3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
7 * Filesystem Meta Information Block Cache (mbcache)
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
32 #include <linux/hash.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
42 # define mb_debug(f...) do { \
43 printk(KERN_DEBUG f); \
46 #define mb_assert(c) do { if (!(c)) \
47 printk(KERN_ERR "assertion " #c " failed\n"); \
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
53 #define mb_error(f...) do { \
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue
);
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
66 EXPORT_SYMBOL(mb_cache_create
);
67 EXPORT_SYMBOL(mb_cache_shrink
);
68 EXPORT_SYMBOL(mb_cache_destroy
);
69 EXPORT_SYMBOL(mb_cache_entry_alloc
);
70 EXPORT_SYMBOL(mb_cache_entry_insert
);
71 EXPORT_SYMBOL(mb_cache_entry_release
);
72 EXPORT_SYMBOL(mb_cache_entry_free
);
73 EXPORT_SYMBOL(mb_cache_entry_get
);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first
);
76 EXPORT_SYMBOL(mb_cache_entry_find_next
);
80 * Global data: list of all mbcache's, lru list, and a spinlock for
81 * accessing cache data structures on SMP machines. The lru list is
82 * global across all mbcaches.
85 static LIST_HEAD(mb_cache_list
);
86 static LIST_HEAD(mb_cache_lru_list
);
87 static DEFINE_SPINLOCK(mb_cache_spinlock
);
90 __mb_cache_entry_is_hashed(struct mb_cache_entry
*ce
)
92 return !list_empty(&ce
->e_block_list
);
97 __mb_cache_entry_unhash(struct mb_cache_entry
*ce
)
99 if (__mb_cache_entry_is_hashed(ce
)) {
100 list_del_init(&ce
->e_block_list
);
101 list_del(&ce
->e_index
.o_list
);
107 __mb_cache_entry_forget(struct mb_cache_entry
*ce
, gfp_t gfp_mask
)
109 struct mb_cache
*cache
= ce
->e_cache
;
111 mb_assert(!(ce
->e_used
|| ce
->e_queued
));
112 kmem_cache_free(cache
->c_entry_cache
, ce
);
113 atomic_dec(&cache
->c_entry_count
);
118 __mb_cache_entry_release_unlock(struct mb_cache_entry
*ce
)
119 __releases(mb_cache_spinlock
)
121 /* Wake up all processes queuing for this cache entry. */
123 wake_up_all(&mb_cache_queue
);
124 if (ce
->e_used
>= MB_CACHE_WRITER
)
125 ce
->e_used
-= MB_CACHE_WRITER
;
127 if (!(ce
->e_used
|| ce
->e_queued
)) {
128 if (!__mb_cache_entry_is_hashed(ce
))
130 mb_assert(list_empty(&ce
->e_lru_list
));
131 list_add_tail(&ce
->e_lru_list
, &mb_cache_lru_list
);
133 spin_unlock(&mb_cache_spinlock
);
136 spin_unlock(&mb_cache_spinlock
);
137 __mb_cache_entry_forget(ce
, GFP_KERNEL
);
142 * mb_cache_shrink_scan() memory pressure callback
144 * This function is called by the kernel memory management when memory
148 * @sc: shrink_control passed from reclaim
150 * Returns the number of objects freed.
153 mb_cache_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
155 LIST_HEAD(free_list
);
156 struct mb_cache_entry
*entry
, *tmp
;
157 int nr_to_scan
= sc
->nr_to_scan
;
158 gfp_t gfp_mask
= sc
->gfp_mask
;
159 unsigned long freed
= 0;
161 mb_debug("trying to free %d entries", nr_to_scan
);
162 spin_lock(&mb_cache_spinlock
);
163 while (nr_to_scan
-- && !list_empty(&mb_cache_lru_list
)) {
164 struct mb_cache_entry
*ce
=
165 list_entry(mb_cache_lru_list
.next
,
166 struct mb_cache_entry
, e_lru_list
);
167 list_move_tail(&ce
->e_lru_list
, &free_list
);
168 __mb_cache_entry_unhash(ce
);
171 spin_unlock(&mb_cache_spinlock
);
172 list_for_each_entry_safe(entry
, tmp
, &free_list
, e_lru_list
) {
173 __mb_cache_entry_forget(entry
, gfp_mask
);
179 mb_cache_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
181 struct mb_cache
*cache
;
182 unsigned long count
= 0;
184 spin_lock(&mb_cache_spinlock
);
185 list_for_each_entry(cache
, &mb_cache_list
, c_cache_list
) {
186 mb_debug("cache %s (%d)", cache
->c_name
,
187 atomic_read(&cache
->c_entry_count
));
188 count
+= atomic_read(&cache
->c_entry_count
);
190 spin_unlock(&mb_cache_spinlock
);
192 return vfs_pressure_ratio(count
);
195 static struct shrinker mb_cache_shrinker
= {
196 .count_objects
= mb_cache_shrink_count
,
197 .scan_objects
= mb_cache_shrink_scan
,
198 .seeks
= DEFAULT_SEEKS
,
202 * mb_cache_create() create a new cache
204 * All entries in one cache are equal size. Cache entries may be from
205 * multiple devices. If this is the first mbcache created, registers
206 * the cache with kernel memory management. Returns NULL if no more
207 * memory was available.
