2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
31 #include <trace/events/kmem.h>
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache
*s
)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
138 #define MIN_PARTIAL 5
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
145 #define MAX_PARTIAL 10
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
158 * Set of flags that will prevent slab merging
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 SLAB_CACHE_DMA | SLAB_NOTRACK)
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000UL /* Poison object */
174 static int kmem_size
= sizeof(struct kmem_cache
);
177 static struct notifier_block slab_notifier
;
181 DOWN
, /* No slab functionality available */
182 PARTIAL
, /* Kmem_cache_node works */
183 UP
, /* Everything works but does not show up in sysfs */
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock
);
189 static LIST_HEAD(slab_caches
);
192 * Tracking user of a slab.
195 unsigned long addr
; /* Called from address */
196 int cpu
; /* Was running on cpu */
197 int pid
; /* Pid context */
198 unsigned long when
; /* When did the operation occur */
201 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
204 static int sysfs_slab_add(struct kmem_cache
*);
205 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
206 static void sysfs_slab_remove(struct kmem_cache
*);
209 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
212 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
220 static inline void stat(struct kmem_cache
*s
, enum stat_item si
)
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
231 int slab_is_available(void)
233 return slab_state
>= UP
;
236 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
238 return s
->node
[node
];
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache
*s
,
243 struct page
*page
, const void *object
)
250 base
= page_address(page
);
251 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
252 (object
- base
) % s
->size
) {
259 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
261 return *(void **)(object
+ s
->offset
);
264 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
266 *(void **)(object
+ s
->offset
) = fp
;
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 #define for_each_free_object(__p, __s, __free) \
276 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
281 return (p
- addr
) / s
->size
;
284 static inline struct kmem_cache_order_objects
oo_make(int order
,
287 struct kmem_cache_order_objects x
= {
288 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
294 static inline int oo_order(struct kmem_cache_order_objects x
)
296 return x
.x
>> OO_SHIFT
;
299 static inline int oo_objects(struct kmem_cache_order_objects x
)
301 return x
.x
& OO_MASK
;
304 #ifdef CONFIG_SLUB_DEBUG
308 #ifdef CONFIG_SLUB_DEBUG_ON
309 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
311 static int slub_debug
;
314 static char *slub_debug_slabs
;
315 static int disable_higher_order_debug
;
320 static void print_section(char *text
, u8
*addr
, unsigned int length
)
328 for (i
= 0; i
< length
; i
++) {
330 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
333 printk(KERN_CONT
" %02x", addr
[i
]);
335 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
337 printk(KERN_CONT
" %s\n", ascii
);
344 printk(KERN_CONT
" ");
348 printk(KERN_CONT
" %s\n", ascii
);
352 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
353 enum track_item alloc
)
358 p
= object
+ s
->offset
+ sizeof(void *);
360 p
= object
+ s
->inuse
;
365 static void set_track(struct kmem_cache
*s
, void *object
,
366 enum track_item alloc
, unsigned long addr
)
368 struct track
*p
= get_track(s
, object
, alloc
);
372 p
->cpu
= smp_processor_id();
373 p
->pid
= current
->pid
;
376 memset(p
, 0, sizeof(struct track
));
379 static void init_tracking(struct kmem_cache
*s
, void *object
)
381 if (!(s
->flags
& SLAB_STORE_USER
))
384 set_track(s
, object
, TRACK_FREE
, 0UL);
385 set_track(s
, object
, TRACK_ALLOC
, 0UL);
388 static void print_track(const char *s
, struct track
*t
)
393 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
394 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
397 static void print_tracking(struct kmem_cache
*s
, void *object
)
399 if (!(s
->flags
& SLAB_STORE_USER
))
402 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
403 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
406 static void print_page_info(struct page
*page
)
408 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
409 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
413 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
419 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
421 printk(KERN_ERR
"========================================"
422 "=====================================\n");
423 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
424 printk(KERN_ERR
"----------------------------------------"
425 "-------------------------------------\n\n");
428 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
434 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
436 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
439 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
441 unsigned int off
; /* Offset of last byte */
442 u8
*addr
= page_address(page
);
444 print_tracking(s
, p
);
446 print_page_info(page
);
448 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
449 p
, p
- addr
, get_freepointer(s
, p
));
452 print_section("Bytes b4", p
- 16, 16);
454 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
456 if (s
->flags
& SLAB_RED_ZONE
)
457 print_section("Redzone", p
+ s
->objsize
,
458 s
->inuse
- s
->objsize
);
461 off
= s
->offset
+ sizeof(void *);
465 if (s
->flags
& SLAB_STORE_USER
)
466 off
+= 2 * sizeof(struct track
);
469 /* Beginning of the filler is the free pointer */
470 print_section("Padding", p
+ off
, s
->size
- off
);
475 static void object_err(struct kmem_cache
*s
, struct page
*page
,
476 u8
*object
, char *reason
)
478 slab_bug(s
, "%s", reason
);
479 print_trailer(s
, page
, object
);
482 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
488 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
490 slab_bug(s
, "%s", buf
);
491 print_page_info(page
);
495 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
499 if (s
->flags
& __OBJECT_POISON
) {
500 memset(p
, POISON_FREE
, s
->objsize
- 1);
501 p
[s
->objsize
- 1] = POISON_END
;
504 if (s
->flags
& SLAB_RED_ZONE
)
505 memset(p
+ s
->objsize
, val
, s
->inuse
- s
->objsize
);
508 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
511 if (*start
!= (u8
)value
)
519 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
520 void *from
, void *to
)
522 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
523 memset(from
, data
, to
- from
);
526 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
527 u8
*object
, char *what
,
528 u8
*start
, unsigned int value
, unsigned int bytes
)
533 fault
= check_bytes(start
, value
, bytes
);
538 while (end
> fault
&& end
[-1] == value
)
541 slab_bug(s
, "%s overwritten", what
);
542 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
543 fault
, end
- 1, fault
[0], value
);
544 print_trailer(s
, page
, object
);
546 restore_bytes(s
, what
, value
, fault
, end
);
554 * Bytes of the object to be managed.
555 * If the freepointer may overlay the object then the free
556 * pointer is the first word of the object.
558 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
561 * object + s->objsize
562 * Padding to reach word boundary. This is also used for Redzoning.
563 * Padding is extended by another word if Redzoning is enabled and
566 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
567 * 0xcc (RED_ACTIVE) for objects in use.
570 * Meta data starts here.
572 * A. Free pointer (if we cannot overwrite object on free)
573 * B. Tracking data for SLAB_STORE_USER
574 * C. Padding to reach required alignment boundary or at mininum
575 * one word if debugging is on to be able to detect writes
576 * before the word boundary.
578 * Padding is done using 0x5a (POISON_INUSE)
581 * Nothing is used beyond s->size.
583 * If slabcaches are merged then the objsize and inuse boundaries are mostly
584 * ignored. And therefore no slab options that rely on these boundaries
585 * may be used with merged slabcaches.
588 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
590 unsigned long off
= s
->inuse
; /* The end of info */
593 /* Freepointer is placed after the object. */
594 off
+= sizeof(void *);
596 if (s
->flags
& SLAB_STORE_USER
)
597 /* We also have user information there */
598 off
+= 2 * sizeof(struct track
);
603 return check_bytes_and_report(s
, page
, p
, "Object padding",
604 p
+ off
, POISON_INUSE
, s
->size
- off
);
607 /* Check the pad bytes at the end of a slab page */
608 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
616 if (!(s
->flags
& SLAB_POISON
))
619 start
= page_address(page
);
620 length
= (PAGE_SIZE
<< compound_order(page
));
621 end
= start
+ length
;
622 remainder
= length
% s
->size
;
626 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
629 while (end
> fault
&& end
[-1] == POISON_INUSE
)
632 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
633 print_section("Padding", end
- remainder
, remainder
);
635 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
639 static int check_object(struct kmem_cache
*s
, struct page
*page
,
640 void *object
, u8 val
)
643 u8
*endobject
= object
+ s
->objsize
;
645 if (s
->flags
& SLAB_RED_ZONE
) {
646 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
647 endobject
, val
, s
->inuse
- s
->objsize
))
650 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
651 check_bytes_and_report(s
, page
, p
, "Alignment padding",
652 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
656 if (s
->flags
& SLAB_POISON
) {
657 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
658 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
659 POISON_FREE
, s
->objsize
- 1) ||
660 !check_bytes_and_report(s
, page
, p
, "Poison",
661 p
+ s
->objsize
- 1, POISON_END
, 1)))
664 * check_pad_bytes cleans up on its own.
666 check_pad_bytes(s
, page
, p
);
669 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
671 * Object and freepointer overlap. Cannot check
672 * freepointer while object is allocated.
676 /* Check free pointer validity */
677 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
678 object_err(s
, page
, p
, "Freepointer corrupt");
680 * No choice but to zap it and thus lose the remainder
681 * of the free objects in this slab. May cause
682 * another error because the object count is now wrong.
684 set_freepointer(s
, p
, NULL
);
690 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
694 VM_BUG_ON(!irqs_disabled());
696 if (!PageSlab(page
)) {
697 slab_err(s
, page
, "Not a valid slab page");
701 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
702 if (page
->objects
> maxobj
) {
703 slab_err(s
, page
, "objects %u > max %u",
704 s
->name
, page
->objects
, maxobj
);
707 if (page
->inuse
> page
->objects
) {
708 slab_err(s
, page
, "inuse %u > max %u",
709 s
->name
, page
->inuse
, page
->objects
);
712 /* Slab_pad_check fixes things up after itself */
713 slab_pad_check(s
, page
);
718 * Determine if a certain object on a page is on the freelist. Must hold the
719 * slab lock to guarantee that the chains are in a consistent state.
721 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
724 void *fp
= page
->freelist
;
726 unsigned long max_objects
;
728 while (fp
&& nr
<= page
->objects
) {
731 if (!check_valid_pointer(s
, page
, fp
)) {
733 object_err(s
, page
, object
,
734 "Freechain corrupt");
735 set_freepointer(s
, object
, NULL
);
738 slab_err(s
, page
, "Freepointer corrupt");
739 page
->freelist
= NULL
;
740 page
->inuse
= page
->objects
;
741 slab_fix(s
, "Freelist cleared");
747 fp
= get_freepointer(s
, object
);
751 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
752 if (max_objects
> MAX_OBJS_PER_PAGE
)
753 max_objects
= MAX_OBJS_PER_PAGE
;
755 if (page
->objects
!= max_objects
) {
756 slab_err(s
, page
, "Wrong number of objects. Found %d but "
757 "should be %d", page
->objects
, max_objects
);
758 page
->objects
= max_objects
;
759 slab_fix(s
, "Number of objects adjusted.");
761 if (page
->inuse
!= page
->objects
- nr
) {
762 slab_err(s
, page
, "Wrong object count. Counter is %d but "
763 "counted were %d", page
->inuse
, page
->objects
- nr
);
764 page
->inuse
= page
->objects
- nr
;
765 slab_fix(s
, "Object count adjusted.");
767 return search
== NULL
;
770 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
773 if (s
->flags
& SLAB_TRACE
) {
774 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
776 alloc
? "alloc" : "free",
781 print_section("Object", (void *)object
, s
->objsize
);
788 * Hooks for other subsystems that check memory allocations. In a typical
789 * production configuration these hooks all should produce no code at all.
