svc: Add per-transport delete functions
[linux-2.6.git] / net / sunrpc / svcsock.c
blob44a729d6efeaf6e70b67113efcfe1084da8e98d0
1 /*
2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
51 /* SMP locking strategy:
53 * svc_pool->sp_lock protects most of the fields of that pool.
54 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55 * when both need to be taken (rare), svc_serv->sv_lock is first.
56 * BKL protects svc_serv->sv_nrthread.
57 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
58 * and the ->sk_info_authunix cache.
59 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
61 * Some flags can be set to certain values at any time
62 * providing that certain rules are followed:
64 * SK_CONN, SK_DATA, can be set or cleared at any time.
65 * after a set, svc_sock_enqueue must be called.
66 * after a clear, the socket must be read/accepted
67 * if this succeeds, it must be set again.
68 * SK_CLOSE can set at any time. It is never cleared.
69 * sk_inuse contains a bias of '1' until SK_DEAD is set.
70 * so when sk_inuse hits zero, we know the socket is dead
71 * and no-one is using it.
72 * SK_DEAD can only be set while SK_BUSY is held which ensures
73 * no other thread will be using the socket or will try to
74 * set SK_DEAD.
78 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
81 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
82 int *errp, int flags);
83 static void svc_delete_socket(struct svc_sock *svsk);
84 static void svc_udp_data_ready(struct sock *, int);
85 static int svc_udp_recvfrom(struct svc_rqst *);
86 static int svc_udp_sendto(struct svc_rqst *);
87 static void svc_close_socket(struct svc_sock *svsk);
88 static void svc_sock_detach(struct svc_xprt *);
89 static void svc_sock_free(struct svc_xprt *);
91 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
92 static int svc_deferred_recv(struct svc_rqst *rqstp);
93 static struct cache_deferred_req *svc_defer(struct cache_req *req);
95 /* apparently the "standard" is that clients close
96 * idle connections after 5 minutes, servers after
97 * 6 minutes
98 * http://www.connectathon.org/talks96/nfstcp.pdf
100 static int svc_conn_age_period = 6*60;
102 #ifdef CONFIG_DEBUG_LOCK_ALLOC
103 static struct lock_class_key svc_key[2];
104 static struct lock_class_key svc_slock_key[2];
106 static inline void svc_reclassify_socket(struct socket *sock)
108 struct sock *sk = sock->sk;
109 BUG_ON(sock_owned_by_user(sk));
110 switch (sk->sk_family) {
111 case AF_INET:
112 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
113 &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
114 break;
116 case AF_INET6:
117 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
118 &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
119 break;
121 default:
122 BUG();
125 #else
126 static inline void svc_reclassify_socket(struct socket *sock)
129 #endif
131 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
133 switch (addr->sa_family) {
134 case AF_INET:
135 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
136 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
137 ntohs(((struct sockaddr_in *) addr)->sin_port));
138 break;
140 case AF_INET6:
141 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
142 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
143 ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
144 break;
146 default:
147 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
148 break;
150 return buf;
154 * svc_print_addr - Format rq_addr field for printing
155 * @rqstp: svc_rqst struct containing address to print
156 * @buf: target buffer for formatted address
157 * @len: length of target buffer
160 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
162 return __svc_print_addr(svc_addr(rqstp), buf, len);
164 EXPORT_SYMBOL_GPL(svc_print_addr);
167 * Queue up an idle server thread. Must have pool->sp_lock held.
168 * Note: this is really a stack rather than a queue, so that we only
169 * use as many different threads as we need, and the rest don't pollute
170 * the cache.
172 static inline void
173 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
175 list_add(&rqstp->rq_list, &pool->sp_threads);
179 * Dequeue an nfsd thread. Must have pool->sp_lock held.
181 static inline void
182 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
184 list_del(&rqstp->rq_list);
188 * Release an skbuff after use
190 static void svc_release_skb(struct svc_rqst *rqstp)
192 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
193 struct svc_deferred_req *dr = rqstp->rq_deferred;
195 if (skb) {
196 rqstp->rq_xprt_ctxt = NULL;
198 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
199 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
201 if (dr) {
202 rqstp->rq_deferred = NULL;
203 kfree(dr);
208 * Any space to write?
