2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
34 static const int cfq_hist_divisor
= 4;
37 * offset from end of service tree
39 #define CFQ_IDLE_DELAY (HZ / 5)
42 * below this threshold, we consider thinktime immediate
44 #define CFQ_MIN_TT (2)
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 static struct kmem_cache
*cfq_pool
;
60 static struct kmem_cache
*cfq_ioc_pool
;
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
63 static struct completion
*ioc_gone
;
64 static DEFINE_SPINLOCK(ioc_gone_lock
);
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
83 unsigned total_weight
;
85 struct rb_node
*active
;
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
88 .count = 0, .min_vdisktime = 0, }
91 * Per process-grouping structure
96 /* various state flags, see below */
99 struct cfq_data
*cfqd
;
100 /* service_tree member */
101 struct rb_node rb_node
;
102 /* service_tree key */
103 unsigned long rb_key
;
104 /* prio tree member */
105 struct rb_node p_node
;
106 /* prio tree root we belong to, if any */
107 struct rb_root
*p_root
;
108 /* sorted list of pending requests */
109 struct rb_root sort_list
;
110 /* if fifo isn't expired, next request to serve */
111 struct request
*next_rq
;
112 /* requests queued in sort_list */
114 /* currently allocated requests */
116 /* fifo list of requests in sort_list */
117 struct list_head fifo
;
119 /* time when queue got scheduled in to dispatch first request. */
120 unsigned long dispatch_start
;
121 unsigned int allocated_slice
;
122 unsigned int slice_dispatch
;
123 /* time when first request from queue completed and slice started. */
124 unsigned long slice_start
;
125 unsigned long slice_end
;
128 /* pending metadata requests */
130 /* number of requests that are on the dispatch list or inside driver */
133 /* io prio of this group */
134 unsigned short ioprio
, org_ioprio
;
135 unsigned short ioprio_class
, org_ioprio_class
;
140 sector_t last_request_pos
;
142 struct cfq_rb_root
*service_tree
;
143 struct cfq_queue
*new_cfqq
;
144 struct cfq_group
*cfqg
;
145 struct cfq_group
*orig_cfqg
;
146 /* Sectors dispatched in current dispatch round */
147 unsigned long nr_sectors
;
151 * First index in the service_trees.
152 * IDLE is handled separately, so it has negative index
161 * Second index in the service_trees.
165 SYNC_NOIDLE_WORKLOAD
= 1,
169 /* This is per cgroup per device grouping structure */
171 /* group service_tree member */
172 struct rb_node rb_node
;
174 /* group service_tree key */
179 /* number of cfqq currently on this group */
182 /* Per group busy queus average. Useful for workload slice calc. */
183 unsigned int busy_queues_avg
[2];
185 * rr lists of queues with requests, onle rr for each priority class.
186 * Counts are embedded in the cfq_rb_root
188 struct cfq_rb_root service_trees
[2][3];
189 struct cfq_rb_root service_tree_idle
;
191 unsigned long saved_workload_slice
;
192 enum wl_type_t saved_workload
;
193 enum wl_prio_t saved_serving_prio
;
194 struct blkio_group blkg
;
195 #ifdef CONFIG_CFQ_GROUP_IOSCHED
196 struct hlist_node cfqd_node
;
202 * Per block device queue structure
205 struct request_queue
*queue
;
206 /* Root service tree for cfq_groups */
207 struct cfq_rb_root grp_service_tree
;
208 struct cfq_group root_group
;
211 * The priority currently being served
213 enum wl_prio_t serving_prio
;
214 enum wl_type_t serving_type
;
215 unsigned long workload_expires
;
216 struct cfq_group
*serving_group
;
217 bool noidle_tree_requires_idle
;
220 * Each priority tree is sorted by next_request position. These
221 * trees are used when determining if two or more queues are
222 * interleaving requests (see cfq_close_cooperator).
224 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
226 unsigned int busy_queues
;
232 * queue-depth detection
238 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
239 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 int hw_tag_est_depth
;
243 unsigned int hw_tag_samples
;
246 * idle window management
248 struct timer_list idle_slice_timer
;
249 struct work_struct unplug_work
;
251 struct cfq_queue
*active_queue
;
252 struct cfq_io_context
*active_cic
;
255 * async queue for each priority case
257 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
258 struct cfq_queue
*async_idle_cfqq
;
260 sector_t last_position
;
263 * tunables, see top of file
265 unsigned int cfq_quantum
;
266 unsigned int cfq_fifo_expire
[2];
267 unsigned int cfq_back_penalty
;
268 unsigned int cfq_back_max
;
269 unsigned int cfq_slice
[2];
270 unsigned int cfq_slice_async_rq
;
271 unsigned int cfq_slice_idle
;
272 unsigned int cfq_latency
;
273 unsigned int cfq_group_isolation
;
275 struct list_head cic_list
;
278 * Fallback dummy cfqq for extreme OOM conditions
280 struct cfq_queue oom_cfqq
;
282 unsigned long last_delayed_sync
;
284 /* List of cfq groups being managed on this device*/
285 struct hlist_head cfqg_list
;
289 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
291 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
298 if (prio
== IDLE_WORKLOAD
)
299 return &cfqg
->service_tree_idle
;
301 return &cfqg
->service_trees
[prio
][type
];
304 enum cfqq_state_flags
{
305 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
306 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
307 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
308 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
309 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
310 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
311 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
312 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
313 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
314 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
315 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
316 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
317 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
320 #define CFQ_CFQQ_FNS(name) \
321 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
323 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
325 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
327 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
329 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
331 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
335 CFQ_CFQQ_FNS(wait_request
);
336 CFQ_CFQQ_FNS(must_dispatch
);
337 CFQ_CFQQ_FNS(must_alloc_slice
);
338 CFQ_CFQQ_FNS(fifo_expire
);
339 CFQ_CFQQ_FNS(idle_window
);
340 CFQ_CFQQ_FNS(prio_changed
);
341 CFQ_CFQQ_FNS(slice_new
);
344 CFQ_CFQQ_FNS(split_coop
);
346 CFQ_CFQQ_FNS(wait_busy
);
349 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
350 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
351 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
352 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
353 blkg_path(&(cfqq)->cfqg->blkg), ##args);
355 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
357 blkg_path(&(cfqg)->blkg), ##args); \
360 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
362 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
364 #define cfq_log(cfqd, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
367 /* Traverses through cfq group service trees */
368 #define for_each_cfqg_st(cfqg, i, j, st) \
369 for (i = 0; i <= IDLE_WORKLOAD; i++) \
370 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
371 : &cfqg->service_tree_idle; \
372 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
373 (i == IDLE_WORKLOAD && j == 0); \
374 j++, st = i < IDLE_WORKLOAD ? \
375 &cfqg->service_trees[i][j]: NULL) \
378 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
380 if (cfq_class_idle(cfqq
))
381 return IDLE_WORKLOAD
;
382 if (cfq_class_rt(cfqq
))
388 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
390 if (!cfq_cfqq_sync(cfqq
))
391 return ASYNC_WORKLOAD
;
392 if (!cfq_cfqq_idle_window(cfqq
))
393 return SYNC_NOIDLE_WORKLOAD
;
394 return SYNC_WORKLOAD
;
397 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
398 struct cfq_data
*cfqd
,
399 struct cfq_group
*cfqg
)
401 if (wl
== IDLE_WORKLOAD
)
402 return cfqg
->service_tree_idle
.count
;
404 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
405 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
406 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
409 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
410 struct cfq_group
*cfqg
)
412 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
413 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
416 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
417 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
418 struct io_context
*, gfp_t
);
419 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
420 struct io_context
*);
422 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
425 return cic
->cfqq
[is_sync
];
428 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
429 struct cfq_queue
*cfqq
, bool is_sync
)
431 cic
->cfqq
[is_sync
] = cfqq
;
435 * We regard a request as SYNC, if it's either a read or has the SYNC bit
436 * set (in which case it could also be direct WRITE).
438 static inline bool cfq_bio_sync(struct bio
*bio
)
440 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
444 * scheduler run of queue, if there are requests pending and no one in the
445 * driver that will restart queueing
447 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
449 if (cfqd
->busy_queues
) {
450 cfq_log(cfqd
, "schedule dispatch");
451 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
455 static int cfq_queue_empty(struct request_queue
*q
)
457 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
459 return !cfqd
->rq_queued
;
463 * Scale schedule slice based on io priority. Use the sync time slice only
464 * if a queue is marked sync and has sync io queued. A sync queue with async
465 * io only, should not get full sync slice length.
467 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
470 const int base_slice
= cfqd
->cfq_slice
[sync
];
472 WARN_ON(prio
>= IOPRIO_BE_NR
);
474 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
478 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
480 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
483 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
485 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
487 d
= d
* BLKIO_WEIGHT_DEFAULT
;
488 do_div(d
, cfqg
->weight
);
492 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
494 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
496 min_vdisktime
= vdisktime
;
498 return min_vdisktime
;
501 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
503 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
505 min_vdisktime
= vdisktime
;
507 return min_vdisktime
;
510 static void update_min_vdisktime(struct cfq_rb_root
*st
)
512 u64 vdisktime
= st
->min_vdisktime
;
513 struct cfq_group
*cfqg
;
516 cfqg
= rb_entry_cfqg(st
->active
);
517 vdisktime
= cfqg
->vdisktime
;
521 cfqg
= rb_entry_cfqg(st
->left
);
522 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
525 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
529 * get averaged number of queues of RT/BE priority.
