block: document blk-plug
[linux-2.6.git] / block / blk-core.c
blob97e9e5405b837d911cbe3c6d916c968587a652ea
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
35 #include "blk.h"
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
42 * For the allocated request tables
44 static struct kmem_cache *request_cachep;
47 * For queue allocation
49 struct kmem_cache *blk_requestq_cachep;
52 * Controlling structure to kblockd
54 static struct workqueue_struct *kblockd_workqueue;
56 static void drive_stat_acct(struct request *rq, int new_io)
58 struct hd_struct *part;
59 int rw = rq_data_dir(rq);
60 int cpu;
62 if (!blk_do_io_stat(rq))
63 return;
65 cpu = part_stat_lock();
67 if (!new_io) {
68 part = rq->part;
69 part_stat_inc(cpu, part, merges[rw]);
70 } else {
71 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
72 if (!hd_struct_try_get(part)) {
74 * The partition is already being removed,
75 * the request will be accounted on the disk only
77 * We take a reference on disk->part0 although that
78 * partition will never be deleted, so we can treat
79 * it as any other partition.
81 part = &rq->rq_disk->part0;
82 hd_struct_get(part);
84 part_round_stats(cpu, part);
85 part_inc_in_flight(part, rw);
86 rq->part = part;
89 part_stat_unlock();
92 void blk_queue_congestion_threshold(struct request_queue *q)
94 int nr;
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
98 nr = q->nr_requests;
99 q->nr_congestion_on = nr;
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 if (nr < 1)
103 nr = 1;
104 q->nr_congestion_off = nr;
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109 * @bdev: device
111 * Locates the passed device's request queue and returns the address of its
112 * backing_dev_info
114 * Will return NULL if the request queue cannot be located.
116 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118 struct backing_dev_info *ret = NULL;
119 struct request_queue *q = bdev_get_queue(bdev);
121 if (q)
122 ret = &q->backing_dev_info;
123 return ret;
125 EXPORT_SYMBOL(blk_get_backing_dev_info);
127 void blk_rq_init(struct request_queue *q, struct request *rq)
129 memset(rq, 0, sizeof(*rq));
131 INIT_LIST_HEAD(&rq->queuelist);
132 INIT_LIST_HEAD(&rq->timeout_list);
133 rq->cpu = -1;
134 rq->q = q;
135 rq->__sector = (sector_t) -1;
136 INIT_HLIST_NODE(&rq->hash);
137 RB_CLEAR_NODE(&rq->rb_node);
138 rq->cmd = rq->__cmd;
139 rq->cmd_len = BLK_MAX_CDB;
140 rq->tag = -1;
141 rq->ref_count = 1;
142 rq->start_time = jiffies;
143 set_start_time_ns(rq);
144 rq->part = NULL;
146 EXPORT_SYMBOL(blk_rq_init);
148 static void req_bio_endio(struct request *rq, struct bio *bio,
149 unsigned int nbytes, int error)
151 if (error)
152 clear_bit(BIO_UPTODATE, &bio->bi_flags);
153 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
154 error = -EIO;
156 if (unlikely(nbytes > bio->bi_size)) {
157 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
158 __func__, nbytes, bio->bi_size);
159 nbytes = bio->bi_size;
162 if (unlikely(rq->cmd_flags & REQ_QUIET))
163 set_bit(BIO_QUIET, &bio->bi_flags);
165 bio->bi_size -= nbytes;
166 bio->bi_sector += (nbytes >> 9);
168 if (bio_integrity(bio))
169 bio_integrity_advance(bio, nbytes);
171 /* don't actually finish bio if it's part of flush sequence */
172 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
173 bio_endio(bio, error);
176 void blk_dump_rq_flags(struct request *rq, char *msg)
178 int bit;
180 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
181 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
182 rq->cmd_flags);
184 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
185 (unsigned long long)blk_rq_pos(rq),
186 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
187 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
188 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
190 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
191 printk(KERN_INFO " cdb: ");
192 for (bit = 0; bit < BLK_MAX_CDB; bit++)
193 printk("%02x ", rq->cmd[bit]);
194 printk("\n");
197 EXPORT_SYMBOL(blk_dump_rq_flags);
199 static void blk_delay_work(struct work_struct *work)
201 struct request_queue *q;
203 q = container_of(work, struct request_queue, delay_work.work);
204 spin_lock_irq(q->queue_lock);
205 __blk_run_queue(q);
206 spin_unlock_irq(q->queue_lock);
210 * blk_delay_queue - restart queueing after defined interval
211 * @q: The &struct request_queue in question
212 * @msecs: Delay in msecs
214 * Description:
215 * Sometimes queueing needs to be postponed for a little while, to allow
216 * resources to come back. This function will make sure that queueing is
217 * restarted around the specified time.
219 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
221 queue_delayed_work(kblockd_workqueue, &q->delay_work,
222 msecs_to_jiffies(msecs));
224 EXPORT_SYMBOL(blk_delay_queue);
227 * blk_start_queue - restart a previously stopped queue
228 * @q: The &struct request_queue in question
230 * Description:
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 void blk_start_queue(struct request_queue *q)
237 WARN_ON(!irqs_disabled());
239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
240 __blk_run_queue(q);
242 EXPORT_SYMBOL(blk_start_queue);
245 * blk_stop_queue - stop a queue
246 * @q: The &struct request_queue in question
248 * Description:
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 void blk_stop_queue(struct request_queue *q)
260 __cancel_delayed_work(&q->delay_work);
261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
263 EXPORT_SYMBOL(blk_stop_queue);
266 * blk_sync_queue - cancel any pending callbacks on a queue
267 * @q: the queue
269 * Description:
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
274 * that the callbacks might use. The caller must already have made sure
275 * that its ->make_request_fn will not re-add plugging prior to calling
276 * this function.
278 * This function does not cancel any asynchronous activity arising
279 * out of elevator or throttling code. That would require elevaotor_exit()
280 * and blk_throtl_exit() to be called with queue lock initialized.
283 void blk_sync_queue(struct request_queue *q)
285 del_timer_sync(&q->timeout);
286 cancel_delayed_work_sync(&q->delay_work);
288 EXPORT_SYMBOL(blk_sync_queue);
291 * __blk_run_queue - run a single device queue
292 * @q: The queue to run
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
296 * held and interrupts disabled.
298 void __blk_run_queue(struct request_queue *q)
300 if (unlikely(blk_queue_stopped(q)))
301 return;
303 q->request_fn(q);
305 EXPORT_SYMBOL(__blk_run_queue);
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us.
315 void blk_run_queue_async(struct request_queue *q)
317 if (likely(!blk_queue_stopped(q))) {
318 __cancel_delayed_work(&q->delay_work);
319 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 EXPORT_SYMBOL(blk_run_queue_async);
325 * blk_run_queue - run a single device queue
326 * @q: The queue to run
328 * Description:
329 * Invoke request handling on this queue, if it has pending work to do.
330 * May be used to restart queueing when a request has completed.
332 void blk_run_queue(struct request_queue *q)
334 unsigned long flags;
336 spin_lock_irqsave(q->queue_lock, flags);
337 __blk_run_queue(q);
338 spin_unlock_irqrestore(q->queue_lock, flags);
340 EXPORT_SYMBOL(blk_run_queue);
342 void blk_put_queue(struct request_queue *q)
344 kobject_put(&q->kobj);
346 EXPORT_SYMBOL(blk_put_queue);
349 * Note: If a driver supplied the queue lock, it should not zap that lock
350 * unexpectedly as some queue cleanup components like elevator_exit() and
351 * blk_throtl_exit() need queue lock.
353 void blk_cleanup_queue(struct request_queue *q)
356 * We know we have process context here, so we can be a little
357 * cautious and ensure that pending block actions on this device
358 * are done before moving on. Going into this function, we should
359 * not have processes doing IO to this device.
361 blk_sync_queue(q);
363 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
364 mutex_lock(&q->sysfs_lock);
365 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
366 mutex_unlock(&q->sysfs_lock);
368 if (q->elevator)
369 elevator_exit(q->elevator);
371 blk_throtl_exit(q);
373 blk_put_queue(q);
375 EXPORT_SYMBOL(blk_cleanup_queue);
377 static int blk_init_free_list(struct request_queue *q)
379 struct request_list *rl = &q->rq;
381 if (unlikely(rl->rq_pool))
382 return 0;
384 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
385 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
386 rl->elvpriv = 0;
387 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
388 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
390 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
391 mempool_free_slab, request_cachep, q->node);
393 if (!rl->rq_pool)
394 return -ENOMEM;
396 return 0;
399 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
401 return blk_alloc_queue_node(gfp_mask, -1);
403 EXPORT_SYMBOL(blk_alloc_queue);
405 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
407 struct request_queue *q;
408 int err;
410 q = kmem_cache_alloc_node(blk_requestq_cachep,
411 gfp_mask | __GFP_ZERO, node_id);
412 if (!q)
413 return NULL;
415 q->backing_dev_info.ra_pages =
416 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
417 q->backing_dev_info.state = 0;
418 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
419 q->backing_dev_info.name = "block";
421 err = bdi_init(&q->backing_dev_info);
422 if (err) {
423 kmem_cache_free(blk_requestq_cachep, q);
424 return NULL;
427 if (blk_throtl_init(q)) {
428 kmem_cache_free(blk_requestq_cachep, q);
429 return NULL;
432 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
433 laptop_mode_timer_fn, (unsigned long) q);
434 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
435 INIT_LIST_HEAD(&q->timeout_list);
436 INIT_LIST_HEAD(&q->flush_queue[0]);
437 INIT_LIST_HEAD(&q->flush_queue[1]);
438 INIT_LIST_HEAD(&q->flush_data_in_flight);
439 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
441 kobject_init(&q->kobj, &blk_queue_ktype);
443 mutex_init(&q->sysfs_lock);
444 spin_lock_init(&q->__queue_lock);
447 * By default initialize queue_lock to internal lock and driver can
448 * override it later if need be.
