n");
277 return IXGBE_ERR_PBA_SECTION
;
280 /* check if pba_num buffer is big enough */
281 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
282 hw_dbg(hw
, "PBA string buffer too small\n");
283 return IXGBE_ERR_NO_SPACE
;
286 /* trim pba length from start of string */
290 for (offset
= 0; offset
< length
; offset
++) {
291 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
+ offset
, &data
);
293 hw_dbg(hw
, "NVM Read Error\n");
296 pba_num
[offset
* 2] = (u8
)(data
>> 8);
297 pba_num
[(offset
* 2) + 1] = (u8
)(data
& 0xFF);
299 pba_num
[offset
* 2] = '\0';
305 * ixgbe_get_mac_addr_generic - Generic get MAC address
306 * @hw: pointer to hardware structure
307 * @mac_addr: Adapter MAC address
309 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
310 * A reset of the adapter must be performed prior to calling this function
311 * in order for the MAC address to have been loaded from the EEPROM into RAR0
313 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
319 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
320 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
322 for (i
= 0; i
< 4; i
++)
323 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
325 for (i
= 0; i
< 2; i
++)
326 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
332 * ixgbe_get_bus_info_generic - Generic set PCI bus info
333 * @hw: pointer to hardware structure
335 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
337 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
339 struct ixgbe_adapter
*adapter
= hw
->back
;
340 struct ixgbe_mac_info
*mac
= &hw
->mac
;
343 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
345 /* Get the negotiated link width and speed from PCI config space */
346 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_LINK_STATUS
,
349 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
350 case IXGBE_PCI_LINK_WIDTH_1
:
351 hw
->bus
.width
= ixgbe_bus_width_pcie_x1
;
353 case IXGBE_PCI_LINK_WIDTH_2
:
354 hw
->bus
.width
= ixgbe_bus_width_pcie_x2
;
356 case IXGBE_PCI_LINK_WIDTH_4
:
357 hw
->bus
.width
= ixgbe_bus_width_pcie_x4
;
359 case IXGBE_PCI_LINK_WIDTH_8
:
360 hw
->bus
.width
= ixgbe_bus_width_pcie_x8
;
363 hw
->bus
.width
= ixgbe_bus_width_unknown
;
367 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
368 case IXGBE_PCI_LINK_SPEED_2500
:
369 hw
->bus
.speed
= ixgbe_bus_speed_2500
;
371 case IXGBE_PCI_LINK_SPEED_5000
:
372 hw
->bus
.speed
= ixgbe_bus_speed_5000
;
375 hw
->bus
.speed
= ixgbe_bus_speed_unknown
;
379 mac
->ops
.set_lan_id(hw
);
385 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
386 * @hw: pointer to the HW structure
388 * Determines the LAN function id by reading memory-mapped registers
389 * and swaps the port value if requested.
391 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
393 struct ixgbe_bus_info
*bus
= &hw
->bus
;
396 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
397 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
398 bus
->lan_id
= bus
->func
;
400 /* check for a port swap */
401 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS
);
402 if (reg
& IXGBE_FACTPS_LFS
)
407 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
408 * @hw: pointer to hardware structure
410 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
411 * disables transmit and receive units. The adapter_stopped flag is used by
412 * the shared code and drivers to determine if the adapter is in a stopped
413 * state and should not touch the hardware.
415 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
417 u32 number_of_queues
;
422 * Set the adapter_stopped flag so other driver functions stop touching
425 hw
->adapter_stopped
= true;
427 /* Disable the receive unit */
428 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
429 reg_val
&= ~(IXGBE_RXCTRL_RXEN
);
430 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, reg_val
);
431 IXGBE_WRITE_FLUSH(hw
);
434 /* Clear interrupt mask to stop from interrupts being generated */
435 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
437 /* Clear any pending interrupts */
438 IXGBE_READ_REG(hw
, IXGBE_EICR
);
440 /* Disable the transmit unit. Each queue must be disabled. */
441 number_of_queues
= hw
->mac
.max_tx_queues
;
442 for (i
= 0; i
< number_of_queues
; i
++) {
443 reg_val
= IXGBE_READ_REG(hw
, IXGBE_TXDCTL(i
));
444 if (reg_val
& IXGBE_TXDCTL_ENABLE
) {
445 reg_val
&= ~IXGBE_TXDCTL_ENABLE
;
446 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), reg_val
);
451 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
452 * access and verify no pending requests
454 ixgbe_disable_pcie_master(hw
);
460 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
461 * @hw: pointer to hardware structure
462 * @index: led number to turn on
464 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
466 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
468 /* To turn on the LED, set mode to ON. */
469 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
470 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
471 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
472 IXGBE_WRITE_FLUSH(hw
);
478 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
479 * @hw: pointer to hardware structure
480 * @index: led number to turn off
482 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
484 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
486 /* To turn off the LED, set mode to OFF. */
487 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
488 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
489 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
490 IXGBE_WRITE_FLUSH(hw
);
496 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
497 * @hw: pointer to hardware structure
499 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
500 * ixgbe_hw struct in order to set up EEPROM access.
502 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
504 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
508 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
509 eeprom
->type
= ixgbe_eeprom_none
;
510 /* Set default semaphore delay to 10ms which is a well
512 eeprom
->semaphore_delay
= 10;
515 * Check for EEPROM present first.
516 * If not present leave as none
518 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
519 if (eec
& IXGBE_EEC_PRES
) {
520 eeprom
->type
= ixgbe_eeprom_spi
;
523 * SPI EEPROM is assumed here. This code would need to
524 * change if a future EEPROM is not SPI.
526 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
527 IXGBE_EEC_SIZE_SHIFT
);
528 eeprom
->word_size
= 1 << (eeprom_size
+
529 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
532 if (eec
& IXGBE_EEC_ADDR_SIZE
)
533 eeprom
->address_bits
= 16;
535 eeprom
->address_bits
= 8;
536 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
537 "%d\n", eeprom
->type
, eeprom
->word_size
,
538 eeprom
->address_bits
);
545 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
546 * @hw: pointer to hardware structure
547 * @offset: offset within the EEPROM to be written to
548 * @data: 16 bit word to be written to the EEPROM
550 * If ixgbe_eeprom_update_checksum is not called after this function, the
551 * EEPROM will most likely contain an invalid checksum.