791 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
793 flags
&= gfp_allowed_mask
;
794 lockdep_trace_alloc(flags
);
795 might_sleep_if(flags
& __GFP_WAIT
);
797 return should_failslab(s
->objsize
, flags
, s
->flags
);
800 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
802 flags
&= gfp_allowed_mask
;
803 kmemcheck_slab_alloc(s
, flags
, object
, s
->objsize
);
804 kmemleak_alloc_recursive(object
, s
->objsize
, 1, s
->flags
, flags
);
807 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
809 kmemleak_free_recursive(x
, s
->flags
);
812 static inline void slab_free_hook_irq(struct kmem_cache
*s
, void *object
)
814 kmemcheck_slab_free(s
, object
, s
->objsize
);
815 debug_check_no_locks_freed(object
, s
->objsize
);
816 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
817 debug_check_no_obj_freed(object
, s
->objsize
);
821 * Tracking of fully allocated slabs for debugging purposes.
823 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
825 spin_lock(&n
->list_lock
);
826 list_add(&page
->lru
, &n
->full
);
827 spin_unlock(&n
->list_lock
);
830 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
832 struct kmem_cache_node
*n
;
834 if (!(s
->flags
& SLAB_STORE_USER
))
837 n
= get_node(s
, page_to_nid(page
));
839 spin_lock(&n
->list_lock
);
840 list_del(&page
->lru
);
841 spin_unlock(&n
->list_lock
);
844 /* Tracking of the number of slabs for debugging purposes */
845 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
847 struct kmem_cache_node
*n
= get_node(s
, node
);
849 return atomic_long_read(&n
->nr_slabs
);
852 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
854 return atomic_long_read(&n
->nr_slabs
);
857 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
859 struct kmem_cache_node
*n
= get_node(s
, node
);
862 * May be called early in order to allocate a slab for the
863 * kmem_cache_node structure. Solve the chicken-egg
864 * dilemma by deferring the increment of the count during
865 * bootstrap (see early_kmem_cache_node_alloc).
868 atomic_long_inc(&n
->nr_slabs
);
869 atomic_long_add(objects
, &n
->total_objects
);
872 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
874 struct kmem_cache_node
*n
= get_node(s
, node
);
876 atomic_long_dec(&n
->nr_slabs
);
877 atomic_long_sub(objects
, &n
->total_objects
);
880 /* Object debug checks for alloc/free paths */
881 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
884 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
887 init_object(s
, object
, SLUB_RED_INACTIVE
);
888 init_tracking(s
, object
);
891 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
892 void *object
, unsigned long addr
)
894 if (!check_slab(s
, page
))
897 if (!on_freelist(s
, page
, object
)) {
898 object_err(s
, page
, object
, "Object already allocated");
902 if (!check_valid_pointer(s
, page
, object
)) {
903 object_err(s
, page
, object
, "Freelist Pointer check fails");
907 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
910 /* Success perform special debug activities for allocs */
911 if (s
->flags
& SLAB_STORE_USER
)
912 set_track(s
, object
, TRACK_ALLOC
, addr
);
913 trace(s
, page
, object
, 1);
914 init_object(s
, object
, SLUB_RED_ACTIVE
);
918 if (PageSlab(page
)) {
920 * If this is a slab page then lets do the best we can
921 * to avoid issues in the future. Marking all objects
922 * as used avoids touching the remaining objects.
924 slab_fix(s
, "Marking all objects used");
925 page
->inuse
= page
->objects
;
926 page
->freelist
= NULL
;
931 static noinline
int free_debug_processing(struct kmem_cache
*s
,
932 struct page
*page
, void *object
, unsigned long addr
)
934 if (!check_slab(s
, page
))
937 if (!check_valid_pointer(s
, page
, object
)) {
938 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
942 if (on_freelist(s
, page
, object
)) {
943 object_err(s
, page
, object
, "Object already free");
947 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
950 if (unlikely(s
!= page
->slab
)) {
951 if (!PageSlab(page
)) {
952 slab_err(s
, page
, "Attempt to free object(0x%p) "
953 "outside of slab", object
);
954 } else if (!page
->slab
) {
956 "SLUB <none>: no slab for object 0x%p.\n",
960 object_err(s
, page
, object
,
961 "page slab pointer corrupt.");
965 /* Special debug activities for freeing objects */
966 if (!PageSlubFrozen(page
) && !page
->freelist
)
967 remove_full(s
, page
);
968 if (s
->flags
& SLAB_STORE_USER
)
969 set_track(s
, object
, TRACK_FREE
, addr
);
970 trace(s
, page
, object
, 0);
971 init_object(s
, object
, SLUB_RED_INACTIVE
);
975 slab_fix(s
, "Object at 0x%p not freed", object
);
979 static int __init
setup_slub_debug(char *str
)
981 slub_debug
= DEBUG_DEFAULT_FLAGS
;
982 if (*str
++ != '=' || !*str
)
984 * No options specified. Switch on full debugging.
990 * No options but restriction on slabs. This means full
991 * debugging for slabs matching a pattern.
995 if (tolower(*str
) == 'o') {
997 * Avoid enabling debugging on caches if its minimum order
998 * would increase as a result.
1000 disable_higher_order_debug
= 1;
1007 * Switch off all debugging measures.
1012 * Determine which debug features should be switched on
1014 for (; *str
&& *str
!= ','; str
++) {
1015 switch (tolower(*str
)) {
1017 slub_debug
|= SLAB_DEBUG_FREE
;
1020 slub_debug
|= SLAB_RED_ZONE
;
1023 slub_debug
|= SLAB_POISON
;
1026 slub_debug
|= SLAB_STORE_USER
;
1029 slub_debug
|= SLAB_TRACE
;
1032 slub_debug
|= SLAB_FAILSLAB
;
1035 printk(KERN_ERR
"slub_debug option '%c' "
1036 "unknown. skipped\n", *str
);
1042 slub_debug_slabs
= str
+ 1;
1047 __setup("slub_debug", setup_slub_debug
);
1049 static unsigned long kmem_cache_flags(unsigned long objsize
,
1050 unsigned long flags
, const char *name
,
1051 void (*ctor
)(void *))
1054 * Enable debugging if selected on the kernel commandline.
1056 if (slub_debug
&& (!slub_debug_slabs
||
1057 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1058 flags
|= slub_debug
;
1063 static inline void setup_object_debug(struct kmem_cache
*s
,
1064 struct page
*page
, void *object
) {}
1066 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1067 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1069 static inline int free_debug_processing(struct kmem_cache
*s
,
1070 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1072 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1074 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1075 void *object
, u8 val
) { return 1; }
1076 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1077 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1078 unsigned long flags
, const char *name
,
1079 void (*ctor
)(void *))
1083 #define slub_debug 0
1085 #define disable_higher_order_debug 0
1087 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1089 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1091 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1093 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1096 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1099 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1102 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1104 static inline void slab_free_hook_irq(struct kmem_cache
*s
,
1107 #endif /* CONFIG_SLUB_DEBUG */
1110 * Slab allocation and freeing
1112 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1113 struct kmem_cache_order_objects oo
)
1115 int order
= oo_order(oo
);
1117 flags
|= __GFP_NOTRACK
;
1119 if (node
== NUMA_NO_NODE
)
1120 return alloc_pages(flags
, order
);
1122 return alloc_pages_exact_node(node
, flags
, order
);
1125 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1128 struct kmem_cache_order_objects oo
= s
->oo
;
1131 flags
|= s
->allocflags
;
1134 * Let the initial higher-order allocation fail under memory pressure
1135 * so we fall-back to the minimum order allocation.
1137 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1139 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1140 if (unlikely(!page
)) {
1143 * Allocation may have failed due to fragmentation.
1144 * Try a lower order alloc if possible
1146 page
= alloc_slab_page(flags
, node
, oo
);
1150 stat(s
, ORDER_FALLBACK
);
1153 if (kmemcheck_enabled
1154 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1155 int pages
= 1 << oo_order(oo
);
1157 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1160 * Objects from caches that have a constructor don't get
1161 * cleared when they're allocated, so we need to do it here.
1164 kmemcheck_mark_uninitialized_pages(page
, pages
);
1166 kmemcheck_mark_unallocated_pages(page
, pages
);
1169 page
->objects
= oo_objects(oo
);
1170 mod_zone_page_state(page_zone(page
),
1171 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1172 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1178 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1181 setup_object_debug(s
, page
, object
);
1182 if (unlikely(s
->ctor
))
1186 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1193 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1195 page
= allocate_slab(s
,
1196 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1200 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1202 page
->flags
|= 1 << PG_slab
;
1204 start
= page_address(page
);
1206 if (unlikely(s
->flags
& SLAB_POISON
))
1207 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1210 for_each_object(p
, s
, start
, page
->objects
) {
1211 setup_object(s
, page
, last
);
1212 set_freepointer(s
, last
, p
);
1215 setup_object(s
, page
, last
);
1216 set_freepointer(s
, last
, NULL
);
1218 page
->freelist
= start
;
1224 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1226 int order
= compound_order(page
);
1227 int pages
= 1 << order
;
1229 if (kmem_cache_debug(s
)) {
1232 slab_pad_check(s
, page
);
1233 for_each_object(p
, s
, page_address(page
),
1235 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1238 kmemcheck_free_shadow(page
, compound_order(page
));
1240 mod_zone_page_state(page_zone(page
),
1241 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1242 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1245 __ClearPageSlab(page
);
1246 reset_page_mapcount(page
);
1247 if (current
->reclaim_state
)
1248 current
->reclaim_state
->reclaimed_slab
+= pages
;
1249 __free_pages(page
, order
);
1252 static void rcu_free_slab(struct rcu_head
*h
)
1256 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1257 __free_slab(page
->slab
, page
);
1260 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1262 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1264 * RCU free overloads the RCU head over the LRU
1266 struct rcu_head
*head
= (void *)&page
->lru
;
1268 call_rcu(head
, rcu_free_slab
);
1270 __free_slab(s
, page
);
1273 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1275 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1280 * Per slab locking using the pagelock
1282 static __always_inline
void slab_lock(struct page
*page
)
1284 bit_spin_lock(PG_locked
, &page
->flags
);
1287 static __always_inline
void slab_unlock(struct page
*page
)
1289 __bit_spin_unlock(PG_locked
, &page
->flags
);
1292 static __always_inline
int slab_trylock(struct page
*page
)
1296 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1301 * Management of partially allocated slabs
1303 static void add_partial(struct kmem_cache_node
*n
,
1304 struct page
*page
, int tail
)
1306 spin_lock(&n
->list_lock
);
1309 list_add_tail(&page
->lru
, &n
->partial
);
1311 list_add(&page
->lru
, &n
->partial
);
1312 spin_unlock(&n
->list_lock
);
1315 static inline void __remove_partial(struct kmem_cache_node
*n
,
1318 list_del(&page
->lru
);
1322 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1324 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1326 spin_lock(&n
->list_lock
);
1327 __remove_partial(n
, page
);
1328 spin_unlock(&n
->list_lock
);
1332 * Lock slab and remove from the partial list.
1334 * Must hold list_lock.
1336 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1339 if (slab_trylock(page
)) {
1340 __remove_partial(n
, page
);
1341 __SetPageSlubFrozen(page
);
1348 * Try to allocate a partial slab from a specific node.
