block: ensure that completion error gets properly traced
[linux-2.6.git] / drivers / net / vxge / vxge-config.c
blob906a3ca3676b94c3aa6d8442bd7e56b9d0fa3eca
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
23 static enum vxge_hw_status
24 __vxge_hw_fifo_create(
25 struct __vxge_hw_vpath_handle *vpath_handle,
26 struct vxge_hw_fifo_attr *attr);
28 static enum vxge_hw_status
29 __vxge_hw_fifo_abort(
30 struct __vxge_hw_fifo *fifoh);
32 static enum vxge_hw_status
33 __vxge_hw_fifo_reset(
34 struct __vxge_hw_fifo *ringh);
36 static enum vxge_hw_status
37 __vxge_hw_fifo_delete(
38 struct __vxge_hw_vpath_handle *vpath_handle);
40 static struct __vxge_hw_blockpool_entry *
41 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *hldev,
42 u32 size);
44 static void
45 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *hldev,
46 struct __vxge_hw_blockpool_entry *entry);
48 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
49 void *block_addr,
50 u32 length,
51 struct pci_dev *dma_h,
52 struct pci_dev *acc_handle);
54 static enum vxge_hw_status
55 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
56 struct __vxge_hw_blockpool *blockpool,
57 u32 pool_size,
58 u32 pool_max);
60 static void
61 __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool);
63 static void *
64 __vxge_hw_blockpool_malloc(struct __vxge_hw_device *hldev,
65 u32 size,
66 struct vxge_hw_mempool_dma *dma_object);
68 static void
69 __vxge_hw_blockpool_free(struct __vxge_hw_device *hldev,
70 void *memblock,
71 u32 size,
72 struct vxge_hw_mempool_dma *dma_object);
75 static struct __vxge_hw_channel*
76 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
77 enum __vxge_hw_channel_type type, u32 length,
78 u32 per_dtr_space, void *userdata);
80 static void
81 __vxge_hw_channel_free(
82 struct __vxge_hw_channel *channel);
84 static enum vxge_hw_status
85 __vxge_hw_channel_initialize(
86 struct __vxge_hw_channel *channel);
88 static enum vxge_hw_status
89 __vxge_hw_channel_reset(
90 struct __vxge_hw_channel *channel);
92 static enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp);
94 static enum vxge_hw_status
95 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config);
97 static enum vxge_hw_status
98 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config);
100 static void
101 __vxge_hw_device_id_get(struct __vxge_hw_device *hldev);
103 static void
104 __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev);
106 static enum vxge_hw_status
107 __vxge_hw_vpath_card_info_get(
108 u32 vp_id,
109 struct vxge_hw_vpath_reg __iomem *vpath_reg,
110 struct vxge_hw_device_hw_info *hw_info);
112 static enum vxge_hw_status
113 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev);
115 static void
116 __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev);
118 static enum vxge_hw_status
119 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev);
121 static enum vxge_hw_status
122 __vxge_hw_device_register_poll(
123 void __iomem *reg,
124 u64 mask, u32 max_millis);
126 static inline enum vxge_hw_status
127 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
128 u64 mask, u32 max_millis)
130 __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
131 wmb();
133 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
134 wmb();
136 return __vxge_hw_device_register_poll(addr, mask, max_millis);
139 static struct vxge_hw_mempool*
140 __vxge_hw_mempool_create(struct __vxge_hw_device *devh, u32 memblock_size,
141 u32 item_size, u32 private_size, u32 items_initial,
142 u32 items_max, struct vxge_hw_mempool_cbs *mp_callback,
143 void *userdata);
144 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool);
146 static enum vxge_hw_status
147 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
148 struct vxge_hw_vpath_stats_hw_info *hw_stats);
150 static enum vxge_hw_status
151 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vpath_handle);
153 static enum vxge_hw_status
154 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg);
156 static u64
157 __vxge_hw_vpath_pci_func_mode_get(u32 vp_id,
158 struct vxge_hw_vpath_reg __iomem *vpath_reg);
160 static u32
161 __vxge_hw_vpath_func_id_get(u32 vp_id, struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg);
163 static enum vxge_hw_status
164 __vxge_hw_vpath_addr_get(u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
165 u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN]);
167 static enum vxge_hw_status
168 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath);
171 static enum vxge_hw_status
172 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *devh, u32 vp_id);
174 static enum vxge_hw_status
175 __vxge_hw_vpath_fw_ver_get(u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
176 struct vxge_hw_device_hw_info *hw_info);
178 static enum vxge_hw_status
179 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *devh, u32 vp_id);
181 static void
182 __vxge_hw_vp_terminate(struct __vxge_hw_device *devh, u32 vp_id);
184 static enum vxge_hw_status
185 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
186 u32 operation, u32 offset, u64 *stat);
188 static enum vxge_hw_status
189 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
190 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats);
192 static enum vxge_hw_status
193 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
194 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats);
197 * __vxge_hw_channel_allocate - Allocate memory for channel
198 * This function allocates required memory for the channel and various arrays
199 * in the channel
201 struct __vxge_hw_channel*
202 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
203 enum __vxge_hw_channel_type type,
204 u32 length, u32 per_dtr_space, void *userdata)
206 struct __vxge_hw_channel *channel;
207 struct __vxge_hw_device *hldev;
208 int size = 0;
209 u32 vp_id;
211 hldev = vph->vpath->hldev;
212 vp_id = vph->vpath->vp_id;
214 switch (type) {
215 case VXGE_HW_CHANNEL_TYPE_FIFO:
216 size = sizeof(struct __vxge_hw_fifo);
217 break;
218 case VXGE_HW_CHANNEL_TYPE_RING:
219 size = sizeof(struct __vxge_hw_ring);
220 break;
221 default:
222 break;
225 channel = kzalloc(size, GFP_KERNEL);
226 if (channel == NULL)
227 goto exit0;
228 INIT_LIST_HEAD(&channel->item);
230 channel->common_reg = hldev->common_reg;
231 channel->first_vp_id = hldev->first_vp_id;
232 channel->type = type;
233 channel->devh = hldev;
234 channel->vph = vph;
235 channel->userdata = userdata;
236 channel->per_dtr_space = per_dtr_space;
237 channel->length = length;
238 channel->vp_id = vp_id;
240 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
241 if (channel->work_arr == NULL)
242 goto exit1;
244 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
245 if (channel->free_arr == NULL)
246 goto exit1;
247 channel->free_ptr = length;
249 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
250 if (channel->reserve_arr == NULL)
251 goto exit1;
252 channel->reserve_ptr = length;
253 channel->reserve_top = 0;
255 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
256 if (channel->orig_arr == NULL)
257 goto exit1;
259 return channel;
260 exit1:
261 __vxge_hw_channel_free(channel);
263 exit0:
264 return NULL;
268 * __vxge_hw_channel_free - Free memory allocated for channel
269 * This function deallocates memory from the channel and various arrays
270 * in the channel
272 void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
274 kfree(channel->work_arr);
275 kfree(channel->free_arr);
276 kfree(channel->reserve_arr);
277 kfree(channel->orig_arr);
278 kfree(channel);
282 * __vxge_hw_channel_initialize - Initialize a channel
283 * This function initializes a channel by properly setting the
284 * various references
286 enum vxge_hw_status
287 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
289 u32 i;
290 struct __vxge_hw_virtualpath *vpath;
292 vpath = channel->vph->vpath;
294 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
295 for (i = 0; i < channel->length; i++)
296 channel->orig_arr[i] = channel->reserve_arr[i];
299 switch (channel->type) {
300 case VXGE_HW_CHANNEL_TYPE_FIFO:
301 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
302 channel->stats = &((struct __vxge_hw_fifo *)
303 channel)->stats->common_stats;
304 break;
305 case VXGE_HW_CHANNEL_TYPE_RING:
306 vpath->ringh = (struct __vxge_hw_ring *)channel;
307 channel->stats = &((struct __vxge_hw_ring *)
308 channel)->stats->common_stats;
309 break;
310 default:
311 break;
314 return VXGE_HW_OK;
318 * __vxge_hw_channel_reset - Resets a channel
319 * This function resets a channel by properly setting the various references
321 enum vxge_hw_status
322 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
324 u32 i;
326 for (i = 0; i < channel->length; i++) {
327 if (channel->reserve_arr != NULL)
328 channel->reserve_arr[i] = channel->orig_arr[i];
329 if (channel->free_arr != NULL)
330 channel->free_arr[i] = NULL;
331 if (channel->work_arr != NULL)
332 channel->work_arr[i] = NULL;
334 channel->free_ptr = channel->length;
335 channel->reserve_ptr = channel->length;
336 channel->reserve_top = 0;
337 channel->post_index = 0;
338 channel->compl_index = 0;
340 return VXGE_HW_OK;
344 * __vxge_hw_device_pci_e_init
345 * Initialize certain PCI/PCI-X configuration registers
346 * with recommended values. Save config space for future hw resets.
348 void
349 __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
351 u16 cmd = 0;
353 /* Set the PErr Repconse bit and SERR in PCI command register. */
354 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
355 cmd |= 0x140;
356 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
358 pci_save_state(hldev->pdev);
362 * __vxge_hw_device_register_poll
363 * Will poll certain register for specified amount of time.
364 * Will poll until masked bit is not cleared.
366 static enum vxge_hw_status
367 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
369 u64 val64;
370 u32 i = 0;
371 enum vxge_hw_status ret = VXGE_HW_FAIL;
373 udelay(10);
375 do {
376 val64 = readq(reg);
377 if (!(val64 & mask))
378 return VXGE_HW_OK;
379 udelay(100);
380 } while (++i <= 9);
382 i = 0;
383 do {
384 val64 = readq(reg);
385 if (!(val64 & mask))
386 return VXGE_HW_OK;
387 mdelay(1);
388 } while (++i <= max_millis);
390 return ret;
393 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
394 * in progress
395 * This routine checks the vpath reset in progress register is turned zero
397 static enum vxge_hw_status
398 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
400 enum vxge_hw_status status;
401 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
402 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
403 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
404 return status;
408 * __vxge_hw_device_toc_get
409 * This routine sets the swapper and reads the toc pointer and returns the
410 * memory mapped address of the toc
412 static struct vxge_hw_toc_reg __iomem *
413 __vxge_hw_device_toc_get(void __iomem *bar0)
415 u64 val64;
416 struct vxge_hw_toc_reg __iomem *toc = NULL;
417 enum vxge_hw_status status;
419 struct vxge_hw_legacy_reg __iomem *legacy_reg =
420 (struct vxge_hw_legacy_reg __iomem *)bar0;
422 status = __vxge_hw_legacy_swapper_set(legacy_reg);
423 if (status != VXGE_HW_OK)
424 goto exit;
426 val64 = readq(&legacy_reg->toc_first_pointer);
427 toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
428 exit:
429 return toc;
433 * __vxge_hw_device_reg_addr_get
434 * This routine sets the swapper and reads the toc pointer and initializes the
435 * register location pointers in the device object. It waits until the ric is
436 * completed initializing registers.
438 enum vxge_hw_status
439 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
441 u64 val64;
442 u32 i;
443 enum vxge_hw_status status = VXGE_HW_OK;
445 hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
447 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
448 if (hldev->toc_reg == NULL) {
449 status = VXGE_HW_FAIL;
450 goto exit;
453 val64 = readq(&hldev->toc_reg->toc_common_pointer);
454 hldev->common_reg =
455 (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
457 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
458 hldev->mrpcim_reg =
459 (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
461 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
462 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
463 hldev->srpcim_reg[i] =
464 (struct vxge_hw_srpcim_reg __iomem *)
465 (hldev->bar0 + val64);
468 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
469 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
470 hldev->vpmgmt_reg[i] =
471 (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
474 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
475 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
476 hldev->vpath_reg[i] =
477 (struct vxge_hw_vpath_reg __iomem *)
478 (hldev->bar0 + val64);
481 val64 = readq(&hldev->toc_reg->toc_kdfc);
483 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
484 case 0:
485 hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
486 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
487 break;
488 default:
489 break;
492 status = __vxge_hw_device_vpath_reset_in_prog_check(
493 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
494 exit:
495 return status;
499 * __vxge_hw_device_id_get
500 * This routine returns sets the device id and revision numbers into the device
501 * structure
503 void __vxge_hw_device_id_get(struct __vxge_hw_device *hldev)
505 u64 val64;
507 val64 = readq(&hldev->common_reg->titan_asic_id);
508 hldev->device_id =
509 (u16)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_DEVICE_ID(val64);
511 hldev->major_revision =
512 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MAJOR_REVISION(val64);
514 hldev->minor_revision =
515 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MINOR_REVISION(val64);
519 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
520 * This routine returns the Access Rights of the driver
522 static u32
523 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
525 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
527 switch (host_type) {
528 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
529 if (func_id == 0) {
530 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
531 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
533 break;
534 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
535 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
536 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
537 break;
538 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
539 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
540 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
541 break;
542 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
543 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
544 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
545 break;
546 case VXGE_HW_SR_VH_FUNCTION0:
547 case VXGE_HW_VH_NORMAL_FUNCTION:
548 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
549 break;
552 return access_rights;
555 * __vxge_hw_device_is_privilaged
556 * This routine checks if the device function is privilaged or not
559 enum vxge_hw_status
560 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
562 if (__vxge_hw_device_access_rights_get(host_type,
563 func_id) &
564 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
565 return VXGE_HW_OK;
566 else
567 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
571 * __vxge_hw_device_host_info_get
572 * This routine returns the host type assignments
574 void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
576 u64 val64;
577 u32 i;
579 val64 = readq(&hldev->common_reg->host_type_assignments);
581 hldev->host_type =
582 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
584 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
586 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
588 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
589 continue;
591 hldev->func_id =
592 __vxge_hw_vpath_func_id_get(i, hldev->vpmgmt_reg[i]);
594 hldev->access_rights = __vxge_hw_device_access_rights_get(
595 hldev->host_type, hldev->func_id);
597 hldev->first_vp_id = i;
598 break;
603 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
604 * link width and signalling rate.
606 static enum vxge_hw_status
607 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
609 int exp_cap;
610 u16 lnk;
612 /* Get the negotiated link width and speed from PCI config space */
613 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
614 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
616 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
617 return VXGE_HW_ERR_INVALID_PCI_INFO;
619 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
620 case PCIE_LNK_WIDTH_RESRV:
621 case PCIE_LNK_X1:
622 case PCIE_LNK_X2:
623 case PCIE_LNK_X4:
624 case PCIE_LNK_X8:
625 break;
626 default:
627 return VXGE_HW_ERR_INVALID_PCI_INFO;
630 return VXGE_HW_OK;
634 * __vxge_hw_device_initialize
635 * Initialize Titan-V hardware.