530 * average is updated, with a formula that gives more weight to higher numbers,
531 * to quickly follows sudden increases and decrease slowly
534 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
535 struct cfq_group
*cfqg
, bool rt
)
537 unsigned min_q
, max_q
;
538 unsigned mult
= cfq_hist_divisor
- 1;
539 unsigned round
= cfq_hist_divisor
/ 2;
540 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
542 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
543 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
544 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
546 return cfqg
->busy_queues_avg
[rt
];
549 static inline unsigned
550 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
552 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
554 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
558 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
560 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
561 if (cfqd
->cfq_latency
) {
563 * interested queues (we consider only the ones with the same
564 * priority class in the cfq group)
566 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
568 unsigned sync_slice
= cfqd
->cfq_slice
[1];
569 unsigned expect_latency
= sync_slice
* iq
;
570 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
572 if (expect_latency
> group_slice
) {
573 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
574 /* scale low_slice according to IO priority
575 * and sync vs async */
577 min(slice
, base_low_slice
* slice
/ sync_slice
);
578 /* the adapted slice value is scaled to fit all iqs
579 * into the target latency */
580 slice
= max(slice
* group_slice
/ expect_latency
,
584 cfqq
->slice_start
= jiffies
;
585 cfqq
->slice_end
= jiffies
+ slice
;
586 cfqq
->allocated_slice
= slice
;
587 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
591 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
592 * isn't valid until the first request from the dispatch is activated
593 * and the slice time set.
595 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
597 if (cfq_cfqq_slice_new(cfqq
))
599 if (time_before(jiffies
, cfqq
->slice_end
))
606 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
607 * We choose the request that is closest to the head right now. Distance
608 * behind the head is penalized and only allowed to a certain extent.
610 static struct request
*
611 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
613 sector_t s1
, s2
, d1
= 0, d2
= 0;
614 unsigned long back_max
;
615 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
616 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
617 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
619 if (rq1
== NULL
|| rq1
== rq2
)
624 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
626 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
628 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
630 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
633 s1
= blk_rq_pos(rq1
);
634 s2
= blk_rq_pos(rq2
);
637 * by definition, 1KiB is 2 sectors
639 back_max
= cfqd
->cfq_back_max
* 2;
642 * Strict one way elevator _except_ in the case where we allow
643 * short backward seeks which are biased as twice the cost of a
644 * similar forward seek.
648 else if (s1
+ back_max
>= last
)
649 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
651 wrap
|= CFQ_RQ1_WRAP
;
655 else if (s2
+ back_max
>= last
)
656 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
658 wrap
|= CFQ_RQ2_WRAP
;
660 /* Found required data */
663 * By doing switch() on the bit mask "wrap" we avoid having to
664 * check two variables for all permutations: --> faster!
667 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
683 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
686 * Since both rqs are wrapped,
687 * start with the one that's further behind head
688 * (--> only *one* back seek required),
689 * since back seek takes more time than forward.
699 * The below is leftmost cache rbtree addon
701 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
703 /* Service tree is empty */
708 root
->left
= rb_first(&root
->rb
);
711 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
716 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
719 root
->left
= rb_first(&root
->rb
);
722 return rb_entry_cfqg(root
->left
);
727 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
733 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
737 rb_erase_init(n
, &root
->rb
);
742 * would be nice to take fifo expire time into account as well
744 static struct request
*
745 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
746 struct request
*last
)
748 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
749 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
750 struct request
*next
= NULL
, *prev
= NULL
;
752 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
755 prev
= rb_entry_rq(rbprev
);
758 next
= rb_entry_rq(rbnext
);
760 rbnext
= rb_first(&cfqq
->sort_list
);
761 if (rbnext
&& rbnext
!= &last
->rb_node
)
762 next
= rb_entry_rq(rbnext
);
765 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
768 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
769 struct cfq_queue
*cfqq
)
772 * just an approximation, should be ok.
774 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
775 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
779 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
781 return cfqg
->vdisktime
- st
->min_vdisktime
;
785 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
787 struct rb_node
**node
= &st
->rb
.rb_node
;
788 struct rb_node
*parent
= NULL
;
789 struct cfq_group
*__cfqg
;
790 s64 key
= cfqg_key(st
, cfqg
);
793 while (*node
!= NULL
) {
795 __cfqg
= rb_entry_cfqg(parent
);
797 if (key
< cfqg_key(st
, __cfqg
))
798 node
= &parent
->rb_left
;
800 node
= &parent
->rb_right
;
806 st
->left
= &cfqg
->rb_node
;
808 rb_link_node(&cfqg
->rb_node
, parent
, node
);
809 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
813 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
815 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
816 struct cfq_group
*__cfqg
;
824 * Currently put the group at the end. Later implement something
825 * so that groups get lesser vtime based on their weights, so that
826 * if group does not loose all if it was not continously backlogged.
828 n
= rb_last(&st
->rb
);
830 __cfqg
= rb_entry_cfqg(n
);
831 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
833 cfqg
->vdisktime
= st
->min_vdisktime
;
835 __cfq_group_service_tree_add(st
, cfqg
);
837 st
->total_weight
+= cfqg
->weight
;
841 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
843 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
845 if (st
->active
== &cfqg
->rb_node
)
848 BUG_ON(cfqg
->nr_cfqq
< 1);
851 /* If there are other cfq queues under this group, don't delete it */
855 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
857 st
->total_weight
-= cfqg
->weight
;
858 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
859 cfq_rb_erase(&cfqg
->rb_node
, st
);
860 cfqg
->saved_workload_slice
= 0;
861 blkiocg_update_blkio_group_dequeue_stats(&cfqg
->blkg
, 1);
864 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
866 unsigned int slice_used
;
869 * Queue got expired before even a single request completed or
870 * got expired immediately after first request completion.
872 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
874 * Also charge the seek time incurred to the group, otherwise
875 * if there are mutiple queues in the group, each can dispatch
876 * a single request on seeky media and cause lots of seek time
877 * and group will never know it.
879 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
882 slice_used
= jiffies
- cfqq
->slice_start
;
883 if (slice_used
> cfqq
->allocated_slice
)
884 slice_used
= cfqq
->allocated_slice
;
887 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u sect=%lu", slice_used
,
892 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
893 struct cfq_queue
*cfqq
)
895 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
896 unsigned int used_sl
, charge_sl
;
897 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
898 - cfqg
->service_tree_idle
.count
;
901 used_sl
= charge_sl
= cfq_cfqq_slice_usage(cfqq
);
903 if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
904 charge_sl
= cfqq
->allocated_slice
;
906 /* Can't update vdisktime while group is on service tree */
907 cfq_rb_erase(&cfqg
->rb_node
, st
);
908 cfqg
->vdisktime
+= cfq_scale_slice(charge_sl
, cfqg
);
909 __cfq_group_service_tree_add(st
, cfqg
);
911 /* This group is being expired. Save the context */
912 if (time_after(cfqd
->workload_expires
, jiffies
)) {
913 cfqg
->saved_workload_slice
= cfqd
->workload_expires
915 cfqg
->saved_workload
= cfqd
->serving_type
;
916 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
918 cfqg
->saved_workload_slice
= 0;
920 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
922 blkiocg_update_blkio_group_stats(&cfqg
->blkg
, used_sl
,
926 #ifdef CONFIG_CFQ_GROUP_IOSCHED
927 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
930 return container_of(blkg
, struct cfq_group
, blkg
);
935 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
937 cfqg_of_blkg(blkg
)->weight
= weight
;
940 static struct cfq_group
*
941 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
943 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
944 struct cfq_group
*cfqg
= NULL
;
947 struct cfq_rb_root
*st
;
948 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
949 unsigned int major
, minor
;
951 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
952 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
953 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
954 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
960 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
964 cfqg
->weight
= blkcg
->weight
;
965 for_each_cfqg_st(cfqg
, i
, j
, st
)
967 RB_CLEAR_NODE(&cfqg
->rb_node
);
970 * Take the initial reference that will be released on destroy
971 * This can be thought of a joint reference by cgroup and
972 * elevator which will be dropped by either elevator exit
973 * or cgroup deletion path depending on who is exiting first.
975 atomic_set(&cfqg
->ref
, 1);
977 /* Add group onto cgroup list */
978 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
979 blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
980 MKDEV(major
, minor
));
982 /* Add group on cfqd list */
983 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
990 * Search for the cfq group current task belongs to. If create = 1, then also
991 * create the cfq group if it does not exist. request_queue lock must be held.
993 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
995 struct cgroup
*cgroup
;
996 struct cfq_group
*cfqg
= NULL
;
999 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1000 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1001 if (!cfqg
&& create
)
1002 cfqg
= &cfqd
->root_group
;
1007 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1009 /* Currently, all async queues are mapped to root group */
1010 if (!cfq_cfqq_sync(cfqq
))
1011 cfqg
= &cfqq
->cfqd
->root_group
;
1014 /* cfqq reference on cfqg */
1015 atomic_inc(&cfqq
->cfqg
->ref
);
1018 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1020 struct cfq_rb_root
*st
;
1023 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1024 if (!atomic_dec_and_test(&cfqg
->ref
))
1026 for_each_cfqg_st(cfqg
, i
, j
, st
)
1027 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1031 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1033 /* Something wrong if we are trying to remove same group twice */
1034 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1036 hlist_del_init(&cfqg
->cfqd_node
);
1039 * Put the reference taken at the time of creation so that when all
1040 * queues are gone, group can be destroyed.