209 * @name: name of the cache (informal)
210 * @bucket_bits: log2(number of hash buckets)
213 mb_cache_create(const char *name
, int bucket_bits
)
215 int n
, bucket_count
= 1 << bucket_bits
;
216 struct mb_cache
*cache
= NULL
;
218 cache
= kmalloc(sizeof(struct mb_cache
), GFP_KERNEL
);
221 cache
->c_name
= name
;
222 atomic_set(&cache
->c_entry_count
, 0);
223 cache
->c_bucket_bits
= bucket_bits
;
224 cache
->c_block_hash
= kmalloc(bucket_count
* sizeof(struct list_head
),
226 if (!cache
->c_block_hash
)
228 for (n
=0; n
<bucket_count
; n
++)
229 INIT_LIST_HEAD(&cache
->c_block_hash
[n
]);
230 cache
->c_index_hash
= kmalloc(bucket_count
* sizeof(struct list_head
),
232 if (!cache
->c_index_hash
)
234 for (n
=0; n
<bucket_count
; n
++)
235 INIT_LIST_HEAD(&cache
->c_index_hash
[n
]);
236 cache
->c_entry_cache
= kmem_cache_create(name
,
237 sizeof(struct mb_cache_entry
), 0,
238 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
);
239 if (!cache
->c_entry_cache
)
243 * Set an upper limit on the number of cache entries so that the hash
244 * chains won't grow too long.
246 cache
->c_max_entries
= bucket_count
<< 4;
248 spin_lock(&mb_cache_spinlock
);
249 list_add(&cache
->c_cache_list
, &mb_cache_list
);
250 spin_unlock(&mb_cache_spinlock
);
254 kfree(cache
->c_index_hash
);
257 kfree(cache
->c_block_hash
);
266 * Removes all cache entries of a device from the cache. All cache entries
267 * currently in use cannot be freed, and thus remain in the cache. All others
270 * @bdev: which device's cache entries to shrink
273 mb_cache_shrink(struct block_device
*bdev
)
275 LIST_HEAD(free_list
);
276 struct list_head
*l
, *ltmp
;
278 spin_lock(&mb_cache_spinlock
);
279 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
280 struct mb_cache_entry
*ce
=
281 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
282 if (ce
->e_bdev
== bdev
) {
283 list_move_tail(&ce
->e_lru_list
, &free_list
);
284 __mb_cache_entry_unhash(ce
);
287 spin_unlock(&mb_cache_spinlock
);
288 list_for_each_safe(l
, ltmp
, &free_list
) {
289 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
290 e_lru_list
), GFP_KERNEL
);
298 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
299 * and then destroys it. If this was the last mbcache, un-registers the
300 * mbcache from kernel memory management.
303 mb_cache_destroy(struct mb_cache
*cache
)
305 LIST_HEAD(free_list
);
306 struct list_head
*l
, *ltmp
;
308 spin_lock(&mb_cache_spinlock
);
309 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
310 struct mb_cache_entry
*ce
=
311 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
312 if (ce
->e_cache
== cache
) {
313 list_move_tail(&ce
->e_lru_list
, &free_list
);
314 __mb_cache_entry_unhash(ce
);
317 list_del(&cache
->c_cache_list
);
318 spin_unlock(&mb_cache_spinlock
);
320 list_for_each_safe(l
, ltmp
, &free_list
) {
321 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
322 e_lru_list
), GFP_KERNEL
);
325 if (atomic_read(&cache
->c_entry_count
) > 0) {
326 mb_error("cache %s: %d orphaned entries",
328 atomic_read(&cache
->c_entry_count
));
331 kmem_cache_destroy(cache
->c_entry_cache
);
333 kfree(cache
->c_index_hash
);
334 kfree(cache
->c_block_hash
);
339 * mb_cache_entry_alloc()
341 * Allocates a new cache entry. The new entry will not be valid initially,
342 * and thus cannot be looked up yet. It should be filled with data, and
343 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
344 * if no more memory was available.