637 enum vxge_hw_status __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
639 enum vxge_hw_status status = VXGE_HW_OK;
641 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
642 hldev->func_id)) {
643 /* Validate the pci-e link width and speed */
644 status = __vxge_hw_verify_pci_e_info(hldev);
645 if (status != VXGE_HW_OK)
646 goto exit;
649 exit:
650 return status;
654 * vxge_hw_device_hw_info_get - Get the hw information
655 * Returns the vpath mask that has the bits set for each vpath allocated
656 * for the driver, FW version information and the first mac addresse for
657 * each vpath
659 enum vxge_hw_status __devinit
660 vxge_hw_device_hw_info_get(void __iomem *bar0,
661 struct vxge_hw_device_hw_info *hw_info)
663 u32 i;
664 u64 val64;
665 struct vxge_hw_toc_reg __iomem *toc;
666 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
667 struct vxge_hw_common_reg __iomem *common_reg;
668 struct vxge_hw_vpath_reg __iomem *vpath_reg;
669 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
670 enum vxge_hw_status status;
672 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
674 toc = __vxge_hw_device_toc_get(bar0);
675 if (toc == NULL) {
676 status = VXGE_HW_ERR_CRITICAL;
677 goto exit;
680 val64 = readq(&toc->toc_common_pointer);
681 common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
683 status = __vxge_hw_device_vpath_reset_in_prog_check(
684 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
685 if (status != VXGE_HW_OK)
686 goto exit;
688 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
690 val64 = readq(&common_reg->host_type_assignments);
692 hw_info->host_type =
693 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
695 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
697 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
698 continue;
700 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
702 vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
703 (bar0 + val64);
705 hw_info->func_id = __vxge_hw_vpath_func_id_get(i, vpmgmt_reg);
706 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
707 hw_info->func_id) &
708 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
710 val64 = readq(&toc->toc_mrpcim_pointer);
712 mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
713 (bar0 + val64);
715 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
716 wmb();
719 val64 = readq(&toc->toc_vpath_pointer[i]);
721 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
723 hw_info->function_mode =
724 __vxge_hw_vpath_pci_func_mode_get(i, vpath_reg);
726 status = __vxge_hw_vpath_fw_ver_get(i, vpath_reg, hw_info);
727 if (status != VXGE_HW_OK)
728 goto exit;
730 status = __vxge_hw_vpath_card_info_get(i, vpath_reg, hw_info);
731 if (status != VXGE_HW_OK)
732 goto exit;
734 break;
737 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
739 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
740 continue;
742 val64 = readq(&toc->toc_vpath_pointer[i]);
743 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
745 status = __vxge_hw_vpath_addr_get(i, vpath_reg,
746 hw_info->mac_addrs[i],
747 hw_info->mac_addr_masks[i]);
748 if (status != VXGE_HW_OK)
749 goto exit;
751 exit:
752 return status;
756 * vxge_hw_device_initialize - Initialize Titan device.
757 * Initialize Titan device. Note that all the arguments of this public API
758 * are 'IN', including @hldev. Driver cooperates with
759 * OS to find new Titan device, locate its PCI and memory spaces.
761 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
762 * to enable the latter to perform Titan hardware initialization.
764 enum vxge_hw_status __devinit
765 vxge_hw_device_initialize(
766 struct __vxge_hw_device **devh,
767 struct vxge_hw_device_attr *attr,
768 struct vxge_hw_device_config *device_config)
770 u32 i;
771 u32 nblocks = 0;
772 struct __vxge_hw_device *hldev = NULL;
773 enum vxge_hw_status status = VXGE_HW_OK;
775 status = __vxge_hw_device_config_check(device_config);
776 if (status != VXGE_HW_OK)
777 goto exit;
779 hldev = (struct __vxge_hw_device *)
780 vmalloc(sizeof(struct __vxge_hw_device));
781 if (hldev == NULL) {
782 status = VXGE_HW_ERR_OUT_OF_MEMORY;
783 goto exit;
786 memset(hldev, 0, sizeof(struct __vxge_hw_device));
787 hldev->magic = VXGE_HW_DEVICE_MAGIC;
789 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
791 /* apply config */
792 memcpy(&hldev->config, device_config,
793 sizeof(struct vxge_hw_device_config));
795 hldev->bar0 = attr->bar0;
796 hldev->pdev = attr->pdev;
798 hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
799 hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
800 hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
802 __vxge_hw_device_pci_e_init(hldev);
804 status = __vxge_hw_device_reg_addr_get(hldev);
805 if (status != VXGE_HW_OK) {
806 vfree(hldev);
807 goto exit;
809 __vxge_hw_device_id_get(hldev);
811 __vxge_hw_device_host_info_get(hldev);
813 /* Incrementing for stats blocks */
814 nblocks++;
816 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
818 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
819 continue;
821 if (device_config->vp_config[i].ring.enable ==
822 VXGE_HW_RING_ENABLE)
823 nblocks += device_config->vp_config[i].ring.ring_blocks;
825 if (device_config->vp_config[i].fifo.enable ==
826 VXGE_HW_FIFO_ENABLE)
827 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
828 nblocks++;
831 if (__vxge_hw_blockpool_create(hldev,
832 &hldev->block_pool,
833 device_config->dma_blockpool_initial + nblocks,
834 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
836 vxge_hw_device_terminate(hldev);
837 status = VXGE_HW_ERR_OUT_OF_MEMORY;
838 goto exit;
841 status = __vxge_hw_device_initialize(hldev);
843 if (status != VXGE_HW_OK) {
844 vxge_hw_device_terminate(hldev);
845 goto exit;
848 *devh = hldev;
849 exit:
850 return status;
854 * vxge_hw_device_terminate - Terminate Titan device.
855 * Terminate HW device.
857 void
858 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
860 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
862 hldev->magic = VXGE_HW_DEVICE_DEAD;
863 __vxge_hw_blockpool_destroy(&hldev->block_pool);
864 vfree(hldev);
868 * vxge_hw_device_stats_get - Get the device hw statistics.
869 * Returns the vpath h/w stats for the device.
871 enum vxge_hw_status
872 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
873 struct vxge_hw_device_stats_hw_info *hw_stats)
875 u32 i;
876 enum vxge_hw_status status = VXGE_HW_OK;
878 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
880 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
881 (hldev->virtual_paths[i].vp_open ==
882 VXGE_HW_VP_NOT_OPEN))
883 continue;
885 memcpy(hldev->virtual_paths[i].hw_stats_sav,
886 hldev->virtual_paths[i].hw_stats,
887 sizeof(struct vxge_hw_vpath_stats_hw_info));
889 status = __vxge_hw_vpath_stats_get(
890 &hldev->virtual_paths[i],
891 hldev->virtual_paths[i].hw_stats);
894 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
895 sizeof(struct vxge_hw_device_stats_hw_info));
897 return status;
901 * vxge_hw_driver_stats_get - Get the device sw statistics.
902 * Returns the vpath s/w stats for the device.
904 enum vxge_hw_status vxge_hw_driver_stats_get(
905 struct __vxge_hw_device *hldev,
906 struct vxge_hw_device_stats_sw_info *sw_stats)
908 enum vxge_hw_status status = VXGE_HW_OK;
910 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
911 sizeof(struct vxge_hw_device_stats_sw_info));
913 return status;
917 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
918 * and offset and perform an operation
919 * Get the statistics from the given location and offset.
921 enum vxge_hw_status
922 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
923 u32 operation, u32 location, u32 offset, u64 *stat)
925 u64 val64;
926 enum vxge_hw_status status = VXGE_HW_OK;
928 status = __vxge_hw_device_is_privilaged(hldev->host_type,
929 hldev->func_id);
930 if (status != VXGE_HW_OK)
931 goto exit;
933 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
934 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
935 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
936 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
938 status = __vxge_hw_pio_mem_write64(val64,
939 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
940 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
941 hldev->config.device_poll_millis);
943 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
944 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
945 else
946 *stat = 0;
947 exit:
948 return status;
952 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
953 * Get the Statistics on aggregate port
955 static enum vxge_hw_status
956 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
957 struct vxge_hw_xmac_aggr_stats *aggr_stats)
959 u64 *val64;
960 int i;
961 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
962 enum vxge_hw_status status = VXGE_HW_OK;
964 val64 = (u64 *)aggr_stats;
966 status = __vxge_hw_device_is_privilaged(hldev->host_type,
967 hldev->func_id);
968 if (status != VXGE_HW_OK)
969 goto exit;
971 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
972 status = vxge_hw_mrpcim_stats_access(hldev,
973 VXGE_HW_STATS_OP_READ,
974 VXGE_HW_STATS_LOC_AGGR,
975 ((offset + (104 * port)) >> 3), val64);
976 if (status != VXGE_HW_OK)
977 goto exit;
979 offset += 8;
980 val64++;
982 exit:
983 return status;
987 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
988 * Get the Statistics on port
990 static enum vxge_hw_status
991 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
992 struct vxge_hw_xmac_port_stats *port_stats)
994 u64 *val64;
995 enum vxge_hw_status status = VXGE_HW_OK;
996 int i;
997 u32 offset = 0x0;
998 val64 = (u64 *) port_stats;
1000 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1001 hldev->func_id);
1002 if (status != VXGE_HW_OK)
1003 goto exit;
1005 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1006 status = vxge_hw_mrpcim_stats_access(hldev,
1007 VXGE_HW_STATS_OP_READ,
1008 VXGE_HW_STATS_LOC_AGGR,
1009 ((offset + (608 * port)) >> 3), val64);
1010 if (status != VXGE_HW_OK)
1011 goto exit;
1013 offset += 8;
1014 val64++;
1017 exit:
1018 return status;
1022 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1023 * Get the XMAC Statistics
1025 enum vxge_hw_status
1026 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1027 struct vxge_hw_xmac_stats *xmac_stats)
1029 enum vxge_hw_status status = VXGE_HW_OK;
1030 u32 i;
1032 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1033 0, &xmac_stats->aggr_stats[0]);
1035 if (status != VXGE_HW_OK)
1036 goto exit;
1038 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1039 1, &xmac_stats->aggr_stats[1]);
1040 if (status != VXGE_HW_OK)
1041 goto exit;
1043 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1045 status = vxge_hw_device_xmac_port_stats_get(hldev,
1046 i, &xmac_stats->port_stats[i]);
1047 if (status != VXGE_HW_OK)
1048 goto exit;
1051 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1053 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1054 continue;
1056 status = __vxge_hw_vpath_xmac_tx_stats_get(
1057 &hldev->virtual_paths[i],
1058 &xmac_stats->vpath_tx_stats[i]);
1059 if (status != VXGE_HW_OK)
1060 goto exit;
1062 status = __vxge_hw_vpath_xmac_rx_stats_get(
1063 &hldev->virtual_paths[i],
1064 &xmac_stats->vpath_rx_stats[i]);
1065 if (status != VXGE_HW_OK)
1066 goto exit;
1068 exit:
1069 return status;
1073 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1074 * This routine is used to dynamically change the debug output
1076 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1077 enum vxge_debug_level level, u32 mask)
1079 if (hldev == NULL)
1080 return;
1082 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1083 defined(VXGE_DEBUG_ERR_MASK)
1084 hldev->debug_module_mask = mask;
1085 hldev->debug_level = level;
1086 #endif
1088 #if defined(VXGE_DEBUG_ERR_MASK)
1089 hldev->level_err = level & VXGE_ERR;
1090 #endif
1092 #if defined(VXGE_DEBUG_TRACE_MASK)
1093 hldev->level_trace = level & VXGE_TRACE;
1094 #endif
1098 * vxge_hw_device_error_level_get - Get the error level
1099 * This routine returns the current error level set
1101 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1103 #if defined(VXGE_DEBUG_ERR_MASK)
1104 if (hldev == NULL)
1105 return VXGE_ERR;
1106 else
1107 return hldev->level_err;
1108 #else
1109 return 0;
1110 #endif
1114 * vxge_hw_device_trace_level_get - Get the trace level
1115 * This routine returns the current trace level set
1117 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1119 #if defined(VXGE_DEBUG_TRACE_MASK)
1120 if (hldev == NULL)
1121 return VXGE_TRACE;
1122 else
1123 return hldev->level_trace;
1124 #else
1125 return 0;
1126 #endif
1130 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1131 * Returns the Pause frame generation and reception capability of the NIC.
1133 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1134 u32 port, u32 *tx, u32 *rx)
1136 u64 val64;
1137 enum vxge_hw_status status = VXGE_HW_OK;
1139 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1140 status = VXGE_HW_ERR_INVALID_DEVICE;
1141 goto exit;
1144 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1145 status = VXGE_HW_ERR_INVALID_PORT;
1146 goto exit;
1149 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1150 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
1151 goto exit;
1154 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1155 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1156 *tx = 1;
1157 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1158 *rx = 1;
1159 exit:
1160 return status;
1164 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1165 * It can be used to set or reset Pause frame generation or reception
1166 * support of the NIC.
1169 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1170 u32 port, u32 tx, u32 rx)
1172 u64 val64;
1173 enum vxge_hw_status status = VXGE_HW_OK;
1175 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1176 status = VXGE_HW_ERR_INVALID_DEVICE;
1177 goto exit;
1180 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1181 status = VXGE_HW_ERR_INVALID_PORT;
1182 goto exit;
1185 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1186 hldev->func_id);
1187 if (status != VXGE_HW_OK)
1188 goto exit;
1190 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1191 if (tx)
1192 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1193 else
1194 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1195 if (rx)
1196 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1197 else
1198 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1200 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1201 exit:
1202 return status;
1205 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1207 int link_width, exp_cap;
1208 u16 lnk;
1210 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
1211 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
1212 link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1213 return link_width;
1217 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1218 * This function returns the index of memory block
1220 static inline u32
1221 __vxge_hw_ring_block_memblock_idx(u8 *block)
1223 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1227 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1228 * This function sets index to a memory block
1230 static inline void
1231 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1233 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
1237 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
1238 * in RxD block
1239 * Sets the next block pointer in RxD block
1241 static inline void
1242 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
1244 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
1248 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
1249 * first block
1250 * Returns the dma address of the first RxD block
1252 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
1254 struct vxge_hw_mempool_dma *dma_object;
1256 dma_object = ring->mempool->memblocks_dma_arr;
1257 vxge_assert(dma_object != NULL);
1259 return dma_object->addr;
1263 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
1264 * This function returns the dma address of a given item
1266 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
1267 void *item)
1269 u32 memblock_idx;
1270 void *memblock;
1271 struct vxge_hw_mempool_dma *memblock_dma_object;
1272 ptrdiff_t dma_item_offset;
1274 /* get owner memblock index */
1275 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
1277 /* get owner memblock by memblock index */
1278 memblock = mempoolh->memblocks_arr[memblock_idx];
1280 /* get memblock DMA object by memblock index */
1281 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
1283 /* calculate offset in the memblock of this item */
1284 dma_item_offset = (u8 *)item - (u8 *)memblock;
1286 return memblock_dma_object->addr + dma_item_offset;
1290 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
1291 * This function returns the dma address of a given item
1293 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
1294 struct __vxge_hw_ring *ring, u32 from,
1295 u32 to)
1297 u8 *to_item , *from_item;
1298 dma_addr_t to_dma;
1300 /* get "from" RxD block */
1301 from_item = mempoolh->items_arr[from];
1302 vxge_assert(from_item);
1304 /* get "to" RxD block */
1305 to_item = mempoolh->items_arr[to];
1306 vxge_assert(to_item);
1308 /* return address of the beginning of previous RxD block */
1309 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
1311 /* set next pointer for this RxD block to point on
1312 * previous item's DMA start address */
1313 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
1317 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
1318 * block callback
1319 * This function is callback passed to __vxge_hw_mempool_create to create memory
1320 * pool for RxD block
1322 static void
1323 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
1324 u32 memblock_index,
1325 struct vxge_hw_mempool_dma *dma_object,
1326 u32 index, u32 is_last)
1328 u32 i;
1329 void *item = mempoolh->items_arr[index];
1330 struct __vxge_hw_ring *ring =
1331 (struct __vxge_hw_ring *)mempoolh->userdata;
1333 /* format rxds array */
1334 for (i = 0; i < ring->rxds_per_block; i++) {
1335 void *rxdblock_priv;
1336 void *uld_priv;
1337 struct vxge_hw_ring_rxd_1 *rxdp;
1339 u32 reserve_index = ring->channel.reserve_ptr -
1340 (index * ring->rxds_per_block + i + 1);
1341 u32 memblock_item_idx;
1343 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
1344 i * ring->rxd_size;
1346 /* Note: memblock_item_idx is index of the item within
1347 * the memblock. For instance, in case of three RxD-blocks
1348 * per memblock this value can be 0, 1 or 2. */
1349 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
1350 memblock_index, item,
1351 &memblock_item_idx);
1353 rxdp = (struct vxge_hw_ring_rxd_1 *)
1354 ring->channel.reserve_arr[reserve_index];
1356 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
1358 /* pre-format Host_Control */
1359 rxdp->host_control = (u64)(size_t)uld_priv;
1362 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
1364 if (is_last) {
1365 /* link last one with first one */
1366 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
1369 if (index > 0) {
1370 /* link this RxD block with previous one */
1371 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
1376 * __vxge_hw_ring_replenish - Initial replenish of RxDs
1377 * This function replenishes the RxDs from reserve array to work array
1379 enum vxge_hw_status
1380 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
1382 void *rxd;
1383 struct __vxge_hw_channel *channel;
1384 enum vxge_hw_status status = VXGE_HW_OK;
1386 channel = &ring->channel;
1388 while (vxge_hw_channel_dtr_count(channel) > 0) {
1390 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
1392 vxge_assert(status == VXGE_HW_OK);
1394 if (ring->rxd_init) {
1395 status = ring->rxd_init(rxd, channel->userdata);
1396 if (status != VXGE_HW_OK) {
1397 vxge_hw_ring_rxd_free(ring, rxd);
1398 goto exit;
1402 vxge_hw_ring_rxd_post(ring, rxd);
1404 status = VXGE_HW_OK;
1405 exit:
1406 return status;
1410 * __vxge_hw_ring_create - Create a Ring
1411 * This function creates Ring and initializes it.