1045 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1047 struct hlist_node
*pos
, *n
;
1048 struct cfq_group
*cfqg
;
1050 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1052 * If cgroup removal path got to blk_group first and removed
1053 * it from cgroup list, then it will take care of destroying
1056 if (!blkiocg_del_blkio_group(&cfqg
->blkg
))
1057 cfq_destroy_cfqg(cfqd
, cfqg
);
1062 * Blk cgroup controller notification saying that blkio_group object is being
1063 * delinked as associated cgroup object is going away. That also means that
1064 * no new IO will come in this group. So get rid of this group as soon as
1065 * any pending IO in the group is finished.
1067 * This function is called under rcu_read_lock(). key is the rcu protected
1068 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1071 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1072 * it should not be NULL as even if elevator was exiting, cgroup deltion
1073 * path got to it first.
1075 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1077 unsigned long flags
;
1078 struct cfq_data
*cfqd
= key
;
1080 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1081 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1082 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1085 #else /* GROUP_IOSCHED */
1086 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1088 return &cfqd
->root_group
;
1091 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1095 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1096 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1098 #endif /* GROUP_IOSCHED */
1101 * The cfqd->service_trees holds all pending cfq_queue's that have
1102 * requests waiting to be processed. It is sorted in the order that
1103 * we will service the queues.
1105 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1108 struct rb_node
**p
, *parent
;
1109 struct cfq_queue
*__cfqq
;
1110 unsigned long rb_key
;
1111 struct cfq_rb_root
*service_tree
;
1114 int group_changed
= 0;
1116 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1117 if (!cfqd
->cfq_group_isolation
1118 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1119 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1120 /* Move this cfq to root group */
1121 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1122 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1123 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1124 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1125 cfqq
->cfqg
= &cfqd
->root_group
;
1126 atomic_inc(&cfqd
->root_group
.ref
);
1128 } else if (!cfqd
->cfq_group_isolation
1129 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1130 /* cfqq is sequential now needs to go to its original group */
1131 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1132 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1133 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1134 cfq_put_cfqg(cfqq
->cfqg
);
1135 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1136 cfqq
->orig_cfqg
= NULL
;
1138 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1142 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1144 if (cfq_class_idle(cfqq
)) {
1145 rb_key
= CFQ_IDLE_DELAY
;
1146 parent
= rb_last(&service_tree
->rb
);
1147 if (parent
&& parent
!= &cfqq
->rb_node
) {
1148 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1149 rb_key
+= __cfqq
->rb_key
;
1152 } else if (!add_front
) {
1154 * Get our rb key offset. Subtract any residual slice
1155 * value carried from last service. A negative resid
1156 * count indicates slice overrun, and this should position
1157 * the next service time further away in the tree.
1159 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1160 rb_key
-= cfqq
->slice_resid
;
1161 cfqq
->slice_resid
= 0;
1164 __cfqq
= cfq_rb_first(service_tree
);
1165 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1168 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1171 * same position, nothing more to do
1173 if (rb_key
== cfqq
->rb_key
&&
1174 cfqq
->service_tree
== service_tree
)
1177 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1178 cfqq
->service_tree
= NULL
;
1183 cfqq
->service_tree
= service_tree
;
1184 p
= &service_tree
->rb
.rb_node
;
1189 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1192 * sort by key, that represents service time.
1194 if (time_before(rb_key
, __cfqq
->rb_key
))
1197 n
= &(*p
)->rb_right
;
1205 service_tree
->left
= &cfqq
->rb_node
;
1207 cfqq
->rb_key
= rb_key
;
1208 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1209 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1210 service_tree
->count
++;
1211 if ((add_front
|| !new_cfqq
) && !group_changed
)
1213 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1216 static struct cfq_queue
*
1217 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1218 sector_t sector
, struct rb_node
**ret_parent
,
1219 struct rb_node
***rb_link
)
1221 struct rb_node
**p
, *parent
;
1222 struct cfq_queue
*cfqq
= NULL
;
1230 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1233 * Sort strictly based on sector. Smallest to the left,
1234 * largest to the right.
1236 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1237 n
= &(*p
)->rb_right
;
1238 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1246 *ret_parent
= parent
;
1252 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1254 struct rb_node
**p
, *parent
;
1255 struct cfq_queue
*__cfqq
;
1258 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1259 cfqq
->p_root
= NULL
;
1262 if (cfq_class_idle(cfqq
))
1267 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1268 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1269 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1271 rb_link_node(&cfqq
->p_node
, parent
, p
);
1272 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1274 cfqq
->p_root
= NULL
;
1278 * Update cfqq's position in the service tree.
1280 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1283 * Resorting requires the cfqq to be on the RR list already.
1285 if (cfq_cfqq_on_rr(cfqq
)) {
1286 cfq_service_tree_add(cfqd
, cfqq
, 0);
1287 cfq_prio_tree_add(cfqd
, cfqq
);
1292 * add to busy list of queues for service, trying to be fair in ordering
1293 * the pending list according to last request service
1295 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1297 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1298 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1299 cfq_mark_cfqq_on_rr(cfqq
);
1300 cfqd
->busy_queues
++;
1302 cfq_resort_rr_list(cfqd
, cfqq
);
1306 * Called when the cfqq no longer has requests pending, remove it from
1309 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1311 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1312 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1313 cfq_clear_cfqq_on_rr(cfqq
);
1315 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1316 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1317 cfqq
->service_tree
= NULL
;
1320 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1321 cfqq
->p_root
= NULL
;
1324 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1325 BUG_ON(!cfqd
->busy_queues
);
1326 cfqd
->busy_queues
--;
1330 * rb tree support functions
1332 static void cfq_del_rq_rb(struct request
*rq
)
1334 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1335 const int sync
= rq_is_sync(rq
);
1337 BUG_ON(!cfqq
->queued
[sync
]);
1338 cfqq
->queued
[sync
]--;
1340 elv_rb_del(&cfqq
->sort_list
, rq
);
1342 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1344 * Queue will be deleted from service tree when we actually
1345 * expire it later. Right now just remove it from prio tree
1349 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1350 cfqq
->p_root
= NULL
;
1355 static void cfq_add_rq_rb(struct request
*rq
)
1357 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1358 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1359 struct request
*__alias
, *prev
;
1361 cfqq
->queued
[rq_is_sync(rq
)]++;
1364 * looks a little odd, but the first insert might return an alias.
1365 * if that happens, put the alias on the dispatch list
1367 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1368 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1370 if (!cfq_cfqq_on_rr(cfqq
))
1371 cfq_add_cfqq_rr(cfqd
, cfqq
);
1374 * check if this request is a better next-serve candidate
1376 prev
= cfqq
->next_rq
;
1377 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1380 * adjust priority tree position, if ->next_rq changes
1382 if (prev
!= cfqq
->next_rq
)
1383 cfq_prio_tree_add(cfqd
, cfqq
);
1385 BUG_ON(!cfqq
->next_rq
);
1388 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1390 elv_rb_del(&cfqq
->sort_list
, rq
);
1391 cfqq
->queued
[rq_is_sync(rq
)]--;
1395 static struct request
*
1396 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1398 struct task_struct
*tsk
= current
;
1399 struct cfq_io_context
*cic
;
1400 struct cfq_queue
*cfqq
;
1402 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1406 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1408 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1410 return elv_rb_find(&cfqq
->sort_list
, sector
);
1416 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1418 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1420 cfqd
->rq_in_driver
++;
1421 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1422 cfqd
->rq_in_driver
);
1424 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1427 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1429 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1431 WARN_ON(!cfqd
->rq_in_driver
);
1432 cfqd
->rq_in_driver
--;
1433 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1434 cfqd
->rq_in_driver
);
1437 static void cfq_remove_request(struct request
*rq
)
1439 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1441 if (cfqq
->next_rq
== rq
)
1442 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1444 list_del_init(&rq
->queuelist
);
1447 cfqq
->cfqd
->rq_queued
--;
1448 if (rq_is_meta(rq
)) {
1449 WARN_ON(!cfqq
->meta_pending
);
1450 cfqq
->meta_pending
--;
1454 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1457 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1458 struct request
*__rq
;
1460 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1461 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1463 return ELEVATOR_FRONT_MERGE
;
1466 return ELEVATOR_NO_MERGE
;
1469 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1472 if (type
== ELEVATOR_FRONT_MERGE
) {
1473 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1475 cfq_reposition_rq_rb(cfqq
, req
);
1480 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1481 struct request
*next
)
1483 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1485 * reposition in fifo if next is older than rq
1487 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1488 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1489 list_move(&rq
->queuelist
, &next
->queuelist
);
1490 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1493 if (cfqq
->next_rq
== next
)
1495 cfq_remove_request(next
);
1498 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1501 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1502 struct cfq_io_context
*cic
;
1503 struct cfq_queue
*cfqq
;
1506 * Disallow merge of a sync bio into an async request.
1508 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1512 * Lookup the cfqq that this bio will be queued with. Allow
1513 * merge only if rq is queued there.