553 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
556 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
558 hw
->eeprom
.ops
.init_params(hw
);
560 if (offset
>= hw
->eeprom
.word_size
) {
561 status
= IXGBE_ERR_EEPROM
;
565 /* Prepare the EEPROM for writing */
566 status
= ixgbe_acquire_eeprom(hw
);
569 if (ixgbe_ready_eeprom(hw
) != 0) {
570 ixgbe_release_eeprom(hw
);
571 status
= IXGBE_ERR_EEPROM
;
576 ixgbe_standby_eeprom(hw
);
578 /* Send the WRITE ENABLE command (8 bit opcode ) */
579 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_WREN_OPCODE_SPI
,
580 IXGBE_EEPROM_OPCODE_BITS
);
582 ixgbe_standby_eeprom(hw
);
585 * Some SPI eeproms use the 8th address bit embedded in the
588 if ((hw
->eeprom
.address_bits
== 8) && (offset
>= 128))
589 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
591 /* Send the Write command (8-bit opcode + addr) */
592 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
593 IXGBE_EEPROM_OPCODE_BITS
);
594 ixgbe_shift_out_eeprom_bits(hw
, (u16
)(offset
*2),
595 hw
->eeprom
.address_bits
);
598 data
= (data
>> 8) | (data
<< 8);
599 ixgbe_shift_out_eeprom_bits(hw
, data
, 16);
600 ixgbe_standby_eeprom(hw
);
602 /* Done with writing - release the EEPROM */
603 ixgbe_release_eeprom(hw
);
611 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
612 * @hw: pointer to hardware structure
613 * @offset: offset within the EEPROM to be read
614 * @data: read 16 bit value from EEPROM
616 * Reads 16 bit value from EEPROM through bit-bang method
618 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
623 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
625 hw
->eeprom
.ops
.init_params(hw
);
627 if (offset
>= hw
->eeprom
.word_size
) {
628 status
= IXGBE_ERR_EEPROM
;
632 /* Prepare the EEPROM for reading */
633 status
= ixgbe_acquire_eeprom(hw
);
636 if (ixgbe_ready_eeprom(hw
) != 0) {
637 ixgbe_release_eeprom(hw
);
638 status
= IXGBE_ERR_EEPROM
;
643 ixgbe_standby_eeprom(hw
);
646 * Some SPI eeproms use the 8th address bit embedded in the
649 if ((hw
->eeprom
.address_bits
== 8) && (offset
>= 128))
650 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
652 /* Send the READ command (opcode + addr) */
653 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
654 IXGBE_EEPROM_OPCODE_BITS
);
655 ixgbe_shift_out_eeprom_bits(hw
, (u16
)(offset
*2),
656 hw
->eeprom
.address_bits
);
659 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
660 *data
= (word_in
>> 8) | (word_in
<< 8);
662 /* End this read operation */
663 ixgbe_release_eeprom(hw
);
671 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
672 * @hw: pointer to hardware structure
673 * @offset: offset of word in the EEPROM to read
674 * @data: word read from the EEPROM
676 * Reads a 16 bit word from the EEPROM using the EERD register.
678 s32
ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
683 hw
->eeprom
.ops
.init_params(hw
);
685 if (offset
>= hw
->eeprom
.word_size
) {
686 status
= IXGBE_ERR_EEPROM
;
690 eerd
= (offset
<< IXGBE_EEPROM_RW_ADDR_SHIFT
) +
691 IXGBE_EEPROM_RW_REG_START
;
693 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
694 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
697 *data
= (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
698 IXGBE_EEPROM_RW_REG_DATA
);
700 hw_dbg(hw
, "Eeprom read timed out\n");
707 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
708 * @hw: pointer to hardware structure
709 * @ee_reg: EEPROM flag for polling
711 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
712 * read or write is done respectively.
714 s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
718 s32 status
= IXGBE_ERR_EEPROM
;
720 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
721 if (ee_reg
== IXGBE_NVM_POLL_READ
)
722 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
724 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
726 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
736 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
737 * @hw: pointer to hardware structure
739 * Prepares EEPROM for access using bit-bang method. This function should
740 * be called before issuing a command to the EEPROM.
742 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
748 if (ixgbe_acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
749 status
= IXGBE_ERR_SWFW_SYNC
;
752 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
754 /* Request EEPROM Access */
755 eec
|= IXGBE_EEC_REQ
;
756 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
758 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
759 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
760 if (eec
& IXGBE_EEC_GNT
)
765 /* Release if grant not acquired */
766 if (!(eec
& IXGBE_EEC_GNT
)) {
767 eec
&= ~IXGBE_EEC_REQ
;
768 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
769 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
771 ixgbe_release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
772 status
= IXGBE_ERR_EEPROM
;
775 /* Setup EEPROM for Read/Write */
777 /* Clear CS and SK */
778 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
779 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
780 IXGBE_WRITE_FLUSH(hw
);
788 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
789 * @hw: pointer to hardware structure
791 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
793 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
795 s32 status
= IXGBE_ERR_EEPROM
;
800 /* Get SMBI software semaphore between device drivers first */
801 for (i
= 0; i
< timeout
; i
++) {
803 * If the SMBI bit is 0 when we read it, then the bit will be
804 * set and we have the semaphore
806 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
807 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
814 /* Now get the semaphore between SW/FW through the SWESMBI bit */
816 for (i
= 0; i
< timeout
; i
++) {
817 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
819 /* Set the SW EEPROM semaphore bit to request access */
820 swsm
|= IXGBE_SWSM_SWESMBI
;
821 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
824 * If we set the bit successfully then we got the
827 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
828 if (swsm
& IXGBE_SWSM_SWESMBI
)
835 * Release semaphores and return error if SW EEPROM semaphore
836 * was not granted because we don't have access to the EEPROM
839 hw_dbg(hw
, "SWESMBI Software EEPROM semaphore "
841 ixgbe_release_eeprom_semaphore(hw
);
842 status
= IXGBE_ERR_EEPROM
;
845 hw_dbg(hw
, "Software semaphore SMBI between device drivers "
853 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
854 * @hw: pointer to hardware structure
856 * This function clears hardware semaphore bits.
858 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
862 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
864 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
865 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
866 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
867 IXGBE_WRITE_FLUSH(hw
);
871 * ixgbe_ready_eeprom - Polls for EEPROM ready
872 * @hw: pointer to hardware structure
874 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
881 * Read "Status Register" repeatedly until the LSB is cleared. The
882 * EEPROM will signal that the command has been completed by clearing
883 * bit 0 of the internal status register. If it's not cleared within
884 * 5 milliseconds, then error out.
886 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
887 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
888 IXGBE_EEPROM_OPCODE_BITS
);
889 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
890 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
894 ixgbe_standby_eeprom(hw
);
898 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
899 * devices (and only 0-5mSec on 5V devices)
901 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
902 hw_dbg(hw
, "SPI EEPROM Status error\n");
903 status
= IXGBE_ERR_EEPROM
;
910 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
911 * @hw: pointer to hardware structure
913 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
917 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
919 /* Toggle CS to flush commands */
921 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
922 IXGBE_WRITE_FLUSH(hw
);
924 eec
&= ~IXGBE_EEC_CS
;
925 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
926 IXGBE_WRITE_FLUSH(hw
);
931 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
932 * @hw: pointer to hardware structure
933 * @data: data to send to the EEPROM
934 * @count: number of bits to shift out
936 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
943 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
946 * Mask is used to shift "count" bits of "data" out to the EEPROM
947 * one bit at a time. Determine the starting bit based on count
949 mask
= 0x01 << (count
- 1);
951 for (i
= 0; i
< count
; i
++) {
953 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
954 * "1", and then raising and then lowering the clock (the SK
955 * bit controls the clock input to the EEPROM). A "0" is
956 * shifted out to the EEPROM by setting "DI" to "0" and then
957 * raising and then lowering the clock.