1350 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1355 * Racy check. If we mistakenly see no partial slabs then we
1356 * just allocate an empty slab. If we mistakenly try to get a
1357 * partial slab and there is none available then get_partials()
1360 if (!n
|| !n
->nr_partial
)
1363 spin_lock(&n
->list_lock
);
1364 list_for_each_entry(page
, &n
->partial
, lru
)
1365 if (lock_and_freeze_slab(n
, page
))
1369 spin_unlock(&n
->list_lock
);
1374 * Get a page from somewhere. Search in increasing NUMA distances.
1376 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1379 struct zonelist
*zonelist
;
1382 enum zone_type high_zoneidx
= gfp_zone(flags
);
1386 * The defrag ratio allows a configuration of the tradeoffs between
1387 * inter node defragmentation and node local allocations. A lower
1388 * defrag_ratio increases the tendency to do local allocations
1389 * instead of attempting to obtain partial slabs from other nodes.
1391 * If the defrag_ratio is set to 0 then kmalloc() always
1392 * returns node local objects. If the ratio is higher then kmalloc()
1393 * may return off node objects because partial slabs are obtained
1394 * from other nodes and filled up.
1396 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1397 * defrag_ratio = 1000) then every (well almost) allocation will
1398 * first attempt to defrag slab caches on other nodes. This means
1399 * scanning over all nodes to look for partial slabs which may be
1400 * expensive if we do it every time we are trying to find a slab
1401 * with available objects.
1403 if (!s
->remote_node_defrag_ratio
||
1404 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1408 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1409 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1410 struct kmem_cache_node
*n
;
1412 n
= get_node(s
, zone_to_nid(zone
));
1414 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1415 n
->nr_partial
> s
->min_partial
) {
1416 page
= get_partial_node(n
);
1429 * Get a partial page, lock it and return it.
1431 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1434 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1436 page
= get_partial_node(get_node(s
, searchnode
));
1437 if (page
|| node
!= -1)
1440 return get_any_partial(s
, flags
);
1444 * Move a page back to the lists.
1446 * Must be called with the slab lock held.
1448 * On exit the slab lock will have been dropped.
1450 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1453 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1455 __ClearPageSlubFrozen(page
);
1458 if (page
->freelist
) {
1459 add_partial(n
, page
, tail
);
1460 stat(s
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1462 stat(s
, DEACTIVATE_FULL
);
1463 if (kmem_cache_debug(s
) && (s
->flags
& SLAB_STORE_USER
))
1468 stat(s
, DEACTIVATE_EMPTY
);
1469 if (n
->nr_partial
< s
->min_partial
) {
1471 * Adding an empty slab to the partial slabs in order
1472 * to avoid page allocator overhead. This slab needs
1473 * to come after the other slabs with objects in
1474 * so that the others get filled first. That way the
1475 * size of the partial list stays small.
1477 * kmem_cache_shrink can reclaim any empty slabs from
1480 add_partial(n
, page
, 1);
1485 discard_slab(s
, page
);
1491 * Remove the cpu slab
1493 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1496 struct page
*page
= c
->page
;
1500 stat(s
, DEACTIVATE_REMOTE_FREES
);
1502 * Merge cpu freelist into slab freelist. Typically we get here
1503 * because both freelists are empty. So this is unlikely
1506 while (unlikely(c
->freelist
)) {
1509 tail
= 0; /* Hot objects. Put the slab first */
1511 /* Retrieve object from cpu_freelist */
1512 object
= c
->freelist
;
1513 c
->freelist
= get_freepointer(s
, c
->freelist
);
1515 /* And put onto the regular freelist */
1516 set_freepointer(s
, object
, page
->freelist
);
1517 page
->freelist
= object
;
1521 unfreeze_slab(s
, page
, tail
);
1524 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1526 stat(s
, CPUSLAB_FLUSH
);
1528 deactivate_slab(s
, c
);
1534 * Called from IPI handler with interrupts disabled.
1536 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1538 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
1540 if (likely(c
&& c
->page
))
1544 static void flush_cpu_slab(void *d
)
1546 struct kmem_cache
*s
= d
;
1548 __flush_cpu_slab(s
, smp_processor_id());
1551 static void flush_all(struct kmem_cache
*s
)
1553 on_each_cpu(flush_cpu_slab
, s
, 1);
1557 * Check if the objects in a per cpu structure fit numa
1558 * locality expectations.
1560 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1563 if (node
!= NUMA_NO_NODE
&& c
->node
!= node
)
1569 static int count_free(struct page
*page
)
1571 return page
->objects
- page
->inuse
;
1574 static unsigned long count_partial(struct kmem_cache_node
*n
,
1575 int (*get_count
)(struct page
*))
1577 unsigned long flags
;
1578 unsigned long x
= 0;
1581 spin_lock_irqsave(&n
->list_lock
, flags
);
1582 list_for_each_entry(page
, &n
->partial
, lru
)
1583 x
+= get_count(page
);
1584 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1588 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1590 #ifdef CONFIG_SLUB_DEBUG
1591 return atomic_long_read(&n
->total_objects
);
1597 static noinline
void
1598 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1603 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1605 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1606 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1607 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1609 if (oo_order(s
->min
) > get_order(s
->objsize
))
1610 printk(KERN_WARNING
" %s debugging increased min order, use "
1611 "slub_debug=O to disable.\n", s
->name
);
1613 for_each_online_node(node
) {
1614 struct kmem_cache_node
*n
= get_node(s
, node
);
1615 unsigned long nr_slabs
;
1616 unsigned long nr_objs
;
1617 unsigned long nr_free
;
1622 nr_free
= count_partial(n
, count_free
);
1623 nr_slabs
= node_nr_slabs(n
);
1624 nr_objs
= node_nr_objs(n
);
1627 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1628 node
, nr_slabs
, nr_objs
, nr_free
);
1633 * Slow path. The lockless freelist is empty or we need to perform
1636 * Interrupts are disabled.
1638 * Processing is still very fast if new objects have been freed to the
1639 * regular freelist. In that case we simply take over the regular freelist
1640 * as the lockless freelist and zap the regular freelist.
1642 * If that is not working then we fall back to the partial lists. We take the
1643 * first element of the freelist as the object to allocate now and move the
1644 * rest of the freelist to the lockless freelist.
1646 * And if we were unable to get a new slab from the partial slab lists then
1647 * we need to allocate a new slab. This is the slowest path since it involves
1648 * a call to the page allocator and the setup of a new slab.
1650 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1651 unsigned long addr
, struct kmem_cache_cpu
*c
)
1656 /* We handle __GFP_ZERO in the caller */
1657 gfpflags
&= ~__GFP_ZERO
;
1663 if (unlikely(!node_match(c
, node
)))
1666 stat(s
, ALLOC_REFILL
);
1669 object
= c
->page
->freelist
;
1670 if (unlikely(!object
))
1672 if (kmem_cache_debug(s
))
1675 c
->freelist
= get_freepointer(s
, object
);
1676 c
->page
->inuse
= c
->page
->objects
;
1677 c
->page
->freelist
= NULL
;
1678 c
->node
= page_to_nid(c
->page
);
1680 slab_unlock(c
->page
);
1681 stat(s
, ALLOC_SLOWPATH
);
1685 deactivate_slab(s
, c
);
1688 new = get_partial(s
, gfpflags
, node
);
1691 stat(s
, ALLOC_FROM_PARTIAL
);
1695 gfpflags
&= gfp_allowed_mask
;
1696 if (gfpflags
& __GFP_WAIT
)
1699 new = new_slab(s
, gfpflags
, node
);
1701 if (gfpflags
& __GFP_WAIT
)
1702 local_irq_disable();
1705 c
= __this_cpu_ptr(s
->cpu_slab
);
1706 stat(s
, ALLOC_SLAB
);
1710 __SetPageSlubFrozen(new);
1714 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
1715 slab_out_of_memory(s
, gfpflags
, node
);
1718 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1722 c
->page
->freelist
= get_freepointer(s
, object
);
1723 c
->node
= NUMA_NO_NODE
;
1728 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1729 * have the fastpath folded into their functions. So no function call
1730 * overhead for requests that can be satisfied on the fastpath.
1732 * The fastpath works by first checking if the lockless freelist can be used.
1733 * If not then __slab_alloc is called for slow processing.
1735 * Otherwise we can simply pick the next object from the lockless free list.
1737 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1738 gfp_t gfpflags
, int node
, unsigned long addr
)
1741 struct kmem_cache_cpu
*c
;
1742 unsigned long flags
;
1744 if (slab_pre_alloc_hook(s
, gfpflags
))
1747 local_irq_save(flags
);
1748 c
= __this_cpu_ptr(s
->cpu_slab
);
1749 object
= c
->freelist
;
1750 if (unlikely(!object
|| !node_match(c
, node
)))
1752 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1755 c
->freelist
= get_freepointer(s
, object
);
1756 stat(s
, ALLOC_FASTPATH
);
1758 local_irq_restore(flags
);
1760 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
1761 memset(object
, 0, s
->objsize
);
1763 slab_post_alloc_hook(s
, gfpflags
, object
);
1768 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1770 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
1772 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1776 EXPORT_SYMBOL(kmem_cache_alloc
);
1778 #ifdef CONFIG_TRACING
1779 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
1781 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
1782 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
1785 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
1787 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1789 void *ret
= kmalloc_order(size
, flags
, order
);
1790 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1793 EXPORT_SYMBOL(kmalloc_order_trace
);
1797 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1799 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1801 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1802 s
->objsize
, s
->size
, gfpflags
, node
);
1806 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1808 #ifdef CONFIG_TRACING
1809 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
1811 int node
, size_t size
)
1813 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1815 trace_kmalloc_node(_RET_IP_
, ret
,
1816 size
, s
->size
, gfpflags
, node
);
1819 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
1824 * Slow patch handling. This may still be called frequently since objects
1825 * have a longer lifetime than the cpu slabs in most processing loads.
1827 * So we still attempt to reduce cache line usage. Just take the slab
1828 * lock and free the item. If there is no additional partial page
1829 * handling required then we can return immediately.
1831 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1832 void *x
, unsigned long addr
)
1835 void **object
= (void *)x
;
1837 stat(s
, FREE_SLOWPATH
);
1840 if (kmem_cache_debug(s
))
1844 prior
= page
->freelist
;
1845 set_freepointer(s
, object
, prior
);
1846 page
->freelist
= object
;
1849 if (unlikely(PageSlubFrozen(page
))) {
1850 stat(s
, FREE_FROZEN
);
1854 if (unlikely(!page
->inuse
))
1858 * Objects left in the slab. If it was not on the partial list before
1861 if (unlikely(!prior
)) {
1862 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1863 stat(s
, FREE_ADD_PARTIAL
);
1873 * Slab still on the partial list.
1875 remove_partial(s
, page
);
1876 stat(s
, FREE_REMOVE_PARTIAL
);
1880 discard_slab(s
, page
);
1884 if (!free_debug_processing(s
, page
, x
, addr
))
1890 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1891 * can perform fastpath freeing without additional function calls.
1893 * The fastpath is only possible if we are freeing to the current cpu slab
1894 * of this processor. This typically the case if we have just allocated
1897 * If fastpath is not possible then fall back to __slab_free where we deal
1898 * with all sorts of special processing.