450 q->queue_lock = &q->__queue_lock;
452 return q;
454 EXPORT_SYMBOL(blk_alloc_queue_node);
457 * blk_init_queue - prepare a request queue for use with a block device
458 * @rfn: The function to be called to process requests that have been
459 * placed on the queue.
460 * @lock: Request queue spin lock
462 * Description:
463 * If a block device wishes to use the standard request handling procedures,
464 * which sorts requests and coalesces adjacent requests, then it must
465 * call blk_init_queue(). The function @rfn will be called when there
466 * are requests on the queue that need to be processed. If the device
467 * supports plugging, then @rfn may not be called immediately when requests
468 * are available on the queue, but may be called at some time later instead.
469 * Plugged queues are generally unplugged when a buffer belonging to one
470 * of the requests on the queue is needed, or due to memory pressure.
472 * @rfn is not required, or even expected, to remove all requests off the
473 * queue, but only as many as it can handle at a time. If it does leave
474 * requests on the queue, it is responsible for arranging that the requests
475 * get dealt with eventually.
477 * The queue spin lock must be held while manipulating the requests on the
478 * request queue; this lock will be taken also from interrupt context, so irq
479 * disabling is needed for it.
481 * Function returns a pointer to the initialized request queue, or %NULL if
482 * it didn't succeed.
484 * Note:
485 * blk_init_queue() must be paired with a blk_cleanup_queue() call
486 * when the block device is deactivated (such as at module unload).
489 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
491 return blk_init_queue_node(rfn, lock, -1);
493 EXPORT_SYMBOL(blk_init_queue);
495 struct request_queue *
496 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
498 struct request_queue *uninit_q, *q;
500 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
501 if (!uninit_q)
502 return NULL;
504 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
505 if (!q)
506 blk_cleanup_queue(uninit_q);
508 return q;
510 EXPORT_SYMBOL(blk_init_queue_node);
512 struct request_queue *
513 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
514 spinlock_t *lock)
516 return blk_init_allocated_queue_node(q, rfn, lock, -1);
518 EXPORT_SYMBOL(blk_init_allocated_queue);
520 struct request_queue *
521 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
522 spinlock_t *lock, int node_id)
524 if (!q)
525 return NULL;
527 q->node = node_id;
528 if (blk_init_free_list(q))
529 return NULL;
531 q->request_fn = rfn;
532 q->prep_rq_fn = NULL;
533 q->unprep_rq_fn = NULL;
534 q->queue_flags = QUEUE_FLAG_DEFAULT;
536 /* Override internal queue lock with supplied lock pointer */
537 if (lock)
538 q->queue_lock = lock;
541 * This also sets hw/phys segments, boundary and size
543 blk_queue_make_request(q, blk_queue_bio);
545 q->sg_reserved_size = INT_MAX;
548 * all done
550 if (!elevator_init(q, NULL)) {
551 blk_queue_congestion_threshold(q);
552 return q;
555 return NULL;
557 EXPORT_SYMBOL(blk_init_allocated_queue_node);
559 int blk_get_queue(struct request_queue *q)
561 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
562 kobject_get(&q->kobj);
563 return 0;
566 return 1;
568 EXPORT_SYMBOL(blk_get_queue);
570 static inline void blk_free_request(struct request_queue *q, struct request *rq)
572 if (rq->cmd_flags & REQ_ELVPRIV)
573 elv_put_request(q, rq);
574 mempool_free(rq, q->rq.rq_pool);
577 static struct request *
578 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
580 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
582 if (!rq)
583 return NULL;
585 blk_rq_init(q, rq);
587 rq->cmd_flags = flags | REQ_ALLOCED;
589 if (priv) {
590 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
591 mempool_free(rq, q->rq.rq_pool);
592 return NULL;
594 rq->cmd_flags |= REQ_ELVPRIV;
597 return rq;
601 * ioc_batching returns true if the ioc is a valid batching request and
602 * should be given priority access to a request.
604 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
606 if (!ioc)
607 return 0;
610 * Make sure the process is able to allocate at least 1 request
611 * even if the batch times out, otherwise we could theoretically
612 * lose wakeups.
614 return ioc->nr_batch_requests == q->nr_batching ||
615 (ioc->nr_batch_requests > 0
616 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
620 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
621 * will cause the process to be a "batcher" on all queues in the system. This
622 * is the behaviour we want though - once it gets a wakeup it should be given
623 * a nice run.
625 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
627 if (!ioc || ioc_batching(q, ioc))
628 return;
630 ioc->nr_batch_requests = q->nr_batching;
631 ioc->last_waited = jiffies;
634 static void __freed_request(struct request_queue *q, int sync)
636 struct request_list *rl = &q->rq;
638 if (rl->count[sync] < queue_congestion_off_threshold(q))
639 blk_clear_queue_congested(q, sync);
641 if (rl->count[sync] + 1 <= q->nr_requests) {
642 if (waitqueue_active(&rl->wait[sync]))
643 wake_up(&rl->wait[sync]);
645 blk_clear_queue_full(q, sync);
650 * A request has just been released. Account for it, update the full and
651 * congestion status, wake up any waiters. Called under q->queue_lock.
653 static void freed_request(struct request_queue *q, int sync, int priv)
655 struct request_list *rl = &q->rq;
657 rl->count[sync]--;
658 if (priv)
659 rl->elvpriv--;
661 __freed_request(q, sync);
663 if (unlikely(rl->starved[sync ^ 1]))
664 __freed_request(q, sync ^ 1);
668 * Determine if elevator data should be initialized when allocating the
669 * request associated with @bio.
671 static bool blk_rq_should_init_elevator(struct bio *bio)
673 if (!bio)
674 return true;
677 * Flush requests do not use the elevator so skip initialization.
678 * This allows a request to share the flush and elevator data.
680 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
681 return false;
683 return true;
687 * Get a free request, queue_lock must be held.
688 * Returns NULL on failure, with queue_lock held.
689 * Returns !NULL on success, with queue_lock *not held*.
691 static struct request *get_request(struct request_queue *q, int rw_flags,
692 struct bio *bio, gfp_t gfp_mask)
694 struct request *rq = NULL;
695 struct request_list *rl = &q->rq;
696 struct io_context *ioc = NULL;
697 const bool is_sync = rw_is_sync(rw_flags) != 0;
698 int may_queue, priv = 0;
700 may_queue = elv_may_queue(q, rw_flags);
701 if (may_queue == ELV_MQUEUE_NO)
702 goto rq_starved;
704 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
705 if (rl->count[is_sync]+1 >= q->nr_requests) {
706 ioc = current_io_context(GFP_ATOMIC, q->node);
708 * The queue will fill after this allocation, so set
709 * it as full, and mark this process as "batching".
710 * This process will be allowed to complete a batch of
711 * requests, others will be blocked.
713 if (!blk_queue_full(q, is_sync)) {
714 ioc_set_batching(q, ioc);
715 blk_set_queue_full(q, is_sync);
716 } else {
717 if (may_queue != ELV_MQUEUE_MUST
718 && !ioc_batching(q, ioc)) {
720 * The queue is full and the allocating
721 * process is not a "batcher", and not
722 * exempted by the IO scheduler
724 goto out;
728 blk_set_queue_congested(q, is_sync);
732 * Only allow batching queuers to allocate up to 50% over the defined
733 * limit of requests, otherwise we could have thousands of requests
734 * allocated with any setting of ->nr_requests
736 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
737 goto out;
739 rl->count[is_sync]++;
740 rl->starved[is_sync] = 0;
742 if (blk_rq_should_init_elevator(bio)) {
743 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
744 if (priv)
745 rl->elvpriv++;
748 if (blk_queue_io_stat(q))
749 rw_flags |= REQ_IO_STAT;
750 spin_unlock_irq(q->queue_lock);
752 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
753 if (unlikely(!rq)) {
755 * Allocation failed presumably due to memory. Undo anything
756 * we might have messed up.
758 * Allocating task should really be put onto the front of the
759 * wait queue, but this is pretty rare.