962 eec
&= ~IXGBE_EEC_DI
;
964 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
965 IXGBE_WRITE_FLUSH(hw
);
969 ixgbe_raise_eeprom_clk(hw
, &eec
);
970 ixgbe_lower_eeprom_clk(hw
, &eec
);
973 * Shift mask to signify next bit of data to shift in to the
979 /* We leave the "DI" bit set to "0" when we leave this routine. */
980 eec
&= ~IXGBE_EEC_DI
;
981 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
982 IXGBE_WRITE_FLUSH(hw
);
986 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
987 * @hw: pointer to hardware structure
989 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
996 * In order to read a register from the EEPROM, we need to shift
997 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
998 * the clock input to the EEPROM (setting the SK bit), and then reading
999 * the value of the "DO" bit. During this "shifting in" process the
1000 * "DI" bit should always be clear.
1002 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1004 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
1006 for (i
= 0; i
< count
; i
++) {
1008 ixgbe_raise_eeprom_clk(hw
, &eec
);
1010 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1012 eec
&= ~(IXGBE_EEC_DI
);
1013 if (eec
& IXGBE_EEC_DO
)
1016 ixgbe_lower_eeprom_clk(hw
, &eec
);
1023 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1024 * @hw: pointer to hardware structure
1025 * @eec: EEC register's current value
1027 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1030 * Raise the clock input to the EEPROM
1031 * (setting the SK bit), then delay
1033 *eec
= *eec
| IXGBE_EEC_SK
;
1034 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1035 IXGBE_WRITE_FLUSH(hw
);
1040 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1041 * @hw: pointer to hardware structure
1042 * @eecd: EECD's current value
1044 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1047 * Lower the clock input to the EEPROM (clearing the SK bit), then
1050 *eec
= *eec
& ~IXGBE_EEC_SK
;
1051 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1052 IXGBE_WRITE_FLUSH(hw
);
1057 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1058 * @hw: pointer to hardware structure
1060 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
1064 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1066 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
1067 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
1069 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1070 IXGBE_WRITE_FLUSH(hw
);
1074 /* Stop requesting EEPROM access */
1075 eec
&= ~IXGBE_EEC_REQ
;
1076 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1078 ixgbe_release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1080 /* Delay before attempt to obtain semaphore again to allow FW access */
1081 msleep(hw
->eeprom
.semaphore_delay
);
1085 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1086 * @hw: pointer to hardware structure
1088 u16
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1097 /* Include 0x0-0x3F in the checksum */
1098 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1099 if (hw
->eeprom
.ops
.read(hw
, i
, &word
) != 0) {
1100 hw_dbg(hw
, "EEPROM read failed\n");
1106 /* Include all data from pointers except for the fw pointer */
1107 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1108 hw
->eeprom
.ops
.read(hw
, i
, &pointer
);
1110 /* Make sure the pointer seems valid */
1111 if (pointer
!= 0xFFFF && pointer
!= 0) {
1112 hw
->eeprom
.ops
.read(hw
, pointer
, &length
);
1114 if (length
!= 0xFFFF && length
!= 0) {
1115 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
1116 hw
->eeprom
.ops
.read(hw
, j
, &word
);
1123 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1129 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1130 * @hw: pointer to hardware structure
1131 * @checksum_val: calculated checksum
1133 * Performs checksum calculation and validates the EEPROM checksum. If the
1134 * caller does not need checksum_val, the value can be NULL.
1136 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1141 u16 read_checksum
= 0;
1144 * Read the first word from the EEPROM. If this times out or fails, do
1145 * not continue or we could be in for a very long wait while every
1148 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1151 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1153 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1156 * Verify read checksum from EEPROM is the same as
1157 * calculated checksum
1159 if (read_checksum
!= checksum
)
1160 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1162 /* If the user cares, return the calculated checksum */
1164 *checksum_val
= checksum
;
1166 hw_dbg(hw
, "EEPROM read failed\n");
1173 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1174 * @hw: pointer to hardware structure
1176 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1182 * Read the first word from the EEPROM. If this times out or fails, do
1183 * not continue or we could be in for a very long wait while every
1186 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1189 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1190 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
,
1193 hw_dbg(hw
, "EEPROM read failed\n");
1200 * ixgbe_validate_mac_addr - Validate MAC address
1201 * @mac_addr: pointer to MAC address.
1203 * Tests a MAC address to ensure it is a valid Individual Address
1205 s32
ixgbe_validate_mac_addr(u8
*mac_addr
)
1209 /* Make sure it is not a multicast address */
1210 if (IXGBE_IS_MULTICAST(mac_addr
))
1211 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1212 /* Not a broadcast address */
1213 else if (IXGBE_IS_BROADCAST(mac_addr
))
1214 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1215 /* Reject the zero address */
1216 else if (mac_addr
[0] == 0 && mac_addr
[1] == 0 && mac_addr
[2] == 0 &&
1217 mac_addr
[3] == 0 && mac_addr
[4] == 0 && mac_addr
[5] == 0)
1218 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1224 * ixgbe_set_rar_generic - Set Rx address register
1225 * @hw: pointer to hardware structure
1226 * @index: Receive address register to write
1227 * @addr: Address to put into receive address register
1228 * @vmdq: VMDq "set" or "pool" index
1229 * @enable_addr: set flag that address is active
1231 * Puts an ethernet address into a receive address register.
1233 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1236 u32 rar_low
, rar_high
;
1237 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1239 /* Make sure we are using a valid rar index range */
1240 if (index
>= rar_entries
) {
1241 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1242 return IXGBE_ERR_INVALID_ARGUMENT
;
1245 /* setup VMDq pool selection before this RAR gets enabled */
1246 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1249 * HW expects these in little endian so we reverse the byte
1250 * order from network order (big endian) to little endian
1252 rar_low
= ((u32
)addr
[0] |
1253 ((u32
)addr
[1] << 8) |
1254 ((u32
)addr
[2] << 16) |
1255 ((u32
)addr
[3] << 24));
1257 * Some parts put the VMDq setting in the extra RAH bits,
1258 * so save everything except the lower 16 bits that hold part
1259 * of the address and the address valid bit.
1261 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1262 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1263 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1265 if (enable_addr
!= 0)
1266 rar_high
|= IXGBE_RAH_AV
;
1268 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1269 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1275 * ixgbe_clear_rar_generic - Remove Rx address register
1276 * @hw: pointer to hardware structure
1277 * @index: Receive address register to write
1279 * Clears an ethernet address from a receive address register.
1281 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1284 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1286 /* Make sure we are using a valid rar index range */
1287 if (index
>= rar_entries
) {
1288 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1289 return IXGBE_ERR_INVALID_ARGUMENT
;
1293 * Some parts put the VMDq setting in the extra RAH bits,
1294 * so save everything except the lower 16 bits that hold part
1295 * of the address and the address valid bit.
1297 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1298 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1300 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1301 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1303 /* clear VMDq pool/queue selection for this RAR */
1304 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1310 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1311 * @hw: pointer to hardware structure
1313 * Places the MAC address in receive address register 0 and clears the rest
1314 * of the receive address registers. Clears the multicast table. Assumes
1315 * the receiver is in reset when the routine is called.
1317 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1320 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1323 * If the current mac address is valid, assume it is a software override
1324 * to the permanent address.
1325 * Otherwise, use the permanent address from the eeprom.