210 static inline unsigned long
211 svc_sock_wspace(struct svc_sock *svsk)
213 int wspace;
215 if (svsk->sk_sock->type == SOCK_STREAM)
216 wspace = sk_stream_wspace(svsk->sk_sk);
217 else
218 wspace = sock_wspace(svsk->sk_sk);
220 return wspace;
224 * Queue up a socket with data pending. If there are idle nfsd
225 * processes, wake 'em up.
228 static void
229 svc_sock_enqueue(struct svc_sock *svsk)
231 struct svc_serv *serv = svsk->sk_server;
232 struct svc_pool *pool;
233 struct svc_rqst *rqstp;
234 int cpu;
236 if (!(svsk->sk_flags &
237 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
238 return;
239 if (test_bit(SK_DEAD, &svsk->sk_flags))
240 return;
242 cpu = get_cpu();
243 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
244 put_cpu();
246 spin_lock_bh(&pool->sp_lock);
248 if (!list_empty(&pool->sp_threads) &&
249 !list_empty(&pool->sp_sockets))
250 printk(KERN_ERR
251 "svc_sock_enqueue: threads and sockets both waiting??\n");
253 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
254 /* Don't enqueue dead sockets */
255 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
256 goto out_unlock;
259 /* Mark socket as busy. It will remain in this state until the
260 * server has processed all pending data and put the socket back
261 * on the idle list. We update SK_BUSY atomically because
262 * it also guards against trying to enqueue the svc_sock twice.
264 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
265 /* Don't enqueue socket while already enqueued */
266 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
267 goto out_unlock;
269 BUG_ON(svsk->sk_pool != NULL);
270 svsk->sk_pool = pool;
272 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
273 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
274 > svc_sock_wspace(svsk))
275 && !test_bit(SK_CLOSE, &svsk->sk_flags)
276 && !test_bit(SK_CONN, &svsk->sk_flags)) {
277 /* Don't enqueue while not enough space for reply */
278 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
279 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
280 svc_sock_wspace(svsk));
281 svsk->sk_pool = NULL;
282 clear_bit(SK_BUSY, &svsk->sk_flags);
283 goto out_unlock;
285 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
288 if (!list_empty(&pool->sp_threads)) {
289 rqstp = list_entry(pool->sp_threads.next,
290 struct svc_rqst,
291 rq_list);
292 dprintk("svc: socket %p served by daemon %p\n",
293 svsk->sk_sk, rqstp);
294 svc_thread_dequeue(pool, rqstp);
295 if (rqstp->rq_sock)
296 printk(KERN_ERR
297 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
298 rqstp, rqstp->rq_sock);
299 rqstp->rq_sock = svsk;
300 atomic_inc(&svsk->sk_inuse);
301 rqstp->rq_reserved = serv->sv_max_mesg;
302 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
303 BUG_ON(svsk->sk_pool != pool);
304 wake_up(&rqstp->rq_wait);
305 } else {
306 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
307 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
308 BUG_ON(svsk->sk_pool != pool);
311 out_unlock:
312 spin_unlock_bh(&pool->sp_lock);
316 * Dequeue the first socket. Must be called with the pool->sp_lock held.
318 static inline struct svc_sock *
319 svc_sock_dequeue(struct svc_pool *pool)
321 struct svc_sock *svsk;
323 if (list_empty(&pool->sp_sockets))
324 return NULL;
326 svsk = list_entry(pool->sp_sockets.next,
327 struct svc_sock, sk_ready);
328 list_del_init(&svsk->sk_ready);
330 dprintk("svc: socket %p dequeued, inuse=%d\n",
331 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
333 return svsk;
337 * Having read something from a socket, check whether it
338 * needs to be re-enqueued.
339 * Note: SK_DATA only gets cleared when a read-attempt finds
340 * no (or insufficient) data.
342 static inline void
343 svc_sock_received(struct svc_sock *svsk)
345 svsk->sk_pool = NULL;
346 clear_bit(SK_BUSY, &svsk->sk_flags);
347 svc_sock_enqueue(svsk);
352 * svc_reserve - change the space reserved for the reply to a request.
353 * @rqstp: The request in question
354 * @space: new max space to reserve
356 * Each request reserves some space on the output queue of the socket
357 * to make sure the reply fits. This function reduces that reserved
358 * space to be the amount of space used already, plus @space.