346 struct mb_cache_entry
*
347 mb_cache_entry_alloc(struct mb_cache
*cache
, gfp_t gfp_flags
)
349 struct mb_cache_entry
*ce
= NULL
;
351 if (atomic_read(&cache
->c_entry_count
) >= cache
->c_max_entries
) {
352 spin_lock(&mb_cache_spinlock
);
353 if (!list_empty(&mb_cache_lru_list
)) {
354 ce
= list_entry(mb_cache_lru_list
.next
,
355 struct mb_cache_entry
, e_lru_list
);
356 list_del_init(&ce
->e_lru_list
);
357 __mb_cache_entry_unhash(ce
);
359 spin_unlock(&mb_cache_spinlock
);
362 ce
= kmem_cache_alloc(cache
->c_entry_cache
, gfp_flags
);
365 atomic_inc(&cache
->c_entry_count
);
366 INIT_LIST_HEAD(&ce
->e_lru_list
);
367 INIT_LIST_HEAD(&ce
->e_block_list
);
371 ce
->e_used
= 1 + MB_CACHE_WRITER
;
377 * mb_cache_entry_insert()
379 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
380 * the cache. After this, the cache entry can be looked up, but is not yet
381 * in the lru list as the caller still holds a handle to it. Returns 0 on
382 * success, or -EBUSY if a cache entry for that device + inode exists
383 * already (this may happen after a failed lookup, but when another process
384 * has inserted the same cache entry in the meantime).
386 * @bdev: device the cache entry belongs to
387 * @block: block number
391 mb_cache_entry_insert(struct mb_cache_entry
*ce
, struct block_device
*bdev
,
392 sector_t block
, unsigned int key
)
394 struct mb_cache
*cache
= ce
->e_cache
;
399 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
400 cache
->c_bucket_bits
);
401 spin_lock(&mb_cache_spinlock
);
402 list_for_each_prev(l
, &cache
->c_block_hash
[bucket
]) {
403 struct mb_cache_entry
*ce
=
404 list_entry(l
, struct mb_cache_entry
, e_block_list
);
405 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
)
408 __mb_cache_entry_unhash(ce
);
411 list_add(&ce
->e_block_list
, &cache
->c_block_hash
[bucket
]);
412 ce
->e_index
.o_key
= key
;
413 bucket
= hash_long(key
, cache
->c_bucket_bits
);
414 list_add(&ce
->e_index
.o_list
, &cache
->c_index_hash
[bucket
]);
417 spin_unlock(&mb_cache_spinlock
);
423 * mb_cache_entry_release()
425 * Release a handle to a cache entry. When the last handle to a cache entry
426 * is released it is either freed (if it is invalid) or otherwise inserted
427 * in to the lru list.
430 mb_cache_entry_release(struct mb_cache_entry
*ce
)
432 spin_lock(&mb_cache_spinlock
);
433 __mb_cache_entry_release_unlock(ce
);
438 * mb_cache_entry_free()
440 * This is equivalent to the sequence mb_cache_entry_takeout() --
441 * mb_cache_entry_release().