1414 static enum vxge_hw_status
1415 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
1416 struct vxge_hw_ring_attr *attr)
1418 enum vxge_hw_status status = VXGE_HW_OK;
1419 struct __vxge_hw_ring *ring;
1420 u32 ring_length;
1421 struct vxge_hw_ring_config *config;
1422 struct __vxge_hw_device *hldev;
1423 u32 vp_id;
1424 struct vxge_hw_mempool_cbs ring_mp_callback;
1426 if ((vp == NULL) || (attr == NULL)) {
1427 status = VXGE_HW_FAIL;
1428 goto exit;
1431 hldev = vp->vpath->hldev;
1432 vp_id = vp->vpath->vp_id;
1434 config = &hldev->config.vp_config[vp_id].ring;
1436 ring_length = config->ring_blocks *
1437 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1439 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
1440 VXGE_HW_CHANNEL_TYPE_RING,
1441 ring_length,
1442 attr->per_rxd_space,
1443 attr->userdata);
1445 if (ring == NULL) {
1446 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1447 goto exit;
1450 vp->vpath->ringh = ring;
1451 ring->vp_id = vp_id;
1452 ring->vp_reg = vp->vpath->vp_reg;
1453 ring->common_reg = hldev->common_reg;
1454 ring->stats = &vp->vpath->sw_stats->ring_stats;
1455 ring->config = config;
1456 ring->callback = attr->callback;
1457 ring->rxd_init = attr->rxd_init;
1458 ring->rxd_term = attr->rxd_term;
1459 ring->buffer_mode = config->buffer_mode;
1460 ring->rxds_limit = config->rxds_limit;
1462 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
1463 ring->rxd_priv_size =
1464 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
1465 ring->per_rxd_space = attr->per_rxd_space;
1467 ring->rxd_priv_size =
1468 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
1469 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
1471 /* how many RxDs can fit into one block. Depends on configured
1472 * buffer_mode. */
1473 ring->rxds_per_block =
1474 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1476 /* calculate actual RxD block private size */
1477 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
1478 ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
1479 ring->mempool = __vxge_hw_mempool_create(hldev,
1480 VXGE_HW_BLOCK_SIZE,
1481 VXGE_HW_BLOCK_SIZE,
1482 ring->rxdblock_priv_size,
1483 ring->config->ring_blocks,
1484 ring->config->ring_blocks,
1485 &ring_mp_callback,
1486 ring);
1488 if (ring->mempool == NULL) {
1489 __vxge_hw_ring_delete(vp);
1490 return VXGE_HW_ERR_OUT_OF_MEMORY;
1493 status = __vxge_hw_channel_initialize(&ring->channel);
1494 if (status != VXGE_HW_OK) {
1495 __vxge_hw_ring_delete(vp);
1496 goto exit;
1499 /* Note:
1500 * Specifying rxd_init callback means two things:
1501 * 1) rxds need to be initialized by driver at channel-open time;
1502 * 2) rxds need to be posted at channel-open time
1503 * (that's what the initial_replenish() below does)
1504 * Currently we don't have a case when the 1) is done without the 2).
1506 if (ring->rxd_init) {
1507 status = vxge_hw_ring_replenish(ring);
1508 if (status != VXGE_HW_OK) {
1509 __vxge_hw_ring_delete(vp);
1510 goto exit;
1514 /* initial replenish will increment the counter in its post() routine,
1515 * we have to reset it */
1516 ring->stats->common_stats.usage_cnt = 0;
1517 exit:
1518 return status;
1522 * __vxge_hw_ring_abort - Returns the RxD
1523 * This function terminates the RxDs of ring
1525 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
1527 void *rxdh;
1528 struct __vxge_hw_channel *channel;
1530 channel = &ring->channel;
1532 for (;;) {
1533 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
1535 if (rxdh == NULL)
1536 break;
1538 vxge_hw_channel_dtr_complete(channel);
1540 if (ring->rxd_term)
1541 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
1542 channel->userdata);
1544 vxge_hw_channel_dtr_free(channel, rxdh);
1547 return VXGE_HW_OK;
1551 * __vxge_hw_ring_reset - Resets the ring
1552 * This function resets the ring during vpath reset operation
1554 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
1556 enum vxge_hw_status status = VXGE_HW_OK;
1557 struct __vxge_hw_channel *channel;
1559 channel = &ring->channel;
1561 __vxge_hw_ring_abort(ring);
1563 status = __vxge_hw_channel_reset(channel);
1565 if (status != VXGE_HW_OK)
1566 goto exit;
1568 if (ring->rxd_init) {
1569 status = vxge_hw_ring_replenish(ring);
1570 if (status != VXGE_HW_OK)
1571 goto exit;
1573 exit:
1574 return status;
1578 * __vxge_hw_ring_delete - Removes the ring
1579 * This function freeup the memory pool and removes the ring
1581 static enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
1583 struct __vxge_hw_ring *ring = vp->vpath->ringh;
1585 __vxge_hw_ring_abort(ring);
1587 if (ring->mempool)
1588 __vxge_hw_mempool_destroy(ring->mempool);
1590 vp->vpath->ringh = NULL;
1591 __vxge_hw_channel_free(&ring->channel);
1593 return VXGE_HW_OK;
1597 * __vxge_hw_mempool_grow
1598 * Will resize mempool up to %num_allocate value.
1600 static enum vxge_hw_status
1601 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
1602 u32 *num_allocated)
1604 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
1605 u32 n_items = mempool->items_per_memblock;
1606 u32 start_block_idx = mempool->memblocks_allocated;
1607 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
1608 enum vxge_hw_status status = VXGE_HW_OK;
1610 *num_allocated = 0;
1612 if (end_block_idx > mempool->memblocks_max) {
1613 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1614 goto exit;
1617 for (i = start_block_idx; i < end_block_idx; i++) {
1618 u32 j;
1619 u32 is_last = ((end_block_idx - 1) == i);
1620 struct vxge_hw_mempool_dma *dma_object =
1621 mempool->memblocks_dma_arr + i;
1622 void *the_memblock;
1624 /* allocate memblock's private part. Each DMA memblock
1625 * has a space allocated for item's private usage upon
1626 * mempool's user request. Each time mempool grows, it will
1627 * allocate new memblock and its private part at once.
1628 * This helps to minimize memory usage a lot. */
1629 mempool->memblocks_priv_arr[i] =
1630 vmalloc(mempool->items_priv_size * n_items);
1631 if (mempool->memblocks_priv_arr[i] == NULL) {
1632 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1633 goto exit;
1636 memset(mempool->memblocks_priv_arr[i], 0,
1637 mempool->items_priv_size * n_items);
1639 /* allocate DMA-capable memblock */
1640 mempool->memblocks_arr[i] =
1641 __vxge_hw_blockpool_malloc(mempool->devh,
1642 mempool->memblock_size, dma_object);
1643 if (mempool->memblocks_arr[i] == NULL) {
1644 vfree(mempool->memblocks_priv_arr[i]);
1645 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1646 goto exit;
1649 (*num_allocated)++;
1650 mempool->memblocks_allocated++;
1652 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
1654 the_memblock = mempool->memblocks_arr[i];
1656 /* fill the items hash array */
1657 for (j = 0; j < n_items; j++) {
1658 u32 index = i * n_items + j;
1660 if (first_time && index >= mempool->items_initial)
1661 break;
1663 mempool->items_arr[index] =
1664 ((char *)the_memblock + j*mempool->item_size);
1666 /* let caller to do more job on each item */
1667 if (mempool->item_func_alloc != NULL)
1668 mempool->item_func_alloc(mempool, i,
1669 dma_object, index, is_last);
1671 mempool->items_current = index + 1;
1674 if (first_time && mempool->items_current ==
1675 mempool->items_initial)
1676 break;
1678 exit:
1679 return status;
1683 * vxge_hw_mempool_create
1684 * This function will create memory pool object. Pool may grow but will
1685 * never shrink. Pool consists of number of dynamically allocated blocks
1686 * with size enough to hold %items_initial number of items. Memory is
1687 * DMA-able but client must map/unmap before interoperating with the device.
1689 static struct vxge_hw_mempool*
1690 __vxge_hw_mempool_create(
1691 struct __vxge_hw_device *devh,
1692 u32 memblock_size,
1693 u32 item_size,
1694 u32 items_priv_size,
1695 u32 items_initial,
1696 u32 items_max,
1697 struct vxge_hw_mempool_cbs *mp_callback,
1698 void *userdata)
1700 enum vxge_hw_status status = VXGE_HW_OK;
1701 u32 memblocks_to_allocate;
1702 struct vxge_hw_mempool *mempool = NULL;
1703 u32 allocated;
1705 if (memblock_size < item_size) {
1706 status = VXGE_HW_FAIL;
1707 goto exit;
1710 mempool = (struct vxge_hw_mempool *)
1711 vmalloc(sizeof(struct vxge_hw_mempool));
1712 if (mempool == NULL) {
1713 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1714 goto exit;
1716 memset(mempool, 0, sizeof(struct vxge_hw_mempool));
1718 mempool->devh = devh;
1719 mempool->memblock_size = memblock_size;
1720 mempool->items_max = items_max;
1721 mempool->items_initial = items_initial;
1722 mempool->item_size = item_size;
1723 mempool->items_priv_size = items_priv_size;
1724 mempool->item_func_alloc = mp_callback->item_func_alloc;
1725 mempool->userdata = userdata;
1727 mempool->memblocks_allocated = 0;
1729 mempool->items_per_memblock = memblock_size / item_size;
1731 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
1732 mempool->items_per_memblock;
1734 /* allocate array of memblocks */
1735 mempool->memblocks_arr =
1736 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1737 if (mempool->memblocks_arr == NULL) {
1738 __vxge_hw_mempool_destroy(mempool);
1739 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1740 mempool = NULL;
1741 goto exit;
1743 memset(mempool->memblocks_arr, 0,
1744 sizeof(void *) * mempool->memblocks_max);
1746 /* allocate array of private parts of items per memblocks */
1747 mempool->memblocks_priv_arr =
1748 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1749 if (mempool->memblocks_priv_arr == NULL) {
1750 __vxge_hw_mempool_destroy(mempool);
1751 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1752 mempool = NULL;
1753 goto exit;
1755 memset(mempool->memblocks_priv_arr, 0,
1756 sizeof(void *) * mempool->memblocks_max);
1758 /* allocate array of memblocks DMA objects */
1759 mempool->memblocks_dma_arr = (struct vxge_hw_mempool_dma *)
1760 vmalloc(sizeof(struct vxge_hw_mempool_dma) *
1761 mempool->memblocks_max);
1763 if (mempool->memblocks_dma_arr == NULL) {
1764 __vxge_hw_mempool_destroy(mempool);
1765 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1766 mempool = NULL;
1767 goto exit;
1769 memset(mempool->memblocks_dma_arr, 0,
1770 sizeof(struct vxge_hw_mempool_dma) *
1771 mempool->memblocks_max);
1773 /* allocate hash array of items */
1774 mempool->items_arr =
1775 (void **) vmalloc(sizeof(void *) * mempool->items_max);
1776 if (mempool->items_arr == NULL) {
1777 __vxge_hw_mempool_destroy(mempool);
1778 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1779 mempool = NULL;
1780 goto exit;
1782 memset(mempool->items_arr, 0, sizeof(void *) * mempool->items_max);
1784 /* calculate initial number of memblocks */
1785 memblocks_to_allocate = (mempool->items_initial +
1786 mempool->items_per_memblock - 1) /
1787 mempool->items_per_memblock;
1789 /* pre-allocate the mempool */
1790 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
1791 &allocated);
1792 if (status != VXGE_HW_OK) {
1793 __vxge_hw_mempool_destroy(mempool);
1794 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1795 mempool = NULL;
1796 goto exit;
1799 exit:
1800 return mempool;
1804 * vxge_hw_mempool_destroy
1806 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
1808 u32 i, j;
1809 struct __vxge_hw_device *devh = mempool->devh;
1811 for (i = 0; i < mempool->memblocks_allocated; i++) {
1812 struct vxge_hw_mempool_dma *dma_object;
1814 vxge_assert(mempool->memblocks_arr[i]);
1815 vxge_assert(mempool->memblocks_dma_arr + i);
1817 dma_object = mempool->memblocks_dma_arr + i;
1819 for (j = 0; j < mempool->items_per_memblock; j++) {
1820 u32 index = i * mempool->items_per_memblock + j;
1822 /* to skip last partially filled(if any) memblock */
1823 if (index >= mempool->items_current)
1824 break;
1827 vfree(mempool->memblocks_priv_arr[i]);
1829 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
1830 mempool->memblock_size, dma_object);
1833 vfree(mempool->items_arr);
1835 vfree(mempool->memblocks_dma_arr);
1837 vfree(mempool->memblocks_priv_arr);
1839 vfree(mempool->memblocks_arr);
1841 vfree(mempool);
1845 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1846 * Check the fifo configuration
1848 enum vxge_hw_status
1849 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1851 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1852 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1853 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1855 return VXGE_HW_OK;
1859 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1860 * Check the vpath configuration
1862 static enum vxge_hw_status
1863 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1865 enum vxge_hw_status status;
1867 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1868 (vp_config->min_bandwidth >
1869 VXGE_HW_VPATH_BANDWIDTH_MAX))
1870 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1872 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1873 if (status != VXGE_HW_OK)
1874 return status;
1876 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1877 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1878 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1879 return VXGE_HW_BADCFG_VPATH_MTU;
1881 if ((vp_config->rpa_strip_vlan_tag !=
1882 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1883 (vp_config->rpa_strip_vlan_tag !=
1884 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1885 (vp_config->rpa_strip_vlan_tag !=
1886 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1887 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1889 return VXGE_HW_OK;
1893 * __vxge_hw_device_config_check - Check device configuration.
1894 * Check the device configuration
1896 enum vxge_hw_status
1897 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1899 u32 i;
1900 enum vxge_hw_status status;
1902 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1903 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1904 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1905 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1906 return VXGE_HW_BADCFG_INTR_MODE;
1908 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1909 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1910 return VXGE_HW_BADCFG_RTS_MAC_EN;
1912 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1913 status = __vxge_hw_device_vpath_config_check(
1914 &new_config->vp_config[i]);
1915 if (status != VXGE_HW_OK)
1916 return status;
1919 return VXGE_HW_OK;
1923 * vxge_hw_device_config_default_get - Initialize device config with defaults.
1924 * Initialize Titan device config with default values.