1327 if (ixgbe_validate_mac_addr(hw
->mac
.addr
) ==
1328 IXGBE_ERR_INVALID_MAC_ADDR
) {
1329 /* Get the MAC address from the RAR0 for later reference */
1330 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1332 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1334 /* Setup the receive address. */
1335 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1336 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1338 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1340 /* clear VMDq pool/queue selection for RAR 0 */
1341 hw
->mac
.ops
.clear_vmdq(hw
, 0, IXGBE_CLEAR_VMDQ_ALL
);
1343 hw
->addr_ctrl
.overflow_promisc
= 0;
1345 hw
->addr_ctrl
.rar_used_count
= 1;
1347 /* Zero out the other receive addresses. */
1348 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1349 for (i
= 1; i
< rar_entries
; i
++) {
1350 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1351 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1355 hw
->addr_ctrl
.mta_in_use
= 0;
1356 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1358 hw_dbg(hw
, " Clearing MTA\n");
1359 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1360 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1362 if (hw
->mac
.ops
.init_uta_tables
)
1363 hw
->mac
.ops
.init_uta_tables(hw
);
1369 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1370 * @hw: pointer to hardware structure
1371 * @mc_addr: the multicast address
1373 * Extracts the 12 bits, from a multicast address, to determine which
1374 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1375 * incoming rx multicast addresses, to determine the bit-vector to check in
1376 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1377 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1378 * to mc_filter_type.
1380 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1384 switch (hw
->mac
.mc_filter_type
) {
1385 case 0: /* use bits [47:36] of the address */
1386 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
1388 case 1: /* use bits [46:35] of the address */
1389 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
1391 case 2: /* use bits [45:34] of the address */
1392 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
1394 case 3: /* use bits [43:32] of the address */
1395 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
1397 default: /* Invalid mc_filter_type */
1398 hw_dbg(hw
, "MC filter type param set incorrectly\n");
1402 /* vector can only be 12-bits or boundary will be exceeded */
1408 * ixgbe_set_mta - Set bit-vector in multicast table
1409 * @hw: pointer to hardware structure
1410 * @hash_value: Multicast address hash value
1412 * Sets the bit-vector in the multicast table.
1414 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1420 hw
->addr_ctrl
.mta_in_use
++;
1422 vector
= ixgbe_mta_vector(hw
, mc_addr
);
1423 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
1426 * The MTA is a register array of 128 32-bit registers. It is treated
1427 * like an array of 4096 bits. We want to set bit
1428 * BitArray[vector_value]. So we figure out what register the bit is
1429 * in, read it, OR in the new bit, then write back the new value. The
1430 * register is determined by the upper 7 bits of the vector value and
1431 * the bit within that register are determined by the lower 5 bits of
1434 vector_reg
= (vector
>> 5) & 0x7F;
1435 vector_bit
= vector
& 0x1F;
1436 hw
->mac
.mta_shadow
[vector_reg
] |= (1 << vector_bit
);
1440 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1441 * @hw: pointer to hardware structure
1442 * @netdev: pointer to net device structure
1444 * The given list replaces any existing list. Clears the MC addrs from receive
1445 * address registers and the multicast table. Uses unused receive address
1446 * registers for the first multicast addresses, and hashes the rest into the
1449 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
1450 struct net_device
*netdev
)
1452 struct netdev_hw_addr
*ha
;
1456 * Set the new number of MC addresses that we are being requested to
1459 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
1460 hw
->addr_ctrl
.mta_in_use
= 0;
1462 /* Clear mta_shadow */
1463 hw_dbg(hw
, " Clearing MTA\n");
1464 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
1466 /* Update mta shadow */
1467 netdev_for_each_mc_addr(ha
, netdev
) {
1468 hw_dbg(hw
, " Adding the multicast addresses:\n");
1469 ixgbe_set_mta(hw
, ha
->addr
);
1473 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1474 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_MTA(0), i
,
1475 hw
->mac
.mta_shadow
[i
]);
1477 if (hw
->addr_ctrl
.mta_in_use
> 0)
1478 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
1479 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
1481 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
1486 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1487 * @hw: pointer to hardware structure
1489 * Enables multicast address in RAR and the use of the multicast hash table.
1491 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
1493 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1495 if (a
->mta_in_use
> 0)
1496 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
1497 hw
->mac
.mc_filter_type
);
1503 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1504 * @hw: pointer to hardware structure
1506 * Disables multicast address in RAR and the use of the multicast hash table.
1508 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
1510 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1512 if (a
->mta_in_use
> 0)
1513 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1519 * ixgbe_fc_enable_generic - Enable flow control
1520 * @hw: pointer to hardware structure
1521 * @packetbuf_num: packet buffer number (0-7)
1523 * Enable flow control according to the current settings.
1525 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1528 u32 mflcn_reg
, fccfg_reg
;
1534 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
)
1537 #endif /* CONFIG_DCB */
1538 /* Negotiate the fc mode to use */
1539 ret_val
= ixgbe_fc_autoneg(hw
);
1543 /* Disable any previous flow control settings */
1544 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
1545 mflcn_reg
&= ~(IXGBE_MFLCN_RFCE
| IXGBE_MFLCN_RPFCE
);
1547 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
1548 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
1551 * The possible values of fc.current_mode are:
1552 * 0: Flow control is completely disabled
1553 * 1: Rx flow control is enabled (we can receive pause frames,
1554 * but not send pause frames).
1555 * 2: Tx flow control is enabled (we can send pause frames but
1556 * we do not support receiving pause frames).
1557 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1558 * 4: Priority Flow Control is enabled.
1561 switch (hw
->fc
.current_mode
) {
1564 * Flow control is disabled by software override or autoneg.
1565 * The code below will actually disable it in the HW.
1568 case ixgbe_fc_rx_pause
:
1570 * Rx Flow control is enabled and Tx Flow control is
1571 * disabled by software override. Since there really
1572 * isn't a way to advertise that we are capable of RX
1573 * Pause ONLY, we will advertise that we support both
1574 * symmetric and asymmetric Rx PAUSE. Later, we will
1575 * disable the adapter's ability to send PAUSE frames.
1577 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1579 case ixgbe_fc_tx_pause
:
1581 * Tx Flow control is enabled, and Rx Flow control is
1582 * disabled by software override.
1584 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1587 /* Flow control (both Rx and Tx) is enabled by SW override. */
1588 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1589 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1595 #endif /* CONFIG_DCB */
1597 hw_dbg(hw
, "Flow control param set incorrectly\n");
1598 ret_val
= IXGBE_ERR_CONFIG
;
1603 /* Set 802.3x based flow control settings. */
1604 mflcn_reg
|= IXGBE_MFLCN_DPF
;
1605 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
1606 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
1608 rx_pba_size
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(packetbuf_num
));
1609 rx_pba_size
>>= IXGBE_RXPBSIZE_SHIFT
;
1611 fcrth
= (rx_pba_size
- hw
->fc
.high_water
) << 10;
1612 fcrtl
= (rx_pba_size
- hw
->fc
.low_water
) << 10;
1614 if (hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) {
1615 fcrth
|= IXGBE_FCRTH_FCEN
;
1616 if (hw
->fc
.send_xon
)
1617 fcrtl
|= IXGBE_FCRTL_XONE
;
1620 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(packetbuf_num
), fcrth
);
1621 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(packetbuf_num
), fcrtl
);
1623 /* Configure pause time (2 TCs per register) */
1624 reg
= IXGBE_READ_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2));
1625 if ((packetbuf_num
& 1) == 0)
1626 reg
= (reg
& 0xFFFF0000) | hw
->fc
.pause_time
;
1628 reg
= (reg
& 0x0000FFFF) | (hw
->fc
.pause_time
<< 16);
1629 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2), reg
);
1631 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, (hw
->fc
.pause_time
>> 1));
1638 * ixgbe_fc_autoneg - Configure flow control
1639 * @hw: pointer to hardware structure
1641 * Compares our advertised flow control capabilities to those advertised by
1642 * our link partner, and determines the proper flow control mode to use.