761 spin_lock_irq(q->queue_lock);
762 freed_request(q, is_sync, priv);
765 * in the very unlikely event that allocation failed and no
766 * requests for this direction was pending, mark us starved
767 * so that freeing of a request in the other direction will
768 * notice us. another possible fix would be to split the
769 * rq mempool into READ and WRITE
771 rq_starved:
772 if (unlikely(rl->count[is_sync] == 0))
773 rl->starved[is_sync] = 1;
775 goto out;
779 * ioc may be NULL here, and ioc_batching will be false. That's
780 * OK, if the queue is under the request limit then requests need
781 * not count toward the nr_batch_requests limit. There will always
782 * be some limit enforced by BLK_BATCH_TIME.
784 if (ioc_batching(q, ioc))
785 ioc->nr_batch_requests--;
787 trace_block_getrq(q, bio, rw_flags & 1);
788 out:
789 return rq;
793 * No available requests for this queue, wait for some requests to become
794 * available.
796 * Called with q->queue_lock held, and returns with it unlocked.
798 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
799 struct bio *bio)
801 const bool is_sync = rw_is_sync(rw_flags) != 0;
802 struct request *rq;
804 rq = get_request(q, rw_flags, bio, GFP_NOIO);
805 while (!rq) {
806 DEFINE_WAIT(wait);
807 struct io_context *ioc;
808 struct request_list *rl = &q->rq;
810 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
811 TASK_UNINTERRUPTIBLE);
813 trace_block_sleeprq(q, bio, rw_flags & 1);
815 spin_unlock_irq(q->queue_lock);
816 io_schedule();
819 * After sleeping, we become a "batching" process and
820 * will be able to allocate at least one request, and
821 * up to a big batch of them for a small period time.
822 * See ioc_batching, ioc_set_batching
824 ioc = current_io_context(GFP_NOIO, q->node);
825 ioc_set_batching(q, ioc);
827 spin_lock_irq(q->queue_lock);
828 finish_wait(&rl->wait[is_sync], &wait);
830 rq = get_request(q, rw_flags, bio, GFP_NOIO);
833 return rq;
836 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
838 struct request *rq;
840 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
841 return NULL;
843 BUG_ON(rw != READ && rw != WRITE);
845 spin_lock_irq(q->queue_lock);
846 if (gfp_mask & __GFP_WAIT) {
847 rq = get_request_wait(q, rw, NULL);
848 } else {
849 rq = get_request(q, rw, NULL, gfp_mask);
850 if (!rq)
851 spin_unlock_irq(q->queue_lock);
853 /* q->queue_lock is unlocked at this point */
855 return rq;
857 EXPORT_SYMBOL(blk_get_request);
860 * blk_make_request - given a bio, allocate a corresponding struct request.
861 * @q: target request queue
862 * @bio: The bio describing the memory mappings that will be submitted for IO.
863 * It may be a chained-bio properly constructed by block/bio layer.
864 * @gfp_mask: gfp flags to be used for memory allocation
866 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
867 * type commands. Where the struct request needs to be farther initialized by
868 * the caller. It is passed a &struct bio, which describes the memory info of
869 * the I/O transfer.
871 * The caller of blk_make_request must make sure that bi_io_vec
872 * are set to describe the memory buffers. That bio_data_dir() will return
873 * the needed direction of the request. (And all bio's in the passed bio-chain
874 * are properly set accordingly)
876 * If called under none-sleepable conditions, mapped bio buffers must not
877 * need bouncing, by calling the appropriate masked or flagged allocator,
878 * suitable for the target device. Otherwise the call to blk_queue_bounce will
879 * BUG.
881 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
882 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
883 * anything but the first bio in the chain. Otherwise you risk waiting for IO
884 * completion of a bio that hasn't been submitted yet, thus resulting in a
885 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
886 * of bio_alloc(), as that avoids the mempool deadlock.
887 * If possible a big IO should be split into smaller parts when allocation
888 * fails. Partial allocation should not be an error, or you risk a live-lock.
890 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
891 gfp_t gfp_mask)
893 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
895 if (unlikely(!rq))
896 return ERR_PTR(-ENOMEM);
898 for_each_bio(bio) {
899 struct bio *bounce_bio = bio;
900 int ret;
902 blk_queue_bounce(q, &bounce_bio);
903 ret = blk_rq_append_bio(q, rq, bounce_bio);
904 if (unlikely(ret)) {
905 blk_put_request(rq);
906 return ERR_PTR(ret);
910 return rq;
912 EXPORT_SYMBOL(blk_make_request);
915 * blk_requeue_request - put a request back on queue
916 * @q: request queue where request should be inserted
917 * @rq: request to be inserted
919 * Description:
920 * Drivers often keep queueing requests until the hardware cannot accept
921 * more, when that condition happens we need to put the request back
922 * on the queue. Must be called with queue lock held.
924 void blk_requeue_request(struct request_queue *q, struct request *rq)
926 blk_delete_timer(rq);
927 blk_clear_rq_complete(rq);
928 trace_block_rq_requeue(q, rq);
930 if (blk_rq_tagged(rq))
931 blk_queue_end_tag(q, rq);
933 BUG_ON(blk_queued_rq(rq));
935 elv_requeue_request(q, rq);
937 EXPORT_SYMBOL(blk_requeue_request);
939 static void add_acct_request(struct request_queue *q, struct request *rq,
940 int where)
942 drive_stat_acct(rq, 1);
943 __elv_add_request(q, rq, where);
947 * blk_insert_request - insert a special request into a request queue
948 * @q: request queue where request should be inserted
949 * @rq: request to be inserted
950 * @at_head: insert request at head or tail of queue
951 * @data: private data
953 * Description:
954 * Many block devices need to execute commands asynchronously, so they don't
955 * block the whole kernel from preemption during request execution. This is
956 * accomplished normally by inserting aritficial requests tagged as
957 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
958 * be scheduled for actual execution by the request queue.
960 * We have the option of inserting the head or the tail of the queue.
961 * Typically we use the tail for new ioctls and so forth. We use the head
962 * of the queue for things like a QUEUE_FULL message from a device, or a
963 * host that is unable to accept a particular command.
965 void blk_insert_request(struct request_queue *q, struct request *rq,
966 int at_head, void *data)
968 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
969 unsigned long flags;
972 * tell I/O scheduler that this isn't a regular read/write (ie it
973 * must not attempt merges on this) and that it acts as a soft
974 * barrier
976 rq->cmd_type = REQ_TYPE_SPECIAL;
978 rq->special = data;
980 spin_lock_irqsave(q->queue_lock, flags);
983 * If command is tagged, release the tag
985 if (blk_rq_tagged(rq))
986 blk_queue_end_tag(q, rq);
988 add_acct_request(q, rq, where);
989 __blk_run_queue(q);
990 spin_unlock_irqrestore(q->queue_lock, flags);
992 EXPORT_SYMBOL(blk_insert_request);
994 static void part_round_stats_single(int cpu, struct hd_struct *part,
995 unsigned long now)
997 if (now == part->stamp)
998 return;
1000 if (part_in_flight(part)) {
1001 __part_stat_add(cpu, part, time_in_queue,
1002 part_in_flight(part) * (now - part->stamp));
1003 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1005 part->stamp = now;
1009 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1010 * @cpu: cpu number for stats access
1011 * @part: target partition
1013 * The average IO queue length and utilisation statistics are maintained
1014 * by observing the current state of the queue length and the amount of
1015 * time it has been in this state for.
1017 * Normally, that accounting is done on IO completion, but that can result
1018 * in more than a second's worth of IO being accounted for within any one
1019 * second, leading to >100% utilisation. To deal with that, we call this
1020 * function to do a round-off before returning the results when reading
1021 * /proc/diskstats. This accounts immediately for all queue usage up to
1022 * the current jiffies and restarts the counters again.
1024 void part_round_stats(int cpu, struct hd_struct *part)
1026 unsigned long now = jiffies;
1028 if (part->partno)
1029 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1030 part_round_stats_single(cpu, part, now);
1032 EXPORT_SYMBOL_GPL(part_round_stats);
1035 * queue lock must be held
1037 void __blk_put_request(struct request_queue *q, struct request *req)
1039 if (unlikely(!q))
1040 return;
1041 if (unlikely(--req->ref_count))
1042 return;
1044 elv_completed_request(q, req);
1046 /* this is a bio leak */
1047 WARN_ON(req->bio != NULL);
1050 * Request may not have originated from ll_rw_blk. if not,
1051 * it didn't come out of our reserved rq pools
1053 if (req->cmd_flags & REQ_ALLOCED) {
1054 int is_sync = rq_is_sync(req) != 0;
1055 int priv = req->cmd_flags & REQ_ELVPRIV;
1057 BUG_ON(!list_empty(&req->queuelist));
1058 BUG_ON(!hlist_unhashed(&req->hash));
1060 blk_free_request(q, req);
1061 freed_request(q, is_sync, priv);
1064 EXPORT_SYMBOL_GPL(__blk_put_request);
1066 void blk_put_request(struct request *req)
1068 unsigned long flags;
1069 struct request_queue *q = req->q;
1071 spin_lock_irqsave(q->queue_lock, flags);
1072 __blk_put_request(q, req);
1073 spin_unlock_irqrestore(q->queue_lock, flags);
1075 EXPORT_SYMBOL(blk_put_request);
1078 * blk_add_request_payload - add a payload to a request
1079 * @rq: request to update
1080 * @page: page backing the payload
1081 * @len: length of the payload.