1900 static __always_inline
void slab_free(struct kmem_cache
*s
,
1901 struct page
*page
, void *x
, unsigned long addr
)
1903 void **object
= (void *)x
;
1904 struct kmem_cache_cpu
*c
;
1905 unsigned long flags
;
1907 slab_free_hook(s
, x
);
1909 local_irq_save(flags
);
1910 c
= __this_cpu_ptr(s
->cpu_slab
);
1912 slab_free_hook_irq(s
, x
);
1914 if (likely(page
== c
->page
&& c
->node
!= NUMA_NO_NODE
)) {
1915 set_freepointer(s
, object
, c
->freelist
);
1916 c
->freelist
= object
;
1917 stat(s
, FREE_FASTPATH
);
1919 __slab_free(s
, page
, x
, addr
);
1921 local_irq_restore(flags
);
1924 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1928 page
= virt_to_head_page(x
);
1930 slab_free(s
, page
, x
, _RET_IP_
);
1932 trace_kmem_cache_free(_RET_IP_
, x
);
1934 EXPORT_SYMBOL(kmem_cache_free
);
1937 * Object placement in a slab is made very easy because we always start at
1938 * offset 0. If we tune the size of the object to the alignment then we can
1939 * get the required alignment by putting one properly sized object after
1942 * Notice that the allocation order determines the sizes of the per cpu
1943 * caches. Each processor has always one slab available for allocations.
1944 * Increasing the allocation order reduces the number of times that slabs
1945 * must be moved on and off the partial lists and is therefore a factor in
1950 * Mininum / Maximum order of slab pages. This influences locking overhead
1951 * and slab fragmentation. A higher order reduces the number of partial slabs
1952 * and increases the number of allocations possible without having to
1953 * take the list_lock.
1955 static int slub_min_order
;
1956 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1957 static int slub_min_objects
;
1960 * Merge control. If this is set then no merging of slab caches will occur.
1961 * (Could be removed. This was introduced to pacify the merge skeptics.)
1963 static int slub_nomerge
;
1966 * Calculate the order of allocation given an slab object size.
1968 * The order of allocation has significant impact on performance and other
1969 * system components. Generally order 0 allocations should be preferred since
1970 * order 0 does not cause fragmentation in the page allocator. Larger objects
1971 * be problematic to put into order 0 slabs because there may be too much
1972 * unused space left. We go to a higher order if more than 1/16th of the slab
1975 * In order to reach satisfactory performance we must ensure that a minimum
1976 * number of objects is in one slab. Otherwise we may generate too much
1977 * activity on the partial lists which requires taking the list_lock. This is
1978 * less a concern for large slabs though which are rarely used.
1980 * slub_max_order specifies the order where we begin to stop considering the
1981 * number of objects in a slab as critical. If we reach slub_max_order then
1982 * we try to keep the page order as low as possible. So we accept more waste
1983 * of space in favor of a small page order.
1985 * Higher order allocations also allow the placement of more objects in a
1986 * slab and thereby reduce object handling overhead. If the user has
1987 * requested a higher mininum order then we start with that one instead of
1988 * the smallest order which will fit the object.
1990 static inline int slab_order(int size
, int min_objects
,
1991 int max_order
, int fract_leftover
)
1995 int min_order
= slub_min_order
;
1997 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1998 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2000 for (order
= max(min_order
,
2001 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2002 order
<= max_order
; order
++) {
2004 unsigned long slab_size
= PAGE_SIZE
<< order
;
2006 if (slab_size
< min_objects
* size
)
2009 rem
= slab_size
% size
;
2011 if (rem
<= slab_size
/ fract_leftover
)
2019 static inline int calculate_order(int size
)
2027 * Attempt to find best configuration for a slab. This
2028 * works by first attempting to generate a layout with
2029 * the best configuration and backing off gradually.
2031 * First we reduce the acceptable waste in a slab. Then
2032 * we reduce the minimum objects required in a slab.
2034 min_objects
= slub_min_objects
;
2036 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2037 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
2038 min_objects
= min(min_objects
, max_objects
);
2040 while (min_objects
> 1) {
2042 while (fraction
>= 4) {
2043 order
= slab_order(size
, min_objects
,
2044 slub_max_order
, fraction
);
2045 if (order
<= slub_max_order
)
2053 * We were unable to place multiple objects in a slab. Now
2054 * lets see if we can place a single object there.
2056 order
= slab_order(size
, 1, slub_max_order
, 1);
2057 if (order
<= slub_max_order
)
2061 * Doh this slab cannot be placed using slub_max_order.
2063 order
= slab_order(size
, 1, MAX_ORDER
, 1);
2064 if (order
< MAX_ORDER
)
2070 * Figure out what the alignment of the objects will be.
2072 static unsigned long calculate_alignment(unsigned long flags
,
2073 unsigned long align
, unsigned long size
)
2076 * If the user wants hardware cache aligned objects then follow that
2077 * suggestion if the object is sufficiently large.
2079 * The hardware cache alignment cannot override the specified
2080 * alignment though. If that is greater then use it.
2082 if (flags
& SLAB_HWCACHE_ALIGN
) {
2083 unsigned long ralign
= cache_line_size();
2084 while (size
<= ralign
/ 2)
2086 align
= max(align
, ralign
);
2089 if (align
< ARCH_SLAB_MINALIGN
)
2090 align
= ARCH_SLAB_MINALIGN
;
2092 return ALIGN(align
, sizeof(void *));
2096 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2099 spin_lock_init(&n
->list_lock
);
2100 INIT_LIST_HEAD(&n
->partial
);
2101 #ifdef CONFIG_SLUB_DEBUG
2102 atomic_long_set(&n
->nr_slabs
, 0);
2103 atomic_long_set(&n
->total_objects
, 0);
2104 INIT_LIST_HEAD(&n
->full
);
2108 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2110 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2111 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2113 s
->cpu_slab
= alloc_percpu(struct kmem_cache_cpu
);
2115 return s
->cpu_slab
!= NULL
;
2118 static struct kmem_cache
*kmem_cache_node
;
2121 * No kmalloc_node yet so do it by hand. We know that this is the first
2122 * slab on the node for this slabcache. There are no concurrent accesses
2125 * Note that this function only works on the kmalloc_node_cache
2126 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2127 * memory on a fresh node that has no slab structures yet.
2129 static void early_kmem_cache_node_alloc(int node
)
2132 struct kmem_cache_node
*n
;
2133 unsigned long flags
;
2135 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2137 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2140 if (page_to_nid(page
) != node
) {
2141 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2143 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2144 "in order to be able to continue\n");
2149 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2151 kmem_cache_node
->node
[node
] = n
;
2152 #ifdef CONFIG_SLUB_DEBUG
2153 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2154 init_tracking(kmem_cache_node
, n
);
2156 init_kmem_cache_node(n
, kmem_cache_node
);
2157 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2160 * lockdep requires consistent irq usage for each lock
2161 * so even though there cannot be a race this early in
2162 * the boot sequence, we still disable irqs.
2164 local_irq_save(flags
);
2165 add_partial(n
, page
, 0);
2166 local_irq_restore(flags
);
2169 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2173 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2174 struct kmem_cache_node
*n
= s
->node
[node
];
2177 kmem_cache_free(kmem_cache_node
, n
);
2179 s
->node
[node
] = NULL
;
2183 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2187 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2188 struct kmem_cache_node
*n
;
2190 if (slab_state
== DOWN
) {
2191 early_kmem_cache_node_alloc(node
);
2194 n
= kmem_cache_alloc_node(kmem_cache_node
,
2198 free_kmem_cache_nodes(s
);
2203 init_kmem_cache_node(n
, s
);
2208 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2210 if (min
< MIN_PARTIAL
)
2212 else if (min
> MAX_PARTIAL
)
2214 s
->min_partial
= min
;
2218 * calculate_sizes() determines the order and the distribution of data within
2221 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2223 unsigned long flags
= s
->flags
;
2224 unsigned long size
= s
->objsize
;
2225 unsigned long align
= s
->align
;
2229 * Round up object size to the next word boundary. We can only
2230 * place the free pointer at word boundaries and this determines
2231 * the possible location of the free pointer.
2233 size
= ALIGN(size
, sizeof(void *));
2235 #ifdef CONFIG_SLUB_DEBUG
2237 * Determine if we can poison the object itself. If the user of
2238 * the slab may touch the object after free or before allocation
2239 * then we should never poison the object itself.
2241 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2243 s
->flags
|= __OBJECT_POISON
;
2245 s
->flags
&= ~__OBJECT_POISON
;
2249 * If we are Redzoning then check if there is some space between the
2250 * end of the object and the free pointer. If not then add an
2251 * additional word to have some bytes to store Redzone information.
2253 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2254 size
+= sizeof(void *);
2258 * With that we have determined the number of bytes in actual use
2259 * by the object. This is the potential offset to the free pointer.
2263 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2266 * Relocate free pointer after the object if it is not
2267 * permitted to overwrite the first word of the object on
2270 * This is the case if we do RCU, have a constructor or
2271 * destructor or are poisoning the objects.
2274 size
+= sizeof(void *);
2277 #ifdef CONFIG_SLUB_DEBUG
2278 if (flags
& SLAB_STORE_USER
)
2280 * Need to store information about allocs and frees after
2283 size
+= 2 * sizeof(struct track
);
2285 if (flags
& SLAB_RED_ZONE
)
2287 * Add some empty padding so that we can catch
2288 * overwrites from earlier objects rather than let
2289 * tracking information or the free pointer be
2290 * corrupted if a user writes before the start
2293 size
+= sizeof(void *);
2297 * Determine the alignment based on various parameters that the
2298 * user specified and the dynamic determination of cache line size
2301 align
= calculate_alignment(flags
, align
, s
->objsize
);
2305 * SLUB stores one object immediately after another beginning from
2306 * offset 0. In order to align the objects we have to simply size
2307 * each object to conform to the alignment.
2309 size
= ALIGN(size
, align
);
2311 if (forced_order
>= 0)
2312 order
= forced_order
;
2314 order
= calculate_order(size
);
2321 s
->allocflags
|= __GFP_COMP
;
2323 if (s
->flags
& SLAB_CACHE_DMA
)
2324 s
->allocflags
|= SLUB_DMA
;
2326 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2327 s
->allocflags
|= __GFP_RECLAIMABLE
;
2330 * Determine the number of objects per slab
2332 s
->oo
= oo_make(order
, size
);
2333 s
->min
= oo_make(get_order(size
), size
);
2334 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2337 return !!oo_objects(s
->oo
);
2341 static int kmem_cache_open(struct kmem_cache
*s
,
2342 const char *name
, size_t size
,
2343 size_t align
, unsigned long flags
,
2344 void (*ctor
)(void *))
2346 memset(s
, 0, kmem_size
);
2351 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2353 if (!calculate_sizes(s
, -1))
2355 if (disable_higher_order_debug
) {
2357 * Disable debugging flags that store metadata if the min slab
2360 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2361 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2363 if (!calculate_sizes(s
, -1))
2369 * The larger the object size is, the more pages we want on the partial
2370 * list to avoid pounding the page allocator excessively.