1515 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1519 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1520 return cfqq
== RQ_CFQQ(rq
);
1523 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1524 struct cfq_queue
*cfqq
)
1527 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1528 cfqd
->serving_prio
, cfqd
->serving_type
);
1529 cfqq
->slice_start
= 0;
1530 cfqq
->dispatch_start
= jiffies
;
1531 cfqq
->allocated_slice
= 0;
1532 cfqq
->slice_end
= 0;
1533 cfqq
->slice_dispatch
= 0;
1534 cfqq
->nr_sectors
= 0;
1536 cfq_clear_cfqq_wait_request(cfqq
);
1537 cfq_clear_cfqq_must_dispatch(cfqq
);
1538 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1539 cfq_clear_cfqq_fifo_expire(cfqq
);
1540 cfq_mark_cfqq_slice_new(cfqq
);
1542 del_timer(&cfqd
->idle_slice_timer
);
1545 cfqd
->active_queue
= cfqq
;
1549 * current cfqq expired its slice (or was too idle), select new one
1552 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1555 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1557 if (cfq_cfqq_wait_request(cfqq
))
1558 del_timer(&cfqd
->idle_slice_timer
);
1560 cfq_clear_cfqq_wait_request(cfqq
);
1561 cfq_clear_cfqq_wait_busy(cfqq
);
1564 * If this cfqq is shared between multiple processes, check to
1565 * make sure that those processes are still issuing I/Os within
1566 * the mean seek distance. If not, it may be time to break the
1567 * queues apart again.
1569 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1570 cfq_mark_cfqq_split_coop(cfqq
);
1573 * store what was left of this slice, if the queue idled/timed out
1575 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1576 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1577 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1580 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1582 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1583 cfq_del_cfqq_rr(cfqd
, cfqq
);
1585 cfq_resort_rr_list(cfqd
, cfqq
);
1587 if (cfqq
== cfqd
->active_queue
)
1588 cfqd
->active_queue
= NULL
;
1590 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1591 cfqd
->grp_service_tree
.active
= NULL
;
1593 if (cfqd
->active_cic
) {
1594 put_io_context(cfqd
->active_cic
->ioc
);
1595 cfqd
->active_cic
= NULL
;
1599 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1601 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1604 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1608 * Get next queue for service. Unless we have a queue preemption,
1609 * we'll simply select the first cfqq in the service tree.
1611 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1613 struct cfq_rb_root
*service_tree
=
1614 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1615 cfqd
->serving_type
);
1617 if (!cfqd
->rq_queued
)
1620 /* There is nothing to dispatch */
1623 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1625 return cfq_rb_first(service_tree
);
1628 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1630 struct cfq_group
*cfqg
;
1631 struct cfq_queue
*cfqq
;
1633 struct cfq_rb_root
*st
;
1635 if (!cfqd
->rq_queued
)
1638 cfqg
= cfq_get_next_cfqg(cfqd
);
1642 for_each_cfqg_st(cfqg
, i
, j
, st
)
1643 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1649 * Get and set a new active queue for service.
1651 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1652 struct cfq_queue
*cfqq
)
1655 cfqq
= cfq_get_next_queue(cfqd
);
1657 __cfq_set_active_queue(cfqd
, cfqq
);
1661 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1664 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1665 return blk_rq_pos(rq
) - cfqd
->last_position
;
1667 return cfqd
->last_position
- blk_rq_pos(rq
);
1670 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1673 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1676 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1677 struct cfq_queue
*cur_cfqq
)
1679 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1680 struct rb_node
*parent
, *node
;
1681 struct cfq_queue
*__cfqq
;
1682 sector_t sector
= cfqd
->last_position
;
1684 if (RB_EMPTY_ROOT(root
))
1688 * First, if we find a request starting at the end of the last
1689 * request, choose it.
1691 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1696 * If the exact sector wasn't found, the parent of the NULL leaf
1697 * will contain the closest sector.
1699 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1700 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1703 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1704 node
= rb_next(&__cfqq
->p_node
);
1706 node
= rb_prev(&__cfqq
->p_node
);
1710 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1711 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1719 * cur_cfqq - passed in so that we don't decide that the current queue is
1720 * closely cooperating with itself.
1722 * So, basically we're assuming that that cur_cfqq has dispatched at least
1723 * one request, and that cfqd->last_position reflects a position on the disk
1724 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1727 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1728 struct cfq_queue
*cur_cfqq
)
1730 struct cfq_queue
*cfqq
;
1732 if (cfq_class_idle(cur_cfqq
))
1734 if (!cfq_cfqq_sync(cur_cfqq
))
1736 if (CFQQ_SEEKY(cur_cfqq
))
1740 * Don't search priority tree if it's the only queue in the group.
1742 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1746 * We should notice if some of the queues are cooperating, eg
1747 * working closely on the same area of the disk. In that case,
1748 * we can group them together and don't waste time idling.
1750 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1754 /* If new queue belongs to different cfq_group, don't choose it */
1755 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1759 * It only makes sense to merge sync queues.
1761 if (!cfq_cfqq_sync(cfqq
))
1763 if (CFQQ_SEEKY(cfqq
))
1767 * Do not merge queues of different priority classes
1769 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1776 * Determine whether we should enforce idle window for this queue.
1779 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1781 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1782 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1784 BUG_ON(!service_tree
);
1785 BUG_ON(!service_tree
->count
);
1787 /* We never do for idle class queues. */
1788 if (prio
== IDLE_WORKLOAD
)
1791 /* We do for queues that were marked with idle window flag. */
1792 if (cfq_cfqq_idle_window(cfqq
) &&
1793 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1797 * Otherwise, we do only if they are the last ones
1798 * in their service tree.
1800 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
))
1802 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1803 service_tree
->count
);
1807 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1809 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1810 struct cfq_io_context
*cic
;
1814 * SSD device without seek penalty, disable idling. But only do so
1815 * for devices that support queuing, otherwise we still have a problem
1816 * with sync vs async workloads.
1818 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1821 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1822 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1825 * idle is disabled, either manually or by past process history
1827 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1831 * still active requests from this queue, don't idle
1833 if (cfqq
->dispatched
)
1837 * task has exited, don't wait
1839 cic
= cfqd
->active_cic
;
1840 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1844 * If our average think time is larger than the remaining time
1845 * slice, then don't idle. This avoids overrunning the allotted
1848 if (sample_valid(cic
->ttime_samples
) &&
1849 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
)) {
1850 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%d",
1855 cfq_mark_cfqq_wait_request(cfqq
);
1857 sl
= cfqd
->cfq_slice_idle
;
1859 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1860 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1864 * Move request from internal lists to the request queue dispatch list.
1866 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1868 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1869 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1871 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1873 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1874 cfq_remove_request(rq
);
1876 elv_dispatch_sort(q
, rq
);
1878 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
1879 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1883 * return expired entry, or NULL to just start from scratch in rbtree
1885 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1887 struct request
*rq
= NULL
;
1889 if (cfq_cfqq_fifo_expire(cfqq
))
1892 cfq_mark_cfqq_fifo_expire(cfqq
);
1894 if (list_empty(&cfqq
->fifo
))
1897 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1898 if (time_before(jiffies
, rq_fifo_time(rq
)))
1901 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1906 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1908 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1910 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1912 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1916 * Must be called with the queue_lock held.
1918 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1920 int process_refs
, io_refs
;
1922 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1923 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1924 BUG_ON(process_refs
< 0);
1925 return process_refs
;
1928 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1930 int process_refs
, new_process_refs
;
1931 struct cfq_queue
*__cfqq
;
1933 /* Avoid a circular list and skip interim queue merges */
1934 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1940 process_refs
= cfqq_process_refs(cfqq
);
1942 * If the process for the cfqq has gone away, there is no
1943 * sense in merging the queues.
1945 if (process_refs
== 0)
1949 * Merge in the direction of the lesser amount of work.
1951 new_process_refs
= cfqq_process_refs(new_cfqq
);
1952 if (new_process_refs
>= process_refs
) {
1953 cfqq
->new_cfqq
= new_cfqq
;
1954 atomic_add(process_refs
, &new_cfqq
->ref
);
1956 new_cfqq
->new_cfqq
= cfqq
;
1957 atomic_add(new_process_refs
, &cfqq
->ref
);
1961 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
1962 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
1964 struct cfq_queue
*queue
;
1966 bool key_valid
= false;
1967 unsigned long lowest_key
= 0;
1968 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
1970 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
1971 /* select the one with lowest rb_key */
1972 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
1974 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
1975 lowest_key
= queue
->rb_key
;
1984 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1988 struct cfq_rb_root
*st
;
1989 unsigned group_slice
;
1992 cfqd
->serving_prio
= IDLE_WORKLOAD
;
1993 cfqd
->workload_expires
= jiffies
+ 1;
1997 /* Choose next priority. RT > BE > IDLE */
1998 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
1999 cfqd
->serving_prio
= RT_WORKLOAD
;
2000 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2001 cfqd
->serving_prio
= BE_WORKLOAD
;
2003 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2004 cfqd
->workload_expires
= jiffies
+ 1;
2009 * For RT and BE, we have to choose also the type
2010 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2013 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2017 * check workload expiration, and that we still have other queues ready
2019 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2022 /* otherwise select new workload type */
2023 cfqd
->serving_type
=
2024 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2025 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2029 * the workload slice is computed as a fraction of target latency
2030 * proportional to the number of queues in that workload, over
2031 * all the queues in the same priority class
2033 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2035 slice
= group_slice
* count
/
2036 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2037 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2039 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2043 * Async queues are currently system wide. Just taking
2044 * proportion of queues with-in same group will lead to higher
2045 * async ratio system wide as generally root group is going
2046 * to have higher weight. A more accurate thing would be to
2047 * calculate system wide asnc/sync ratio.