1083 * This allows to later add a payload to an already submitted request by
1084 * a block driver. The driver needs to take care of freeing the payload
1085 * itself.
1087 * Note that this is a quite horrible hack and nothing but handling of
1088 * discard requests should ever use it.
1090 void blk_add_request_payload(struct request *rq, struct page *page,
1091 unsigned int len)
1093 struct bio *bio = rq->bio;
1095 bio->bi_io_vec->bv_page = page;
1096 bio->bi_io_vec->bv_offset = 0;
1097 bio->bi_io_vec->bv_len = len;
1099 bio->bi_size = len;
1100 bio->bi_vcnt = 1;
1101 bio->bi_phys_segments = 1;
1103 rq->__data_len = rq->resid_len = len;
1104 rq->nr_phys_segments = 1;
1105 rq->buffer = bio_data(bio);
1107 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1109 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1110 struct bio *bio)
1112 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1114 if (!ll_back_merge_fn(q, req, bio))
1115 return false;
1117 trace_block_bio_backmerge(q, bio);
1119 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1120 blk_rq_set_mixed_merge(req);
1122 req->biotail->bi_next = bio;
1123 req->biotail = bio;
1124 req->__data_len += bio->bi_size;
1125 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1127 drive_stat_acct(req, 0);
1128 elv_bio_merged(q, req, bio);
1129 return true;
1132 static bool bio_attempt_front_merge(struct request_queue *q,
1133 struct request *req, struct bio *bio)
1135 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1137 if (!ll_front_merge_fn(q, req, bio))
1138 return false;
1140 trace_block_bio_frontmerge(q, bio);
1142 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1143 blk_rq_set_mixed_merge(req);
1145 bio->bi_next = req->bio;
1146 req->bio = bio;
1149 * may not be valid. if the low level driver said
1150 * it didn't need a bounce buffer then it better
1151 * not touch req->buffer either...
1153 req->buffer = bio_data(bio);
1154 req->__sector = bio->bi_sector;
1155 req->__data_len += bio->bi_size;
1156 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1158 drive_stat_acct(req, 0);
1159 elv_bio_merged(q, req, bio);
1160 return true;
1164 * Attempts to merge with the plugged list in the current process. Returns
1165 * true if merge was successful, otherwise false.
1167 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1168 struct bio *bio)
1170 struct blk_plug *plug;
1171 struct request *rq;
1172 bool ret = false;
1174 plug = tsk->plug;
1175 if (!plug)
1176 goto out;
1178 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1179 int el_ret;
1181 if (rq->q != q)
1182 continue;
1184 el_ret = elv_try_merge(rq, bio);
1185 if (el_ret == ELEVATOR_BACK_MERGE) {
1186 ret = bio_attempt_back_merge(q, rq, bio);
1187 if (ret)
1188 break;
1189 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1190 ret = bio_attempt_front_merge(q, rq, bio);
1191 if (ret)
1192 break;
1195 out:
1196 return ret;
1199 void init_request_from_bio(struct request *req, struct bio *bio)
1201 req->cpu = bio->bi_comp_cpu;
1202 req->cmd_type = REQ_TYPE_FS;
1204 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1205 if (bio->bi_rw & REQ_RAHEAD)
1206 req->cmd_flags |= REQ_FAILFAST_MASK;
1208 req->errors = 0;
1209 req->__sector = bio->bi_sector;
1210 req->ioprio = bio_prio(bio);
1211 blk_rq_bio_prep(req->q, req, bio);
1214 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1216 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1217 struct blk_plug *plug;
1218 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1219 struct request *req;
1222 * low level driver can indicate that it wants pages above a
1223 * certain limit bounced to low memory (ie for highmem, or even
1224 * ISA dma in theory)
1226 blk_queue_bounce(q, &bio);
1228 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1229 spin_lock_irq(q->queue_lock);
1230 where = ELEVATOR_INSERT_FLUSH;
1231 goto get_rq;
1235 * Check if we can merge with the plugged list before grabbing
1236 * any locks.
1238 if (attempt_plug_merge(current, q, bio))
1239 return;
1241 spin_lock_irq(q->queue_lock);
1243 el_ret = elv_merge(q, &req, bio);
1244 if (el_ret == ELEVATOR_BACK_MERGE) {
1245 if (bio_attempt_back_merge(q, req, bio)) {
1246 if (!attempt_back_merge(q, req))
1247 elv_merged_request(q, req, el_ret);
1248 goto out_unlock;
1250 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1251 if (bio_attempt_front_merge(q, req, bio)) {
1252 if (!attempt_front_merge(q, req))
1253 elv_merged_request(q, req, el_ret);
1254 goto out_unlock;
1258 get_rq:
1260 * This sync check and mask will be re-done in init_request_from_bio(),
1261 * but we need to set it earlier to expose the sync flag to the
1262 * rq allocator and io schedulers.
1264 rw_flags = bio_data_dir(bio);
1265 if (sync)
1266 rw_flags |= REQ_SYNC;
1269 * Grab a free request. This is might sleep but can not fail.
1270 * Returns with the queue unlocked.
1272 req = get_request_wait(q, rw_flags, bio);
1275 * After dropping the lock and possibly sleeping here, our request
1276 * may now be mergeable after it had proven unmergeable (above).
1277 * We don't worry about that case for efficiency. It won't happen
1278 * often, and the elevators are able to handle it.
1280 init_request_from_bio(req, bio);
1282 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1283 bio_flagged(bio, BIO_CPU_AFFINE))
1284 req->cpu = raw_smp_processor_id();
1286 plug = current->plug;
1287 if (plug) {
1289 * If this is the first request added after a plug, fire
1290 * of a plug trace. If others have been added before, check
1291 * if we have multiple devices in this plug. If so, make a
1292 * note to sort the list before dispatch.
1294 if (list_empty(&plug->list))
1295 trace_block_plug(q);
1296 else if (!plug->should_sort) {
1297 struct request *__rq;
1299 __rq = list_entry_rq(plug->list.prev);
1300 if (__rq->q != q)
1301 plug->should_sort = 1;
1303 list_add_tail(&req->queuelist, &plug->list);
1304 plug->count++;
1305 drive_stat_acct(req, 1);
1306 if (plug->count >= BLK_MAX_REQUEST_COUNT)
1307 blk_flush_plug_list(plug, false);
1308 } else {
1309 spin_lock_irq(q->queue_lock);
1310 add_acct_request(q, req, where);
1311 __blk_run_queue(q);
1312 out_unlock:
1313 spin_unlock_irq(q->queue_lock);
1316 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1319 * If bio->bi_dev is a partition, remap the location
1321 static inline void blk_partition_remap(struct bio *bio)
1323 struct block_device *bdev = bio->bi_bdev;
1325 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1326 struct hd_struct *p = bdev->bd_part;
1328 bio->bi_sector += p->start_sect;
1329 bio->bi_bdev = bdev->bd_contains;
1331 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1332 bdev->bd_dev,
1333 bio->bi_sector - p->start_sect);
1337 static void handle_bad_sector(struct bio *bio)
1339 char b[BDEVNAME_SIZE];
1341 printk(KERN_INFO "attempt to access beyond end of device\n");
1342 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1343 bdevname(bio->bi_bdev, b),
1344 bio->bi_rw,
1345 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1346 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1348 set_bit(BIO_EOF, &bio->bi_flags);
1351 #ifdef CONFIG_FAIL_MAKE_REQUEST
1353 static DECLARE_FAULT_ATTR(fail_make_request);
1355 static int __init setup_fail_make_request(char *str)
1357 return setup_fault_attr(&fail_make_request, str);
1359 __setup("fail_make_request=", setup_fail_make_request);
1361 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1363 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1366 static int __init fail_make_request_debugfs(void)
1368 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1369 NULL, &fail_make_request);
1371 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1374 late_initcall(fail_make_request_debugfs);
1376 #else /* CONFIG_FAIL_MAKE_REQUEST */
1378 static inline bool should_fail_request(struct hd_struct *part,
1379 unsigned int bytes)
1381 return false;
1384 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1387 * Check whether this bio extends beyond the end of the device.
1389 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1391 sector_t maxsector;
1393 if (!nr_sectors)
1394 return 0;
1396 /* Test device or partition size, when known. */
1397 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1398 if (maxsector) {
1399 sector_t sector = bio->bi_sector;
1401 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1403 * This may well happen - the kernel calls bread()
1404 * without checking the size of the device, e.g., when
1405 * mounting a device.