361 void svc_reserve(struct svc_rqst *rqstp, int space)
363 space += rqstp->rq_res.head[0].iov_len;
365 if (space < rqstp->rq_reserved) {
366 struct svc_sock *svsk = rqstp->rq_sock;
367 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
368 rqstp->rq_reserved = space;
370 svc_sock_enqueue(svsk);
375 * Release a socket after use.
377 static inline void
378 svc_sock_put(struct svc_sock *svsk)
380 if (atomic_dec_and_test(&svsk->sk_inuse)) {
381 BUG_ON(!test_bit(SK_DEAD, &svsk->sk_flags));
382 svsk->sk_xprt.xpt_ops->xpo_free(&svsk->sk_xprt);
386 static void
387 svc_sock_release(struct svc_rqst *rqstp)
389 struct svc_sock *svsk = rqstp->rq_sock;
391 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
393 svc_free_res_pages(rqstp);
394 rqstp->rq_res.page_len = 0;
395 rqstp->rq_res.page_base = 0;
398 /* Reset response buffer and release
399 * the reservation.
400 * But first, check that enough space was reserved
401 * for the reply, otherwise we have a bug!
403 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
404 printk(KERN_ERR "RPC request reserved %d but used %d\n",
405 rqstp->rq_reserved,
406 rqstp->rq_res.len);
408 rqstp->rq_res.head[0].iov_len = 0;
409 svc_reserve(rqstp, 0);
410 rqstp->rq_sock = NULL;
412 svc_sock_put(svsk);
416 * External function to wake up a server waiting for data
417 * This really only makes sense for services like lockd
418 * which have exactly one thread anyway.
420 void
421 svc_wake_up(struct svc_serv *serv)
423 struct svc_rqst *rqstp;
424 unsigned int i;
425 struct svc_pool *pool;
427 for (i = 0; i < serv->sv_nrpools; i++) {
428 pool = &serv->sv_pools[i];
430 spin_lock_bh(&pool->sp_lock);
431 if (!list_empty(&pool->sp_threads)) {
432 rqstp = list_entry(pool->sp_threads.next,
433 struct svc_rqst,
434 rq_list);
435 dprintk("svc: daemon %p woken up.\n", rqstp);
437 svc_thread_dequeue(pool, rqstp);
438 rqstp->rq_sock = NULL;
440 wake_up(&rqstp->rq_wait);
442 spin_unlock_bh(&pool->sp_lock);
446 union svc_pktinfo_u {
447 struct in_pktinfo pkti;
448 struct in6_pktinfo pkti6;
450 #define SVC_PKTINFO_SPACE \
451 CMSG_SPACE(sizeof(union svc_pktinfo_u))
453 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
455 switch (rqstp->rq_sock->sk_sk->sk_family) {
456 case AF_INET: {
457 struct in_pktinfo *pki = CMSG_DATA(cmh);
459 cmh->cmsg_level = SOL_IP;
460 cmh->cmsg_type = IP_PKTINFO;
461 pki->ipi_ifindex = 0;
462 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
463 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
465 break;
467 case AF_INET6: {
468 struct in6_pktinfo *pki = CMSG_DATA(cmh);
470 cmh->cmsg_level = SOL_IPV6;
471 cmh->cmsg_type = IPV6_PKTINFO;
472 pki->ipi6_ifindex = 0;
473 ipv6_addr_copy(&pki->ipi6_addr,
474 &rqstp->rq_daddr.addr6);
475 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
477 break;
479 return;
483 * Generic sendto routine
485 static int
486 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
488 struct svc_sock *svsk = rqstp->rq_sock;
489 struct socket *sock = svsk->sk_sock;
490 int slen;
491 union {
492 struct cmsghdr hdr;
493 long all[SVC_PKTINFO_SPACE / sizeof(long)];
494 } buffer;
495 struct cmsghdr *cmh = &buffer.hdr;
496 int len = 0;
497 int result;
498 int size;
499 struct page **ppage = xdr->pages;
500 size_t base = xdr->page_base;
501 unsigned int pglen = xdr->page_len;
502 unsigned int flags = MSG_MORE;
503 char buf[RPC_MAX_ADDRBUFLEN];
505 slen = xdr->len;
507 if (rqstp->rq_prot == IPPROTO_UDP) {
508 struct msghdr msg = {
509 .msg_name = &rqstp->rq_addr,
510 .msg_namelen = rqstp->rq_addrlen,
511 .msg_control = cmh,
512 .msg_controllen = sizeof(buffer),
513 .msg_flags = MSG_MORE,
516 svc_set_cmsg_data(rqstp, cmh);
518 if (sock_sendmsg(sock, &msg, 0) < 0)
519 goto out;
522 /* send head */
523 if (slen == xdr->head[0].iov_len)
524 flags = 0;
525 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
526 xdr->head[0].iov_len, flags);