2372 set_min_partial(s
, ilog2(s
->size
));
2375 s
->remote_node_defrag_ratio
= 1000;
2377 if (!init_kmem_cache_nodes(s
))
2380 if (alloc_kmem_cache_cpus(s
))
2383 free_kmem_cache_nodes(s
);
2385 if (flags
& SLAB_PANIC
)
2386 panic("Cannot create slab %s size=%lu realsize=%u "
2387 "order=%u offset=%u flags=%lx\n",
2388 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2394 * Determine the size of a slab object
2396 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2400 EXPORT_SYMBOL(kmem_cache_size
);
2402 const char *kmem_cache_name(struct kmem_cache
*s
)
2406 EXPORT_SYMBOL(kmem_cache_name
);
2408 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2411 #ifdef CONFIG_SLUB_DEBUG
2412 void *addr
= page_address(page
);
2414 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
2415 sizeof(long), GFP_ATOMIC
);
2418 slab_err(s
, page
, "%s", text
);
2420 for_each_free_object(p
, s
, page
->freelist
)
2421 set_bit(slab_index(p
, s
, addr
), map
);
2423 for_each_object(p
, s
, addr
, page
->objects
) {
2425 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2426 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2428 print_tracking(s
, p
);
2437 * Attempt to free all partial slabs on a node.
2439 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2441 unsigned long flags
;
2442 struct page
*page
, *h
;
2444 spin_lock_irqsave(&n
->list_lock
, flags
);
2445 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2447 __remove_partial(n
, page
);
2448 discard_slab(s
, page
);
2450 list_slab_objects(s
, page
,
2451 "Objects remaining on kmem_cache_close()");
2454 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2458 * Release all resources used by a slab cache.
2460 static inline int kmem_cache_close(struct kmem_cache
*s
)
2465 free_percpu(s
->cpu_slab
);
2466 /* Attempt to free all objects */
2467 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2468 struct kmem_cache_node
*n
= get_node(s
, node
);
2471 if (n
->nr_partial
|| slabs_node(s
, node
))
2474 free_kmem_cache_nodes(s
);
2479 * Close a cache and release the kmem_cache structure
2480 * (must be used for caches created using kmem_cache_create)
2482 void kmem_cache_destroy(struct kmem_cache
*s
)
2484 down_write(&slub_lock
);
2488 if (kmem_cache_close(s
)) {
2489 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2490 "still has objects.\n", s
->name
, __func__
);
2493 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2495 sysfs_slab_remove(s
);
2497 up_write(&slub_lock
);
2499 EXPORT_SYMBOL(kmem_cache_destroy
);
2501 /********************************************************************
2503 *******************************************************************/
2505 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
2506 EXPORT_SYMBOL(kmalloc_caches
);
2508 static struct kmem_cache
*kmem_cache
;
2510 #ifdef CONFIG_ZONE_DMA
2511 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
2514 static int __init
setup_slub_min_order(char *str
)
2516 get_option(&str
, &slub_min_order
);
2521 __setup("slub_min_order=", setup_slub_min_order
);
2523 static int __init
setup_slub_max_order(char *str
)
2525 get_option(&str
, &slub_max_order
);
2526 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2531 __setup("slub_max_order=", setup_slub_max_order
);
2533 static int __init
setup_slub_min_objects(char *str
)
2535 get_option(&str
, &slub_min_objects
);
2540 __setup("slub_min_objects=", setup_slub_min_objects
);
2542 static int __init
setup_slub_nomerge(char *str
)
2548 __setup("slub_nomerge", setup_slub_nomerge
);
2550 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
2551 int size
, unsigned int flags
)
2553 struct kmem_cache
*s
;
2555 s
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
2558 * This function is called with IRQs disabled during early-boot on
2559 * single CPU so there's no need to take slub_lock here.
2561 if (!kmem_cache_open(s
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2565 list_add(&s
->list
, &slab_caches
);
2569 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2574 * Conversion table for small slabs sizes / 8 to the index in the
2575 * kmalloc array. This is necessary for slabs < 192 since we have non power
2576 * of two cache sizes there. The size of larger slabs can be determined using
2579 static s8 size_index
[24] = {
2606 static inline int size_index_elem(size_t bytes
)
2608 return (bytes
- 1) / 8;
2611 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2617 return ZERO_SIZE_PTR
;
2619 index
= size_index
[size_index_elem(size
)];
2621 index
= fls(size
- 1);
2623 #ifdef CONFIG_ZONE_DMA
2624 if (unlikely((flags
& SLUB_DMA
)))
2625 return kmalloc_dma_caches
[index
];
2628 return kmalloc_caches
[index
];
2631 void *__kmalloc(size_t size
, gfp_t flags
)
2633 struct kmem_cache
*s
;
2636 if (unlikely(size
> SLUB_MAX_SIZE
))
2637 return kmalloc_large(size
, flags
);
2639 s
= get_slab(size
, flags
);
2641 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2644 ret
= slab_alloc(s
, flags
, NUMA_NO_NODE
, _RET_IP_
);
2646 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2650 EXPORT_SYMBOL(__kmalloc
);
2653 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2658 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2659 page
= alloc_pages_node(node
, flags
, get_order(size
));
2661 ptr
= page_address(page
);
2663 kmemleak_alloc(ptr
, size
, 1, flags
);
2667 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2669 struct kmem_cache
*s
;
2672 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2673 ret
= kmalloc_large_node(size
, flags
, node
);
2675 trace_kmalloc_node(_RET_IP_
, ret
,
2676 size
, PAGE_SIZE
<< get_order(size
),
2682 s
= get_slab(size
, flags
);
2684 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2687 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2689 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2693 EXPORT_SYMBOL(__kmalloc_node
);
2696 size_t ksize(const void *object
)
2699 struct kmem_cache
*s
;
2701 if (unlikely(object
== ZERO_SIZE_PTR
))
2704 page
= virt_to_head_page(object
);
2706 if (unlikely(!PageSlab(page
))) {
2707 WARN_ON(!PageCompound(page
));
2708 return PAGE_SIZE
<< compound_order(page
);
2712 #ifdef CONFIG_SLUB_DEBUG
2714 * Debugging requires use of the padding between object
2715 * and whatever may come after it.
2717 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2722 * If we have the need to store the freelist pointer
2723 * back there or track user information then we can
2724 * only use the space before that information.
2726 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2729 * Else we can use all the padding etc for the allocation
2733 EXPORT_SYMBOL(ksize
);
2735 void kfree(const void *x
)
2738 void *object
= (void *)x
;
2740 trace_kfree(_RET_IP_
, x
);
2742 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2745 page
= virt_to_head_page(x
);
2746 if (unlikely(!PageSlab(page
))) {
2747 BUG_ON(!PageCompound(page
));
2752 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2754 EXPORT_SYMBOL(kfree
);
2757 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2758 * the remaining slabs by the number of items in use. The slabs with the
2759 * most items in use come first. New allocations will then fill those up
2760 * and thus they can be removed from the partial lists.
2762 * The slabs with the least items are placed last. This results in them
2763 * being allocated from last increasing the chance that the last objects
2764 * are freed in them.
2766 int kmem_cache_shrink(struct kmem_cache
*s
)
2770 struct kmem_cache_node
*n
;
2773 int objects
= oo_objects(s
->max
);
2774 struct list_head
*slabs_by_inuse
=
2775 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2776 unsigned long flags
;
2778 if (!slabs_by_inuse
)
2782 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2783 n
= get_node(s
, node
);
2788 for (i
= 0; i
< objects
; i
++)
2789 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2791 spin_lock_irqsave(&n
->list_lock
, flags
);
2794 * Build lists indexed by the items in use in each slab.
2796 * Note that concurrent frees may occur while we hold the
2797 * list_lock. page->inuse here is the upper limit.
2799 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2800 if (!page
->inuse
&& slab_trylock(page
)) {
2802 * Must hold slab lock here because slab_free
2803 * may have freed the last object and be
2804 * waiting to release the slab.
2806 __remove_partial(n
, page
);
2808 discard_slab(s
, page
);
2810 list_move(&page
->lru
,
2811 slabs_by_inuse
+ page
->inuse
);
2816 * Rebuild the partial list with the slabs filled up most
2817 * first and the least used slabs at the end.
2819 for (i
= objects
- 1; i
>= 0; i
--)
2820 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2822 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2825 kfree(slabs_by_inuse
);
2828 EXPORT_SYMBOL(kmem_cache_shrink
);
2830 #if defined(CONFIG_MEMORY_HOTPLUG)
2831 static int slab_mem_going_offline_callback(void *arg
)
2833 struct kmem_cache
*s
;
2835 down_read(&slub_lock
);
2836 list_for_each_entry(s
, &slab_caches
, list
)
2837 kmem_cache_shrink(s
);
2838 up_read(&slub_lock
);
2843 static void slab_mem_offline_callback(void *arg
)
2845 struct kmem_cache_node
*n
;
2846 struct kmem_cache
*s
;
2847 struct memory_notify
*marg
= arg
;
2850 offline_node
= marg
->status_change_nid
;
2853 * If the node still has available memory. we need kmem_cache_node
2856 if (offline_node
< 0)
2859 down_read(&slub_lock
);
2860 list_for_each_entry(s
, &slab_caches
, list
) {
2861 n
= get_node(s
, offline_node
);
2864 * if n->nr_slabs > 0, slabs still exist on the node
2865 * that is going down. We were unable to free them,
2866 * and offline_pages() function shouldn't call this
2867 * callback. So, we must fail.
2869 BUG_ON(slabs_node(s
, offline_node
));
2871 s
->node
[offline_node
] = NULL
;
2872 kmem_cache_free(kmem_cache_node
, n
);
2875 up_read(&slub_lock
);
2878 static int slab_mem_going_online_callback(void *arg
)
2880 struct kmem_cache_node
*n
;
2881 struct kmem_cache
*s
;
2882 struct memory_notify
*marg
= arg
;
2883 int nid
= marg
->status_change_nid
;
2887 * If the node's memory is already available, then kmem_cache_node is
2888 * already created. Nothing to do.
2894 * We are bringing a node online. No memory is available yet. We must
2895 * allocate a kmem_cache_node structure in order to bring the node
2898 down_read(&slub_lock
);
2899 list_for_each_entry(s
, &slab_caches
, list
) {
2901 * XXX: kmem_cache_alloc_node will fallback to other nodes
2902 * since memory is not yet available from the node that
2905 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
2910 init_kmem_cache_node(n
, s
);
2914 up_read(&slub_lock
);
2918 static int slab_memory_callback(struct notifier_block
*self
,
2919 unsigned long action
, void *arg
)
2924 case MEM_GOING_ONLINE
:
2925 ret
= slab_mem_going_online_callback(arg
);
2927 case MEM_GOING_OFFLINE
:
2928 ret
= slab_mem_going_offline_callback(arg
);
2931 case MEM_CANCEL_ONLINE
:
2932 slab_mem_offline_callback(arg
);
2935 case MEM_CANCEL_OFFLINE
:
2939 ret
= notifier_from_errno(ret
);
2945 #endif /* CONFIG_MEMORY_HOTPLUG */
2947 /********************************************************************
2948 * Basic setup of slabs
2949 *******************************************************************/
2952 * Used for early kmem_cache structures that were allocated using
2953 * the page allocator
2956 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
2960 list_add(&s
->list
, &slab_caches
);
2963 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2964 struct kmem_cache_node
*n
= get_node(s
, node
);
2968 list_for_each_entry(p
, &n
->partial
, lru
)
2971 #ifdef CONFIG_SLAB_DEBUG
2972 list_for_each_entry(p
, &n
->full
, lru
)
2979 void __init
kmem_cache_init(void)
2983 struct kmem_cache
*temp_kmem_cache
;
2985 struct kmem_cache
*temp_kmem_cache_node
;
2986 unsigned long kmalloc_size
;
2988 kmem_size
= offsetof(struct kmem_cache
, node
) +
2989 nr_node_ids
* sizeof(struct kmem_cache_node
*);
2991 /* Allocate two kmem_caches from the page allocator */
2992 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
2993 order
= get_order(2 * kmalloc_size
);
2994 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
, order
);
2997 * Must first have the slab cache available for the allocations of the
2998 * struct kmem_cache_node's. There is special bootstrap code in
2999 * kmem_cache_open for slab_state == DOWN.