1926 enum vxge_hw_status __devinit
1927 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
1929 u32 i;
1931 device_config->dma_blockpool_initial =
1932 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
1933 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
1934 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
1935 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
1936 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
1937 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
1938 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
1940 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1942 device_config->vp_config[i].vp_id = i;
1944 device_config->vp_config[i].min_bandwidth =
1945 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
1947 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
1949 device_config->vp_config[i].ring.ring_blocks =
1950 VXGE_HW_DEF_RING_BLOCKS;
1952 device_config->vp_config[i].ring.buffer_mode =
1953 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
1955 device_config->vp_config[i].ring.scatter_mode =
1956 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
1958 device_config->vp_config[i].ring.rxds_limit =
1959 VXGE_HW_DEF_RING_RXDS_LIMIT;
1961 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
1963 device_config->vp_config[i].fifo.fifo_blocks =
1964 VXGE_HW_MIN_FIFO_BLOCKS;
1966 device_config->vp_config[i].fifo.max_frags =
1967 VXGE_HW_MAX_FIFO_FRAGS;
1969 device_config->vp_config[i].fifo.memblock_size =
1970 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
1972 device_config->vp_config[i].fifo.alignment_size =
1973 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
1975 device_config->vp_config[i].fifo.intr =
1976 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
1978 device_config->vp_config[i].fifo.no_snoop_bits =
1979 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
1980 device_config->vp_config[i].tti.intr_enable =
1981 VXGE_HW_TIM_INTR_DEFAULT;
1983 device_config->vp_config[i].tti.btimer_val =
1984 VXGE_HW_USE_FLASH_DEFAULT;
1986 device_config->vp_config[i].tti.timer_ac_en =
1987 VXGE_HW_USE_FLASH_DEFAULT;
1989 device_config->vp_config[i].tti.timer_ci_en =
1990 VXGE_HW_USE_FLASH_DEFAULT;
1992 device_config->vp_config[i].tti.timer_ri_en =
1993 VXGE_HW_USE_FLASH_DEFAULT;
1995 device_config->vp_config[i].tti.rtimer_val =
1996 VXGE_HW_USE_FLASH_DEFAULT;
1998 device_config->vp_config[i].tti.util_sel =
1999 VXGE_HW_USE_FLASH_DEFAULT;
2001 device_config->vp_config[i].tti.ltimer_val =
2002 VXGE_HW_USE_FLASH_DEFAULT;
2004 device_config->vp_config[i].tti.urange_a =
2005 VXGE_HW_USE_FLASH_DEFAULT;
2007 device_config->vp_config[i].tti.uec_a =
2008 VXGE_HW_USE_FLASH_DEFAULT;
2010 device_config->vp_config[i].tti.urange_b =
2011 VXGE_HW_USE_FLASH_DEFAULT;
2013 device_config->vp_config[i].tti.uec_b =
2014 VXGE_HW_USE_FLASH_DEFAULT;
2016 device_config->vp_config[i].tti.urange_c =
2017 VXGE_HW_USE_FLASH_DEFAULT;
2019 device_config->vp_config[i].tti.uec_c =
2020 VXGE_HW_USE_FLASH_DEFAULT;
2022 device_config->vp_config[i].tti.uec_d =
2023 VXGE_HW_USE_FLASH_DEFAULT;
2025 device_config->vp_config[i].rti.intr_enable =
2026 VXGE_HW_TIM_INTR_DEFAULT;
2028 device_config->vp_config[i].rti.btimer_val =
2029 VXGE_HW_USE_FLASH_DEFAULT;
2031 device_config->vp_config[i].rti.timer_ac_en =
2032 VXGE_HW_USE_FLASH_DEFAULT;
2034 device_config->vp_config[i].rti.timer_ci_en =
2035 VXGE_HW_USE_FLASH_DEFAULT;
2037 device_config->vp_config[i].rti.timer_ri_en =
2038 VXGE_HW_USE_FLASH_DEFAULT;
2040 device_config->vp_config[i].rti.rtimer_val =
2041 VXGE_HW_USE_FLASH_DEFAULT;
2043 device_config->vp_config[i].rti.util_sel =
2044 VXGE_HW_USE_FLASH_DEFAULT;
2046 device_config->vp_config[i].rti.ltimer_val =
2047 VXGE_HW_USE_FLASH_DEFAULT;
2049 device_config->vp_config[i].rti.urange_a =
2050 VXGE_HW_USE_FLASH_DEFAULT;
2052 device_config->vp_config[i].rti.uec_a =
2053 VXGE_HW_USE_FLASH_DEFAULT;
2055 device_config->vp_config[i].rti.urange_b =
2056 VXGE_HW_USE_FLASH_DEFAULT;
2058 device_config->vp_config[i].rti.uec_b =
2059 VXGE_HW_USE_FLASH_DEFAULT;
2061 device_config->vp_config[i].rti.urange_c =
2062 VXGE_HW_USE_FLASH_DEFAULT;
2064 device_config->vp_config[i].rti.uec_c =
2065 VXGE_HW_USE_FLASH_DEFAULT;
2067 device_config->vp_config[i].rti.uec_d =
2068 VXGE_HW_USE_FLASH_DEFAULT;
2070 device_config->vp_config[i].mtu =
2071 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
2073 device_config->vp_config[i].rpa_strip_vlan_tag =
2074 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
2077 return VXGE_HW_OK;
2081 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
2082 * Set the swapper bits appropriately for the lagacy section.
2084 static enum vxge_hw_status
2085 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
2087 u64 val64;
2088 enum vxge_hw_status status = VXGE_HW_OK;
2090 val64 = readq(&legacy_reg->toc_swapper_fb);
2092 wmb();
2094 switch (val64) {
2096 case VXGE_HW_SWAPPER_INITIAL_VALUE:
2097 return status;
2099 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
2100 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
2101 &legacy_reg->pifm_rd_swap_en);
2102 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
2103 &legacy_reg->pifm_rd_flip_en);
2104 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
2105 &legacy_reg->pifm_wr_swap_en);
2106 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
2107 &legacy_reg->pifm_wr_flip_en);
2108 break;
2110 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
2111 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
2112 &legacy_reg->pifm_rd_swap_en);
2113 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
2114 &legacy_reg->pifm_wr_swap_en);
2115 break;
2117 case VXGE_HW_SWAPPER_BIT_FLIPPED:
2118 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
2119 &legacy_reg->pifm_rd_flip_en);
2120 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
2121 &legacy_reg->pifm_wr_flip_en);
2122 break;
2125 wmb();
2127 val64 = readq(&legacy_reg->toc_swapper_fb);
2129 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
2130 status = VXGE_HW_ERR_SWAPPER_CTRL;
2132 return status;
2136 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
2137 * Set the swapper bits appropriately for the vpath.
2139 static enum vxge_hw_status
2140 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
2142 #ifndef __BIG_ENDIAN
2143 u64 val64;
2145 val64 = readq(&vpath_reg->vpath_general_cfg1);
2146 wmb();
2147 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
2148 writeq(val64, &vpath_reg->vpath_general_cfg1);
2149 wmb();
2150 #endif
2151 return VXGE_HW_OK;
2155 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
2156 * Set the swapper bits appropriately for the vpath.
2158 static enum vxge_hw_status
2159 __vxge_hw_kdfc_swapper_set(
2160 struct vxge_hw_legacy_reg __iomem *legacy_reg,
2161 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2163 u64 val64;
2165 val64 = readq(&legacy_reg->pifm_wr_swap_en);
2167 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
2168 val64 = readq(&vpath_reg->kdfcctl_cfg0);
2169 wmb();
2171 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
2172 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
2173 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
2175 writeq(val64, &vpath_reg->kdfcctl_cfg0);
2176 wmb();
2179 return VXGE_HW_OK;
2183 * vxge_hw_mgmt_reg_read - Read Titan register.
2185 enum vxge_hw_status
2186 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
2187 enum vxge_hw_mgmt_reg_type type,
2188 u32 index, u32 offset, u64 *value)
2190 enum vxge_hw_status status = VXGE_HW_OK;
2192 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2193 status = VXGE_HW_ERR_INVALID_DEVICE;
2194 goto exit;
2197 switch (type) {
2198 case vxge_hw_mgmt_reg_type_legacy:
2199 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2200 status = VXGE_HW_ERR_INVALID_OFFSET;
2201 break;
2203 *value = readq((void __iomem *)hldev->legacy_reg + offset);
2204 break;
2205 case vxge_hw_mgmt_reg_type_toc:
2206 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2207 status = VXGE_HW_ERR_INVALID_OFFSET;
2208 break;
2210 *value = readq((void __iomem *)hldev->toc_reg + offset);
2211 break;
2212 case vxge_hw_mgmt_reg_type_common:
2213 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2214 status = VXGE_HW_ERR_INVALID_OFFSET;
2215 break;
2217 *value = readq((void __iomem *)hldev->common_reg + offset);
2218 break;
2219 case vxge_hw_mgmt_reg_type_mrpcim:
2220 if (!(hldev->access_rights &
2221 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2222 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2223 break;
2225 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2226 status = VXGE_HW_ERR_INVALID_OFFSET;
2227 break;
2229 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
2230 break;
2231 case vxge_hw_mgmt_reg_type_srpcim:
2232 if (!(hldev->access_rights &
2233 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2234 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2235 break;
2237 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2238 status = VXGE_HW_ERR_INVALID_INDEX;
2239 break;
2241 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2242 status = VXGE_HW_ERR_INVALID_OFFSET;
2243 break;
2245 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
2246 offset);
2247 break;
2248 case vxge_hw_mgmt_reg_type_vpmgmt:
2249 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2250 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2251 status = VXGE_HW_ERR_INVALID_INDEX;
2252 break;
2254 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2255 status = VXGE_HW_ERR_INVALID_OFFSET;
2256 break;
2258 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
2259 offset);
2260 break;
2261 case vxge_hw_mgmt_reg_type_vpath:
2262 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
2263 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2264 status = VXGE_HW_ERR_INVALID_INDEX;
2265 break;
2267 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
2268 status = VXGE_HW_ERR_INVALID_INDEX;
2269 break;
2271 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2272 status = VXGE_HW_ERR_INVALID_OFFSET;
2273 break;
2275 *value = readq((void __iomem *)hldev->vpath_reg[index] +
2276 offset);
2277 break;
2278 default:
2279 status = VXGE_HW_ERR_INVALID_TYPE;
2280 break;
2283 exit:
2284 return status;
2288 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
2290 enum vxge_hw_status
2291 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
2293 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
2294 enum vxge_hw_status status = VXGE_HW_OK;
2295 int i = 0, j = 0;
2297 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2298 if (!((vpath_mask) & vxge_mBIT(i)))
2299 continue;
2300 vpmgmt_reg = hldev->vpmgmt_reg[i];
2301 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
2302 if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
2303 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
2304 return VXGE_HW_FAIL;
2307 return status;
2310 * vxge_hw_mgmt_reg_Write - Write Titan register.
2312 enum vxge_hw_status
2313 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
2314 enum vxge_hw_mgmt_reg_type type,
2315 u32 index, u32 offset, u64 value)
2317 enum vxge_hw_status status = VXGE_HW_OK;
2319 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2320 status = VXGE_HW_ERR_INVALID_DEVICE;
2321 goto exit;
2324 switch (type) {
2325 case vxge_hw_mgmt_reg_type_legacy:
2326 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2327 status = VXGE_HW_ERR_INVALID_OFFSET;
2328 break;
2330 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
2331 break;
2332 case vxge_hw_mgmt_reg_type_toc:
2333 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2334 status = VXGE_HW_ERR_INVALID_OFFSET;
2335 break;
2337 writeq(value, (void __iomem *)hldev->toc_reg + offset);
2338 break;
2339 case vxge_hw_mgmt_reg_type_common:
2340 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2341 status = VXGE_HW_ERR_INVALID_OFFSET;
2342 break;
2344 writeq(value, (void __iomem *)hldev->common_reg + offset);
2345 break;
2346 case vxge_hw_mgmt_reg_type_mrpcim:
2347 if (!(hldev->access_rights &
2348 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2349 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2350 break;
2352 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2353 status = VXGE_HW_ERR_INVALID_OFFSET;
2354 break;
2356 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
2357 break;
2358 case vxge_hw_mgmt_reg_type_srpcim:
2359 if (!(hldev->access_rights &
2360 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2361 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2362 break;
2364 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2365 status = VXGE_HW_ERR_INVALID_INDEX;
2366 break;
2368 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2369 status = VXGE_HW_ERR_INVALID_OFFSET;
2370 break;
2372 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
2373 offset);
2375 break;
2376 case vxge_hw_mgmt_reg_type_vpmgmt:
2377 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2378 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2379 status = VXGE_HW_ERR_INVALID_INDEX;
2380 break;
2382 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2383 status = VXGE_HW_ERR_INVALID_OFFSET;
2384 break;
2386 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
2387 offset);
2388 break;
2389 case vxge_hw_mgmt_reg_type_vpath:
2390 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
2391 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2392 status = VXGE_HW_ERR_INVALID_INDEX;
2393 break;
2395 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2396 status = VXGE_HW_ERR_INVALID_OFFSET;
2397 break;
2399 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
2400 offset);
2401 break;
2402 default:
2403 status = VXGE_HW_ERR_INVALID_TYPE;
2404 break;
2406 exit:
2407 return status;
2411 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
2412 * list callback
2413 * This function is callback passed to __vxge_hw_mempool_create to create memory
2414 * pool for TxD list
2416 static void
2417 __vxge_hw_fifo_mempool_item_alloc(
2418 struct vxge_hw_mempool *mempoolh,
2419 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
2420 u32 index, u32 is_last)
2422 u32 memblock_item_idx;
2423 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
2424 struct vxge_hw_fifo_txd *txdp =
2425 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
2426 struct __vxge_hw_fifo *fifo =
2427 (struct __vxge_hw_fifo *)mempoolh->userdata;
2428 void *memblock = mempoolh->memblocks_arr[memblock_index];
2430 vxge_assert(txdp);
2432 txdp->host_control = (u64) (size_t)
2433 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
2434 &memblock_item_idx);
2436 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
2438 vxge_assert(txdl_priv);
2440 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
2442 /* pre-format HW's TxDL's private */
2443 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
2444 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
2445 txdl_priv->dma_handle = dma_object->handle;
2446 txdl_priv->memblock = memblock;
2447 txdl_priv->first_txdp = txdp;
2448 txdl_priv->next_txdl_priv = NULL;
2449 txdl_priv->alloc_frags = 0;
2453 * __vxge_hw_fifo_create - Create a FIFO
2454 * This function creates FIFO and initializes it.
2456 enum vxge_hw_status
2457 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
2458 struct vxge_hw_fifo_attr *attr)
2460 enum vxge_hw_status status = VXGE_HW_OK;
2461 struct __vxge_hw_fifo *fifo;
2462 struct vxge_hw_fifo_config *config;
2463 u32 txdl_size, txdl_per_memblock;
2464 struct vxge_hw_mempool_cbs fifo_mp_callback;
2465 struct __vxge_hw_virtualpath *vpath;
2467 if ((vp == NULL) || (attr == NULL)) {
2468 status = VXGE_HW_ERR_INVALID_HANDLE;
2469 goto exit;
2471 vpath = vp->vpath;
2472 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
2474 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
2476 txdl_per_memblock = config->memblock_size / txdl_size;
2478 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
2479 VXGE_HW_CHANNEL_TYPE_FIFO,
2480 config->fifo_blocks * txdl_per_memblock,
2481 attr->per_txdl_space, attr->userdata);
2483 if (fifo == NULL) {
2484 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2485 goto exit;
2488 vpath->fifoh = fifo;
2489 fifo->nofl_db = vpath->nofl_db;
2491 fifo->vp_id = vpath->vp_id;
2492 fifo->vp_reg = vpath->vp_reg;
2493 fifo->stats = &vpath->sw_stats->fifo_stats;
2495 fifo->config = config;
2497 /* apply "interrupts per txdl" attribute */
2498 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
2500 if (fifo->config->intr)
2501 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
2503 fifo->no_snoop_bits = config->no_snoop_bits;
2506 * FIFO memory management strategy:
2508 * TxDL split into three independent parts:
2509 * - set of TxD's
2510 * - TxD HW private part
2511 * - driver private part
2513 * Adaptative memory allocation used. i.e. Memory allocated on
2514 * demand with the size which will fit into one memory block.