1644 s32
ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
1647 ixgbe_link_speed speed
;
1648 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
1649 u32 links2
, anlp1_reg
, autoc_reg
, links
;
1653 * AN should have completed when the cable was plugged in.
1654 * Look for reasons to bail out. Bail out if:
1655 * - FC autoneg is disabled, or if
1658 * Since we're being called from an LSC, link is already known to be up.
1659 * So use link_up_wait_to_complete=false.
1661 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
1663 if (hw
->fc
.disable_fc_autoneg
|| (!link_up
)) {
1664 hw
->fc
.fc_was_autonegged
= false;
1665 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1670 * On backplane, bail out if
1671 * - backplane autoneg was not completed, or if
1672 * - we are 82599 and link partner is not AN enabled
1674 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
1675 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
1676 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0) {
1677 hw
->fc
.fc_was_autonegged
= false;
1678 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1682 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
1683 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
1684 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0) {
1685 hw
->fc
.fc_was_autonegged
= false;
1686 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1693 * On multispeed fiber at 1g, bail out if
1694 * - link is up but AN did not complete, or if
1695 * - link is up and AN completed but timed out
1697 if (hw
->phy
.multispeed_fiber
&& (speed
== IXGBE_LINK_SPEED_1GB_FULL
)) {
1698 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
1699 if (((linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
1700 ((linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1)) {
1701 hw
->fc
.fc_was_autonegged
= false;
1702 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1709 * - copper or CX4 adapters
1710 * - fiber adapters running at 10gig
1712 if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) ||
1713 (hw
->phy
.media_type
== ixgbe_media_type_cx4
) ||
1714 ((hw
->phy
.media_type
== ixgbe_media_type_fiber
) &&
1715 (speed
== IXGBE_LINK_SPEED_10GB_FULL
))) {
1716 hw
->fc
.fc_was_autonegged
= false;
1717 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1722 * Read the AN advertisement and LP ability registers and resolve
1723 * local flow control settings accordingly
1725 if ((speed
== IXGBE_LINK_SPEED_1GB_FULL
) &&
1726 (hw
->phy
.media_type
!= ixgbe_media_type_backplane
)) {
1727 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
1728 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
1729 if ((pcs_anadv_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1730 (pcs_lpab_reg
& IXGBE_PCS1GANA_SYM_PAUSE
)) {
1732 * Now we need to check if the user selected Rx ONLY
1733 * of pause frames. In this case, we had to advertise
1734 * FULL flow control because we could not advertise RX
1735 * ONLY. Hence, we must now check to see if we need to
1736 * turn OFF the TRANSMISSION of PAUSE frames.
1738 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
1739 hw
->fc
.current_mode
= ixgbe_fc_full
;
1740 hw_dbg(hw
, "Flow Control = FULL.\n");
1742 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1743 hw_dbg(hw
, "Flow Control=RX PAUSE only\n");
1745 } else if (!(pcs_anadv_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1746 (pcs_anadv_reg
& IXGBE_PCS1GANA_ASM_PAUSE
) &&
1747 (pcs_lpab_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1748 (pcs_lpab_reg
& IXGBE_PCS1GANA_ASM_PAUSE
)) {
1749 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
1750 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
1751 } else if ((pcs_anadv_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1752 (pcs_anadv_reg
& IXGBE_PCS1GANA_ASM_PAUSE
) &&
1753 !(pcs_lpab_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1754 (pcs_lpab_reg
& IXGBE_PCS1GANA_ASM_PAUSE
)) {
1755 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1756 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
1758 hw
->fc
.current_mode
= ixgbe_fc_none
;
1759 hw_dbg(hw
, "Flow Control = NONE.\n");
1763 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
1765 * Read the 10g AN autoc and LP ability registers and resolve
1766 * local flow control settings accordingly
1768 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
1769 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
1771 if ((autoc_reg
& IXGBE_AUTOC_SYM_PAUSE
) &&
1772 (anlp1_reg
& IXGBE_ANLP1_SYM_PAUSE
)) {
1774 * Now we need to check if the user selected Rx ONLY
1775 * of pause frames. In this case, we had to advertise
1776 * FULL flow control because we could not advertise RX
1777 * ONLY. Hence, we must now check to see if we need to
1778 * turn OFF the TRANSMISSION of PAUSE frames.
1780 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
1781 hw
->fc
.current_mode
= ixgbe_fc_full
;
1782 hw_dbg(hw
, "Flow Control = FULL.\n");
1784 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1785 hw_dbg(hw
, "Flow Control=RX PAUSE only\n");
1787 } else if (!(autoc_reg
& IXGBE_AUTOC_SYM_PAUSE
) &&
1788 (autoc_reg
& IXGBE_AUTOC_ASM_PAUSE
) &&
1789 (anlp1_reg
& IXGBE_ANLP1_SYM_PAUSE
) &&
1790 (anlp1_reg
& IXGBE_ANLP1_ASM_PAUSE
)) {
1791 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
1792 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
1793 } else if ((autoc_reg
& IXGBE_AUTOC_SYM_PAUSE
) &&
1794 (autoc_reg
& IXGBE_AUTOC_ASM_PAUSE
) &&
1795 !(anlp1_reg
& IXGBE_ANLP1_SYM_PAUSE
) &&
1796 (anlp1_reg
& IXGBE_ANLP1_ASM_PAUSE
)) {
1797 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1798 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
1800 hw
->fc
.current_mode
= ixgbe_fc_none
;
1801 hw_dbg(hw
, "Flow Control = NONE.\n");
1804 /* Record that current_mode is the result of a successful autoneg */
1805 hw
->fc
.fc_was_autonegged
= true;
1812 * ixgbe_setup_fc - Set up flow control
1813 * @hw: pointer to hardware structure
1815 * Called at init time to set up flow control.
1817 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1823 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
) {
1824 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1829 /* Validate the packetbuf configuration */
1830 if (packetbuf_num
< 0 || packetbuf_num
> 7) {
1831 hw_dbg(hw
, "Invalid packet buffer number [%d], expected range "
1832 "is 0-7\n", packetbuf_num
);
1833 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1838 * Validate the water mark configuration. Zero water marks are invalid
1839 * because it causes the controller to just blast out fc packets.