3001 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3003 kmem_cache_open(kmem_cache_node
, "kmem_cache_node",
3004 sizeof(struct kmem_cache_node
),
3005 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3007 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3009 /* Able to allocate the per node structures */
3010 slab_state
= PARTIAL
;
3012 temp_kmem_cache
= kmem_cache
;
3013 kmem_cache_open(kmem_cache
, "kmem_cache", kmem_size
,
3014 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3015 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3016 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3019 * Allocate kmem_cache_node properly from the kmem_cache slab.
3020 * kmem_cache_node is separately allocated so no need to
3021 * update any list pointers.
3023 temp_kmem_cache_node
= kmem_cache_node
;
3025 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3026 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3028 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3031 kmem_cache_bootstrap_fixup(kmem_cache
);
3033 /* Free temporary boot structure */
3034 free_pages((unsigned long)temp_kmem_cache
, order
);
3036 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3039 * Patch up the size_index table if we have strange large alignment
3040 * requirements for the kmalloc array. This is only the case for
3041 * MIPS it seems. The standard arches will not generate any code here.
3043 * Largest permitted alignment is 256 bytes due to the way we
3044 * handle the index determination for the smaller caches.
3046 * Make sure that nothing crazy happens if someone starts tinkering
3047 * around with ARCH_KMALLOC_MINALIGN
3049 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3050 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3052 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3053 int elem
= size_index_elem(i
);
3054 if (elem
>= ARRAY_SIZE(size_index
))
3056 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3059 if (KMALLOC_MIN_SIZE
== 64) {
3061 * The 96 byte size cache is not used if the alignment
3064 for (i
= 64 + 8; i
<= 96; i
+= 8)
3065 size_index
[size_index_elem(i
)] = 7;
3066 } else if (KMALLOC_MIN_SIZE
== 128) {
3068 * The 192 byte sized cache is not used if the alignment
3069 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3072 for (i
= 128 + 8; i
<= 192; i
+= 8)
3073 size_index
[size_index_elem(i
)] = 8;
3076 /* Caches that are not of the two-to-the-power-of size */
3077 if (KMALLOC_MIN_SIZE
<= 32) {
3078 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3082 if (KMALLOC_MIN_SIZE
<= 64) {
3083 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3087 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3088 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3094 /* Provide the correct kmalloc names now that the caches are up */
3095 if (KMALLOC_MIN_SIZE
<= 32) {
3096 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3097 BUG_ON(!kmalloc_caches
[1]->name
);
3100 if (KMALLOC_MIN_SIZE
<= 64) {
3101 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3102 BUG_ON(!kmalloc_caches
[2]->name
);
3105 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3106 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3109 kmalloc_caches
[i
]->name
= s
;
3113 register_cpu_notifier(&slab_notifier
);
3116 #ifdef CONFIG_ZONE_DMA
3117 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3118 struct kmem_cache
*s
= kmalloc_caches
[i
];
3121 char *name
= kasprintf(GFP_NOWAIT
,
3122 "dma-kmalloc-%d", s
->objsize
);
3125 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3126 s
->objsize
, SLAB_CACHE_DMA
);
3131 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3132 " CPUs=%d, Nodes=%d\n",
3133 caches
, cache_line_size(),
3134 slub_min_order
, slub_max_order
, slub_min_objects
,
3135 nr_cpu_ids
, nr_node_ids
);
3138 void __init
kmem_cache_init_late(void)
3143 * Find a mergeable slab cache
3145 static int slab_unmergeable(struct kmem_cache
*s
)
3147 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3154 * We may have set a slab to be unmergeable during bootstrap.
3156 if (s
->refcount
< 0)
3162 static struct kmem_cache
*find_mergeable(size_t size
,
3163 size_t align
, unsigned long flags
, const char *name
,
3164 void (*ctor
)(void *))
3166 struct kmem_cache
*s
;
3168 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3174 size
= ALIGN(size
, sizeof(void *));
3175 align
= calculate_alignment(flags
, align
, size
);
3176 size
= ALIGN(size
, align
);
3177 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3179 list_for_each_entry(s
, &slab_caches
, list
) {
3180 if (slab_unmergeable(s
))
3186 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3189 * Check if alignment is compatible.
3190 * Courtesy of Adrian Drzewiecki
3192 if ((s
->size
& ~(align
- 1)) != s
->size
)
3195 if (s
->size
- size
>= sizeof(void *))
3203 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3204 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3206 struct kmem_cache
*s
;
3212 down_write(&slub_lock
);
3213 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3217 * Adjust the object sizes so that we clear
3218 * the complete object on kzalloc.
3220 s
->objsize
= max(s
->objsize
, (int)size
);
3221 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3223 if (sysfs_slab_alias(s
, name
)) {
3227 up_write(&slub_lock
);
3231 n
= kstrdup(name
, GFP_KERNEL
);
3235 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3237 if (kmem_cache_open(s
, n
,
3238 size
, align
, flags
, ctor
)) {
3239 list_add(&s
->list
, &slab_caches
);
3240 if (sysfs_slab_add(s
)) {
3246 up_write(&slub_lock
);
3253 up_write(&slub_lock
);
3255 if (flags
& SLAB_PANIC
)
3256 panic("Cannot create slabcache %s\n", name
);
3261 EXPORT_SYMBOL(kmem_cache_create
);
3265 * Use the cpu notifier to insure that the cpu slabs are flushed when
3268 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3269 unsigned long action
, void *hcpu
)
3271 long cpu
= (long)hcpu
;
3272 struct kmem_cache
*s
;
3273 unsigned long flags
;
3276 case CPU_UP_CANCELED
:
3277 case CPU_UP_CANCELED_FROZEN
:
3279 case CPU_DEAD_FROZEN
:
3280 down_read(&slub_lock
);
3281 list_for_each_entry(s
, &slab_caches
, list
) {
3282 local_irq_save(flags
);
3283 __flush_cpu_slab(s
, cpu
);
3284 local_irq_restore(flags
);
3286 up_read(&slub_lock
);
3294 static struct notifier_block __cpuinitdata slab_notifier
= {
3295 .notifier_call
= slab_cpuup_callback
3300 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3302 struct kmem_cache
*s
;
3305 if (unlikely(size
> SLUB_MAX_SIZE
))
3306 return kmalloc_large(size
, gfpflags
);
3308 s
= get_slab(size
, gfpflags
);
3310 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3313 ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, caller
);
3315 /* Honor the call site pointer we recieved. */
3316 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3322 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3323 int node
, unsigned long caller
)
3325 struct kmem_cache
*s
;
3328 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3329 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3331 trace_kmalloc_node(caller
, ret
,
3332 size
, PAGE_SIZE
<< get_order(size
),
3338 s
= get_slab(size
, gfpflags
);
3340 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3343 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3345 /* Honor the call site pointer we recieved. */
3346 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3353 static int count_inuse(struct page
*page
)
3358 static int count_total(struct page
*page
)
3360 return page
->objects
;
3364 #ifdef CONFIG_SLUB_DEBUG
3365 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3369 void *addr
= page_address(page
);
3371 if (!check_slab(s
, page
) ||
3372 !on_freelist(s
, page
, NULL
))
3375 /* Now we know that a valid freelist exists */
3376 bitmap_zero(map
, page
->objects
);
3378 for_each_free_object(p
, s
, page
->freelist
) {
3379 set_bit(slab_index(p
, s
, addr
), map
);
3380 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3384 for_each_object(p
, s
, addr
, page
->objects
)
3385 if (!test_bit(slab_index(p
, s
, addr
), map
))
3386 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3391 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3394 if (slab_trylock(page
)) {
3395 validate_slab(s
, page
, map
);
3398 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3402 static int validate_slab_node(struct kmem_cache
*s
,
3403 struct kmem_cache_node
*n
, unsigned long *map
)
3405 unsigned long count
= 0;
3407 unsigned long flags
;
3409 spin_lock_irqsave(&n
->list_lock
, flags
);
3411 list_for_each_entry(page
, &n
->partial
, lru
) {
3412 validate_slab_slab(s
, page
, map
);
3415 if (count
!= n
->nr_partial
)
3416 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3417 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3419 if (!(s
->flags
& SLAB_STORE_USER
))
3422 list_for_each_entry(page
, &n
->full
, lru
) {
3423 validate_slab_slab(s
, page
, map
);
3426 if (count
!= atomic_long_read(&n
->nr_slabs
))
3427 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3428 "counter=%ld\n", s
->name
, count
,
3429 atomic_long_read(&n
->nr_slabs
));
3432 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3436 static long validate_slab_cache(struct kmem_cache
*s
)
3439 unsigned long count
= 0;
3440 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3441 sizeof(unsigned long), GFP_KERNEL
);
3447 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3448 struct kmem_cache_node
*n
= get_node(s
, node
);
3450 count
+= validate_slab_node(s
, n
, map
);
3456 * Generate lists of code addresses where slabcache objects are allocated
3461 unsigned long count
;
3468 DECLARE_BITMAP(cpus
, NR_CPUS
);
3474 unsigned long count
;
3475 struct location
*loc
;
3478 static void free_loc_track(struct loc_track
*t
)
3481 free_pages((unsigned long)t
->loc
,
3482 get_order(sizeof(struct location
) * t
->max
));
3485 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3490 order
= get_order(sizeof(struct location
) * max
);
3492 l
= (void *)__get_free_pages(flags
, order
);
3497 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3505 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3506 const struct track
*track
)
3508 long start
, end
, pos
;
3510 unsigned long caddr
;
3511 unsigned long age
= jiffies
- track
->when
;
3517 pos
= start
+ (end
- start
+ 1) / 2;
3520 * There is nothing at "end". If we end up there
3521 * we need to add something to before end.
3526 caddr
= t
->loc
[pos
].addr
;
3527 if (track
->addr
== caddr
) {
3533 if (age
< l
->min_time
)
3535 if (age
> l
->max_time
)
3538 if (track
->pid
< l
->min_pid
)
3539 l
->min_pid
= track
->pid
;
3540 if (track
->pid
> l
->max_pid
)
3541 l
->max_pid
= track
->pid
;
3543 cpumask_set_cpu(track
->cpu
,
3544 to_cpumask(l
->cpus
));
3546 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3550 if (track
->addr
< caddr
)
3557 * Not found. Insert new tracking element.