1407 handle_bad_sector(bio);
1408 return 1;
1412 return 0;
1415 static noinline_for_stack bool
1416 generic_make_request_checks(struct bio *bio)
1418 struct request_queue *q;
1419 int nr_sectors = bio_sectors(bio);
1420 int err = -EIO;
1421 char b[BDEVNAME_SIZE];
1422 struct hd_struct *part;
1424 might_sleep();
1426 if (bio_check_eod(bio, nr_sectors))
1427 goto end_io;
1429 q = bdev_get_queue(bio->bi_bdev);
1430 if (unlikely(!q)) {
1431 printk(KERN_ERR
1432 "generic_make_request: Trying to access "
1433 "nonexistent block-device %s (%Lu)\n",
1434 bdevname(bio->bi_bdev, b),
1435 (long long) bio->bi_sector);
1436 goto end_io;
1439 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1440 nr_sectors > queue_max_hw_sectors(q))) {
1441 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1442 bdevname(bio->bi_bdev, b),
1443 bio_sectors(bio),
1444 queue_max_hw_sectors(q));
1445 goto end_io;
1448 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1449 goto end_io;
1451 part = bio->bi_bdev->bd_part;
1452 if (should_fail_request(part, bio->bi_size) ||
1453 should_fail_request(&part_to_disk(part)->part0,
1454 bio->bi_size))
1455 goto end_io;
1458 * If this device has partitions, remap block n
1459 * of partition p to block n+start(p) of the disk.
1461 blk_partition_remap(bio);
1463 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1464 goto end_io;
1466 if (bio_check_eod(bio, nr_sectors))
1467 goto end_io;
1470 * Filter flush bio's early so that make_request based
1471 * drivers without flush support don't have to worry
1472 * about them.
1474 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1475 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1476 if (!nr_sectors) {
1477 err = 0;
1478 goto end_io;
1482 if ((bio->bi_rw & REQ_DISCARD) &&
1483 (!blk_queue_discard(q) ||
1484 ((bio->bi_rw & REQ_SECURE) &&
1485 !blk_queue_secdiscard(q)))) {
1486 err = -EOPNOTSUPP;
1487 goto end_io;
1490 if (blk_throtl_bio(q, &bio))
1491 goto end_io;
1493 /* if bio = NULL, bio has been throttled and will be submitted later. */
1494 if (!bio)
1495 return false;
1497 trace_block_bio_queue(q, bio);
1498 return true;
1500 end_io:
1501 bio_endio(bio, err);
1502 return false;
1506 * generic_make_request - hand a buffer to its device driver for I/O
1507 * @bio: The bio describing the location in memory and on the device.
1509 * generic_make_request() is used to make I/O requests of block
1510 * devices. It is passed a &struct bio, which describes the I/O that needs
1511 * to be done.
1513 * generic_make_request() does not return any status. The
1514 * success/failure status of the request, along with notification of
1515 * completion, is delivered asynchronously through the bio->bi_end_io
1516 * function described (one day) else where.
1518 * The caller of generic_make_request must make sure that bi_io_vec
1519 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1520 * set to describe the device address, and the
1521 * bi_end_io and optionally bi_private are set to describe how
1522 * completion notification should be signaled.
1524 * generic_make_request and the drivers it calls may use bi_next if this
1525 * bio happens to be merged with someone else, and may resubmit the bio to
1526 * a lower device by calling into generic_make_request recursively, which
1527 * means the bio should NOT be touched after the call to ->make_request_fn.
1529 void generic_make_request(struct bio *bio)
1531 struct bio_list bio_list_on_stack;
1533 if (!generic_make_request_checks(bio))
1534 return;
1537 * We only want one ->make_request_fn to be active at a time, else
1538 * stack usage with stacked devices could be a problem. So use
1539 * current->bio_list to keep a list of requests submited by a
1540 * make_request_fn function. current->bio_list is also used as a
1541 * flag to say if generic_make_request is currently active in this
1542 * task or not. If it is NULL, then no make_request is active. If
1543 * it is non-NULL, then a make_request is active, and new requests
1544 * should be added at the tail
1546 if (current->bio_list) {
1547 bio_list_add(current->bio_list, bio);
1548 return;
1551 /* following loop may be a bit non-obvious, and so deserves some
1552 * explanation.
1553 * Before entering the loop, bio->bi_next is NULL (as all callers
1554 * ensure that) so we have a list with a single bio.
1555 * We pretend that we have just taken it off a longer list, so
1556 * we assign bio_list to a pointer to the bio_list_on_stack,
1557 * thus initialising the bio_list of new bios to be
1558 * added. ->make_request() may indeed add some more bios
1559 * through a recursive call to generic_make_request. If it
1560 * did, we find a non-NULL value in bio_list and re-enter the loop
1561 * from the top. In this case we really did just take the bio
1562 * of the top of the list (no pretending) and so remove it from
1563 * bio_list, and call into ->make_request() again.
1565 BUG_ON(bio->bi_next);
1566 bio_list_init(&bio_list_on_stack);
1567 current->bio_list = &bio_list_on_stack;
1568 do {
1569 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1571 q->make_request_fn(q, bio);
1573 bio = bio_list_pop(current->bio_list);
1574 } while (bio);
1575 current->bio_list = NULL; /* deactivate */
1577 EXPORT_SYMBOL(generic_make_request);
1580 * submit_bio - submit a bio to the block device layer for I/O
1581 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1582 * @bio: The &struct bio which describes the I/O
1584 * submit_bio() is very similar in purpose to generic_make_request(), and
1585 * uses that function to do most of the work. Both are fairly rough
1586 * interfaces; @bio must be presetup and ready for I/O.
1589 void submit_bio(int rw, struct bio *bio)
1591 int count = bio_sectors(bio);
1593 bio->bi_rw |= rw;
1596 * If it's a regular read/write or a barrier with data attached,
1597 * go through the normal accounting stuff before submission.
1599 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1600 if (rw & WRITE) {
1601 count_vm_events(PGPGOUT, count);
1602 } else {
1603 task_io_account_read(bio->bi_size);
1604 count_vm_events(PGPGIN, count);
1607 if (unlikely(block_dump)) {
1608 char b[BDEVNAME_SIZE];
1609 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1610 current->comm, task_pid_nr(current),
1611 (rw & WRITE) ? "WRITE" : "READ",
1612 (unsigned long long)bio->bi_sector,
1613 bdevname(bio->bi_bdev, b),
1614 count);
1618 generic_make_request(bio);
1620 EXPORT_SYMBOL(submit_bio);
1623 * blk_rq_check_limits - Helper function to check a request for the queue limit
1624 * @q: the queue
1625 * @rq: the request being checked
1627 * Description:
1628 * @rq may have been made based on weaker limitations of upper-level queues
1629 * in request stacking drivers, and it may violate the limitation of @q.
1630 * Since the block layer and the underlying device driver trust @rq
1631 * after it is inserted to @q, it should be checked against @q before
1632 * the insertion using this generic function.
1634 * This function should also be useful for request stacking drivers
1635 * in some cases below, so export this function.
1636 * Request stacking drivers like request-based dm may change the queue
1637 * limits while requests are in the queue (e.g. dm's table swapping).
1638 * Such request stacking drivers should check those requests agaist
1639 * the new queue limits again when they dispatch those requests,
1640 * although such checkings are also done against the old queue limits
1641 * when submitting requests.
1643 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1645 if (rq->cmd_flags & REQ_DISCARD)
1646 return 0;
1648 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1649 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1650 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1651 return -EIO;
1655 * queue's settings related to segment counting like q->bounce_pfn
1656 * may differ from that of other stacking queues.
1657 * Recalculate it to check the request correctly on this queue's
1658 * limitation.
1660 blk_recalc_rq_segments(rq);
1661 if (rq->nr_phys_segments > queue_max_segments(q)) {
1662 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1663 return -EIO;
1666 return 0;
1668 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1671 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1672 * @q: the queue to submit the request
1673 * @rq: the request being queued
1675 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1677 unsigned long flags;
1679 if (blk_rq_check_limits(q, rq))
1680 return -EIO;
1682 if (rq->rq_disk &&
1683 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1684 return -EIO;
1686 spin_lock_irqsave(q->queue_lock, flags);
1689 * Submitting request must be dequeued before calling this function
1690 * because it will be linked to another request_queue
1692 BUG_ON(blk_queued_rq(rq));
1694 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
1695 spin_unlock_irqrestore(q->queue_lock, flags);
1697 return 0;
1699 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1702 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1703 * @rq: request to examine
1705 * Description:
1706 * A request could be merge of IOs which require different failure
1707 * handling. This function determines the number of bytes which
1708 * can be failed from the beginning of the request without
1709 * crossing into area which need to be retried further.
1711 * Return:
1712 * The number of bytes to fail.
1714 * Context:
1715 * queue_lock must be held.
1717 unsigned int blk_rq_err_bytes(const struct request *rq)
1719 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1720 unsigned int bytes = 0;
1721 struct bio *bio;
1723 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1724 return blk_rq_bytes(rq);
1727 * Currently the only 'mixing' which can happen is between
1728 * different fastfail types. We can safely fail portions
1729 * which have all the failfast bits that the first one has -
1730 * the ones which are at least as eager to fail as the first
1731 * one.