2049 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2050 tmp
= tmp
/cfqd
->busy_queues
;
2051 slice
= min_t(unsigned, slice
, tmp
);
2053 /* async workload slice is scaled down according to
2054 * the sync/async slice ratio. */
2055 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2057 /* sync workload slice is at least 2 * cfq_slice_idle */
2058 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2060 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2061 cfq_log(cfqd
, "workload slice:%d", slice
);
2062 cfqd
->workload_expires
= jiffies
+ slice
;
2063 cfqd
->noidle_tree_requires_idle
= false;
2066 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2068 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2069 struct cfq_group
*cfqg
;
2071 if (RB_EMPTY_ROOT(&st
->rb
))
2073 cfqg
= cfq_rb_first_group(st
);
2074 st
->active
= &cfqg
->rb_node
;
2075 update_min_vdisktime(st
);
2079 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2081 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2083 cfqd
->serving_group
= cfqg
;
2085 /* Restore the workload type data */
2086 if (cfqg
->saved_workload_slice
) {
2087 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2088 cfqd
->serving_type
= cfqg
->saved_workload
;
2089 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2091 cfqd
->workload_expires
= jiffies
- 1;
2093 choose_service_tree(cfqd
, cfqg
);
2097 * Select a queue for service. If we have a current active queue,
2098 * check whether to continue servicing it, or retrieve and set a new one.
2100 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2102 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2104 cfqq
= cfqd
->active_queue
;
2108 if (!cfqd
->rq_queued
)
2112 * We were waiting for group to get backlogged. Expire the queue
2114 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2118 * The active queue has run out of time, expire it and select new.
2120 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2122 * If slice had not expired at the completion of last request
2123 * we might not have turned on wait_busy flag. Don't expire
2124 * the queue yet. Allow the group to get backlogged.
2126 * The very fact that we have used the slice, that means we
2127 * have been idling all along on this queue and it should be
2128 * ok to wait for this request to complete.
2130 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2131 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2139 * The active queue has requests and isn't expired, allow it to
2142 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2146 * If another queue has a request waiting within our mean seek
2147 * distance, let it run. The expire code will check for close
2148 * cooperators and put the close queue at the front of the service
2149 * tree. If possible, merge the expiring queue with the new cfqq.
2151 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2153 if (!cfqq
->new_cfqq
)
2154 cfq_setup_merge(cfqq
, new_cfqq
);
2159 * No requests pending. If the active queue still has requests in
2160 * flight or is idling for a new request, allow either of these
2161 * conditions to happen (or time out) before selecting a new queue.
2163 if (timer_pending(&cfqd
->idle_slice_timer
) ||
2164 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
2170 cfq_slice_expired(cfqd
, 0);
2173 * Current queue expired. Check if we have to switch to a new
2177 cfq_choose_cfqg(cfqd
);
2179 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2184 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2188 while (cfqq
->next_rq
) {
2189 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2193 BUG_ON(!list_empty(&cfqq
->fifo
));
2195 /* By default cfqq is not expired if it is empty. Do it explicitly */
2196 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2201 * Drain our current requests. Used for barriers and when switching
2202 * io schedulers on-the-fly.
2204 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2206 struct cfq_queue
*cfqq
;
2209 /* Expire the timeslice of the current active queue first */
2210 cfq_slice_expired(cfqd
, 0);
2211 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2212 __cfq_set_active_queue(cfqd
, cfqq
);
2213 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2216 BUG_ON(cfqd
->busy_queues
);
2218 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2222 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2223 struct cfq_queue
*cfqq
)
2225 /* the queue hasn't finished any request, can't estimate */
2226 if (cfq_cfqq_slice_new(cfqq
))
2228 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2235 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2237 unsigned int max_dispatch
;
2240 * Drain async requests before we start sync IO
2242 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2246 * If this is an async queue and we have sync IO in flight, let it wait
2248 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2251 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2252 if (cfq_class_idle(cfqq
))
2256 * Does this cfqq already have too much IO in flight?
2258 if (cfqq
->dispatched
>= max_dispatch
) {
2260 * idle queue must always only have a single IO in flight
2262 if (cfq_class_idle(cfqq
))
2266 * We have other queues, don't allow more IO from this one
2268 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
))
2272 * Sole queue user, no limit
2274 if (cfqd
->busy_queues
== 1)
2278 * Normally we start throttling cfqq when cfq_quantum/2
2279 * requests have been dispatched. But we can drive
2280 * deeper queue depths at the beginning of slice
2281 * subjected to upper limit of cfq_quantum.
2283 max_dispatch
= cfqd
->cfq_quantum
;
2287 * Async queues must wait a bit before being allowed dispatch.
2288 * We also ramp up the dispatch depth gradually for async IO,
2289 * based on the last sync IO we serviced
2291 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2292 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2295 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2296 if (!depth
&& !cfqq
->dispatched
)
2298 if (depth
< max_dispatch
)
2299 max_dispatch
= depth
;
2303 * If we're below the current max, allow a dispatch
2305 return cfqq
->dispatched
< max_dispatch
;
2309 * Dispatch a request from cfqq, moving them to the request queue
2312 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2316 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2318 if (!cfq_may_dispatch(cfqd
, cfqq
))
2322 * follow expired path, else get first next available
2324 rq
= cfq_check_fifo(cfqq
);
2329 * insert request into driver dispatch list
2331 cfq_dispatch_insert(cfqd
->queue
, rq
);
2333 if (!cfqd
->active_cic
) {
2334 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2336 atomic_long_inc(&cic
->ioc
->refcount
);
2337 cfqd
->active_cic
= cic
;
2344 * Find the cfqq that we need to service and move a request from that to the
2347 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2349 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2350 struct cfq_queue
*cfqq
;
2352 if (!cfqd
->busy_queues
)
2355 if (unlikely(force
))
2356 return cfq_forced_dispatch(cfqd
);
2358 cfqq
= cfq_select_queue(cfqd
);
2363 * Dispatch a request from this cfqq, if it is allowed
2365 if (!cfq_dispatch_request(cfqd
, cfqq
))
2368 cfqq
->slice_dispatch
++;
2369 cfq_clear_cfqq_must_dispatch(cfqq
);
2372 * expire an async queue immediately if it has used up its slice. idle
2373 * queue always expire after 1 dispatch round.
2375 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2376 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2377 cfq_class_idle(cfqq
))) {
2378 cfqq
->slice_end
= jiffies
+ 1;
2379 cfq_slice_expired(cfqd
, 0);
2382 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2387 * task holds one reference to the queue, dropped when task exits. each rq
2388 * in-flight on this queue also holds a reference, dropped when rq is freed.
2390 * Each cfq queue took a reference on the parent group. Drop it now.
2391 * queue lock must be held here.
2393 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2395 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2396 struct cfq_group
*cfqg
, *orig_cfqg
;
2398 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2400 if (!atomic_dec_and_test(&cfqq
->ref
))
2403 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2404 BUG_ON(rb_first(&cfqq
->sort_list
));
2405 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2407 orig_cfqg
= cfqq
->orig_cfqg
;
2409 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2410 __cfq_slice_expired(cfqd
, cfqq
, 0);
2411 cfq_schedule_dispatch(cfqd
);
2414 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2415 kmem_cache_free(cfq_pool
, cfqq
);
2418 cfq_put_cfqg(orig_cfqg
);
2422 * Must always be called with the rcu_read_lock() held
2425 __call_for_each_cic(struct io_context
*ioc
,
2426 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2428 struct cfq_io_context
*cic
;
2429 struct hlist_node
*n
;
2431 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2436 * Call func for each cic attached to this ioc.
2439 call_for_each_cic(struct io_context
*ioc
,
2440 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2443 __call_for_each_cic(ioc
, func
);
2447 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2449 struct cfq_io_context
*cic
;
2451 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2453 kmem_cache_free(cfq_ioc_pool
, cic
);
2454 elv_ioc_count_dec(cfq_ioc_count
);
2458 * CFQ scheduler is exiting, grab exit lock and check
2459 * the pending io context count. If it hits zero,
2460 * complete ioc_gone and set it back to NULL
2462 spin_lock(&ioc_gone_lock
);
2463 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2467 spin_unlock(&ioc_gone_lock
);
2471 static void cfq_cic_free(struct cfq_io_context
*cic
)
2473 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2476 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2478 unsigned long flags
;
2480 BUG_ON(!cic
->dead_key
);
2482 spin_lock_irqsave(&ioc
->lock
, flags
);
2483 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
2484 hlist_del_rcu(&cic
->cic_list
);
2485 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2491 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2492 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2493 * and ->trim() which is called with the task lock held
2495 static void cfq_free_io_context(struct io_context
*ioc
)
2498 * ioc->refcount is zero here, or we are called from elv_unregister(),
2499 * so no more cic's are allowed to be linked into this ioc. So it
2500 * should be ok to iterate over the known list, we will see all cic's
2501 * since no new ones are added.
2503 __call_for_each_cic(ioc
, cic_free_func
);
2506 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2508 struct cfq_queue
*__cfqq
, *next
;
2510 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2511 __cfq_slice_expired(cfqd
, cfqq
, 0);
2512 cfq_schedule_dispatch(cfqd
);
2516 * If this queue was scheduled to merge with another queue, be
2517 * sure to drop the reference taken on that queue (and others in
2518 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2520 __cfqq
= cfqq
->new_cfqq
;
2522 if (__cfqq
== cfqq
) {
2523 WARN(1, "cfqq->new_cfqq loop detected\n");
2526 next
= __cfqq
->new_cfqq
;
2527 cfq_put_queue(__cfqq
);
2531 cfq_put_queue(cfqq
);
2534 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2535 struct cfq_io_context
*cic
)
2537 struct io_context
*ioc
= cic
->ioc
;
2539 list_del_init(&cic
->queue_list
);
2542 * Make sure key == NULL is seen for dead queues
2545 cic
->dead_key
= (unsigned long) cic
->key
;
2548 if (ioc
->ioc_data
== cic
)
2549 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2551 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2552 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2553 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2556 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2557 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2558 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2562 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2563 struct cfq_io_context
*cic
)
2565 struct cfq_data
*cfqd
= cic
->key
;
2568 struct request_queue
*q
= cfqd
->queue
;
2569 unsigned long flags
;
2571 spin_lock_irqsave(q
->queue_lock
, flags
);
2574 * Ensure we get a fresh copy of the ->key to prevent
2575 * race between exiting task and queue
2577 smp_read_barrier_depends();
2579 __cfq_exit_single_io_context(cfqd
, cic
);
2581 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2586 * The process that ioc belongs to has exited, we need to clean up
2587 * and put the internal structures we have that belongs to that process.