3559 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3565 (t
->count
- pos
) * sizeof(struct location
));
3568 l
->addr
= track
->addr
;
3572 l
->min_pid
= track
->pid
;
3573 l
->max_pid
= track
->pid
;
3574 cpumask_clear(to_cpumask(l
->cpus
));
3575 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3576 nodes_clear(l
->nodes
);
3577 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3581 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3582 struct page
*page
, enum track_item alloc
,
3585 void *addr
= page_address(page
);
3588 bitmap_zero(map
, page
->objects
);
3589 for_each_free_object(p
, s
, page
->freelist
)
3590 set_bit(slab_index(p
, s
, addr
), map
);
3592 for_each_object(p
, s
, addr
, page
->objects
)
3593 if (!test_bit(slab_index(p
, s
, addr
), map
))
3594 add_location(t
, s
, get_track(s
, p
, alloc
));
3597 static int list_locations(struct kmem_cache
*s
, char *buf
,
3598 enum track_item alloc
)
3602 struct loc_track t
= { 0, 0, NULL
};
3604 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3605 sizeof(unsigned long), GFP_KERNEL
);
3607 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3610 return sprintf(buf
, "Out of memory\n");
3612 /* Push back cpu slabs */
3615 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3616 struct kmem_cache_node
*n
= get_node(s
, node
);
3617 unsigned long flags
;
3620 if (!atomic_long_read(&n
->nr_slabs
))
3623 spin_lock_irqsave(&n
->list_lock
, flags
);
3624 list_for_each_entry(page
, &n
->partial
, lru
)
3625 process_slab(&t
, s
, page
, alloc
, map
);
3626 list_for_each_entry(page
, &n
->full
, lru
)
3627 process_slab(&t
, s
, page
, alloc
, map
);
3628 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3631 for (i
= 0; i
< t
.count
; i
++) {
3632 struct location
*l
= &t
.loc
[i
];
3634 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3636 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3639 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
3641 len
+= sprintf(buf
+ len
, "<not-available>");
3643 if (l
->sum_time
!= l
->min_time
) {
3644 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3646 (long)div_u64(l
->sum_time
, l
->count
),
3649 len
+= sprintf(buf
+ len
, " age=%ld",
3652 if (l
->min_pid
!= l
->max_pid
)
3653 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3654 l
->min_pid
, l
->max_pid
);
3656 len
+= sprintf(buf
+ len
, " pid=%ld",
3659 if (num_online_cpus() > 1 &&
3660 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3661 len
< PAGE_SIZE
- 60) {
3662 len
+= sprintf(buf
+ len
, " cpus=");
3663 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3664 to_cpumask(l
->cpus
));
3667 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
3668 len
< PAGE_SIZE
- 60) {
3669 len
+= sprintf(buf
+ len
, " nodes=");
3670 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3674 len
+= sprintf(buf
+ len
, "\n");
3680 len
+= sprintf(buf
, "No data\n");
3685 #ifdef SLUB_RESILIENCY_TEST
3686 static void resiliency_test(void)
3690 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
3692 printk(KERN_ERR
"SLUB resiliency testing\n");
3693 printk(KERN_ERR
"-----------------------\n");
3694 printk(KERN_ERR
"A. Corruption after allocation\n");
3696 p
= kzalloc(16, GFP_KERNEL
);
3698 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3699 " 0x12->0x%p\n\n", p
+ 16);
3701 validate_slab_cache(kmalloc_caches
[4]);
3703 /* Hmmm... The next two are dangerous */
3704 p
= kzalloc(32, GFP_KERNEL
);
3705 p
[32 + sizeof(void *)] = 0x34;
3706 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3707 " 0x34 -> -0x%p\n", p
);
3709 "If allocated object is overwritten then not detectable\n\n");
3711 validate_slab_cache(kmalloc_caches
[5]);
3712 p
= kzalloc(64, GFP_KERNEL
);
3713 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3715 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3718 "If allocated object is overwritten then not detectable\n\n");
3719 validate_slab_cache(kmalloc_caches
[6]);
3721 printk(KERN_ERR
"\nB. Corruption after free\n");
3722 p
= kzalloc(128, GFP_KERNEL
);
3725 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3726 validate_slab_cache(kmalloc_caches
[7]);
3728 p
= kzalloc(256, GFP_KERNEL
);
3731 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3733 validate_slab_cache(kmalloc_caches
[8]);
3735 p
= kzalloc(512, GFP_KERNEL
);
3738 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3739 validate_slab_cache(kmalloc_caches
[9]);
3743 static void resiliency_test(void) {};
3748 enum slab_stat_type
{
3749 SL_ALL
, /* All slabs */
3750 SL_PARTIAL
, /* Only partially allocated slabs */
3751 SL_CPU
, /* Only slabs used for cpu caches */
3752 SL_OBJECTS
, /* Determine allocated objects not slabs */
3753 SL_TOTAL
/* Determine object capacity not slabs */
3756 #define SO_ALL (1 << SL_ALL)
3757 #define SO_PARTIAL (1 << SL_PARTIAL)
3758 #define SO_CPU (1 << SL_CPU)
3759 #define SO_OBJECTS (1 << SL_OBJECTS)
3760 #define SO_TOTAL (1 << SL_TOTAL)
3762 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3763 char *buf
, unsigned long flags
)
3765 unsigned long total
= 0;
3768 unsigned long *nodes
;
3769 unsigned long *per_cpu
;
3771 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3774 per_cpu
= nodes
+ nr_node_ids
;
3776 if (flags
& SO_CPU
) {
3779 for_each_possible_cpu(cpu
) {
3780 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
3782 if (!c
|| c
->node
< 0)
3786 if (flags
& SO_TOTAL
)
3787 x
= c
->page
->objects
;
3788 else if (flags
& SO_OBJECTS
)
3794 nodes
[c
->node
] += x
;
3800 down_read(&slub_lock
);
3801 #ifdef CONFIG_SLUB_DEBUG
3802 if (flags
& SO_ALL
) {
3803 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3804 struct kmem_cache_node
*n
= get_node(s
, node
);
3806 if (flags
& SO_TOTAL
)
3807 x
= atomic_long_read(&n
->total_objects
);
3808 else if (flags
& SO_OBJECTS
)
3809 x
= atomic_long_read(&n
->total_objects
) -
3810 count_partial(n
, count_free
);
3813 x
= atomic_long_read(&n
->nr_slabs
);
3820 if (flags
& SO_PARTIAL
) {
3821 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3822 struct kmem_cache_node
*n
= get_node(s
, node
);
3824 if (flags
& SO_TOTAL
)
3825 x
= count_partial(n
, count_total
);
3826 else if (flags
& SO_OBJECTS
)
3827 x
= count_partial(n
, count_inuse
);
3834 x
= sprintf(buf
, "%lu", total
);
3836 for_each_node_state(node
, N_NORMAL_MEMORY
)
3838 x
+= sprintf(buf
+ x
, " N%d=%lu",
3841 up_read(&slub_lock
);
3843 return x
+ sprintf(buf
+ x
, "\n");
3846 #ifdef CONFIG_SLUB_DEBUG
3847 static int any_slab_objects(struct kmem_cache
*s
)
3851 for_each_online_node(node
) {
3852 struct kmem_cache_node
*n
= get_node(s
, node
);
3857 if (atomic_long_read(&n
->total_objects
))
3864 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3865 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3867 struct slab_attribute
{
3868 struct attribute attr
;
3869 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3870 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3873 #define SLAB_ATTR_RO(_name) \
3874 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3876 #define SLAB_ATTR(_name) \
3877 static struct slab_attribute _name##_attr = \
3878 __ATTR(_name, 0644, _name##_show, _name##_store)
3880 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3882 return sprintf(buf
, "%d\n", s
->size
);
3884 SLAB_ATTR_RO(slab_size
);
3886 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3888 return sprintf(buf
, "%d\n", s
->align
);
3890 SLAB_ATTR_RO(align
);
3892 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3894 return sprintf(buf
, "%d\n", s
->objsize
);
3896 SLAB_ATTR_RO(object_size
);
3898 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3900 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3902 SLAB_ATTR_RO(objs_per_slab
);
3904 static ssize_t
order_store(struct kmem_cache
*s
,
3905 const char *buf
, size_t length
)
3907 unsigned long order
;
3910 err
= strict_strtoul(buf
, 10, &order
);
3914 if (order
> slub_max_order
|| order
< slub_min_order
)
3917 calculate_sizes(s
, order
);
3921 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3923 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3927 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
3929 return sprintf(buf
, "%lu\n", s
->min_partial
);
3932 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
3938 err
= strict_strtoul(buf
, 10, &min
);
3942 set_min_partial(s
, min
);
3945 SLAB_ATTR(min_partial
);
3947 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3951 return sprintf(buf
, "%pS\n", s
->ctor
);
3955 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3957 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3959 SLAB_ATTR_RO(aliases
);
3961 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3963 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3965 SLAB_ATTR_RO(partial
);
3967 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3969 return show_slab_objects(s
, buf
, SO_CPU
);
3971 SLAB_ATTR_RO(cpu_slabs
);
3973 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3975 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3977 SLAB_ATTR_RO(objects
);
3979 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3981 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3983 SLAB_ATTR_RO(objects_partial
);
3985 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3987 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3990 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3991 const char *buf
, size_t length
)
3993 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3995 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3998 SLAB_ATTR(reclaim_account
);
4000 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4002 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4004 SLAB_ATTR_RO(hwcache_align
);
4006 #ifdef CONFIG_ZONE_DMA
4007 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4009 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4011 SLAB_ATTR_RO(cache_dma
);
4014 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4016 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4018 SLAB_ATTR_RO(destroy_by_rcu
);
4020 #ifdef CONFIG_SLUB_DEBUG
4021 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4023 return show_slab_objects(s
, buf
, SO_ALL
);
4025 SLAB_ATTR_RO(slabs
);
4027 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4029 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4031 SLAB_ATTR_RO(total_objects
);
4033 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4035 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4038 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4039 const char *buf
, size_t length
)
4041 s
->flags
&= ~SLAB_DEBUG_FREE
;
4043 s
->flags
|= SLAB_DEBUG_FREE
;
4046 SLAB_ATTR(sanity_checks
);
4048 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4050 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4053 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4056 s
->flags
&= ~SLAB_TRACE
;
4058 s
->flags
|= SLAB_TRACE
;
4063 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4065 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4068 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4069 const char *buf
, size_t length
)
4071 if (any_slab_objects(s
))
4074 s
->flags
&= ~SLAB_RED_ZONE
;
4076 s
->flags
|= SLAB_RED_ZONE
;
4077 calculate_sizes(s
, -1);
4080 SLAB_ATTR(red_zone
);
4082 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4084 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4087 static ssize_t
poison_store(struct kmem_cache
*s
,
4088 const char *buf
, size_t length
)
4090 if (any_slab_objects(s
))
4093 s
->flags
&= ~SLAB_POISON
;
4095 s
->flags
|= SLAB_POISON
;
4096 calculate_sizes(s
, -1);
4101 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4103 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4106 static ssize_t