1733 for (bio = rq->bio; bio; bio = bio->bi_next) {
1734 if ((bio->bi_rw & ff) != ff)
1735 break;
1736 bytes += bio->bi_size;
1739 /* this could lead to infinite loop */
1740 BUG_ON(blk_rq_bytes(rq) && !bytes);
1741 return bytes;
1743 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1745 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1747 if (blk_do_io_stat(req)) {
1748 const int rw = rq_data_dir(req);
1749 struct hd_struct *part;
1750 int cpu;
1752 cpu = part_stat_lock();
1753 part = req->part;
1754 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1755 part_stat_unlock();
1759 static void blk_account_io_done(struct request *req)
1762 * Account IO completion. flush_rq isn't accounted as a
1763 * normal IO on queueing nor completion. Accounting the
1764 * containing request is enough.
1766 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1767 unsigned long duration = jiffies - req->start_time;
1768 const int rw = rq_data_dir(req);
1769 struct hd_struct *part;
1770 int cpu;
1772 cpu = part_stat_lock();
1773 part = req->part;
1775 part_stat_inc(cpu, part, ios[rw]);
1776 part_stat_add(cpu, part, ticks[rw], duration);
1777 part_round_stats(cpu, part);
1778 part_dec_in_flight(part, rw);
1780 hd_struct_put(part);
1781 part_stat_unlock();
1786 * blk_peek_request - peek at the top of a request queue
1787 * @q: request queue to peek at
1789 * Description:
1790 * Return the request at the top of @q. The returned request
1791 * should be started using blk_start_request() before LLD starts
1792 * processing it.
1794 * Return:
1795 * Pointer to the request at the top of @q if available. Null
1796 * otherwise.
1798 * Context:
1799 * queue_lock must be held.
1801 struct request *blk_peek_request(struct request_queue *q)
1803 struct request *rq;
1804 int ret;
1806 while ((rq = __elv_next_request(q)) != NULL) {
1807 if (!(rq->cmd_flags & REQ_STARTED)) {
1809 * This is the first time the device driver
1810 * sees this request (possibly after
1811 * requeueing). Notify IO scheduler.
1813 if (rq->cmd_flags & REQ_SORTED)
1814 elv_activate_rq(q, rq);
1817 * just mark as started even if we don't start
1818 * it, a request that has been delayed should
1819 * not be passed by new incoming requests
1821 rq->cmd_flags |= REQ_STARTED;
1822 trace_block_rq_issue(q, rq);
1825 if (!q->boundary_rq || q->boundary_rq == rq) {
1826 q->end_sector = rq_end_sector(rq);
1827 q->boundary_rq = NULL;
1830 if (rq->cmd_flags & REQ_DONTPREP)
1831 break;
1833 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1835 * make sure space for the drain appears we
1836 * know we can do this because max_hw_segments
1837 * has been adjusted to be one fewer than the
1838 * device can handle
1840 rq->nr_phys_segments++;
1843 if (!q->prep_rq_fn)
1844 break;
1846 ret = q->prep_rq_fn(q, rq);
1847 if (ret == BLKPREP_OK) {
1848 break;
1849 } else if (ret == BLKPREP_DEFER) {
1851 * the request may have been (partially) prepped.
1852 * we need to keep this request in the front to
1853 * avoid resource deadlock. REQ_STARTED will
1854 * prevent other fs requests from passing this one.
1856 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1857 !(rq->cmd_flags & REQ_DONTPREP)) {
1859 * remove the space for the drain we added
1860 * so that we don't add it again
1862 --rq->nr_phys_segments;
1865 rq = NULL;
1866 break;
1867 } else if (ret == BLKPREP_KILL) {
1868 rq->cmd_flags |= REQ_QUIET;
1870 * Mark this request as started so we don't trigger
1871 * any debug logic in the end I/O path.
1873 blk_start_request(rq);
1874 __blk_end_request_all(rq, -EIO);
1875 } else {
1876 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1877 break;
1881 return rq;
1883 EXPORT_SYMBOL(blk_peek_request);
1885 void blk_dequeue_request(struct request *rq)
1887 struct request_queue *q = rq->q;
1889 BUG_ON(list_empty(&rq->queuelist));
1890 BUG_ON(ELV_ON_HASH(rq));
1892 list_del_init(&rq->queuelist);
1895 * the time frame between a request being removed from the lists
1896 * and to it is freed is accounted as io that is in progress at
1897 * the driver side.
1899 if (blk_account_rq(rq)) {
1900 q->in_flight[rq_is_sync(rq)]++;
1901 set_io_start_time_ns(rq);
1906 * blk_start_request - start request processing on the driver
1907 * @req: request to dequeue
1909 * Description:
1910 * Dequeue @req and start timeout timer on it. This hands off the
1911 * request to the driver.
1913 * Block internal functions which don't want to start timer should
1914 * call blk_dequeue_request().
1916 * Context:
1917 * queue_lock must be held.
1919 void blk_start_request(struct request *req)
1921 blk_dequeue_request(req);
1924 * We are now handing the request to the hardware, initialize
1925 * resid_len to full count and add the timeout handler.
1927 req->resid_len = blk_rq_bytes(req);
1928 if (unlikely(blk_bidi_rq(req)))
1929 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1931 blk_add_timer(req);
1933 EXPORT_SYMBOL(blk_start_request);
1936 * blk_fetch_request - fetch a request from a request queue
1937 * @q: request queue to fetch a request from
1939 * Description:
1940 * Return the request at the top of @q. The request is started on
1941 * return and LLD can start processing it immediately.
1943 * Return:
1944 * Pointer to the request at the top of @q if available. Null
1945 * otherwise.
1947 * Context:
1948 * queue_lock must be held.
1950 struct request *blk_fetch_request(struct request_queue *q)
1952 struct request *rq;
1954 rq = blk_peek_request(q);
1955 if (rq)
1956 blk_start_request(rq);
1957 return rq;
1959 EXPORT_SYMBOL(blk_fetch_request);
1962 * blk_update_request - Special helper function for request stacking drivers
1963 * @req: the request being processed
1964 * @error: %0 for success, < %0 for error
1965 * @nr_bytes: number of bytes to complete @req
1967 * Description:
1968 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1969 * the request structure even if @req doesn't have leftover.
1970 * If @req has leftover, sets it up for the next range of segments.
1972 * This special helper function is only for request stacking drivers
1973 * (e.g. request-based dm) so that they can handle partial completion.
1974 * Actual device drivers should use blk_end_request instead.
1976 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1977 * %false return from this function.
1979 * Return:
1980 * %false - this request doesn't have any more data
1981 * %true - this request has more data
1983 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1985 int total_bytes, bio_nbytes, next_idx = 0;
1986 struct bio *bio;
1988 if (!req->bio)
1989 return false;
1991 trace_block_rq_complete(req->q, req);
1994 * For fs requests, rq is just carrier of independent bio's
1995 * and each partial completion should be handled separately.
1996 * Reset per-request error on each partial completion.
1998 * TODO: tj: This is too subtle. It would be better to let
1999 * low level drivers do what they see fit.
2001 if (req->cmd_type == REQ_TYPE_FS)
2002 req->errors = 0;
2004 if (error && req->cmd_type == REQ_TYPE_FS &&
2005 !(req->cmd_flags & REQ_QUIET)) {
2006 char *error_type;
2008 switch (error) {
2009 case -ENOLINK:
2010 error_type = "recoverable transport";
2011 break;
2012 case -EREMOTEIO:
2013 error_type = "critical target";
2014 break;
2015 case -EBADE:
2016 error_type = "critical nexus";
2017 break;
2018 case -EIO:
2019 default:
2020 error_type = "I/O";
2021 break;
2023 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2024 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2025 (unsigned long long)blk_rq_pos(req));
2028 blk_account_io_completion(req, nr_bytes);
2030 total_bytes = bio_nbytes = 0;
2031 while ((bio = req->bio) != NULL) {
2032 int nbytes;
2034 if (nr_bytes >= bio->bi_size) {
2035 req->bio = bio->bi_next;
2036 nbytes = bio->bi_size;
2037 req_bio_endio(req, bio, nbytes, error);
2038 next_idx = 0;
2039 bio_nbytes = 0;
2040 } else {
2041 int idx = bio->bi_idx + next_idx;
2043 if (unlikely(idx >= bio->bi_vcnt)) {
2044 blk_dump_rq_flags(req, "__end_that");
2045 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2046 __func__, idx, bio->bi_vcnt);
2047 break;
2050 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2051 BIO_BUG_ON(nbytes > bio->bi_size);
2054 * not a complete bvec done
2056 if (unlikely(nbytes > nr_bytes)) {
2057 bio_nbytes += nr_bytes;
2058 total_bytes += nr_bytes;
2059 break;
2063 * advance to the next vector
2065 next_idx++;
2066 bio_nbytes += nbytes;
2069 total_bytes += nbytes;
2070 nr_bytes -= nbytes;
2072 bio = req->bio;
2073 if (bio) {
2075 * end more in this run, or just return 'not-done'
2077 if (unlikely(nr_bytes <= 0))
2078 break;
2083 * completely done
2085 if (!req->bio) {
2087 * Reset counters so that the request stacking driver
2088 * can find how many bytes remain in the request
2089 * later.