527 if (len != xdr->head[0].iov_len)
528 goto out;
529 slen -= xdr->head[0].iov_len;
530 if (slen == 0)
531 goto out;
533 /* send page data */
534 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
535 while (pglen > 0) {
536 if (slen == size)
537 flags = 0;
538 result = kernel_sendpage(sock, *ppage, base, size, flags);
539 if (result > 0)
540 len += result;
541 if (result != size)
542 goto out;
543 slen -= size;
544 pglen -= size;
545 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
546 base = 0;
547 ppage++;
549 /* send tail */
550 if (xdr->tail[0].iov_len) {
551 result = kernel_sendpage(sock, rqstp->rq_respages[0],
552 ((unsigned long)xdr->tail[0].iov_base)
553 & (PAGE_SIZE-1),
554 xdr->tail[0].iov_len, 0);
556 if (result > 0)
557 len += result;
559 out:
560 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
561 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
562 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
564 return len;
568 * Report socket names for nfsdfs
570 static int one_sock_name(char *buf, struct svc_sock *svsk)
572 int len;
574 switch(svsk->sk_sk->sk_family) {
575 case AF_INET:
576 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
577 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
578 "udp" : "tcp",
579 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
580 inet_sk(svsk->sk_sk)->num);
581 break;
582 default:
583 len = sprintf(buf, "*unknown-%d*\n",
584 svsk->sk_sk->sk_family);
586 return len;
590 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
592 struct svc_sock *svsk, *closesk = NULL;
593 int len = 0;
595 if (!serv)
596 return 0;
597 spin_lock_bh(&serv->sv_lock);
598 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
599 int onelen = one_sock_name(buf+len, svsk);
600 if (toclose && strcmp(toclose, buf+len) == 0)
601 closesk = svsk;
602 else
603 len += onelen;
605 spin_unlock_bh(&serv->sv_lock);
606 if (closesk)
607 /* Should unregister with portmap, but you cannot
608 * unregister just one protocol...
610 svc_close_socket(closesk);
611 else if (toclose)
612 return -ENOENT;
613 return len;
615 EXPORT_SYMBOL(svc_sock_names);
618 * Check input queue length
620 static int
621 svc_recv_available(struct svc_sock *svsk)
623 struct socket *sock = svsk->sk_sock;
624 int avail, err;
626 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
628 return (err >= 0)? avail : err;
632 * Generic recvfrom routine.
634 static int
635 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
637 struct svc_sock *svsk = rqstp->rq_sock;
638 struct msghdr msg = {
639 .msg_flags = MSG_DONTWAIT,
641 struct sockaddr *sin;
642 int len;
644 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
645 msg.msg_flags);
647 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
649 memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
650 rqstp->rq_addrlen = svsk->sk_remotelen;
652 /* Destination address in request is needed for binding the
653 * source address in RPC callbacks later.
655 sin = (struct sockaddr *)&svsk->sk_local;
656 switch (sin->sa_family) {
657 case AF_INET:
658 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
659 break;
660 case AF_INET6:
661 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
662 break;
665 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
666 svsk, iov[0].iov_base, iov[0].iov_len, len);
668 return len;
672 * Set socket snd and rcv buffer lengths
674 static inline void
675 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
677 #if 0
678 mm_segment_t oldfs;
679 oldfs = get_fs(); set_fs(KERNEL_DS);
680 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
681 (char*)&snd, sizeof(snd));
682 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
683 (char*)&rcv, sizeof(rcv));
684 #else
685 /* sock_setsockopt limits use to sysctl_?mem_max,
686 * which isn't acceptable. Until that is made conditional
687 * on not having CAP_SYS_RESOURCE or similar, we go direct...