store_user_store(struct kmem_cache
*s
,
4107 const char *buf
, size_t length
)
4109 if (any_slab_objects(s
))
4112 s
->flags
&= ~SLAB_STORE_USER
;
4114 s
->flags
|= SLAB_STORE_USER
;
4115 calculate_sizes(s
, -1);
4118 SLAB_ATTR(store_user
);
4120 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4125 static ssize_t
validate_store(struct kmem_cache
*s
,
4126 const char *buf
, size_t length
)
4130 if (buf
[0] == '1') {
4131 ret
= validate_slab_cache(s
);
4137 SLAB_ATTR(validate
);
4139 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4141 if (!(s
->flags
& SLAB_STORE_USER
))
4143 return list_locations(s
, buf
, TRACK_ALLOC
);
4145 SLAB_ATTR_RO(alloc_calls
);
4147 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4149 if (!(s
->flags
& SLAB_STORE_USER
))
4151 return list_locations(s
, buf
, TRACK_FREE
);
4153 SLAB_ATTR_RO(free_calls
);
4154 #endif /* CONFIG_SLUB_DEBUG */
4156 #ifdef CONFIG_FAILSLAB
4157 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4159 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4162 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4165 s
->flags
&= ~SLAB_FAILSLAB
;
4167 s
->flags
|= SLAB_FAILSLAB
;
4170 SLAB_ATTR(failslab
);
4173 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4178 static ssize_t
shrink_store(struct kmem_cache
*s
,
4179 const char *buf
, size_t length
)
4181 if (buf
[0] == '1') {
4182 int rc
= kmem_cache_shrink(s
);
4193 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4195 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4198 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4199 const char *buf
, size_t length
)
4201 unsigned long ratio
;
4204 err
= strict_strtoul(buf
, 10, &ratio
);
4209 s
->remote_node_defrag_ratio
= ratio
* 10;
4213 SLAB_ATTR(remote_node_defrag_ratio
);
4216 #ifdef CONFIG_SLUB_STATS
4217 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4219 unsigned long sum
= 0;
4222 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4227 for_each_online_cpu(cpu
) {
4228 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4234 len
= sprintf(buf
, "%lu", sum
);
4237 for_each_online_cpu(cpu
) {
4238 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4239 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4243 return len
+ sprintf(buf
+ len
, "\n");
4246 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4250 for_each_online_cpu(cpu
)
4251 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4254 #define STAT_ATTR(si, text) \
4255 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4257 return show_stat(s, buf, si); \
4259 static ssize_t text##_store(struct kmem_cache *s, \
4260 const char *buf, size_t length) \
4262 if (buf[0] != '0') \
4264 clear_stat(s, si); \
4269 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4270 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4271 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4272 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4273 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4274 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4275 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4276 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4277 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4278 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4279 STAT_ATTR(FREE_SLAB
, free_slab
);
4280 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4281 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4282 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4283 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4284 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4285 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4286 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4289 static struct attribute
*slab_attrs
[] = {
4290 &slab_size_attr
.attr
,
4291 &object_size_attr
.attr
,
4292 &objs_per_slab_attr
.attr
,
4294 &min_partial_attr
.attr
,
4296 &objects_partial_attr
.attr
,
4298 &cpu_slabs_attr
.attr
,
4302 &hwcache_align_attr
.attr
,
4303 &reclaim_account_attr
.attr
,
4304 &destroy_by_rcu_attr
.attr
,
4306 #ifdef CONFIG_SLUB_DEBUG
4307 &total_objects_attr
.attr
,
4309 &sanity_checks_attr
.attr
,
4311 &red_zone_attr
.attr
,
4313 &store_user_attr
.attr
,
4314 &validate_attr
.attr
,
4315 &alloc_calls_attr
.attr
,
4316 &free_calls_attr
.attr
,
4318 #ifdef CONFIG_ZONE_DMA
4319 &cache_dma_attr
.attr
,
4322 &remote_node_defrag_ratio_attr
.attr
,
4324 #ifdef CONFIG_SLUB_STATS
4325 &alloc_fastpath_attr
.attr
,
4326 &alloc_slowpath_attr
.attr
,
4327 &free_fastpath_attr
.attr
,
4328 &free_slowpath_attr
.attr
,
4329 &free_frozen_attr
.attr
,
4330 &free_add_partial_attr
.attr
,
4331 &free_remove_partial_attr
.attr
,
4332 &alloc_from_partial_attr
.attr
,
4333 &alloc_slab_attr
.attr
,
4334 &alloc_refill_attr
.attr
,
4335 &free_slab_attr
.attr
,
4336 &cpuslab_flush_attr
.attr
,
4337 &deactivate_full_attr
.attr
,
4338 &deactivate_empty_attr
.attr
,
4339 &deactivate_to_head_attr
.attr
,
4340 &deactivate_to_tail_attr
.attr
,
4341 &deactivate_remote_frees_attr
.attr
,
4342 &order_fallback_attr
.attr
,
4344 #ifdef CONFIG_FAILSLAB
4345 &failslab_attr
.attr
,
4351 static struct attribute_group slab_attr_group
= {
4352 .attrs
= slab_attrs
,
4355 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4356 struct attribute
*attr
,
4359 struct slab_attribute
*attribute
;
4360 struct kmem_cache
*s
;
4363 attribute
= to_slab_attr(attr
);
4366 if (!attribute
->show
)
4369 err
= attribute
->show(s
, buf
);
4374 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4375 struct attribute
*attr
,
4376 const char *buf
, size_t len
)
4378 struct slab_attribute
*attribute
;
4379 struct kmem_cache
*s
;
4382 attribute
= to_slab_attr(attr
);
4385 if (!attribute
->store
)
4388 err
= attribute
->store(s
, buf
, len
);
4393 static void kmem_cache_release(struct kobject
*kobj
)
4395 struct kmem_cache
*s
= to_slab(kobj
);
4401 static const struct sysfs_ops slab_sysfs_ops
= {
4402 .show
= slab_attr_show
,
4403 .store
= slab_attr_store
,
4406 static struct kobj_type slab_ktype
= {
4407 .sysfs_ops
= &slab_sysfs_ops
,
4408 .release
= kmem_cache_release
4411 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4413 struct kobj_type
*ktype
= get_ktype(kobj
);
4415 if (ktype
== &slab_ktype
)
4420 static const struct kset_uevent_ops slab_uevent_ops
= {
4421 .filter
= uevent_filter
,
4424 static struct kset
*slab_kset
;
4426 #define ID_STR_LENGTH 64
4428 /* Create a unique string id for a slab cache:
4430 * Format :[flags-]size
4432 static char *create_unique_id(struct kmem_cache
*s
)
4434 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4441 * First flags affecting slabcache operations. We will only
4442 * get here for aliasable slabs so we do not need to support
4443 * too many flags. The flags here must cover all flags that
4444 * are matched during merging to guarantee that the id is
4447 if (s
->flags
& SLAB_CACHE_DMA
)
4449 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4451 if (s
->flags
& SLAB_DEBUG_FREE
)
4453 if (!(s
->flags
& SLAB_NOTRACK
))
4457 p
+= sprintf(p
, "%07d", s
->size
);
4458 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4462 static int sysfs_slab_add(struct kmem_cache
*s
)
4468 if (slab_state
< SYSFS
)
4469 /* Defer until later */
4472 unmergeable
= slab_unmergeable(s
);
4475 * Slabcache can never be merged so we can use the name proper.
4476 * This is typically the case for debug situations. In that
4477 * case we can catch duplicate names easily.
4479 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4483 * Create a unique name for the slab as a target
4486 name
= create_unique_id(s
);
4489 s
->kobj
.kset
= slab_kset
;
4490 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4492 kobject_put(&s
->kobj
);
4496 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4498 kobject_del(&s
->kobj
);
4499 kobject_put(&s
->kobj
);
4502 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4504 /* Setup first alias */
4505 sysfs_slab_alias(s
, s
->name
);
4511 static void sysfs_slab_remove(struct kmem_cache
*s
)
4513 if (slab_state
< SYSFS
)
4515 * Sysfs has not been setup yet so no need to remove the
4520 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4521 kobject_del(&s
->kobj
);
4522 kobject_put(&s
->kobj
);
4526 * Need to buffer aliases during bootup until sysfs becomes
4527 * available lest we lose that information.
4529 struct saved_alias
{
4530 struct kmem_cache
*s
;
4532 struct saved_alias
*next
;
4535 static struct saved_alias
*alias_list
;
4537 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4539 struct saved_alias
*al
;
4541 if (slab_state
== SYSFS
) {
4543 * If we have a leftover link then remove it.
4545 sysfs_remove_link(&slab_kset
->kobj
, name
);
4546 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4549 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4555 al
->next
= alias_list
;
4560 static int __init
slab_sysfs_init(void)
4562 struct kmem_cache
*s
;
4565 down_write(&slub_lock
);
4567 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4569 up_write(&slub_lock
);
4570 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4576 list_for_each_entry(s
, &slab_caches
, list
) {
4577 err
= sysfs_slab_add(s
);
4579 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4580 " to sysfs\n", s
->name
);
4583 while (alias_list
) {
4584 struct saved_alias
*al
= alias_list
;
4586 alias_list
= alias_list
->next
;
4587 err
= sysfs_slab_alias(al
->s
, al
->name
);
4589 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4590 " %s to sysfs\n", s
->name
);
4594 up_write(&slub_lock
);
4599 __initcall(slab_sysfs_init
);
4600 #endif /* CONFIG_SYSFS */
4603 * The /proc/slabinfo ABI
4605 #ifdef CONFIG_SLABINFO
4606 static void print_slabinfo_header(struct seq_file
*m
)
4608 seq_puts(m
, "slabinfo - version: 2.1\n");
4609 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4610 "<objperslab> <pagesperslab>");
4611 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4612 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4616 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4620 down_read(&slub_lock
);
4622 print_slabinfo_header(m
);
4624 return seq_list_start(&slab_caches
, *pos
);
4627 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4629 return seq_list_next(p
, &slab_caches
, pos
);
4632 static void s_stop(struct seq_file
*m
, void *p
)
4634 up_read(&slub_lock
);
4637 static int s_show(struct seq_file
*m
, void *p
)
4639 unsigned long nr_partials
= 0;
4640 unsigned long nr_slabs
= 0;
4641 unsigned long nr_inuse
= 0;
4642 unsigned long nr_objs
= 0;
4643 unsigned long nr_free
= 0;
4644 struct kmem_cache
*s
;
4647 s
= list_entry(p
, struct kmem_cache
, list
);
4649 for_each_online_node(node
) {
4650 struct kmem_cache_node
*n
= get_node(s
, node
);
4655 nr_partials
+= n
->nr_partial
;
4656 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4657 nr_objs
+= atomic_long_read(&n
->total_objects
);
4658 nr_free
+= count_partial(n
, count_free
);
4661 nr_inuse
= nr_objs
- nr_free
;
4663 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4664 nr_objs
, s
->size
, oo_objects(s
->oo
),
4665 (1 << oo_order(s
->oo
)));
4666 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4667 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4673 static const struct seq_operations slabinfo_op
= {
4680 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4682 return seq_open(file
, &slabinfo_op
);
4685 static const struct file_operations proc_slabinfo_operations
= {
4686 .open
= slabinfo_open
,
4688 .llseek
= seq_lseek
,
4689 .release
= seq_release
,
4692 static int __init
slab_proc_init(void)
4694 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
4697 module_init(slab_proc_init
);
4698 #endif /* CONFIG_SLABINFO */