2589 static void cfq_exit_io_context(struct io_context
*ioc
)
2591 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2594 static struct cfq_io_context
*
2595 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2597 struct cfq_io_context
*cic
;
2599 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2602 cic
->last_end_request
= jiffies
;
2603 INIT_LIST_HEAD(&cic
->queue_list
);
2604 INIT_HLIST_NODE(&cic
->cic_list
);
2605 cic
->dtor
= cfq_free_io_context
;
2606 cic
->exit
= cfq_exit_io_context
;
2607 elv_ioc_count_inc(cfq_ioc_count
);
2613 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2615 struct task_struct
*tsk
= current
;
2618 if (!cfq_cfqq_prio_changed(cfqq
))
2621 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2622 switch (ioprio_class
) {
2624 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2625 case IOPRIO_CLASS_NONE
:
2627 * no prio set, inherit CPU scheduling settings
2629 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2630 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2632 case IOPRIO_CLASS_RT
:
2633 cfqq
->ioprio
= task_ioprio(ioc
);
2634 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2636 case IOPRIO_CLASS_BE
:
2637 cfqq
->ioprio
= task_ioprio(ioc
);
2638 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2640 case IOPRIO_CLASS_IDLE
:
2641 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2643 cfq_clear_cfqq_idle_window(cfqq
);
2648 * keep track of original prio settings in case we have to temporarily
2649 * elevate the priority of this queue
2651 cfqq
->org_ioprio
= cfqq
->ioprio
;
2652 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2653 cfq_clear_cfqq_prio_changed(cfqq
);
2656 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2658 struct cfq_data
*cfqd
= cic
->key
;
2659 struct cfq_queue
*cfqq
;
2660 unsigned long flags
;
2662 if (unlikely(!cfqd
))
2665 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2667 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2669 struct cfq_queue
*new_cfqq
;
2670 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2673 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2674 cfq_put_queue(cfqq
);
2678 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2680 cfq_mark_cfqq_prio_changed(cfqq
);
2682 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2685 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2687 call_for_each_cic(ioc
, changed_ioprio
);
2688 ioc
->ioprio_changed
= 0;
2691 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2692 pid_t pid
, bool is_sync
)
2694 RB_CLEAR_NODE(&cfqq
->rb_node
);
2695 RB_CLEAR_NODE(&cfqq
->p_node
);
2696 INIT_LIST_HEAD(&cfqq
->fifo
);
2698 atomic_set(&cfqq
->ref
, 0);
2701 cfq_mark_cfqq_prio_changed(cfqq
);
2704 if (!cfq_class_idle(cfqq
))
2705 cfq_mark_cfqq_idle_window(cfqq
);
2706 cfq_mark_cfqq_sync(cfqq
);
2711 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2712 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2714 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2715 struct cfq_data
*cfqd
= cic
->key
;
2716 unsigned long flags
;
2717 struct request_queue
*q
;
2719 if (unlikely(!cfqd
))
2724 spin_lock_irqsave(q
->queue_lock
, flags
);
2728 * Drop reference to sync queue. A new sync queue will be
2729 * assigned in new group upon arrival of a fresh request.
2731 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2732 cic_set_cfqq(cic
, NULL
, 1);
2733 cfq_put_queue(sync_cfqq
);
2736 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2739 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2741 call_for_each_cic(ioc
, changed_cgroup
);
2742 ioc
->cgroup_changed
= 0;
2744 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2746 static struct cfq_queue
*
2747 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2748 struct io_context
*ioc
, gfp_t gfp_mask
)
2750 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2751 struct cfq_io_context
*cic
;
2752 struct cfq_group
*cfqg
;
2755 cfqg
= cfq_get_cfqg(cfqd
, 1);
2756 cic
= cfq_cic_lookup(cfqd
, ioc
);
2757 /* cic always exists here */
2758 cfqq
= cic_to_cfqq(cic
, is_sync
);
2761 * Always try a new alloc if we fell back to the OOM cfqq
2762 * originally, since it should just be a temporary situation.
2764 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2769 } else if (gfp_mask
& __GFP_WAIT
) {
2770 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2771 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2772 gfp_mask
| __GFP_ZERO
,
2774 spin_lock_irq(cfqd
->queue
->queue_lock
);
2778 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2779 gfp_mask
| __GFP_ZERO
,
2784 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2785 cfq_init_prio_data(cfqq
, ioc
);
2786 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2787 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2789 cfqq
= &cfqd
->oom_cfqq
;
2793 kmem_cache_free(cfq_pool
, new_cfqq
);
2798 static struct cfq_queue
**
2799 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2801 switch (ioprio_class
) {
2802 case IOPRIO_CLASS_RT
:
2803 return &cfqd
->async_cfqq
[0][ioprio
];
2804 case IOPRIO_CLASS_BE
:
2805 return &cfqd
->async_cfqq
[1][ioprio
];
2806 case IOPRIO_CLASS_IDLE
:
2807 return &cfqd
->async_idle_cfqq
;
2813 static struct cfq_queue
*
2814 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2817 const int ioprio
= task_ioprio(ioc
);
2818 const int ioprio_class
= task_ioprio_class(ioc
);
2819 struct cfq_queue
**async_cfqq
= NULL
;
2820 struct cfq_queue
*cfqq
= NULL
;
2823 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2828 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2831 * pin the queue now that it's allocated, scheduler exit will prune it
2833 if (!is_sync
&& !(*async_cfqq
)) {
2834 atomic_inc(&cfqq
->ref
);
2838 atomic_inc(&cfqq
->ref
);
2843 * We drop cfq io contexts lazily, so we may find a dead one.
2846 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2847 struct cfq_io_context
*cic
)
2849 unsigned long flags
;
2851 WARN_ON(!list_empty(&cic
->queue_list
));
2853 spin_lock_irqsave(&ioc
->lock
, flags
);
2855 BUG_ON(ioc
->ioc_data
== cic
);
2857 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
2858 hlist_del_rcu(&cic
->cic_list
);
2859 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2864 static struct cfq_io_context
*
2865 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2867 struct cfq_io_context
*cic
;
2868 unsigned long flags
;
2877 * we maintain a last-hit cache, to avoid browsing over the tree
2879 cic
= rcu_dereference(ioc
->ioc_data
);
2880 if (cic
&& cic
->key
== cfqd
) {
2886 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
2890 /* ->key must be copied to avoid race with cfq_exit_queue() */
2893 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2898 spin_lock_irqsave(&ioc
->lock
, flags
);
2899 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2900 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2908 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2909 * the process specific cfq io context when entered from the block layer.
2910 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2912 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2913 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2915 unsigned long flags
;
2918 ret
= radix_tree_preload(gfp_mask
);
2923 spin_lock_irqsave(&ioc
->lock
, flags
);
2924 ret
= radix_tree_insert(&ioc
->radix_root
,
2925 (unsigned long) cfqd
, cic
);
2927 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2928 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2930 radix_tree_preload_end();
2933 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2934 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
2935 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2940 printk(KERN_ERR
"cfq: cic link failed!\n");
2946 * Setup general io context and cfq io context. There can be several cfq
2947 * io contexts per general io context, if this process is doing io to more
2948 * than one device managed by cfq.
2950 static struct cfq_io_context
*
2951 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2953 struct io_context
*ioc
= NULL
;
2954 struct cfq_io_context
*cic
;
2956 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2958 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2962 cic
= cfq_cic_lookup(cfqd
, ioc
);
2966 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2970 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2974 smp_read_barrier_depends();
2975 if (unlikely(ioc
->ioprio_changed
))
2976 cfq_ioc_set_ioprio(ioc
);
2978 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2979 if (unlikely(ioc
->cgroup_changed
))
2980 cfq_ioc_set_cgroup(ioc
);
2986 put_io_context(ioc
);
2991 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2993 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2994 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2996 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2997 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2998 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3002 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3006 sector_t n_sec
= blk_rq_sectors(rq
);
3007 if (cfqq
->last_request_pos
) {
3008 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3009 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3011 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3014 cfqq
->seek_history
<<= 1;
3015 if (blk_queue_nonrot(cfqd
->queue
))
3016 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3018 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3022 * Disable idle window if the process thinks too long or seeks so much that
3026 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3027 struct cfq_io_context
*cic
)
3029 int old_idle
, enable_idle
;
3032 * Don't idle for async or idle io prio class
3034 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3037 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3039 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3040 cfq_mark_cfqq_deep(cfqq
);
3042 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3043 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3045 else if (sample_valid(cic
->ttime_samples
)) {
3046 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3052 if (old_idle
!= enable_idle
) {
3053 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3055 cfq_mark_cfqq_idle_window(cfqq
);
3057 cfq_clear_cfqq_idle_window(cfqq
);
3062 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3063 * no or if we aren't sure, a 1 will cause a preempt.