1841 if (!hw
->fc
.low_water
|| !hw
->fc
.high_water
|| !hw
->fc
.pause_time
) {
1842 hw_dbg(hw
, "Invalid water mark configuration\n");
1843 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1848 * Validate the requested mode. Strict IEEE mode does not allow
1849 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
1851 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
1852 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict "
1854 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1859 * 10gig parts do not have a word in the EEPROM to determine the
1860 * default flow control setting, so we explicitly set it to full.
1862 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
1863 hw
->fc
.requested_mode
= ixgbe_fc_full
;
1866 * Set up the 1G flow control advertisement registers so the HW will be
1867 * able to do fc autoneg once the cable is plugged in. If we end up
1868 * using 10g instead, this is harmless.
1870 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
1873 * The possible values of fc.requested_mode are:
1874 * 0: Flow control is completely disabled
1875 * 1: Rx flow control is enabled (we can receive pause frames,
1876 * but not send pause frames).
1877 * 2: Tx flow control is enabled (we can send pause frames but
1878 * we do not support receiving pause frames).
1879 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1881 * 4: Priority Flow Control is enabled.
1885 switch (hw
->fc
.requested_mode
) {
1887 /* Flow control completely disabled by software override. */
1888 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
1890 case ixgbe_fc_rx_pause
:
1892 * Rx Flow control is enabled and Tx Flow control is
1893 * disabled by software override. Since there really
1894 * isn't a way to advertise that we are capable of RX
1895 * Pause ONLY, we will advertise that we support both
1896 * symmetric and asymmetric Rx PAUSE. Later, we will
1897 * disable the adapter's ability to send PAUSE frames.
1899 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
1901 case ixgbe_fc_tx_pause
:
1903 * Tx Flow control is enabled, and Rx Flow control is
1904 * disabled by software override.
1906 reg
|= (IXGBE_PCS1GANA_ASM_PAUSE
);
1907 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
);
1910 /* Flow control (both Rx and Tx) is enabled by SW override. */
1911 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
1917 #endif /* CONFIG_DCB */
1919 hw_dbg(hw
, "Flow control param set incorrectly\n");
1920 ret_val
= IXGBE_ERR_CONFIG
;
1925 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
1926 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
1928 /* Disable AN timeout */
1929 if (hw
->fc
.strict_ieee
)
1930 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
1932 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
1933 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
1936 * Set up the 10G flow control advertisement registers so the HW
1937 * can do fc autoneg once the cable is plugged in. If we end up
1938 * using 1g instead, this is harmless.
1940 reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
1943 * The possible values of fc.requested_mode are:
1944 * 0: Flow control is completely disabled
1945 * 1: Rx flow control is enabled (we can receive pause frames,
1946 * but not send pause frames).
1947 * 2: Tx flow control is enabled (we can send pause frames but
1948 * we do not support receiving pause frames).
1949 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1952 switch (hw
->fc
.requested_mode
) {
1954 /* Flow control completely disabled by software override. */
1955 reg
&= ~(IXGBE_AUTOC_SYM_PAUSE
| IXGBE_AUTOC_ASM_PAUSE
);
1957 case ixgbe_fc_rx_pause
:
1959 * Rx Flow control is enabled and Tx Flow control is
1960 * disabled by software override. Since there really
1961 * isn't a way to advertise that we are capable of RX
1962 * Pause ONLY, we will advertise that we support both
1963 * symmetric and asymmetric Rx PAUSE. Later, we will
1964 * disable the adapter's ability to send PAUSE frames.
1966 reg
|= (IXGBE_AUTOC_SYM_PAUSE
| IXGBE_AUTOC_ASM_PAUSE
);
1968 case ixgbe_fc_tx_pause
:
1970 * Tx Flow control is enabled, and Rx Flow control is
1971 * disabled by software override.
1973 reg
|= (IXGBE_AUTOC_ASM_PAUSE
);
1974 reg
&= ~(IXGBE_AUTOC_SYM_PAUSE
);
1977 /* Flow control (both Rx and Tx) is enabled by SW override. */
1978 reg
|= (IXGBE_AUTOC_SYM_PAUSE
| IXGBE_AUTOC_ASM_PAUSE
);
1984 #endif /* CONFIG_DCB */
1986 hw_dbg(hw
, "Flow control param set incorrectly\n");
1987 ret_val
= IXGBE_ERR_CONFIG
;
1992 * AUTOC restart handles negotiation of 1G and 10G. There is
1993 * no need to set the PCS1GCTL register.
1995 reg
|= IXGBE_AUTOC_AN_RESTART
;
1996 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg
);
1997 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
2004 * ixgbe_disable_pcie_master - Disable PCI-express master access
2005 * @hw: pointer to hardware structure
2007 * Disables PCI-Express master access and verifies there are no pending
2008 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2009 * bit hasn't caused the master requests to be disabled, else 0
2010 * is returned signifying master requests disabled.
2012 s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
2014 struct ixgbe_adapter
*adapter
= hw
->back
;
2017 u32 number_of_queues
;
2021 /* Just jump out if bus mastering is already disabled */
2022 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2025 /* Disable the receive unit by stopping each queue */
2026 number_of_queues
= hw
->mac
.max_rx_queues
;
2027 for (i
= 0; i
< number_of_queues
; i
++) {
2028 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
2029 if (reg_val
& IXGBE_RXDCTL_ENABLE
) {
2030 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
2031 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
2035 reg_val
= IXGBE_READ_REG(hw
, IXGBE_CTRL
);
2036 reg_val
|= IXGBE_CTRL_GIO_DIS
;
2037 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, reg_val
);
2039 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2040 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2041 goto check_device_status
;
2045 hw_dbg(hw
, "GIO Master Disable bit didn't clear - requesting resets\n");
2046 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
2049 * Before proceeding, make sure that the PCIe block does not have
2050 * transactions pending.
2052 check_device_status
:
2053 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2054 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_DEVICE_STATUS
,
2056 if (!(dev_status
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
2061 if (i
== IXGBE_PCI_MASTER_DISABLE_TIMEOUT
)
2062 hw_dbg(hw
, "PCIe transaction pending bit also did not clear.\n");
2067 * Two consecutive resets are required via CTRL.RST per datasheet
2068 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2069 * of this need. The first reset prevents new master requests from
2070 * being issued by our device. We then must wait 1usec for any
2071 * remaining completions from the PCIe bus to trickle in, and then reset
2072 * again to clear out any effects they may have had on our device.
2074 hw
->mac
.flags
|= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
;
2082 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2083 * @hw: pointer to hardware structure
2084 * @mask: Mask to specify which semaphore to acquire
2086 * Acquires the SWFW semaphore thought the GSSR register for the specified
2087 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2089 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2093 u32 fwmask
= mask
<< 5;
2098 * SW EEPROM semaphore bit is used for access to all
2099 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2101 if (ixgbe_get_eeprom_semaphore(hw
))
2102 return IXGBE_ERR_SWFW_SYNC
;
2104 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2105 if (!(gssr
& (fwmask
| swmask
)))
2109 * Firmware currently using resource (fwmask) or other software
2110 * thread currently using resource (swmask)
2112 ixgbe_release_eeprom_semaphore(hw
);
2118 hw_dbg(hw
, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2119 return IXGBE_ERR_SWFW_SYNC
;
2123 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2125 ixgbe_release_eeprom_semaphore(hw
);
2130 * ixgbe_release_swfw_sync - Release SWFW semaphore
2131 * @hw: pointer to hardware structure
2132 * @mask: Mask to specify which semaphore to release
2134 * Releases the SWFW semaphore thought the GSSR register for the specified
2135 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2137 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2142 ixgbe_get_eeprom_semaphore(hw
);
2144 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2146 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2148 ixgbe_release_eeprom_semaphore(hw
);
2152 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2153 * @hw: pointer to hardware structure
2154 * @regval: register value to write to RXCTRL
2156 * Enables the Rx DMA unit
2158 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2160 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, regval
);
2166 * ixgbe_blink_led_start_generic - Blink LED based on index.