2515 * One memory block may contain more than one TxDL.
2517 * During "reserve" operations more memory can be allocated on demand
2518 * for example due to FIFO full condition.
2520 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
2521 * routine which will essentially stop the channel and free resources.
2524 /* TxDL common private size == TxDL private + driver private */
2525 fifo->priv_size =
2526 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
2527 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2528 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2530 fifo->per_txdl_space = attr->per_txdl_space;
2532 /* recompute txdl size to be cacheline aligned */
2533 fifo->txdl_size = txdl_size;
2534 fifo->txdl_per_memblock = txdl_per_memblock;
2536 fifo->txdl_term = attr->txdl_term;
2537 fifo->callback = attr->callback;
2539 if (fifo->txdl_per_memblock == 0) {
2540 __vxge_hw_fifo_delete(vp);
2541 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
2542 goto exit;
2545 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
2547 fifo->mempool =
2548 __vxge_hw_mempool_create(vpath->hldev,
2549 fifo->config->memblock_size,
2550 fifo->txdl_size,
2551 fifo->priv_size,
2552 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2553 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2554 &fifo_mp_callback,
2555 fifo);
2557 if (fifo->mempool == NULL) {
2558 __vxge_hw_fifo_delete(vp);
2559 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2560 goto exit;
2563 status = __vxge_hw_channel_initialize(&fifo->channel);
2564 if (status != VXGE_HW_OK) {
2565 __vxge_hw_fifo_delete(vp);
2566 goto exit;
2569 vxge_assert(fifo->channel.reserve_ptr);
2570 exit:
2571 return status;
2575 * __vxge_hw_fifo_abort - Returns the TxD
2576 * This function terminates the TxDs of fifo
2578 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
2580 void *txdlh;
2582 for (;;) {
2583 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
2585 if (txdlh == NULL)
2586 break;
2588 vxge_hw_channel_dtr_complete(&fifo->channel);
2590 if (fifo->txdl_term) {
2591 fifo->txdl_term(txdlh,
2592 VXGE_HW_TXDL_STATE_POSTED,
2593 fifo->channel.userdata);
2596 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
2599 return VXGE_HW_OK;
2603 * __vxge_hw_fifo_reset - Resets the fifo
2604 * This function resets the fifo during vpath reset operation
2606 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
2608 enum vxge_hw_status status = VXGE_HW_OK;
2610 __vxge_hw_fifo_abort(fifo);
2611 status = __vxge_hw_channel_reset(&fifo->channel);
2613 return status;
2617 * __vxge_hw_fifo_delete - Removes the FIFO
2618 * This function freeup the memory pool and removes the FIFO
2620 enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
2622 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
2624 __vxge_hw_fifo_abort(fifo);
2626 if (fifo->mempool)
2627 __vxge_hw_mempool_destroy(fifo->mempool);
2629 vp->vpath->fifoh = NULL;
2631 __vxge_hw_channel_free(&fifo->channel);
2633 return VXGE_HW_OK;
2637 * __vxge_hw_vpath_pci_read - Read the content of given address
2638 * in pci config space.
2639 * Read from the vpath pci config space.
2641 static enum vxge_hw_status
2642 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
2643 u32 phy_func_0, u32 offset, u32 *val)
2645 u64 val64;
2646 enum vxge_hw_status status = VXGE_HW_OK;
2647 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2649 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
2651 if (phy_func_0)
2652 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
2654 writeq(val64, &vp_reg->pci_config_access_cfg1);
2655 wmb();
2656 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
2657 &vp_reg->pci_config_access_cfg2);
2658 wmb();
2660 status = __vxge_hw_device_register_poll(
2661 &vp_reg->pci_config_access_cfg2,
2662 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2664 if (status != VXGE_HW_OK)
2665 goto exit;
2667 val64 = readq(&vp_reg->pci_config_access_status);
2669 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
2670 status = VXGE_HW_FAIL;
2671 *val = 0;
2672 } else
2673 *val = (u32)vxge_bVALn(val64, 32, 32);
2674 exit:
2675 return status;
2679 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
2680 * Returns the function number of the vpath.
2682 static u32
2683 __vxge_hw_vpath_func_id_get(u32 vp_id,
2684 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
2686 u64 val64;
2688 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
2690 return
2691 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
2695 * __vxge_hw_read_rts_ds - Program RTS steering critieria
2697 static inline void
2698 __vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg,
2699 u64 dta_struct_sel)
2701 writeq(0, &vpath_reg->rts_access_steer_ctrl);
2702 wmb();
2703 writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0);
2704 writeq(0, &vpath_reg->rts_access_steer_data1);
2705 wmb();
2710 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
2711 * part number and product description.
2713 static enum vxge_hw_status
2714 __vxge_hw_vpath_card_info_get(
2715 u32 vp_id,
2716 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2717 struct vxge_hw_device_hw_info *hw_info)
2719 u32 i, j;
2720 u64 val64;
2721 u64 data1 = 0ULL;
2722 u64 data2 = 0ULL;
2723 enum vxge_hw_status status = VXGE_HW_OK;
2724 u8 *serial_number = hw_info->serial_number;
2725 u8 *part_number = hw_info->part_number;
2726 u8 *product_desc = hw_info->product_desc;
2728 __vxge_hw_read_rts_ds(vpath_reg,
2729 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER);
2731 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2732 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2733 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2734 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2735 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2736 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2738 status = __vxge_hw_pio_mem_write64(val64,
2739 &vpath_reg->rts_access_steer_ctrl,
2740 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2741 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2743 if (status != VXGE_HW_OK)
2744 return status;
2746 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2748 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2749 data1 = readq(&vpath_reg->rts_access_steer_data0);
2750 ((u64 *)serial_number)[0] = be64_to_cpu(data1);
2752 data2 = readq(&vpath_reg->rts_access_steer_data1);
2753 ((u64 *)serial_number)[1] = be64_to_cpu(data2);
2754 status = VXGE_HW_OK;
2755 } else
2756 *serial_number = 0;
2758 __vxge_hw_read_rts_ds(vpath_reg,
2759 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER);
2761 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2762 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2763 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2764 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2765 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2766 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2768 status = __vxge_hw_pio_mem_write64(val64,
2769 &vpath_reg->rts_access_steer_ctrl,
2770 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2771 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2773 if (status != VXGE_HW_OK)
2774 return status;
2776 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2778 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2780 data1 = readq(&vpath_reg->rts_access_steer_data0);
2781 ((u64 *)part_number)[0] = be64_to_cpu(data1);
2783 data2 = readq(&vpath_reg->rts_access_steer_data1);
2784 ((u64 *)part_number)[1] = be64_to_cpu(data2);
2786 status = VXGE_HW_OK;
2788 } else
2789 *part_number = 0;
2791 j = 0;
2793 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
2794 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
2796 __vxge_hw_read_rts_ds(vpath_reg, i);
2798 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2799 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2800 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2801 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2802 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2803 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2805 status = __vxge_hw_pio_mem_write64(val64,
2806 &vpath_reg->rts_access_steer_ctrl,
2807 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2808 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2810 if (status != VXGE_HW_OK)
2811 return status;
2813 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2815 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2817 data1 = readq(&vpath_reg->rts_access_steer_data0);
2818 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
2820 data2 = readq(&vpath_reg->rts_access_steer_data1);
2821 ((u64 *)product_desc)[j++] = be64_to_cpu(data2);
2823 status = VXGE_HW_OK;
2824 } else
2825 *product_desc = 0;
2828 return status;
2832 * __vxge_hw_vpath_fw_ver_get - Get the fw version
2833 * Returns FW Version
2835 static enum vxge_hw_status
2836 __vxge_hw_vpath_fw_ver_get(
2837 u32 vp_id,
2838 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2839 struct vxge_hw_device_hw_info *hw_info)
2841 u64 val64;
2842 u64 data1 = 0ULL;
2843 u64 data2 = 0ULL;
2844 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
2845 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
2846 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
2847 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
2848 enum vxge_hw_status status = VXGE_HW_OK;
2850 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2851 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) |
2852 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2853 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2854 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2855 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2857 status = __vxge_hw_pio_mem_write64(val64,
2858 &vpath_reg->rts_access_steer_ctrl,
2859 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2860 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2862 if (status != VXGE_HW_OK)
2863 goto exit;
2865 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2867 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2869 data1 = readq(&vpath_reg->rts_access_steer_data0);
2870 data2 = readq(&vpath_reg->rts_access_steer_data1);
2872 fw_date->day =
2873 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(
2874 data1);
2875 fw_date->month =
2876 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(
2877 data1);
2878 fw_date->year =
2879 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(
2880 data1);
2882 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
2883 fw_date->month, fw_date->day, fw_date->year);
2885 fw_version->major =
2886 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1);
2887 fw_version->minor =
2888 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1);
2889 fw_version->build =
2890 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1);
2892 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2893 fw_version->major, fw_version->minor, fw_version->build);
2895 flash_date->day =
2896 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2);
2897 flash_date->month =
2898 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2);
2899 flash_date->year =
2900 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2);
2902 snprintf(flash_date->date, VXGE_HW_FW_STRLEN,
2903 "%2.2d/%2.2d/%4.4d",
2904 flash_date->month, flash_date->day, flash_date->year);
2906 flash_version->major =
2907 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2);
2908 flash_version->minor =
2909 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2);
2910 flash_version->build =
2911 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2);
2913 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2914 flash_version->major, flash_version->minor,
2915 flash_version->build);
2917 status = VXGE_HW_OK;
2919 } else
2920 status = VXGE_HW_FAIL;
2921 exit:
2922 return status;
2926 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
2927 * Returns pci function mode
2929 static u64
2930 __vxge_hw_vpath_pci_func_mode_get(
2931 u32 vp_id,
2932 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2934 u64 val64;
2935 u64 data1 = 0ULL;
2936 enum vxge_hw_status status = VXGE_HW_OK;
2938 __vxge_hw_read_rts_ds(vpath_reg,
2939 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PCI_MODE);
2941 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2942 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2943 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2944 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2945 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2946 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2948 status = __vxge_hw_pio_mem_write64(val64,
2949 &vpath_reg->rts_access_steer_ctrl,
2950 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2951 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2953 if (status != VXGE_HW_OK)
2954 goto exit;
2956 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2958 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2959 data1 = readq(&vpath_reg->rts_access_steer_data0);
2960 status = VXGE_HW_OK;
2961 } else {
2962 data1 = 0;
2963 status = VXGE_HW_FAIL;
2965 exit:
2966 return data1;
2970 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
2971 * @hldev: HW device.
2972 * @on_off: TRUE if flickering to be on, FALSE to be off
2974 * Flicker the link LED.
2976 enum vxge_hw_status
2977 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev,
2978 u64 on_off)
2980 u64 val64;
2981 enum vxge_hw_status status = VXGE_HW_OK;
2982 struct vxge_hw_vpath_reg __iomem *vp_reg;
2984 if (hldev == NULL) {
2985 status = VXGE_HW_ERR_INVALID_DEVICE;
2986 goto exit;
2989 vp_reg = hldev->vpath_reg[hldev->first_vp_id];
2991 writeq(0, &vp_reg->rts_access_steer_ctrl);
2992 wmb();
2993 writeq(on_off, &vp_reg->rts_access_steer_data0);
2994 writeq(0, &vp_reg->rts_access_steer_data1);
2995 wmb();
2997 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2998 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL) |
2999 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3000 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
3001 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3002 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3004 status = __vxge_hw_pio_mem_write64(val64,
3005 &vp_reg->rts_access_steer_ctrl,
3006 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3007 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3008 exit:
3009 return status;
3013 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3015 enum vxge_hw_status
3016 __vxge_hw_vpath_rts_table_get(
3017 struct __vxge_hw_vpath_handle *vp,
3018 u32 action, u32 rts_table, u32 offset, u64 *data1, u64 *data2)
3020 u64 val64;
3021 struct __vxge_hw_virtualpath *vpath;
3022 struct vxge_hw_vpath_reg __iomem *vp_reg;
3024 enum vxge_hw_status status = VXGE_HW_OK;
3026 if (vp == NULL) {
3027 status = VXGE_HW_ERR_INVALID_HANDLE;
3028 goto exit;
3031 vpath = vp->vpath;
3032 vp_reg = vpath->vp_reg;
3034 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
3035 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
3036 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3037 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
3039 if ((rts_table ==
3040 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3041 (rts_table ==
3042 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3043 (rts_table ==
3044 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3045 (rts_table ==
3046 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3047 val64 = val64 | VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3050 status = __vxge_hw_pio_mem_write64(val64,
3051 &vp_reg->rts_access_steer_ctrl,
3052 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3053 vpath->hldev->config.device_poll_millis);
3055 if (status != VXGE_HW_OK)
3056 goto exit;
3058 val64 = readq(&vp_reg->rts_access_steer_ctrl);
3060 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3062 *data1 = readq(&vp_reg->rts_access_steer_data0);
3064 if ((rts_table ==
3065 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3066 (rts_table ==
3067 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
3068 *data2 = readq(&vp_reg->rts_access_steer_data1);
3070 status = VXGE_HW_OK;
3071 } else
3072 status = VXGE_HW_FAIL;
3073 exit:
3074 return status;
3078 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3080 enum vxge_hw_status
3081 __vxge_hw_vpath_rts_table_set(
3082 struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table,
3083 u32 offset, u64 data1, u64 data2)
3085 u64 val64;
3086 struct __vxge_hw_virtualpath *vpath;
3087 enum vxge_hw_status status = VXGE_HW_OK;
3088 struct vxge_hw_vpath_reg __iomem *vp_reg;
3090 if (vp == NULL) {
3091 status = VXGE_HW_ERR_INVALID_HANDLE;
3092 goto exit;
3095 vpath = vp->vpath;
3096 vp_reg = vpath->vp_reg;
3098 writeq(data1, &vp_reg->rts_access_steer_data0);
3099 wmb();
3101 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3102 (rts_table ==
3103 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
3104 writeq(data2, &vp_reg->rts_access_steer_data1);
3105 wmb();
3108 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
3109 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
3110 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3111 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
3113 status = __vxge_hw_pio_mem_write64(val64,
3114 &vp_reg->rts_access_steer_ctrl,
3115 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3116 vpath->hldev->config.device_poll_millis);
3118 if (status != VXGE_HW_OK)
3119 goto exit;
3121 val64 = readq(&vp_reg->rts_access_steer_ctrl);
3123 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS)
3124 status = VXGE_HW_OK;
3125 else
3126 status = VXGE_HW_FAIL;
3127 exit:
3128 return status;
3132 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
3133 * from MAC address table.