3066 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3069 struct cfq_queue
*cfqq
;
3071 cfqq
= cfqd
->active_queue
;
3075 if (cfq_class_idle(new_cfqq
))
3078 if (cfq_class_idle(cfqq
))
3082 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3084 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3088 * if the new request is sync, but the currently running queue is
3089 * not, let the sync request have priority.
3091 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3094 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3097 if (cfq_slice_used(cfqq
))
3100 /* Allow preemption only if we are idling on sync-noidle tree */
3101 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3102 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3103 new_cfqq
->service_tree
->count
== 2 &&
3104 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3108 * So both queues are sync. Let the new request get disk time if
3109 * it's a metadata request and the current queue is doing regular IO.
3111 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
3115 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3117 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3120 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3124 * if this request is as-good as one we would expect from the
3125 * current cfqq, let it preempt
3127 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3134 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3135 * let it have half of its nominal slice.
3137 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3139 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3140 cfq_slice_expired(cfqd
, 1);
3143 * Put the new queue at the front of the of the current list,
3144 * so we know that it will be selected next.
3146 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3148 cfq_service_tree_add(cfqd
, cfqq
, 1);
3150 cfqq
->slice_end
= 0;
3151 cfq_mark_cfqq_slice_new(cfqq
);
3155 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3156 * something we should do about it
3159 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3162 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3166 cfqq
->meta_pending
++;
3168 cfq_update_io_thinktime(cfqd
, cic
);
3169 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3170 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3172 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3174 if (cfqq
== cfqd
->active_queue
) {
3176 * Remember that we saw a request from this process, but
3177 * don't start queuing just yet. Otherwise we risk seeing lots
3178 * of tiny requests, because we disrupt the normal plugging
3179 * and merging. If the request is already larger than a single
3180 * page, let it rip immediately. For that case we assume that
3181 * merging is already done. Ditto for a busy system that
3182 * has other work pending, don't risk delaying until the
3183 * idle timer unplug to continue working.
3185 if (cfq_cfqq_wait_request(cfqq
)) {
3186 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3187 cfqd
->busy_queues
> 1) {
3188 del_timer(&cfqd
->idle_slice_timer
);
3189 cfq_clear_cfqq_wait_request(cfqq
);
3190 __blk_run_queue(cfqd
->queue
);
3192 cfq_mark_cfqq_must_dispatch(cfqq
);
3194 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3196 * not the active queue - expire current slice if it is
3197 * idle and has expired it's mean thinktime or this new queue
3198 * has some old slice time left and is of higher priority or
3199 * this new queue is RT and the current one is BE
3201 cfq_preempt_queue(cfqd
, cfqq
);
3202 __blk_run_queue(cfqd
->queue
);
3206 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3208 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3209 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3211 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3212 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3214 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3215 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3218 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3222 * Update hw_tag based on peak queue depth over 50 samples under
3225 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3227 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3229 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3230 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3232 if (cfqd
->hw_tag
== 1)
3235 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3236 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3240 * If active queue hasn't enough requests and can idle, cfq might not
3241 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3244 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3245 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3246 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3249 if (cfqd
->hw_tag_samples
++ < 50)
3252 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3258 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3260 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3262 /* If there are other queues in the group, don't wait */
3263 if (cfqq
->cfqg
->nr_cfqq
> 1)
3266 if (cfq_slice_used(cfqq
))
3269 /* if slice left is less than think time, wait busy */
3270 if (cic
&& sample_valid(cic
->ttime_samples
)
3271 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3275 * If think times is less than a jiffy than ttime_mean=0 and above
3276 * will not be true. It might happen that slice has not expired yet
3277 * but will expire soon (4-5 ns) during select_queue(). To cover the
3278 * case where think time is less than a jiffy, mark the queue wait
3279 * busy if only 1 jiffy is left in the slice.
3281 if (cfqq
->slice_end
- jiffies
== 1)
3287 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3289 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3290 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3291 const int sync
= rq_is_sync(rq
);
3295 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", !!rq_noidle(rq
));
3297 cfq_update_hw_tag(cfqd
);
3299 WARN_ON(!cfqd
->rq_in_driver
);
3300 WARN_ON(!cfqq
->dispatched
);
3301 cfqd
->rq_in_driver
--;
3304 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3307 RQ_CIC(rq
)->last_end_request
= now
;
3308 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3309 cfqd
->last_delayed_sync
= now
;
3313 * If this is the active queue, check if it needs to be expired,
3314 * or if we want to idle in case it has no pending requests.
3316 if (cfqd
->active_queue
== cfqq
) {
3317 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3319 if (cfq_cfqq_slice_new(cfqq
)) {
3320 cfq_set_prio_slice(cfqd
, cfqq
);
3321 cfq_clear_cfqq_slice_new(cfqq
);
3325 * Should we wait for next request to come in before we expire
3328 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3329 cfqq
->slice_end
= jiffies
+ cfqd
->cfq_slice_idle
;
3330 cfq_mark_cfqq_wait_busy(cfqq
);
3331 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3335 * Idling is not enabled on:
3337 * - idle-priority queues
3339 * - queues with still some requests queued
3340 * - when there is a close cooperator
3342 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3343 cfq_slice_expired(cfqd
, 1);
3344 else if (sync
&& cfqq_empty
&&
3345 !cfq_close_cooperator(cfqd
, cfqq
)) {
3346 cfqd
->noidle_tree_requires_idle
|= !rq_noidle(rq
);
3348 * Idling is enabled for SYNC_WORKLOAD.
3349 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3350 * only if we processed at least one !rq_noidle request
3352 if (cfqd
->serving_type
== SYNC_WORKLOAD
3353 || cfqd
->noidle_tree_requires_idle
3354 || cfqq
->cfqg
->nr_cfqq
== 1)
3355 cfq_arm_slice_timer(cfqd
);
3359 if (!cfqd
->rq_in_driver
)
3360 cfq_schedule_dispatch(cfqd
);
3364 * we temporarily boost lower priority queues if they are holding fs exclusive
3365 * resources. they are boosted to normal prio (CLASS_BE/4)
3367 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3369 if (has_fs_excl()) {
3371 * boost idle prio on transactions that would lock out other
3372 * users of the filesystem
3374 if (cfq_class_idle(cfqq
))
3375 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3376 if (cfqq
->ioprio
> IOPRIO_NORM
)
3377 cfqq
->ioprio
= IOPRIO_NORM
;
3380 * unboost the queue (if needed)
3382 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3383 cfqq
->ioprio
= cfqq
->org_ioprio
;
3387 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3389 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3390 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3391 return ELV_MQUEUE_MUST
;
3394 return ELV_MQUEUE_MAY
;
3397 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3399 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3400 struct task_struct
*tsk
= current
;
3401 struct cfq_io_context
*cic
;
3402 struct cfq_queue
*cfqq
;
3405 * don't force setup of a queue from here, as a call to may_queue
3406 * does not necessarily imply that a request actually will be queued.
3407 * so just lookup a possibly existing queue, or return 'may queue'
3410 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3412 return ELV_MQUEUE_MAY
;
3414 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3416 cfq_init_prio_data(cfqq
, cic
->ioc
);
3417 cfq_prio_boost(cfqq
);
3419 return __cfq_may_queue(cfqq
);
3422 return ELV_MQUEUE_MAY
;
3426 * queue lock held here
3428 static void cfq_put_request(struct request
*rq
)
3430 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3433 const int rw
= rq_data_dir(rq
);
3435 BUG_ON(!cfqq
->allocated
[rw
]);
3436 cfqq
->allocated
[rw
]--;
3438 put_io_context(RQ_CIC(rq
)->ioc
);
3440 rq
->elevator_private
= NULL
;
3441 rq
->elevator_private2
= NULL
;
3443 cfq_put_queue(cfqq
);
3447 static struct cfq_queue
*
3448 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3449 struct cfq_queue
*cfqq
)
3451 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3452 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3453 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3454 cfq_put_queue(cfqq
);
3455 return cic_to_cfqq(cic
, 1);
3459 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3460 * was the last process referring to said cfqq.
3462 static struct cfq_queue
*
3463 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3465 if (cfqq_process_refs(cfqq
) == 1) {
3466 cfqq
->pid
= current
->pid
;
3467 cfq_clear_cfqq_coop(cfqq
);
3468 cfq_clear_cfqq_split_coop(cfqq
);
3472 cic_set_cfqq(cic
, NULL
, 1);
3473 cfq_put_queue(cfqq
);
3477 * Allocate cfq data structures associated with this request.
3480 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3482 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3483 struct cfq_io_context
*cic
;
3484 const int rw
= rq_data_dir(rq
);
3485 const bool is_sync
= rq_is_sync(rq
);
3486 struct cfq_queue
*cfqq
;
3487 unsigned long flags
;
3489 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3491 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3493 spin_lock_irqsave(q
->queue_lock
, flags
);
3499 cfqq
= cic_to_cfqq(cic
, is_sync
);
3500 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3501 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3502 cic_set_cfqq(cic
, cfqq
, is_sync
);
3505 * If the queue was seeky for too long, break it apart.
3507 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3508 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3509 cfqq
= split_cfqq(cic
, cfqq
);
3515 * Check to see if this queue is scheduled to merge with
3516 * another, closely cooperating queue. The merging of
3517 * queues happens here as it must be done in process context.
3518 * The reference on new_cfqq was taken in merge_cfqqs.