2167 * @hw: pointer to hardware structure
2168 * @index: led number to blink
2170 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2172 ixgbe_link_speed speed
= 0;
2174 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2175 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2178 * Link must be up to auto-blink the LEDs;
2179 * Force it if link is down.
2181 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2184 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2185 autoc_reg
|= IXGBE_AUTOC_FLU
;
2186 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2190 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2191 led_reg
|= IXGBE_LED_BLINK(index
);
2192 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2193 IXGBE_WRITE_FLUSH(hw
);
2199 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2200 * @hw: pointer to hardware structure
2201 * @index: led number to stop blinking
2203 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2205 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2206 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2208 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2209 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2210 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2212 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2213 led_reg
&= ~IXGBE_LED_BLINK(index
);
2214 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2215 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2216 IXGBE_WRITE_FLUSH(hw
);
2222 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2223 * @hw: pointer to hardware structure
2224 * @san_mac_offset: SAN MAC address offset
2226 * This function will read the EEPROM location for the SAN MAC address
2227 * pointer, and returns the value at that location. This is used in both
2228 * get and set mac_addr routines.
2230 static s32
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2231 u16
*san_mac_offset
)
2234 * First read the EEPROM pointer to see if the MAC addresses are
2237 hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
, san_mac_offset
);
2243 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2244 * @hw: pointer to hardware structure
2245 * @san_mac_addr: SAN MAC address
2247 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2248 * per-port, so set_lan_id() must be called before reading the addresses.
2249 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2250 * upon for non-SFP connections, so we must call it here.
2252 s32
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2254 u16 san_mac_data
, san_mac_offset
;
2258 * First read the EEPROM pointer to see if the MAC addresses are
2259 * available. If they're not, no point in calling set_lan_id() here.
2261 ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2263 if ((san_mac_offset
== 0) || (san_mac_offset
== 0xFFFF)) {
2265 * No addresses available in this EEPROM. It's not an
2266 * error though, so just wipe the local address and return.
2268 for (i
= 0; i
< 6; i
++)
2269 san_mac_addr
[i
] = 0xFF;
2271 goto san_mac_addr_out
;
2274 /* make sure we know which port we need to program */
2275 hw
->mac
.ops
.set_lan_id(hw
);
2276 /* apply the port offset to the address offset */
2277 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2278 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2279 for (i
= 0; i
< 3; i
++) {
2280 hw
->eeprom
.ops
.read(hw
, san_mac_offset
, &san_mac_data
);
2281 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2282 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2291 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2292 * @hw: pointer to hardware structure
2294 * Read PCIe configuration space, and get the MSI-X vector count from
2295 * the capabilities table.
2297 u32
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2299 struct ixgbe_adapter
*adapter
= hw
->back
;
2301 pci_read_config_word(adapter
->pdev
, IXGBE_PCIE_MSIX_82599_CAPS
,
2303 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2305 /* MSI-X count is zero-based in HW, so increment to give proper value */
2312 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2313 * @hw: pointer to hardware struct
2314 * @rar: receive address register index to disassociate
2315 * @vmdq: VMDq pool index to remove from the rar
2317 s32
ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2319 u32 mpsar_lo
, mpsar_hi
;
2320 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2322 /* Make sure we are using a valid rar index range */
2323 if (rar
>= rar_entries
) {
2324 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2325 return IXGBE_ERR_INVALID_ARGUMENT
;
2328 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2329 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2331 if (!mpsar_lo
&& !mpsar_hi
)
2334 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2336 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2340 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
2343 } else if (vmdq
< 32) {
2344 mpsar_lo
&= ~(1 << vmdq
);
2345 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
2347 mpsar_hi
&= ~(1 << (vmdq
- 32));
2348 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
2351 /* was that the last pool using this rar? */
2352 if (mpsar_lo
== 0 && mpsar_hi
== 0 && rar
!= 0)
2353 hw
->mac
.ops
.clear_rar(hw
, rar
);
2359 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2360 * @hw: pointer to hardware struct
2361 * @rar: receive address register index to associate with a VMDq index
2362 * @vmdq: VMDq pool index
2364 s32
ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2367 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2369 /* Make sure we are using a valid rar index range */
2370 if (rar
>= rar_entries
) {
2371 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2372 return IXGBE_ERR_INVALID_ARGUMENT
;
2376 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2378 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
2380 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2381 mpsar
|= 1 << (vmdq
- 32);
2382 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
2388 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2389 * @hw: pointer to hardware structure
2391 s32
ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
2396 for (i
= 0; i
< 128; i
++)
2397 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
2403 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2404 * @hw: pointer to hardware structure
2405 * @vlan: VLAN id to write to VLAN filter
2407 * return the VLVF index where this VLAN id should be placed
2410 static s32
ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
)
2413 u32 first_empty_slot
= 0;
2416 /* short cut the special case */
2421 * Search for the vlan id in the VLVF entries. Save off the first empty
2422 * slot found along the way
2424 for (regindex
= 1; regindex
< IXGBE_VLVF_ENTRIES
; regindex
++) {
2425 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
2426 if (!bits
&& !(first_empty_slot
))
2427 first_empty_slot
= regindex
;
2428 else if ((bits
& 0x0FFF) == vlan
)
2433 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2434 * in the VLVF. Else use the first empty VLVF register for this
2437 if (regindex
>= IXGBE_VLVF_ENTRIES
) {
2438 if (first_empty_slot
)
2439 regindex
= first_empty_slot
;
2441 hw_dbg(hw
, "No space in VLVF.\n");
2442 regindex
= IXGBE_ERR_NO_SPACE
;
2450 * ixgbe_set_vfta_generic - Set VLAN filter table
2451 * @hw: pointer to hardware structure
2452 * @vlan: VLAN id to write to VLAN filter
2453 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2454 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2456 * Turn on/off specified VLAN in the VLAN filter table.
2458 s32
ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
2467 bool vfta_changed
= false;
2470 return IXGBE_ERR_PARAM
;
2473 * this is a 2 part operation - first the VFTA, then the
2474 * VLVF and VLVFB if VT Mode is set
2475 * We don't write the VFTA until we know the VLVF part succeeded.