3135 static enum vxge_hw_status
3136 __vxge_hw_vpath_addr_get(
3137 u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
3138 u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN])
3140 u32 i;
3141 u64 val64;
3142 u64 data1 = 0ULL;
3143 u64 data2 = 0ULL;
3144 enum vxge_hw_status status = VXGE_HW_OK;
3146 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3147 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY) |
3148 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3149 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) |
3150 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3151 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3153 status = __vxge_hw_pio_mem_write64(val64,
3154 &vpath_reg->rts_access_steer_ctrl,
3155 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3156 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3158 if (status != VXGE_HW_OK)
3159 goto exit;
3161 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
3163 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3165 data1 = readq(&vpath_reg->rts_access_steer_data0);
3166 data2 = readq(&vpath_reg->rts_access_steer_data1);
3168 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
3169 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
3170 data2);
3172 for (i = ETH_ALEN; i > 0; i--) {
3173 macaddr[i-1] = (u8)(data1 & 0xFF);
3174 data1 >>= 8;
3176 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
3177 data2 >>= 8;
3179 status = VXGE_HW_OK;
3180 } else
3181 status = VXGE_HW_FAIL;
3182 exit:
3183 return status;
3187 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3189 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3190 struct __vxge_hw_vpath_handle *vp,
3191 enum vxge_hw_rth_algoritms algorithm,
3192 struct vxge_hw_rth_hash_types *hash_type,
3193 u16 bucket_size)
3195 u64 data0, data1;
3196 enum vxge_hw_status status = VXGE_HW_OK;
3198 if (vp == NULL) {
3199 status = VXGE_HW_ERR_INVALID_HANDLE;
3200 goto exit;
3203 status = __vxge_hw_vpath_rts_table_get(vp,
3204 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3205 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3206 0, &data0, &data1);
3208 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3209 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3211 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3212 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3213 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3215 if (hash_type->hash_type_tcpipv4_en)
3216 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3218 if (hash_type->hash_type_ipv4_en)
3219 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3221 if (hash_type->hash_type_tcpipv6_en)
3222 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3224 if (hash_type->hash_type_ipv6_en)
3225 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3227 if (hash_type->hash_type_tcpipv6ex_en)
3228 data0 |=
3229 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3231 if (hash_type->hash_type_ipv6ex_en)
3232 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3234 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3235 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3236 else
3237 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3239 status = __vxge_hw_vpath_rts_table_set(vp,
3240 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3241 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3242 0, data0, 0);
3243 exit:
3244 return status;
3247 static void
3248 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3249 u16 flag, u8 *itable)
3251 switch (flag) {
3252 case 1:
3253 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3254 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3255 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3256 itable[j]);
3257 case 2:
3258 *data0 |=
3259 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3260 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3261 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3262 itable[j]);
3263 case 3:
3264 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3265 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3266 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3267 itable[j]);
3268 case 4:
3269 *data1 |=
3270 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3271 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3272 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3273 itable[j]);
3274 default:
3275 return;
3279 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3281 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3282 struct __vxge_hw_vpath_handle **vpath_handles,
3283 u32 vpath_count,
3284 u8 *mtable,
3285 u8 *itable,
3286 u32 itable_size)
3288 u32 i, j, action, rts_table;
3289 u64 data0;
3290 u64 data1;
3291 u32 max_entries;
3292 enum vxge_hw_status status = VXGE_HW_OK;
3293 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3295 if (vp == NULL) {
3296 status = VXGE_HW_ERR_INVALID_HANDLE;
3297 goto exit;
3300 max_entries = (((u32)1) << itable_size);
3302 if (vp->vpath->hldev->config.rth_it_type
3303 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3304 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3305 rts_table =
3306 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3308 for (j = 0; j < max_entries; j++) {
3310 data1 = 0;
3312 data0 =
3313 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3314 itable[j]);
3316 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3317 action, rts_table, j, data0, data1);
3319 if (status != VXGE_HW_OK)
3320 goto exit;
3323 for (j = 0; j < max_entries; j++) {
3325 data1 = 0;
3327 data0 =
3328 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3329 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3330 itable[j]);
3332 status = __vxge_hw_vpath_rts_table_set(
3333 vpath_handles[mtable[itable[j]]], action,
3334 rts_table, j, data0, data1);
3336 if (status != VXGE_HW_OK)
3337 goto exit;
3339 } else {
3340 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3341 rts_table =
3342 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3343 for (i = 0; i < vpath_count; i++) {
3345 for (j = 0; j < max_entries;) {
3347 data0 = 0;
3348 data1 = 0;
3350 while (j < max_entries) {
3351 if (mtable[itable[j]] != i) {
3352 j++;
3353 continue;
3355 vxge_hw_rts_rth_data0_data1_get(j,
3356 &data0, &data1, 1, itable);
3357 j++;
3358 break;
3361 while (j < max_entries) {
3362 if (mtable[itable[j]] != i) {
3363 j++;
3364 continue;
3366 vxge_hw_rts_rth_data0_data1_get(j,
3367 &data0, &data1, 2, itable);
3368 j++;
3369 break;
3372 while (j < max_entries) {
3373 if (mtable[itable[j]] != i) {
3374 j++;
3375 continue;
3377 vxge_hw_rts_rth_data0_data1_get(j,
3378 &data0, &data1, 3, itable);
3379 j++;
3380 break;
3383 while (j < max_entries) {
3384 if (mtable[itable[j]] != i) {
3385 j++;
3386 continue;
3388 vxge_hw_rts_rth_data0_data1_get(j,
3389 &data0, &data1, 4, itable);
3390 j++;
3391 break;
3394 if (data0 != 0) {
3395 status = __vxge_hw_vpath_rts_table_set(
3396 vpath_handles[i],
3397 action, rts_table,
3398 0, data0, data1);
3400 if (status != VXGE_HW_OK)
3401 goto exit;
3406 exit:
3407 return status;
3411 * vxge_hw_vpath_check_leak - Check for memory leak
3412 * @ringh: Handle to the ring object used for receive
3414 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3415 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3416 * Returns: VXGE_HW_FAIL, if leak has occurred.
3419 enum vxge_hw_status
3420 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3422 enum vxge_hw_status status = VXGE_HW_OK;
3423 u64 rxd_new_count, rxd_spat;
3425 if (ring == NULL)
3426 return status;
3428 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3429 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3430 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3432 if (rxd_new_count >= rxd_spat)
3433 status = VXGE_HW_FAIL;
3435 return status;
3439 * __vxge_hw_vpath_mgmt_read
3440 * This routine reads the vpath_mgmt registers
3442 static enum vxge_hw_status
3443 __vxge_hw_vpath_mgmt_read(
3444 struct __vxge_hw_device *hldev,
3445 struct __vxge_hw_virtualpath *vpath)
3447 u32 i, mtu = 0, max_pyld = 0;
3448 u64 val64;
3449 enum vxge_hw_status status = VXGE_HW_OK;
3451 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3453 val64 = readq(&vpath->vpmgmt_reg->
3454 rxmac_cfg0_port_vpmgmt_clone[i]);
3455 max_pyld =
3456 (u32)
3457 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3458 (val64);
3459 if (mtu < max_pyld)
3460 mtu = max_pyld;
3463 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3465 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3467 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3468 if (val64 & vxge_mBIT(i))
3469 vpath->vsport_number = i;
3472 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3474 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3475 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3476 else
3477 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3479 return status;
3483 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
3484 * This routine checks the vpath_rst_in_prog register to see if
3485 * adapter completed the reset process for the vpath
3487 static enum vxge_hw_status
3488 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
3490 enum vxge_hw_status status;
3492 status = __vxge_hw_device_register_poll(
3493 &vpath->hldev->common_reg->vpath_rst_in_prog,
3494 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
3495 1 << (16 - vpath->vp_id)),
3496 vpath->hldev->config.device_poll_millis);
3498 return status;
3502 * __vxge_hw_vpath_reset
3503 * This routine resets the vpath on the device
3505 static enum vxge_hw_status
3506 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3508 u64 val64;
3509 enum vxge_hw_status status = VXGE_HW_OK;
3511 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
3513 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
3514 &hldev->common_reg->cmn_rsthdlr_cfg0);
3516 return status;
3520 * __vxge_hw_vpath_sw_reset
3521 * This routine resets the vpath structures
3523 static enum vxge_hw_status
3524 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3526 enum vxge_hw_status status = VXGE_HW_OK;
3527 struct __vxge_hw_virtualpath *vpath;
3529 vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
3531 if (vpath->ringh) {
3532 status = __vxge_hw_ring_reset(vpath->ringh);
3533 if (status != VXGE_HW_OK)
3534 goto exit;
3537 if (vpath->fifoh)
3538 status = __vxge_hw_fifo_reset(vpath->fifoh);
3539 exit:
3540 return status;
3544 * __vxge_hw_vpath_prc_configure
3545 * This routine configures the prc registers of virtual path using the config
3546 * passed
3548 static void
3549 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3551 u64 val64;
3552 struct __vxge_hw_virtualpath *vpath;
3553 struct vxge_hw_vp_config *vp_config;
3554 struct vxge_hw_vpath_reg __iomem *vp_reg;
3556 vpath = &hldev->virtual_paths[vp_id];
3557 vp_reg = vpath->vp_reg;
3558 vp_config = vpath->vp_config;
3560 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
3561 return;
3563 val64 = readq(&vp_reg->prc_cfg1);
3564 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
3565 writeq(val64, &vp_reg->prc_cfg1);
3567 val64 = readq(&vpath->vp_reg->prc_cfg6);
3568 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
3569 writeq(val64, &vpath->vp_reg->prc_cfg6);
3571 val64 = readq(&vp_reg->prc_cfg7);
3573 if (vpath->vp_config->ring.scatter_mode !=
3574 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
3576 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
3578 switch (vpath->vp_config->ring.scatter_mode) {
3579 case VXGE_HW_RING_SCATTER_MODE_A:
3580 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3581 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
3582 break;
3583 case VXGE_HW_RING_SCATTER_MODE_B:
3584 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3585 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
3586 break;
3587 case VXGE_HW_RING_SCATTER_MODE_C:
3588 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3589 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
3590 break;
3594 writeq(val64, &vp_reg->prc_cfg7);
3596 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
3597 __vxge_hw_ring_first_block_address_get(
3598 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
3600 val64 = readq(&vp_reg->prc_cfg4);
3601 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
3602 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
3604 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
3605 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
3607 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
3608 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
3609 else
3610 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
3612 writeq(val64, &vp_reg->prc_cfg4);
3616 * __vxge_hw_vpath_kdfc_configure
3617 * This routine configures the kdfc registers of virtual path using the
3618 * config passed
3620 static enum vxge_hw_status
3621 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3623 u64 val64;
3624 u64 vpath_stride;
3625 enum vxge_hw_status status = VXGE_HW_OK;
3626 struct __vxge_hw_virtualpath *vpath;
3627 struct vxge_hw_vpath_reg __iomem *vp_reg;
3629 vpath = &hldev->virtual_paths[vp_id];
3630 vp_reg = vpath->vp_reg;
3631 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
3633 if (status != VXGE_HW_OK)
3634 goto exit;
3636 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
3638 vpath->max_kdfc_db =
3639 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
3640 val64+1)/2;
3642 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3644 vpath->max_nofl_db = vpath->max_kdfc_db;
3646 if (vpath->max_nofl_db <
3647 ((vpath->vp_config->fifo.memblock_size /
3648 (vpath->vp_config->fifo.max_frags *
3649 sizeof(struct vxge_hw_fifo_txd))) *
3650 vpath->vp_config->fifo.fifo_blocks)) {
3652 return VXGE_HW_BADCFG_FIFO_BLOCKS;
3654 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
3655 (vpath->max_nofl_db*2)-1);
3658 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
3660 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
3661 &vp_reg->kdfc_fifo_trpl_ctrl);
3663 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
3665 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
3666 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
3668 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
3669 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
3670 #ifndef __BIG_ENDIAN
3671 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
3672 #endif
3673 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
3675 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
3676 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
3677 wmb();
3678 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
3680 vpath->nofl_db =
3681 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
3682 (hldev->kdfc + (vp_id *
3683 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
3684 vpath_stride)));
3685 exit:
3686 return status;
3690 * __vxge_hw_vpath_mac_configure
3691 * This routine configures the mac of virtual path using the config passed
3693 static enum vxge_hw_status
3694 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3696 u64 val64;
3697 enum vxge_hw_status status = VXGE_HW_OK;
3698 struct __vxge_hw_virtualpath *vpath;
3699 struct vxge_hw_vp_config *vp_config;
3700 struct vxge_hw_vpath_reg __iomem *vp_reg;
3702 vpath = &hldev->virtual_paths[vp_id];
3703 vp_reg = vpath->vp_reg;
3704 vp_config = vpath->vp_config;
3706 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
3707 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
3709 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
3711 val64 = readq(&vp_reg->xmac_rpa_vcfg);
3713 if (vp_config->rpa_strip_vlan_tag !=
3714 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
3715 if (vp_config->rpa_strip_vlan_tag)
3716 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3717 else
3718 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3721 writeq(val64, &vp_reg->xmac_rpa_vcfg);
3722 val64 = readq(&vp_reg->rxmac_vcfg0);
3724 if (vp_config->mtu !=
3725 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
3726 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
3727 if ((vp_config->mtu +
3728 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
3729 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3730 vp_config->mtu +
3731 VXGE_HW_MAC_HEADER_MAX_SIZE);
3732 else
3733 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3734 vpath->max_mtu);
3737 writeq(val64, &vp_reg->rxmac_vcfg0);
3739 val64 = readq(&vp_reg->rxmac_vcfg1);
3741 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
3742 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
3744 if (hldev->config.rth_it_type ==
3745 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
3746 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
3747 0x2) |
3748 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
3751 writeq(val64, &vp_reg->rxmac_vcfg1);
3753 return status;
3757 * __vxge_hw_vpath_tim_configure
3758 * This routine configures the tim registers of virtual path using the config
3759 * passed
3761 static enum vxge_hw_status
3762 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3764 u64 val64;
3765 enum vxge_hw_status status = VXGE_HW_OK;
3766 struct __vxge_hw_virtualpath *vpath;
3767 struct vxge_hw_vpath_reg __iomem *vp_reg;
3768 struct vxge_hw_vp_config *config;
3770 vpath = &hldev->virtual_paths[vp_id];
3771 vp_reg = vpath->vp_reg;
3772 config = vpath->vp_config;
3774 writeq((u64)0, &vp_reg->tim_dest_addr);
3775 writeq((u64)0, &vp_reg->tim_vpath_map);
3776 writeq((u64)0, &vp_reg->tim_bitmap);
3777 writeq((u64)0, &vp_reg->tim_remap);
3779 if (config->ring.enable == VXGE_HW_RING_ENABLE)
3780 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
3781 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
3782 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
3784 val64 = readq(&vp_reg->tim_pci_cfg);
3785 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
3786 writeq(val64, &vp_reg->tim_pci_cfg);
3788 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3790 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3792 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3793 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3794 0x3ffffff);
3795 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3796 config->tti.btimer_val);
3799 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3801 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3802 if (config->tti.timer_ac_en)
3803 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3804 else
3805 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3808 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3809 if (config->tti.timer_ci_en)
3810 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3811 else
3812 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3815 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3816 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3817 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3818 config->tti.urange_a);
3821 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3822 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3823 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3824 config->tti.urange_b);
3827 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3828 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3829 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3830 config->tti.urange_c);
3833 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3834 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3836 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3837 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3838 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3839 config->tti.uec_a);
3842 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3843 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3844 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
3845 config->tti.uec_b);
3848 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
3849 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
3850 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
3851 config->tti.uec_c);
3854 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
3855 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
3856 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
3857 config->tti.uec_d);
3860 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3861 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3863 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
3864 if (config->tti.timer_ri_en)
3865 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3866 else
3867 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3870 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3871 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3872 0x3ffffff);
3873 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3874 config->tti.rtimer_val);
3877 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
3878 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
3879 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
3880 config->tti.util_sel);
3883 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3884 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3885 0x3ffffff);
3886 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3887 config->tti.ltimer_val);
3890 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3893 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
3895 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3897 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3898 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3899 0x3ffffff);
3900 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3901 config->rti.btimer_val);
3904 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3906 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3907 if (config->rti.timer_ac_en)
3908 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3909 else
3910 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3913 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3914 if (config->rti.timer_ci_en)
3915 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3916 else
3917 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3920 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3921 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3922 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3923 config->rti.urange_a);
3926 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3927 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3928 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3929 config->rti.urange_b);
3932 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3933 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3934 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3935 config->rti.urange_c);
3938 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3939 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
3941 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3942 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3943 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3944 config->rti.uec_a);
3947 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3948 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3949 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
3950 config->rti.uec_b);
3953 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
3954 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
3955 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
3956 config->rti.uec_c);
3959 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
3960 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
3961 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
3962 config->rti.uec_d);
3965 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
3966 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
3968 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
3969 if (config->rti.timer_ri_en)
3970 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3971 else
3972 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3975 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3976 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3977 0x3ffffff);
3978 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3979 config->rti.rtimer_val);
3982 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
3983 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
3984 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
3985 config->rti.util_sel);
3988 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3989 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3990 0x3ffffff);
3991 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3992 config->rti.ltimer_val);
3995 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
3998 val64 = 0;
3999 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4000 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4001 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4002 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4003 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4004 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4006 return status;
4009 void
4010 vxge_hw_vpath_tti_ci_set(struct __vxge_hw_device *hldev, u32 vp_id)
4012 struct __vxge_hw_virtualpath *vpath;
4013 struct vxge_hw_vpath_reg __iomem *vp_reg;
4014 struct vxge_hw_vp_config *config;
4015 u64 val64;
4017 vpath = &hldev->virtual_paths[vp_id];
4018 vp_reg = vpath->vp_reg;
4019 config = vpath->vp_config;
4021 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4022 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4024 if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
4025 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
4026 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4027 writeq(val64,
4028 &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4033 * __vxge_hw_vpath_initialize
4034 * This routine is the final phase of init which initializes the
4035 * registers of the vpath using the configuration passed.