3521 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3524 cfqq
->allocated
[rw
]++;
3525 atomic_inc(&cfqq
->ref
);
3527 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3529 rq
->elevator_private
= cic
;
3530 rq
->elevator_private2
= cfqq
;
3535 put_io_context(cic
->ioc
);
3537 cfq_schedule_dispatch(cfqd
);
3538 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3539 cfq_log(cfqd
, "set_request fail");
3543 static void cfq_kick_queue(struct work_struct
*work
)
3545 struct cfq_data
*cfqd
=
3546 container_of(work
, struct cfq_data
, unplug_work
);
3547 struct request_queue
*q
= cfqd
->queue
;
3549 spin_lock_irq(q
->queue_lock
);
3550 __blk_run_queue(cfqd
->queue
);
3551 spin_unlock_irq(q
->queue_lock
);
3555 * Timer running if the active_queue is currently idling inside its time slice
3557 static void cfq_idle_slice_timer(unsigned long data
)
3559 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3560 struct cfq_queue
*cfqq
;
3561 unsigned long flags
;
3564 cfq_log(cfqd
, "idle timer fired");
3566 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3568 cfqq
= cfqd
->active_queue
;
3573 * We saw a request before the queue expired, let it through
3575 if (cfq_cfqq_must_dispatch(cfqq
))
3581 if (cfq_slice_used(cfqq
))
3585 * only expire and reinvoke request handler, if there are
3586 * other queues with pending requests
3588 if (!cfqd
->busy_queues
)
3592 * not expired and it has a request pending, let it dispatch
3594 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3598 * Queue depth flag is reset only when the idle didn't succeed
3600 cfq_clear_cfqq_deep(cfqq
);
3603 cfq_slice_expired(cfqd
, timed_out
);
3605 cfq_schedule_dispatch(cfqd
);
3607 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3610 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3612 del_timer_sync(&cfqd
->idle_slice_timer
);
3613 cancel_work_sync(&cfqd
->unplug_work
);
3616 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3620 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3621 if (cfqd
->async_cfqq
[0][i
])
3622 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3623 if (cfqd
->async_cfqq
[1][i
])
3624 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3627 if (cfqd
->async_idle_cfqq
)
3628 cfq_put_queue(cfqd
->async_idle_cfqq
);
3631 static void cfq_cfqd_free(struct rcu_head
*head
)
3633 kfree(container_of(head
, struct cfq_data
, rcu
));
3636 static void cfq_exit_queue(struct elevator_queue
*e
)
3638 struct cfq_data
*cfqd
= e
->elevator_data
;
3639 struct request_queue
*q
= cfqd
->queue
;
3641 cfq_shutdown_timer_wq(cfqd
);
3643 spin_lock_irq(q
->queue_lock
);
3645 if (cfqd
->active_queue
)
3646 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3648 while (!list_empty(&cfqd
->cic_list
)) {
3649 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3650 struct cfq_io_context
,
3653 __cfq_exit_single_io_context(cfqd
, cic
);
3656 cfq_put_async_queues(cfqd
);
3657 cfq_release_cfq_groups(cfqd
);
3658 blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3660 spin_unlock_irq(q
->queue_lock
);
3662 cfq_shutdown_timer_wq(cfqd
);
3664 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3665 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3668 static void *cfq_init_queue(struct request_queue
*q
)
3670 struct cfq_data
*cfqd
;
3672 struct cfq_group
*cfqg
;
3673 struct cfq_rb_root
*st
;
3675 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3679 /* Init root service tree */
3680 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3682 /* Init root group */
3683 cfqg
= &cfqd
->root_group
;
3684 for_each_cfqg_st(cfqg
, i
, j
, st
)
3686 RB_CLEAR_NODE(&cfqg
->rb_node
);
3688 /* Give preference to root group over other groups */
3689 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3691 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3693 * Take a reference to root group which we never drop. This is just
3694 * to make sure that cfq_put_cfqg() does not try to kfree root group
3696 atomic_set(&cfqg
->ref
, 1);
3697 blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
, (void *)cfqd
,
3701 * Not strictly needed (since RB_ROOT just clears the node and we
3702 * zeroed cfqd on alloc), but better be safe in case someone decides
3703 * to add magic to the rb code
3705 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3706 cfqd
->prio_trees
[i
] = RB_ROOT
;
3709 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3710 * Grab a permanent reference to it, so that the normal code flow
3711 * will not attempt to free it.
3713 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3714 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3715 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3717 INIT_LIST_HEAD(&cfqd
->cic_list
);
3721 init_timer(&cfqd
->idle_slice_timer
);
3722 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3723 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3725 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3727 cfqd
->cfq_quantum
= cfq_quantum
;
3728 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3729 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3730 cfqd
->cfq_back_max
= cfq_back_max
;
3731 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3732 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3733 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3734 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3735 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3736 cfqd
->cfq_latency
= 1;
3737 cfqd
->cfq_group_isolation
= 0;
3740 * we optimistically start assuming sync ops weren't delayed in last
3741 * second, in order to have larger depth for async operations.
3743 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3744 INIT_RCU_HEAD(&cfqd
->rcu
);
3748 static void cfq_slab_kill(void)
3751 * Caller already ensured that pending RCU callbacks are completed,
3752 * so we should have no busy allocations at this point.
3755 kmem_cache_destroy(cfq_pool
);
3757 kmem_cache_destroy(cfq_ioc_pool
);
3760 static int __init
cfq_slab_setup(void)
3762 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3766 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3777 * sysfs parts below -->
3780 cfq_var_show(unsigned int var
, char *page
)
3782 return sprintf(page
, "%d\n", var
);
3786 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3788 char *p
= (char *) page
;
3790 *var
= simple_strtoul(p
, &p
, 10);
3794 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3795 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3797 struct cfq_data *cfqd = e->elevator_data; \
3798 unsigned int __data = __VAR; \
3800 __data = jiffies_to_msecs(__data); \
3801 return cfq_var_show(__data, (page)); \
3803 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3804 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3805 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3806 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3807 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3808 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3809 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3810 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3811 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3812 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3813 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3814 #undef SHOW_FUNCTION
3816 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3817 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3819 struct cfq_data *cfqd = e->elevator_data; \
3820 unsigned int __data; \
3821 int ret = cfq_var_store(&__data, (page), count); \
3822 if (__data < (MIN)) \
3824 else if (__data > (MAX)) \
3827 *(__PTR) = msecs_to_jiffies(__data); \
3829 *(__PTR) = __data; \
3832 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3833 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3835 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3837 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3838 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3840 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3841 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3842 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3843 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3845 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3846 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
3847 #undef STORE_FUNCTION
3849 #define CFQ_ATTR(name) \
3850 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3852 static struct elv_fs_entry cfq_attrs
[] = {
3854 CFQ_ATTR(fifo_expire_sync
),
3855 CFQ_ATTR(fifo_expire_async
),
3856 CFQ_ATTR(back_seek_max
),
3857 CFQ_ATTR(back_seek_penalty
),
3858 CFQ_ATTR(slice_sync
),
3859 CFQ_ATTR(slice_async
),
3860 CFQ_ATTR(slice_async_rq
),
3861 CFQ_ATTR(slice_idle
),
3862 CFQ_ATTR(low_latency
),
3863 CFQ_ATTR(group_isolation
),
3867 static struct elevator_type iosched_cfq
= {
3869 .elevator_merge_fn
= cfq_merge
,
3870 .elevator_merged_fn
= cfq_merged_request
,
3871 .elevator_merge_req_fn
= cfq_merged_requests
,
3872 .elevator_allow_merge_fn
= cfq_allow_merge
,
3873 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3874 .elevator_add_req_fn
= cfq_insert_request
,
3875 .elevator_activate_req_fn
= cfq_activate_request
,
3876 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3877 .elevator_queue_empty_fn
= cfq_queue_empty
,
3878 .elevator_completed_req_fn
= cfq_completed_request
,
3879 .elevator_former_req_fn
= elv_rb_former_request
,
3880 .elevator_latter_req_fn
= elv_rb_latter_request
,
3881 .elevator_set_req_fn
= cfq_set_request
,
3882 .elevator_put_req_fn
= cfq_put_request
,
3883 .elevator_may_queue_fn
= cfq_may_queue
,
3884 .elevator_init_fn
= cfq_init_queue
,
3885 .elevator_exit_fn
= cfq_exit_queue
,
3886 .trim
= cfq_free_io_context
,
3888 .elevator_attrs
= cfq_attrs
,
3889 .elevator_name
= "cfq",
3890 .elevator_owner
= THIS_MODULE
,
3893 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3894 static struct blkio_policy_type blkio_policy_cfq
= {
3896 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
3897 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
3901 static struct blkio_policy_type blkio_policy_cfq
;
3904 static int __init
cfq_init(void)
3907 * could be 0 on HZ < 1000 setups
3909 if (!cfq_slice_async
)
3910 cfq_slice_async
= 1;
3911 if (!cfq_slice_idle
)
3914 if (cfq_slab_setup())
3917 elv_register(&iosched_cfq
);
3918 blkio_policy_register(&blkio_policy_cfq
);
3923 static void __exit
cfq_exit(void)
3925 DECLARE_COMPLETION_ONSTACK(all_gone
);
3926 blkio_policy_unregister(&blkio_policy_cfq
);
3927 elv_unregister(&iosched_cfq
);
3928 ioc_gone
= &all_gone
;
3929 /* ioc_gone's update must be visible before reading ioc_count */
3933 * this also protects us from entering cfq_slab_kill() with
3934 * pending RCU callbacks
3936 if (elv_ioc_count_read(cfq_ioc_count
))
3937 wait_for_completion(&all_gone
);
3941 module_init(cfq_init
);
3942 module_exit(cfq_exit
);
3944 MODULE_AUTHOR("Jens Axboe");
3945 MODULE_LICENSE("GPL");
3946 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");