2479 * The VFTA is a bitstring made up of 128 32-bit registers
2480 * that enable the particular VLAN id, much like the MTA:
2481 * bits[11-5]: which register
2482 * bits[4-0]: which bit in the register
2484 regindex
= (vlan
>> 5) & 0x7F;
2485 bitindex
= vlan
& 0x1F;
2486 targetbit
= (1 << bitindex
);
2487 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regindex
));
2490 if (!(vfta
& targetbit
)) {
2492 vfta_changed
= true;
2495 if ((vfta
& targetbit
)) {
2497 vfta_changed
= true;
2504 * make sure the vlan is in VLVF
2505 * set the vind bit in the matching VLVFB
2507 * clear the pool bit and possibly the vind
2509 vt
= IXGBE_READ_REG(hw
, IXGBE_VT_CTL
);
2510 if (vt
& IXGBE_VT_CTL_VT_ENABLE
) {
2513 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
);
2518 /* set the pool bit */
2520 bits
= IXGBE_READ_REG(hw
,
2521 IXGBE_VLVFB(vlvf_index
*2));
2522 bits
|= (1 << vind
);
2524 IXGBE_VLVFB(vlvf_index
*2),
2527 bits
= IXGBE_READ_REG(hw
,
2528 IXGBE_VLVFB((vlvf_index
*2)+1));
2529 bits
|= (1 << (vind
-32));
2531 IXGBE_VLVFB((vlvf_index
*2)+1),
2535 /* clear the pool bit */
2537 bits
= IXGBE_READ_REG(hw
,
2538 IXGBE_VLVFB(vlvf_index
*2));
2539 bits
&= ~(1 << vind
);
2541 IXGBE_VLVFB(vlvf_index
*2),
2543 bits
|= IXGBE_READ_REG(hw
,
2544 IXGBE_VLVFB((vlvf_index
*2)+1));
2546 bits
= IXGBE_READ_REG(hw
,
2547 IXGBE_VLVFB((vlvf_index
*2)+1));
2548 bits
&= ~(1 << (vind
-32));
2550 IXGBE_VLVFB((vlvf_index
*2)+1),
2552 bits
|= IXGBE_READ_REG(hw
,
2553 IXGBE_VLVFB(vlvf_index
*2));
2558 * If there are still bits set in the VLVFB registers
2559 * for the VLAN ID indicated we need to see if the
2560 * caller is requesting that we clear the VFTA entry bit.
2561 * If the caller has requested that we clear the VFTA
2562 * entry bit but there are still pools/VFs using this VLAN
2563 * ID entry then ignore the request. We're not worried
2564 * about the case where we're turning the VFTA VLAN ID
2565 * entry bit on, only when requested to turn it off as
2566 * there may be multiple pools and/or VFs using the
2567 * VLAN ID entry. In that case we cannot clear the
2568 * VFTA bit until all pools/VFs using that VLAN ID have also
2569 * been cleared. This will be indicated by "bits" being
2573 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
),
2574 (IXGBE_VLVF_VIEN
| vlan
));
2576 /* someone wants to clear the vfta entry
2577 * but some pools/VFs are still using it.
2579 vfta_changed
= false;
2583 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
2587 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regindex
), vfta
);
2593 * ixgbe_clear_vfta_generic - Clear VLAN filter table
2594 * @hw: pointer to hardware structure
2596 * Clears the VLAN filer table, and the VMDq index associated with the filter
2598 s32
ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
2602 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
2603 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
2605 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
2606 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
2607 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
*2), 0);
2608 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB((offset
*2)+1), 0);
2615 * ixgbe_check_mac_link_generic - Determine link and speed status
2616 * @hw: pointer to hardware structure
2617 * @speed: pointer to link speed
2618 * @link_up: true when link is up
2619 * @link_up_wait_to_complete: bool used to wait for link up or not
2621 * Reads the links register to determine if link is up and the current speed
2623 s32
ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
2624 bool *link_up
, bool link_up_wait_to_complete
)
2626 u32 links_reg
, links_orig
;
2629 /* clear the old state */
2630 links_orig
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2632 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2634 if (links_orig
!= links_reg
) {
2635 hw_dbg(hw
, "LINKS changed from %08X to %08X\n",
2636 links_orig
, links_reg
);
2639 if (link_up_wait_to_complete
) {
2640 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
2641 if (links_reg
& IXGBE_LINKS_UP
) {
2648 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2651 if (links_reg
& IXGBE_LINKS_UP
)
2657 if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
2658 IXGBE_LINKS_SPEED_10G_82599
)
2659 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
2660 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
2661 IXGBE_LINKS_SPEED_1G_82599
)
2662 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
2664 *speed
= IXGBE_LINK_SPEED_100_FULL
;
2666 /* if link is down, zero out the current_mode */
2667 if (*link_up
== false) {
2668 hw
->fc
.current_mode
= ixgbe_fc_none
;
2669 hw
->fc
.fc_was_autonegged
= false;
2676 * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
2678 * @hw: pointer to hardware structure
2679 * @wwnn_prefix: the alternative WWNN prefix
2680 * @wwpn_prefix: the alternative WWPN prefix
2682 * This function will read the EEPROM from the alternative SAN MAC address
2683 * block to check the support for the alternative WWNN/WWPN prefix support.
2685 s32
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
2689 u16 alt_san_mac_blk_offset
;
2691 /* clear output first */
2692 *wwnn_prefix
= 0xFFFF;
2693 *wwpn_prefix
= 0xFFFF;
2695 /* check if alternative SAN MAC is supported */
2696 hw
->eeprom
.ops
.read(hw
, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
,
2697 &alt_san_mac_blk_offset
);
2699 if ((alt_san_mac_blk_offset
== 0) ||
2700 (alt_san_mac_blk_offset
== 0xFFFF))
2701 goto wwn_prefix_out
;
2703 /* check capability in alternative san mac address block */
2704 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
2705 hw
->eeprom
.ops
.read(hw
, offset
, &caps
);
2706 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
2707 goto wwn_prefix_out
;
2709 /* get the corresponding prefix for WWNN/WWPN */
2710 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
2711 hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
);
2713 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
2714 hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
);
2721 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
2722 * @hw: pointer to hardware structure
2723 * @enable: enable or disable switch for anti-spoofing
2724 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
2727 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int pf
)
2730 int pf_target_reg
= pf
>> 3;
2731 int pf_target_shift
= pf
% 8;
2734 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
2738 pfvfspoof
= IXGBE_SPOOF_MACAS_MASK
;
2741 * PFVFSPOOF register array is size 8 with 8 bits assigned to
2742 * MAC anti-spoof enables in each register array element.
2744 for (j
= 0; j
< IXGBE_PFVFSPOOF_REG_COUNT
; j
++)
2745 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(j
), pfvfspoof
);
2747 /* If not enabling anti-spoofing then done */
2752 * The PF should be allowed to spoof so that it can support
2753 * emulation mode NICs. Reset the bit assigned to the PF
2755 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(pf_target_reg
));
2756 pfvfspoof
^= (1 << pf_target_shift
);
2757 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(pf_target_reg
), pfvfspoof
);
2761 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
2762 * @hw: pointer to hardware structure
2763 * @enable: enable or disable switch for VLAN anti-spoofing
2764 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
2767 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
2769 int vf_target_reg
= vf
>> 3;
2770 int vf_target_shift
= vf
% 8 + IXGBE_SPOOF_VLANAS_SHIFT
;
2773 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
2776 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
2778 pfvfspoof
|= (1 << vf_target_shift
);
2780 pfvfspoof
&= ~(1 << vf_target_shift
);
2781 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);