4037 static enum vxge_hw_status
4038 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4040 u64 val64;
4041 u32 val32;
4042 enum vxge_hw_status status = VXGE_HW_OK;
4043 struct __vxge_hw_virtualpath *vpath;
4044 struct vxge_hw_vpath_reg __iomem *vp_reg;
4046 vpath = &hldev->virtual_paths[vp_id];
4048 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4049 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4050 goto exit;
4052 vp_reg = vpath->vp_reg;
4054 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4056 if (status != VXGE_HW_OK)
4057 goto exit;
4059 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4061 if (status != VXGE_HW_OK)
4062 goto exit;
4064 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4066 if (status != VXGE_HW_OK)
4067 goto exit;
4069 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4071 if (status != VXGE_HW_OK)
4072 goto exit;
4074 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4076 /* Get MRRS value from device control */
4077 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4079 if (status == VXGE_HW_OK) {
4080 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4081 val64 &=
4082 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4083 val64 |=
4084 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4086 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4089 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4090 val64 |=
4091 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4092 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4094 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4095 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4097 exit:
4098 return status;
4102 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4103 * This routine is the initial phase of init which resets the vpath and
4104 * initializes the software support structures.
4106 static enum vxge_hw_status
4107 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4108 struct vxge_hw_vp_config *config)
4110 struct __vxge_hw_virtualpath *vpath;
4111 enum vxge_hw_status status = VXGE_HW_OK;
4113 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4114 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4115 goto exit;
4118 vpath = &hldev->virtual_paths[vp_id];
4120 vpath->vp_id = vp_id;
4121 vpath->vp_open = VXGE_HW_VP_OPEN;
4122 vpath->hldev = hldev;
4123 vpath->vp_config = config;
4124 vpath->vp_reg = hldev->vpath_reg[vp_id];
4125 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4127 __vxge_hw_vpath_reset(hldev, vp_id);
4129 status = __vxge_hw_vpath_reset_check(vpath);
4131 if (status != VXGE_HW_OK) {
4132 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4133 goto exit;
4136 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4138 if (status != VXGE_HW_OK) {
4139 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4140 goto exit;
4143 INIT_LIST_HEAD(&vpath->vpath_handles);
4145 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4147 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4148 hldev->tim_int_mask1, vp_id);
4150 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4152 if (status != VXGE_HW_OK)
4153 __vxge_hw_vp_terminate(hldev, vp_id);
4154 exit:
4155 return status;
4159 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4160 * This routine closes all channels it opened and freeup memory
4162 static void
4163 __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4165 struct __vxge_hw_virtualpath *vpath;
4167 vpath = &hldev->virtual_paths[vp_id];
4169 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4170 goto exit;
4172 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4173 vpath->hldev->tim_int_mask1, vpath->vp_id);
4174 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4176 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4177 exit:
4178 return;
4182 * vxge_hw_vpath_mtu_set - Set MTU.
4183 * Set new MTU value. Example, to use jumbo frames:
4184 * vxge_hw_vpath_mtu_set(my_device, 9600);
4186 enum vxge_hw_status
4187 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4189 u64 val64;
4190 enum vxge_hw_status status = VXGE_HW_OK;
4191 struct __vxge_hw_virtualpath *vpath;
4193 if (vp == NULL) {
4194 status = VXGE_HW_ERR_INVALID_HANDLE;
4195 goto exit;
4197 vpath = vp->vpath;
4199 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4201 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4202 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4204 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4206 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4207 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4209 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4211 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4213 exit:
4214 return status;
4218 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4219 * This function is used to open access to virtual path of an
4220 * adapter for offload, GRO operations. This function returns
4221 * synchronously.
4223 enum vxge_hw_status
4224 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4225 struct vxge_hw_vpath_attr *attr,
4226 struct __vxge_hw_vpath_handle **vpath_handle)
4228 struct __vxge_hw_virtualpath *vpath;
4229 struct __vxge_hw_vpath_handle *vp;
4230 enum vxge_hw_status status;
4232 vpath = &hldev->virtual_paths[attr->vp_id];
4234 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4235 status = VXGE_HW_ERR_INVALID_STATE;
4236 goto vpath_open_exit1;
4239 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4240 &hldev->config.vp_config[attr->vp_id]);
4242 if (status != VXGE_HW_OK)
4243 goto vpath_open_exit1;
4245 vp = (struct __vxge_hw_vpath_handle *)
4246 vmalloc(sizeof(struct __vxge_hw_vpath_handle));
4247 if (vp == NULL) {
4248 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4249 goto vpath_open_exit2;
4252 memset(vp, 0, sizeof(struct __vxge_hw_vpath_handle));
4254 vp->vpath = vpath;
4256 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4257 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4258 if (status != VXGE_HW_OK)
4259 goto vpath_open_exit6;
4262 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4263 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4264 if (status != VXGE_HW_OK)
4265 goto vpath_open_exit7;
4267 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4270 vpath->fifoh->tx_intr_num =
4271 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4272 VXGE_HW_VPATH_INTR_TX;
4274 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4275 VXGE_HW_BLOCK_SIZE);
4277 if (vpath->stats_block == NULL) {
4278 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4279 goto vpath_open_exit8;
4282 vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
4283 stats_block->memblock;
4284 memset(vpath->hw_stats, 0,
4285 sizeof(struct vxge_hw_vpath_stats_hw_info));
4287 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4288 vpath->hw_stats;
4290 vpath->hw_stats_sav =
4291 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4292 memset(vpath->hw_stats_sav, 0,
4293 sizeof(struct vxge_hw_vpath_stats_hw_info));
4295 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4297 status = vxge_hw_vpath_stats_enable(vp);
4298 if (status != VXGE_HW_OK)
4299 goto vpath_open_exit8;
4301 list_add(&vp->item, &vpath->vpath_handles);
4303 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4305 *vpath_handle = vp;
4307 attr->fifo_attr.userdata = vpath->fifoh;
4308 attr->ring_attr.userdata = vpath->ringh;
4310 return VXGE_HW_OK;
4312 vpath_open_exit8:
4313 if (vpath->ringh != NULL)
4314 __vxge_hw_ring_delete(vp);
4315 vpath_open_exit7:
4316 if (vpath->fifoh != NULL)
4317 __vxge_hw_fifo_delete(vp);
4318 vpath_open_exit6:
4319 vfree(vp);
4320 vpath_open_exit2:
4321 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4322 vpath_open_exit1:
4324 return status;
4328 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4329 * (vpath) open
4330 * @vp: Handle got from previous vpath open
4332 * This function is used to close access to virtual path opened
4333 * earlier.
4335 void
4336 vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4338 struct __vxge_hw_virtualpath *vpath = NULL;
4339 u64 new_count, val64, val164;
4340 struct __vxge_hw_ring *ring;
4342 vpath = vp->vpath;
4343 ring = vpath->ringh;
4345 new_count = readq(&vpath->vp_reg->rxdmem_size);
4346 new_count &= 0x1fff;
4347 val164 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count));
4349 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4350 &vpath->vp_reg->prc_rxd_doorbell);
4351 readl(&vpath->vp_reg->prc_rxd_doorbell);
4353 val164 /= 2;
4354 val64 = readq(&vpath->vp_reg->prc_cfg6);
4355 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4356 val64 &= 0x1ff;
4359 * Each RxD is of 4 qwords
4361 new_count -= (val64 + 1);
4362 val64 = min(val164, new_count) / 4;
4364 ring->rxds_limit = min(ring->rxds_limit, val64);
4365 if (ring->rxds_limit < 4)
4366 ring->rxds_limit = 4;
4370 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4371 * This function is used to close access to virtual path opened
4372 * earlier.
4374 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4376 struct __vxge_hw_virtualpath *vpath = NULL;
4377 struct __vxge_hw_device *devh = NULL;
4378 u32 vp_id = vp->vpath->vp_id;
4379 u32 is_empty = TRUE;
4380 enum vxge_hw_status status = VXGE_HW_OK;
4382 vpath = vp->vpath;
4383 devh = vpath->hldev;
4385 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4386 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4387 goto vpath_close_exit;
4390 list_del(&vp->item);
4392 if (!list_empty(&vpath->vpath_handles)) {
4393 list_add(&vp->item, &vpath->vpath_handles);
4394 is_empty = FALSE;
4397 if (!is_empty) {
4398 status = VXGE_HW_FAIL;
4399 goto vpath_close_exit;
4402 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4404 if (vpath->ringh != NULL)
4405 __vxge_hw_ring_delete(vp);
4407 if (vpath->fifoh != NULL)
4408 __vxge_hw_fifo_delete(vp);
4410 if (vpath->stats_block != NULL)
4411 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
4413 vfree(vp);
4415 __vxge_hw_vp_terminate(devh, vp_id);
4417 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4419 vpath_close_exit:
4420 return status;
4424 * vxge_hw_vpath_reset - Resets vpath
4425 * This function is used to request a reset of vpath
4427 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
4429 enum vxge_hw_status status;
4430 u32 vp_id;
4431 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4433 vp_id = vpath->vp_id;
4435 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4436 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4437 goto exit;
4440 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
4441 if (status == VXGE_HW_OK)
4442 vpath->sw_stats->soft_reset_cnt++;
4443 exit:
4444 return status;
4448 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
4449 * This function poll's for the vpath reset completion and re initializes
4450 * the vpath.
4452 enum vxge_hw_status
4453 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
4455 struct __vxge_hw_virtualpath *vpath = NULL;
4456 enum vxge_hw_status status;
4457 struct __vxge_hw_device *hldev;
4458 u32 vp_id;
4460 vp_id = vp->vpath->vp_id;
4461 vpath = vp->vpath;
4462 hldev = vpath->hldev;
4464 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4465 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4466 goto exit;
4469 status = __vxge_hw_vpath_reset_check(vpath);
4470 if (status != VXGE_HW_OK)
4471 goto exit;
4473 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
4474 if (status != VXGE_HW_OK)
4475 goto exit;
4477 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4478 if (status != VXGE_HW_OK)
4479 goto exit;
4481 if (vpath->ringh != NULL)
4482 __vxge_hw_vpath_prc_configure(hldev, vp_id);
4484 memset(vpath->hw_stats, 0,
4485 sizeof(struct vxge_hw_vpath_stats_hw_info));
4487 memset(vpath->hw_stats_sav, 0,
4488 sizeof(struct vxge_hw_vpath_stats_hw_info));
4490 writeq(vpath->stats_block->dma_addr,
4491 &vpath->vp_reg->stats_cfg);
4493 status = vxge_hw_vpath_stats_enable(vp);
4495 exit:
4496 return status;
4500 * vxge_hw_vpath_enable - Enable vpath.
4501 * This routine clears the vpath reset thereby enabling a vpath
4502 * to start forwarding frames and generating interrupts.