2091 req->__data_len = 0;
2092 return false;
2096 * if the request wasn't completed, update state
2098 if (bio_nbytes) {
2099 req_bio_endio(req, bio, bio_nbytes, error);
2100 bio->bi_idx += next_idx;
2101 bio_iovec(bio)->bv_offset += nr_bytes;
2102 bio_iovec(bio)->bv_len -= nr_bytes;
2105 req->__data_len -= total_bytes;
2106 req->buffer = bio_data(req->bio);
2108 /* update sector only for requests with clear definition of sector */
2109 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2110 req->__sector += total_bytes >> 9;
2112 /* mixed attributes always follow the first bio */
2113 if (req->cmd_flags & REQ_MIXED_MERGE) {
2114 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2115 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2119 * If total number of sectors is less than the first segment
2120 * size, something has gone terribly wrong.
2122 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2123 blk_dump_rq_flags(req, "request botched");
2124 req->__data_len = blk_rq_cur_bytes(req);
2127 /* recalculate the number of segments */
2128 blk_recalc_rq_segments(req);
2130 return true;
2132 EXPORT_SYMBOL_GPL(blk_update_request);
2134 static bool blk_update_bidi_request(struct request *rq, int error,
2135 unsigned int nr_bytes,
2136 unsigned int bidi_bytes)
2138 if (blk_update_request(rq, error, nr_bytes))
2139 return true;
2141 /* Bidi request must be completed as a whole */
2142 if (unlikely(blk_bidi_rq(rq)) &&
2143 blk_update_request(rq->next_rq, error, bidi_bytes))
2144 return true;
2146 if (blk_queue_add_random(rq->q))
2147 add_disk_randomness(rq->rq_disk);
2149 return false;
2153 * blk_unprep_request - unprepare a request
2154 * @req: the request
2156 * This function makes a request ready for complete resubmission (or
2157 * completion). It happens only after all error handling is complete,
2158 * so represents the appropriate moment to deallocate any resources
2159 * that were allocated to the request in the prep_rq_fn. The queue
2160 * lock is held when calling this.
2162 void blk_unprep_request(struct request *req)
2164 struct request_queue *q = req->q;
2166 req->cmd_flags &= ~REQ_DONTPREP;
2167 if (q->unprep_rq_fn)
2168 q->unprep_rq_fn(q, req);
2170 EXPORT_SYMBOL_GPL(blk_unprep_request);
2173 * queue lock must be held
2175 static void blk_finish_request(struct request *req, int error)
2177 if (blk_rq_tagged(req))
2178 blk_queue_end_tag(req->q, req);
2180 BUG_ON(blk_queued_rq(req));
2182 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2183 laptop_io_completion(&req->q->backing_dev_info);
2185 blk_delete_timer(req);
2187 if (req->cmd_flags & REQ_DONTPREP)
2188 blk_unprep_request(req);
2191 blk_account_io_done(req);
2193 if (req->end_io)
2194 req->end_io(req, error);
2195 else {
2196 if (blk_bidi_rq(req))
2197 __blk_put_request(req->next_rq->q, req->next_rq);
2199 __blk_put_request(req->q, req);
2204 * blk_end_bidi_request - Complete a bidi request
2205 * @rq: the request to complete
2206 * @error: %0 for success, < %0 for error
2207 * @nr_bytes: number of bytes to complete @rq
2208 * @bidi_bytes: number of bytes to complete @rq->next_rq
2210 * Description:
2211 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2212 * Drivers that supports bidi can safely call this member for any
2213 * type of request, bidi or uni. In the later case @bidi_bytes is
2214 * just ignored.
2216 * Return:
2217 * %false - we are done with this request
2218 * %true - still buffers pending for this request
2220 static bool blk_end_bidi_request(struct request *rq, int error,
2221 unsigned int nr_bytes, unsigned int bidi_bytes)
2223 struct request_queue *q = rq->q;
2224 unsigned long flags;
2226 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2227 return true;
2229 spin_lock_irqsave(q->queue_lock, flags);
2230 blk_finish_request(rq, error);
2231 spin_unlock_irqrestore(q->queue_lock, flags);
2233 return false;
2237 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2238 * @rq: the request to complete
2239 * @error: %0 for success, < %0 for error
2240 * @nr_bytes: number of bytes to complete @rq
2241 * @bidi_bytes: number of bytes to complete @rq->next_rq
2243 * Description:
2244 * Identical to blk_end_bidi_request() except that queue lock is
2245 * assumed to be locked on entry and remains so on return.
2247 * Return:
2248 * %false - we are done with this request
2249 * %true - still buffers pending for this request
2251 static bool __blk_end_bidi_request(struct request *rq, int error,
2252 unsigned int nr_bytes, unsigned int bidi_bytes)
2254 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2255 return true;
2257 blk_finish_request(rq, error);
2259 return false;
2263 * blk_end_request - Helper function for drivers to complete the request.
2264 * @rq: the request being processed
2265 * @error: %0 for success, < %0 for error
2266 * @nr_bytes: number of bytes to complete
2268 * Description:
2269 * Ends I/O on a number of bytes attached to @rq.
2270 * If @rq has leftover, sets it up for the next range of segments.
2272 * Return:
2273 * %false - we are done with this request
2274 * %true - still buffers pending for this request
2276 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2278 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2280 EXPORT_SYMBOL(blk_end_request);
2283 * blk_end_request_all - Helper function for drives to finish the request.
2284 * @rq: the request to finish
2285 * @error: %0 for success, < %0 for error
2287 * Description:
2288 * Completely finish @rq.
2290 void blk_end_request_all(struct request *rq, int error)
2292 bool pending;
2293 unsigned int bidi_bytes = 0;
2295 if (unlikely(blk_bidi_rq(rq)))
2296 bidi_bytes = blk_rq_bytes(rq->next_rq);
2298 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2299 BUG_ON(pending);
2301 EXPORT_SYMBOL(blk_end_request_all);
2304 * blk_end_request_cur - Helper function to finish the current request chunk.
2305 * @rq: the request to finish the current chunk for
2306 * @error: %0 for success, < %0 for error
2308 * Description:
2309 * Complete the current consecutively mapped chunk from @rq.
2311 * Return:
2312 * %false - we are done with this request
2313 * %true - still buffers pending for this request
2315 bool blk_end_request_cur(struct request *rq, int error)
2317 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2319 EXPORT_SYMBOL(blk_end_request_cur);
2322 * blk_end_request_err - Finish a request till the next failure boundary.
2323 * @rq: the request to finish till the next failure boundary for
2324 * @error: must be negative errno
2326 * Description:
2327 * Complete @rq till the next failure boundary.
2329 * Return:
2330 * %false - we are done with this request
2331 * %true - still buffers pending for this request
2333 bool blk_end_request_err(struct request *rq, int error)
2335 WARN_ON(error >= 0);
2336 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2338 EXPORT_SYMBOL_GPL(blk_end_request_err);
2341 * __blk_end_request - Helper function for drivers to complete the request.
2342 * @rq: the request being processed
2343 * @error: %0 for success, < %0 for error
2344 * @nr_bytes: number of bytes to complete
2346 * Description:
2347 * Must be called with queue lock held unlike blk_end_request().
2349 * Return:
2350 * %false - we are done with this request
2351 * %true - still buffers pending for this request
2353 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2355 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2357 EXPORT_SYMBOL(__blk_end_request);
2360 * __blk_end_request_all - Helper function for drives to finish the request.
2361 * @rq: the request to finish
2362 * @error: %0 for success, < %0 for error
2364 * Description:
2365 * Completely finish @rq. Must be called with queue lock held.
2367 void __blk_end_request_all(struct request *rq, int error)
2369 bool pending;
2370 unsigned int bidi_bytes = 0;
2372 if (unlikely(blk_bidi_rq(rq)))
2373 bidi_bytes = blk_rq_bytes(rq->next_rq);
2375 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2376 BUG_ON(pending);
2378 EXPORT_SYMBOL(__blk_end_request_all);
2381 * __blk_end_request_cur - Helper function to finish the current request chunk.
2382 * @rq: the request to finish the current chunk for
2383 * @error: %0 for success, < %0 for error
2385 * Description:
2386 * Complete the current consecutively mapped chunk from @rq. Must
2387 * be called with queue lock held.
2389 * Return:
2390 * %false - we are done with this request
2391 * %true - still buffers pending for this request
2393 bool __blk_end_request_cur(struct request *rq, int error)
2395 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2397 EXPORT_SYMBOL(__blk_end_request_cur);
2400 * __blk_end_request_err - Finish a request till the next failure boundary.
2401 * @rq: the request to finish till the next failure boundary for
2402 * @error: must be negative errno
2404 * Description:
2405 * Complete @rq till the next failure boundary. Must be called
2406 * with queue lock held.
2408 * Return:
2409 * %false - we are done with this request
2410 * %true - still buffers pending for this request
2412 bool __blk_end_request_err(struct request *rq, int error)
2414 WARN_ON(error >= 0);
2415 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2417 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2419 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2420 struct bio *bio)
2422 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2423 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2425 if (bio_has_data(bio)) {
2426 rq->nr_phys_segments = bio_phys_segments(q, bio);
2427 rq->buffer = bio_data(bio);
2429 rq->__data_len = bio->bi_size;
2430 rq->bio = rq->biotail = bio;
2432 if (bio->bi_bdev)
2433 rq->rq_disk = bio->bi_bdev->bd_disk;
2436 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2438 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2439 * @rq: the request to be flushed
2441 * Description:
2442 * Flush all pages in @rq.