444 mb_cache_entry_free(struct mb_cache_entry
*ce
)
446 spin_lock(&mb_cache_spinlock
);
447 mb_assert(list_empty(&ce
->e_lru_list
));
448 __mb_cache_entry_unhash(ce
);
449 __mb_cache_entry_release_unlock(ce
);
454 * mb_cache_entry_get()
456 * Get a cache entry by device / block number. (There can only be one entry
457 * in the cache per device and block.) Returns NULL if no such cache entry
458 * exists. The returned cache entry is locked for exclusive access ("single
461 struct mb_cache_entry
*
462 mb_cache_entry_get(struct mb_cache
*cache
, struct block_device
*bdev
,
467 struct mb_cache_entry
*ce
;
469 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
470 cache
->c_bucket_bits
);
471 spin_lock(&mb_cache_spinlock
);
472 list_for_each(l
, &cache
->c_block_hash
[bucket
]) {
473 ce
= list_entry(l
, struct mb_cache_entry
, e_block_list
);
474 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
) {
477 if (!list_empty(&ce
->e_lru_list
))
478 list_del_init(&ce
->e_lru_list
);
480 while (ce
->e_used
> 0) {
482 prepare_to_wait(&mb_cache_queue
, &wait
,
483 TASK_UNINTERRUPTIBLE
);
484 spin_unlock(&mb_cache_spinlock
);
486 spin_lock(&mb_cache_spinlock
);
489 finish_wait(&mb_cache_queue
, &wait
);
490 ce
->e_used
+= 1 + MB_CACHE_WRITER
;
492 if (!__mb_cache_entry_is_hashed(ce
)) {
493 __mb_cache_entry_release_unlock(ce
);
502 spin_unlock(&mb_cache_spinlock
);
506 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
508 static struct mb_cache_entry
*
509 __mb_cache_entry_find(struct list_head
*l
, struct list_head
*head
,
510 struct block_device
*bdev
, unsigned int key
)
513 struct mb_cache_entry
*ce
=
514 list_entry(l
, struct mb_cache_entry
, e_index
.o_list
);
515 if (ce
->e_bdev
== bdev
&& ce
->e_index
.o_key
== key
) {
518 if (!list_empty(&ce
->e_lru_list
))
519 list_del_init(&ce
->e_lru_list
);
521 /* Incrementing before holding the lock gives readers
522 priority over writers. */
524 while (ce
->e_used
>= MB_CACHE_WRITER
) {
526 prepare_to_wait(&mb_cache_queue
, &wait
,
527 TASK_UNINTERRUPTIBLE
);
528 spin_unlock(&mb_cache_spinlock
);
530 spin_lock(&mb_cache_spinlock
);
533 finish_wait(&mb_cache_queue
, &wait
);
535 if (!__mb_cache_entry_is_hashed(ce
)) {
536 __mb_cache_entry_release_unlock(ce
);
537 spin_lock(&mb_cache_spinlock
);
538 return ERR_PTR(-EAGAIN
);
549 * mb_cache_entry_find_first()
551 * Find the first cache entry on a given device with a certain key in
552 * an additional index. Additional matches can be found with
553 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
554 * returned cache entry is locked for shared access ("multiple readers").
556 * @cache: the cache to search
557 * @bdev: the device the cache entry should belong to
558 * @key: the key in the index
560 struct mb_cache_entry
*
561 mb_cache_entry_find_first(struct mb_cache
*cache
, struct block_device
*bdev
,
564 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
566 struct mb_cache_entry
*ce
;
568 spin_lock(&mb_cache_spinlock
);
569 l
= cache
->c_index_hash
[bucket
].next
;
570 ce
= __mb_cache_entry_find(l
, &cache
->c_index_hash
[bucket
], bdev
, key
);
571 spin_unlock(&mb_cache_spinlock
);
577 * mb_cache_entry_find_next()
579 * Find the next cache entry on a given device with a certain key in an
580 * additional index. Returns NULL if no match could be found. The previous
581 * entry is atomatically released, so that mb_cache_entry_find_next() can
582 * be called like this:
584 * entry = mb_cache_entry_find_first();
587 * entry = mb_cache_entry_find_next(entry, ...);
590 * @prev: The previous match
591 * @bdev: the device the cache entry should belong to
592 * @key: the key in the index
594 struct mb_cache_entry
*
595 mb_cache_entry_find_next(struct mb_cache_entry
*prev
,
596 struct block_device
*bdev
, unsigned int key
)
598 struct mb_cache
*cache
= prev
->e_cache
;
599 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
601 struct mb_cache_entry
*ce
;
603 spin_lock(&mb_cache_spinlock
);
604 l
= prev
->e_index
.o_list
.next
;
605 ce
= __mb_cache_entry_find(l
, &cache
->c_index_hash
[bucket
], bdev
, key
);
606 __mb_cache_entry_release_unlock(prev
);
610 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
612 static int __init
init_mbcache(void)
614 register_shrinker(&mb_cache_shrinker
);
618 static void __exit
exit_mbcache(void)
620 unregister_shrinker(&mb_cache_shrinker
);
623 module_init(init_mbcache
)
624 module_exit(exit_mbcache
)