4504 void
4505 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
4507 struct __vxge_hw_device *hldev;
4508 u64 val64;
4510 hldev = vp->vpath->hldev;
4512 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
4513 1 << (16 - vp->vpath->vp_id));
4515 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4516 &hldev->common_reg->cmn_rsthdlr_cfg1);
4520 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4521 * Enable the DMA vpath statistics. The function is to be called to re-enable
4522 * the adapter to update stats into the host memory
4524 static enum vxge_hw_status
4525 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4527 enum vxge_hw_status status = VXGE_HW_OK;
4528 struct __vxge_hw_virtualpath *vpath;
4530 vpath = vp->vpath;
4532 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4533 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4534 goto exit;
4537 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4538 sizeof(struct vxge_hw_vpath_stats_hw_info));
4540 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4541 exit:
4542 return status;
4546 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
4547 * and offset and perform an operation
4549 static enum vxge_hw_status
4550 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
4551 u32 operation, u32 offset, u64 *stat)
4553 u64 val64;
4554 enum vxge_hw_status status = VXGE_HW_OK;
4555 struct vxge_hw_vpath_reg __iomem *vp_reg;
4557 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4558 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4559 goto vpath_stats_access_exit;
4562 vp_reg = vpath->vp_reg;
4564 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
4565 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
4566 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
4568 status = __vxge_hw_pio_mem_write64(val64,
4569 &vp_reg->xmac_stats_access_cmd,
4570 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
4571 vpath->hldev->config.device_poll_millis);
4573 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
4574 *stat = readq(&vp_reg->xmac_stats_access_data);
4575 else
4576 *stat = 0;
4578 vpath_stats_access_exit:
4579 return status;
4583 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
4585 static enum vxge_hw_status
4586 __vxge_hw_vpath_xmac_tx_stats_get(
4587 struct __vxge_hw_virtualpath *vpath,
4588 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
4590 u64 *val64;
4591 int i;
4592 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
4593 enum vxge_hw_status status = VXGE_HW_OK;
4595 val64 = (u64 *) vpath_tx_stats;
4597 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4598 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4599 goto exit;
4602 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
4603 status = __vxge_hw_vpath_stats_access(vpath,
4604 VXGE_HW_STATS_OP_READ,
4605 offset, val64);
4606 if (status != VXGE_HW_OK)
4607 goto exit;
4608 offset++;
4609 val64++;
4611 exit:
4612 return status;
4616 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
4618 static enum vxge_hw_status
4619 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
4620 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
4622 u64 *val64;
4623 enum vxge_hw_status status = VXGE_HW_OK;
4624 int i;
4625 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
4626 val64 = (u64 *) vpath_rx_stats;
4628 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4629 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4630 goto exit;
4632 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
4633 status = __vxge_hw_vpath_stats_access(vpath,
4634 VXGE_HW_STATS_OP_READ,
4635 offset >> 3, val64);
4636 if (status != VXGE_HW_OK)
4637 goto exit;
4639 offset += 8;
4640 val64++;
4642 exit:
4643 return status;
4647 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
4649 static enum vxge_hw_status
4650 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
4651 struct vxge_hw_vpath_stats_hw_info *hw_stats)
4653 u64 val64;
4654 enum vxge_hw_status status = VXGE_HW_OK;
4655 struct vxge_hw_vpath_reg __iomem *vp_reg;
4657 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4658 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4659 goto exit;
4661 vp_reg = vpath->vp_reg;
4663 val64 = readq(&vp_reg->vpath_debug_stats0);
4664 hw_stats->ini_num_mwr_sent =
4665 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
4667 val64 = readq(&vp_reg->vpath_debug_stats1);
4668 hw_stats->ini_num_mrd_sent =
4669 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
4671 val64 = readq(&vp_reg->vpath_debug_stats2);
4672 hw_stats->ini_num_cpl_rcvd =
4673 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
4675 val64 = readq(&vp_reg->vpath_debug_stats3);
4676 hw_stats->ini_num_mwr_byte_sent =
4677 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
4679 val64 = readq(&vp_reg->vpath_debug_stats4);
4680 hw_stats->ini_num_cpl_byte_rcvd =
4681 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
4683 val64 = readq(&vp_reg->vpath_debug_stats5);
4684 hw_stats->wrcrdtarb_xoff =
4685 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
4687 val64 = readq(&vp_reg->vpath_debug_stats6);
4688 hw_stats->rdcrdtarb_xoff =
4689 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
4691 val64 = readq(&vp_reg->vpath_genstats_count01);
4692 hw_stats->vpath_genstats_count0 =
4693 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
4694 val64);
4696 val64 = readq(&vp_reg->vpath_genstats_count01);
4697 hw_stats->vpath_genstats_count1 =
4698 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
4699 val64);
4701 val64 = readq(&vp_reg->vpath_genstats_count23);
4702 hw_stats->vpath_genstats_count2 =
4703 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
4704 val64);
4706 val64 = readq(&vp_reg->vpath_genstats_count01);
4707 hw_stats->vpath_genstats_count3 =
4708 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
4709 val64);
4711 val64 = readq(&vp_reg->vpath_genstats_count4);
4712 hw_stats->vpath_genstats_count4 =
4713 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
4714 val64);
4716 val64 = readq(&vp_reg->vpath_genstats_count5);
4717 hw_stats->vpath_genstats_count5 =
4718 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
4719 val64);
4721 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
4722 if (status != VXGE_HW_OK)
4723 goto exit;
4725 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
4726 if (status != VXGE_HW_OK)
4727 goto exit;
4729 VXGE_HW_VPATH_STATS_PIO_READ(
4730 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
4732 hw_stats->prog_event_vnum0 =
4733 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
4735 hw_stats->prog_event_vnum1 =
4736 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
4738 VXGE_HW_VPATH_STATS_PIO_READ(
4739 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
4741 hw_stats->prog_event_vnum2 =
4742 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
4744 hw_stats->prog_event_vnum3 =
4745 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
4747 val64 = readq(&vp_reg->rx_multi_cast_stats);
4748 hw_stats->rx_multi_cast_frame_discard =
4749 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
4751 val64 = readq(&vp_reg->rx_frm_transferred);
4752 hw_stats->rx_frm_transferred =
4753 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
4755 val64 = readq(&vp_reg->rxd_returned);
4756 hw_stats->rxd_returned =
4757 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
4759 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
4760 hw_stats->rx_mpa_len_fail_frms =
4761 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
4762 hw_stats->rx_mpa_mrk_fail_frms =
4763 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
4764 hw_stats->rx_mpa_crc_fail_frms =
4765 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
4767 val64 = readq(&vp_reg->dbg_stats_rx_fau);
4768 hw_stats->rx_permitted_frms =
4769 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
4770 hw_stats->rx_vp_reset_discarded_frms =
4771 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
4772 hw_stats->rx_wol_frms =
4773 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
4775 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
4776 hw_stats->tx_vp_reset_discarded_frms =
4777 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
4778 val64);
4779 exit:
4780 return status;
4784 static void vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh,
4785 unsigned long size)
4787 gfp_t flags;
4788 void *vaddr;
4790 if (in_interrupt())
4791 flags = GFP_ATOMIC | GFP_DMA;
4792 else
4793 flags = GFP_KERNEL | GFP_DMA;
4795 vaddr = kmalloc((size), flags);
4797 vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
4800 static void vxge_os_dma_free(struct pci_dev *pdev, const void *vaddr,
4801 struct pci_dev **p_dma_acch)
4803 unsigned long misaligned = *(unsigned long *)p_dma_acch;
4804 u8 *tmp = (u8 *)vaddr;
4805 tmp -= misaligned;
4806 kfree((void *)tmp);
4810 * __vxge_hw_blockpool_create - Create block pool
4813 enum vxge_hw_status
4814 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
4815 struct __vxge_hw_blockpool *blockpool,
4816 u32 pool_size,
4817 u32 pool_max)
4819 u32 i;
4820 struct __vxge_hw_blockpool_entry *entry = NULL;
4821 void *memblock;
4822 dma_addr_t dma_addr;
4823 struct pci_dev *dma_handle;
4824 struct pci_dev *acc_handle;
4825 enum vxge_hw_status status = VXGE_HW_OK;
4827 if (blockpool == NULL) {
4828 status = VXGE_HW_FAIL;
4829 goto blockpool_create_exit;
4832 blockpool->hldev = hldev;
4833 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
4834 blockpool->pool_size = 0;
4835 blockpool->pool_max = pool_max;
4836 blockpool->req_out = 0;
4838 INIT_LIST_HEAD(&blockpool->free_block_list);
4839 INIT_LIST_HEAD(&blockpool->free_entry_list);
4841 for (i = 0; i < pool_size + pool_max; i++) {
4842 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4843 GFP_KERNEL);
4844 if (entry == NULL) {
4845 __vxge_hw_blockpool_destroy(blockpool);
4846 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4847 goto blockpool_create_exit;
4849 list_add(&entry->item, &blockpool->free_entry_list);
4852 for (i = 0; i < pool_size; i++) {
4854 memblock = vxge_os_dma_malloc(
4855 hldev->pdev,
4856 VXGE_HW_BLOCK_SIZE,
4857 &dma_handle,
4858 &acc_handle);
4860 if (memblock == NULL) {
4861 __vxge_hw_blockpool_destroy(blockpool);
4862 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4863 goto blockpool_create_exit;
4866 dma_addr = pci_map_single(hldev->pdev, memblock,
4867 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
4869 if (unlikely(pci_dma_mapping_error(hldev->pdev,
4870 dma_addr))) {
4872 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
4873 __vxge_hw_blockpool_destroy(blockpool);
4874 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4875 goto blockpool_create_exit;
4878 if (!list_empty(&blockpool->free_entry_list))
4879 entry = (struct __vxge_hw_blockpool_entry *)
4880 list_first_entry(&blockpool->free_entry_list,
4881 struct __vxge_hw_blockpool_entry,
4882 item);
4884 if (entry == NULL)
4885 entry =
4886 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4887 GFP_KERNEL);
4888 if (entry != NULL) {
4889 list_del(&entry->item);
4890 entry->length = VXGE_HW_BLOCK_SIZE;
4891 entry->memblock = memblock;
4892 entry->dma_addr = dma_addr;
4893 entry->acc_handle = acc_handle;
4894 entry->dma_handle = dma_handle;
4895 list_add(&entry->item,
4896 &blockpool->free_block_list);
4897 blockpool->pool_size++;
4898 } else {
4899 __vxge_hw_blockpool_destroy(blockpool);
4900 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4901 goto blockpool_create_exit;
4905 blockpool_create_exit:
4906 return status;
4910 * __vxge_hw_blockpool_destroy - Deallocates the block pool
4913 void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
4916 struct __vxge_hw_device *hldev;
4917 struct list_head *p, *n;
4918 u16 ret;
4920 if (blockpool == NULL) {
4921 ret = 1;
4922 goto exit;
4925 hldev = blockpool->hldev;
4927 list_for_each_safe(p, n, &blockpool->free_block_list) {
4929 pci_unmap_single(hldev->pdev,
4930 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4931 ((struct __vxge_hw_blockpool_entry *)p)->length,
4932 PCI_DMA_BIDIRECTIONAL);
4934 vxge_os_dma_free(hldev->pdev,
4935 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4936 &((struct __vxge_hw_blockpool_entry *) p)->acc_handle);
4938 list_del(
4939 &((struct __vxge_hw_blockpool_entry *)p)->item);
4940 kfree(p);
4941 blockpool->pool_size--;
4944 list_for_each_safe(p, n, &blockpool->free_entry_list) {
4945 list_del(
4946 &((struct __vxge_hw_blockpool_entry *)p)->item);
4947 kfree((void *)p);
4949 ret = 0;
4950 exit:
4951 return;
4955 * __vxge_hw_blockpool_blocks_add - Request additional blocks
4957 static
4958 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
4960 u32 nreq = 0, i;
4962 if ((blockpool->pool_size + blockpool->req_out) <
4963 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
4964 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
4965 blockpool->req_out += nreq;
4968 for (i = 0; i < nreq; i++)
4969 vxge_os_dma_malloc_async(
4970 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4971 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
4975 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
4977 static
4978 void __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
4980 struct list_head *p, *n;
4982 list_for_each_safe(p, n, &blockpool->free_block_list) {
4984 if (blockpool->pool_size < blockpool->pool_max)
4985 break;
4987 pci_unmap_single(
4988 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4989 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4990 ((struct __vxge_hw_blockpool_entry *)p)->length,
4991 PCI_DMA_BIDIRECTIONAL);
4993 vxge_os_dma_free(
4994 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4995 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4996 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
4998 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
5000 list_add(p, &blockpool->free_entry_list);
5002 blockpool->pool_size--;
5008 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
5009 * Adds a block to block pool
5011 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
5012 void *block_addr,
5013 u32 length,
5014 struct pci_dev *dma_h,
5015 struct pci_dev *acc_handle)
5017 struct __vxge_hw_blockpool *blockpool;
5018 struct __vxge_hw_blockpool_entry *entry = NULL;
5019 dma_addr_t dma_addr;
5020 enum vxge_hw_status status = VXGE_HW_OK;
5021 u32 req_out;
5023 blockpool = &devh->block_pool;
5025 if (block_addr == NULL) {
5026 blockpool->req_out--;
5027 status = VXGE_HW_FAIL;
5028 goto exit;
5031 dma_addr = pci_map_single(devh->pdev, block_addr, length,
5032 PCI_DMA_BIDIRECTIONAL);
5034 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
5036 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
5037 blockpool->req_out--;
5038 status = VXGE_HW_FAIL;
5039 goto exit;
5043 if (!list_empty(&blockpool->free_entry_list))
5044 entry = (struct __vxge_hw_blockpool_entry *)
5045 list_first_entry(&blockpool->free_entry_list,
5046 struct __vxge_hw_blockpool_entry,
5047 item);
5049 if (entry == NULL)
5050 entry = (struct __vxge_hw_blockpool_entry *)
5051 vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
5052 else
5053 list_del(&entry->item);
5055 if (entry != NULL) {
5056 entry->length = length;
5057 entry->memblock = block_addr;
5058 entry->dma_addr = dma_addr;
5059 entry->acc_handle = acc_handle;
5060 entry->dma_handle = dma_h;
5061 list_add(&entry->item, &blockpool->free_block_list);
5062 blockpool->pool_size++;
5063 status = VXGE_HW_OK;
5064 } else
5065 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5067 blockpool->req_out--;
5069 req_out = blockpool->req_out;
5070 exit:
5071 return;
5075 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
5076 * Allocates a block of memory of given size, either from block pool
5077 * or by calling vxge_os_dma_malloc()
5079 void *
5080 __vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
5081 struct vxge_hw_mempool_dma *dma_object)
5083 struct __vxge_hw_blockpool_entry *entry = NULL;
5084 struct __vxge_hw_blockpool *blockpool;
5085 void *memblock = NULL;
5086 enum vxge_hw_status status = VXGE_HW_OK;
5088 blockpool = &devh->block_pool;
5090 if (size != blockpool->block_size) {
5092 memblock = vxge_os_dma_malloc(devh->pdev, size,
5093 &dma_object->handle,
5094 &dma_object->acc_handle);
5096 if (memblock == NULL) {
5097 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5098 goto exit;
5101 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
5102 PCI_DMA_BIDIRECTIONAL);
5104 if (unlikely(pci_dma_mapping_error(devh->pdev,
5105 dma_object->addr))) {
5106 vxge_os_dma_free(devh->pdev, memblock,
5107 &dma_object->acc_handle);
5108 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5109 goto exit;
5112 } else {
5114 if (!list_empty(&blockpool->free_block_list))
5115 entry = (struct __vxge_hw_blockpool_entry *)
5116 list_first_entry(&blockpool->free_block_list,
5117 struct __vxge_hw_blockpool_entry,
5118 item);
5120 if (entry != NULL) {
5121 list_del(&entry->item);
5122 dma_object->addr = entry->dma_addr;
5123 dma_object->handle = entry->dma_handle;
5124 dma_object->acc_handle = entry->acc_handle;
5125 memblock = entry->memblock;
5127 list_add(&entry->item,
5128 &blockpool->free_entry_list);
5129 blockpool->pool_size--;
5132 if (memblock != NULL)
5133 __vxge_hw_blockpool_blocks_add(blockpool);
5135 exit:
5136 return memblock;
5140 * __vxge_hw_blockpool_free - Frees the memory allcoated with
5141 __vxge_hw_blockpool_malloc
5143 void
5144 __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
5145 void *memblock, u32 size,
5146 struct vxge_hw_mempool_dma *dma_object)
5148 struct __vxge_hw_blockpool_entry *entry = NULL;
5149 struct __vxge_hw_blockpool *blockpool;
5150 enum vxge_hw_status status = VXGE_HW_OK;
5152 blockpool = &devh->block_pool;
5154 if (size != blockpool->block_size) {
5155 pci_unmap_single(devh->pdev, dma_object->addr, size,
5156 PCI_DMA_BIDIRECTIONAL);
5157 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
5158 } else {
5160 if (!list_empty(&blockpool->free_entry_list))
5161 entry = (struct __vxge_hw_blockpool_entry *)
5162 list_first_entry(&blockpool->free_entry_list,
5163 struct __vxge_hw_blockpool_entry,
5164 item);
5166 if (entry == NULL)
5167 entry = (struct __vxge_hw_blockpool_entry *)
5168 vmalloc(sizeof(
5169 struct __vxge_hw_blockpool_entry));
5170 else
5171 list_del(&entry->item);
5173 if (entry != NULL) {
5174 entry->length = size;
5175 entry->memblock = memblock;
5176 entry->dma_addr = dma_object->addr;
5177 entry->acc_handle = dma_object->acc_handle;
5178 entry->dma_handle = dma_object->handle;
5179 list_add(&entry->item,
5180 &blockpool->free_block_list);
5181 blockpool->pool_size++;
5182 status = VXGE_HW_OK;
5183 } else
5184 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5186 if (status == VXGE_HW_OK)
5187 __vxge_hw_blockpool_blocks_remove(blockpool);
5192 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
5193 * This function allocates a block from block pool or from the system
5195 struct __vxge_hw_blockpool_entry *
5196 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
5198 struct __vxge_hw_blockpool_entry *entry = NULL;
5199 struct __vxge_hw_blockpool *blockpool;
5201 blockpool = &devh->block_pool;
5203 if (size == blockpool->block_size) {
5205 if (!list_empty(&blockpool->free_block_list))
5206 entry = (struct __vxge_hw_blockpool_entry *)
5207 list_first_entry(&blockpool->free_block_list,
5208 struct __vxge_hw_blockpool_entry,
5209 item);
5211 if (entry != NULL) {
5212 list_del(&entry->item);
5213 blockpool->pool_size--;
5217 if (entry != NULL)
5218 __vxge_hw_blockpool_blocks_add(blockpool);
5220 return entry;
5224 * __vxge_hw_blockpool_block_free - Frees a block from block pool
5225 * @devh: Hal device
5226 * @entry: Entry of block to be freed
5228 * This function frees a block from block pool
5230 void
5231 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
5232 struct __vxge_hw_blockpool_entry *entry)
5234 struct __vxge_hw_blockpool *blockpool;
5236 blockpool = &devh->block_pool;
5238 if (entry->length == blockpool->block_size) {
5239 list_add(&entry->item, &blockpool->free_block_list);
5240 blockpool->pool_size++;
5243 __vxge_hw_blockpool_blocks_remove(blockpool);