2444 void rq_flush_dcache_pages(struct request *rq)
2446 struct req_iterator iter;
2447 struct bio_vec *bvec;
2449 rq_for_each_segment(bvec, rq, iter)
2450 flush_dcache_page(bvec->bv_page);
2452 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2453 #endif
2456 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2457 * @q : the queue of the device being checked
2459 * Description:
2460 * Check if underlying low-level drivers of a device are busy.
2461 * If the drivers want to export their busy state, they must set own
2462 * exporting function using blk_queue_lld_busy() first.
2464 * Basically, this function is used only by request stacking drivers
2465 * to stop dispatching requests to underlying devices when underlying
2466 * devices are busy. This behavior helps more I/O merging on the queue
2467 * of the request stacking driver and prevents I/O throughput regression
2468 * on burst I/O load.
2470 * Return:
2471 * 0 - Not busy (The request stacking driver should dispatch request)
2472 * 1 - Busy (The request stacking driver should stop dispatching request)
2474 int blk_lld_busy(struct request_queue *q)
2476 if (q->lld_busy_fn)
2477 return q->lld_busy_fn(q);
2479 return 0;
2481 EXPORT_SYMBOL_GPL(blk_lld_busy);
2484 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2485 * @rq: the clone request to be cleaned up
2487 * Description:
2488 * Free all bios in @rq for a cloned request.
2490 void blk_rq_unprep_clone(struct request *rq)
2492 struct bio *bio;
2494 while ((bio = rq->bio) != NULL) {
2495 rq->bio = bio->bi_next;
2497 bio_put(bio);
2500 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2503 * Copy attributes of the original request to the clone request.
2504 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2506 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2508 dst->cpu = src->cpu;
2509 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2510 dst->cmd_type = src->cmd_type;
2511 dst->__sector = blk_rq_pos(src);
2512 dst->__data_len = blk_rq_bytes(src);
2513 dst->nr_phys_segments = src->nr_phys_segments;
2514 dst->ioprio = src->ioprio;
2515 dst->extra_len = src->extra_len;
2519 * blk_rq_prep_clone - Helper function to setup clone request
2520 * @rq: the request to be setup
2521 * @rq_src: original request to be cloned
2522 * @bs: bio_set that bios for clone are allocated from
2523 * @gfp_mask: memory allocation mask for bio
2524 * @bio_ctr: setup function to be called for each clone bio.
2525 * Returns %0 for success, non %0 for failure.
2526 * @data: private data to be passed to @bio_ctr
2528 * Description:
2529 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2530 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2531 * are not copied, and copying such parts is the caller's responsibility.
2532 * Also, pages which the original bios are pointing to are not copied
2533 * and the cloned bios just point same pages.
2534 * So cloned bios must be completed before original bios, which means
2535 * the caller must complete @rq before @rq_src.
2537 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2538 struct bio_set *bs, gfp_t gfp_mask,
2539 int (*bio_ctr)(struct bio *, struct bio *, void *),
2540 void *data)
2542 struct bio *bio, *bio_src;
2544 if (!bs)
2545 bs = fs_bio_set;
2547 blk_rq_init(NULL, rq);
2549 __rq_for_each_bio(bio_src, rq_src) {
2550 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2551 if (!bio)
2552 goto free_and_out;
2554 __bio_clone(bio, bio_src);
2556 if (bio_integrity(bio_src) &&
2557 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2558 goto free_and_out;
2560 if (bio_ctr && bio_ctr(bio, bio_src, data))
2561 goto free_and_out;
2563 if (rq->bio) {
2564 rq->biotail->bi_next = bio;
2565 rq->biotail = bio;
2566 } else
2567 rq->bio = rq->biotail = bio;
2570 __blk_rq_prep_clone(rq, rq_src);
2572 return 0;
2574 free_and_out:
2575 if (bio)
2576 bio_free(bio, bs);
2577 blk_rq_unprep_clone(rq);
2579 return -ENOMEM;
2581 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2583 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2585 return queue_work(kblockd_workqueue, work);
2587 EXPORT_SYMBOL(kblockd_schedule_work);
2589 int kblockd_schedule_delayed_work(struct request_queue *q,
2590 struct delayed_work *dwork, unsigned long delay)
2592 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2594 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2596 #define PLUG_MAGIC 0x91827364
2599 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2600 * @plug: The &struct blk_plug that needs to be initialized
2602 * Description:
2603 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2604 * pending I/O should the task end up blocking between blk_start_plug() and
2605 * blk_finish_plug(). This is important from a performance perspective, but
2606 * also ensures that we don't deadlock. For instance, if the task is blocking
2607 * for a memory allocation, memory reclaim could end up wanting to free a
2608 * page belonging to that request that is currently residing in our private
2609 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2610 * this kind of deadlock.
2612 void blk_start_plug(struct blk_plug *plug)
2614 struct task_struct *tsk = current;
2616 plug->magic = PLUG_MAGIC;
2617 INIT_LIST_HEAD(&plug->list);
2618 INIT_LIST_HEAD(&plug->cb_list);
2619 plug->should_sort = 0;
2620 plug->count = 0;
2623 * If this is a nested plug, don't actually assign it. It will be
2624 * flushed on its own.
2626 if (!tsk->plug) {
2628 * Store ordering should not be needed here, since a potential
2629 * preempt will imply a full memory barrier
2631 tsk->plug = plug;
2634 EXPORT_SYMBOL(blk_start_plug);
2636 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2638 struct request *rqa = container_of(a, struct request, queuelist);
2639 struct request *rqb = container_of(b, struct request, queuelist);
2641 return !(rqa->q <= rqb->q);
2645 * If 'from_schedule' is true, then postpone the dispatch of requests
2646 * until a safe kblockd context. We due this to avoid accidental big
2647 * additional stack usage in driver dispatch, in places where the originally
2648 * plugger did not intend it.
2650 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2651 bool from_schedule)
2652 __releases(q->queue_lock)
2654 trace_block_unplug(q, depth, !from_schedule);
2657 * If we are punting this to kblockd, then we can safely drop
2658 * the queue_lock before waking kblockd (which needs to take
2659 * this lock).
2661 if (from_schedule) {
2662 spin_unlock(q->queue_lock);
2663 blk_run_queue_async(q);
2664 } else {
2665 __blk_run_queue(q);
2666 spin_unlock(q->queue_lock);
2671 static void flush_plug_callbacks(struct blk_plug *plug)
2673 LIST_HEAD(callbacks);
2675 if (list_empty(&plug->cb_list))
2676 return;
2678 list_splice_init(&plug->cb_list, &callbacks);
2680 while (!list_empty(&callbacks)) {
2681 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2682 struct blk_plug_cb,
2683 list);
2684 list_del(&cb->list);
2685 cb->callback(cb);
2689 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2691 struct request_queue *q;
2692 unsigned long flags;
2693 struct request *rq;
2694 LIST_HEAD(list);
2695 unsigned int depth;
2697 BUG_ON(plug->magic != PLUG_MAGIC);
2699 flush_plug_callbacks(plug);
2700 if (list_empty(&plug->list))
2701 return;
2703 list_splice_init(&plug->list, &list);
2704 plug->count = 0;
2706 if (plug->should_sort) {
2707 list_sort(NULL, &list, plug_rq_cmp);
2708 plug->should_sort = 0;
2711 q = NULL;
2712 depth = 0;
2715 * Save and disable interrupts here, to avoid doing it for every
2716 * queue lock we have to take.
2718 local_irq_save(flags);
2719 while (!list_empty(&list)) {
2720 rq = list_entry_rq(list.next);
2721 list_del_init(&rq->queuelist);
2722 BUG_ON(!rq->q);
2723 if (rq->q != q) {
2725 * This drops the queue lock
2727 if (q)
2728 queue_unplugged(q, depth, from_schedule);
2729 q = rq->q;
2730 depth = 0;
2731 spin_lock(q->queue_lock);
2734 * rq is already accounted, so use raw insert
2736 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2737 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2738 else
2739 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2741 depth++;
2745 * This drops the queue lock
2747 if (q)
2748 queue_unplugged(q, depth, from_schedule);
2750 local_irq_restore(flags);
2753 void blk_finish_plug(struct blk_plug *plug)
2755 blk_flush_plug_list(plug, false);
2757 if (plug == current->plug)
2758 current->plug = NULL;
2760 EXPORT_SYMBOL(blk_finish_plug);
2762 int __init blk_dev_init(void)
2764 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2765 sizeof(((struct request *)0)->cmd_flags));
2767 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2768 kblockd_workqueue = alloc_workqueue("kblockd",
2769 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2770 if (!kblockd_workqueue)
2771 panic("Failed to create kblockd\n");
2773 request_cachep = kmem_cache_create("blkdev_requests",
2774 sizeof(struct request), 0, SLAB_PANIC, NULL);
2776 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2777 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2779 return 0;