688 * DaveM said I could!
690 lock_sock(sock->sk);
691 sock->sk->sk_sndbuf = snd * 2;
692 sock->sk->sk_rcvbuf = rcv * 2;
693 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
694 release_sock(sock->sk);
695 #endif
698 * INET callback when data has been received on the socket.
700 static void
701 svc_udp_data_ready(struct sock *sk, int count)
703 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
705 if (svsk) {
706 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
707 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
708 set_bit(SK_DATA, &svsk->sk_flags);
709 svc_sock_enqueue(svsk);
711 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
712 wake_up_interruptible(sk->sk_sleep);
716 * INET callback when space is newly available on the socket.
718 static void
719 svc_write_space(struct sock *sk)
721 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
723 if (svsk) {
724 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
725 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
726 svc_sock_enqueue(svsk);
729 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
730 dprintk("RPC svc_write_space: someone sleeping on %p\n",
731 svsk);
732 wake_up_interruptible(sk->sk_sleep);
736 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
737 struct cmsghdr *cmh)
739 switch (rqstp->rq_sock->sk_sk->sk_family) {
740 case AF_INET: {
741 struct in_pktinfo *pki = CMSG_DATA(cmh);
742 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
743 break;
745 case AF_INET6: {
746 struct in6_pktinfo *pki = CMSG_DATA(cmh);
747 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
748 break;
754 * Receive a datagram from a UDP socket.
756 static int
757 svc_udp_recvfrom(struct svc_rqst *rqstp)
759 struct svc_sock *svsk = rqstp->rq_sock;
760 struct svc_serv *serv = svsk->sk_server;
761 struct sk_buff *skb;
762 union {
763 struct cmsghdr hdr;
764 long all[SVC_PKTINFO_SPACE / sizeof(long)];
765 } buffer;
766 struct cmsghdr *cmh = &buffer.hdr;
767 int err, len;
768 struct msghdr msg = {
769 .msg_name = svc_addr(rqstp),
770 .msg_control = cmh,
771 .msg_controllen = sizeof(buffer),
772 .msg_flags = MSG_DONTWAIT,
775 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
776 /* udp sockets need large rcvbuf as all pending
777 * requests are still in that buffer. sndbuf must
778 * also be large enough that there is enough space
779 * for one reply per thread. We count all threads
780 * rather than threads in a particular pool, which
781 * provides an upper bound on the number of threads
782 * which will access the socket.
784 svc_sock_setbufsize(svsk->sk_sock,
785 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
786 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
788 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
789 svc_sock_received(svsk);
790 return svc_deferred_recv(rqstp);
793 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
794 svc_delete_socket(svsk);
795 return 0;
798 clear_bit(SK_DATA, &svsk->sk_flags);
799 skb = NULL;
800 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
801 0, 0, MSG_PEEK | MSG_DONTWAIT);
802 if (err >= 0)
803 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
805 if (skb == NULL) {
806 if (err != -EAGAIN) {
807 /* possibly an icmp error */
808 dprintk("svc: recvfrom returned error %d\n", -err);
809 set_bit(SK_DATA, &svsk->sk_flags);
811 svc_sock_received(svsk);
812 return -EAGAIN;
814 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
815 if (skb->tstamp.tv64 == 0) {
816 skb->tstamp = ktime_get_real();
817 /* Don't enable netstamp, sunrpc doesn't
818 need that much accuracy */
820 svsk->sk_sk->sk_stamp = skb->tstamp;
821 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
824 * Maybe more packets - kick another thread ASAP.
826 svc_sock_received(svsk);
828 len = skb->len - sizeof(struct udphdr);
829 rqstp->rq_arg.len = len;
831 rqstp->rq_prot = IPPROTO_UDP;
833 if (cmh->cmsg_level != IPPROTO_IP ||
834 cmh->cmsg_type != IP_PKTINFO) {
835 if (net_ratelimit())
836 printk("rpcsvc: received unknown control message:"
837 "%d/%d\n",
838 cmh->cmsg_level, cmh->cmsg_type);
839 skb_free_datagram(svsk->sk_sk, skb);
840 return 0;
842 svc_udp_get_dest_address(rqstp, cmh);
844 if (skb_is_nonlinear(skb)) {
845 /* we have to copy */
846 local_bh_disable();
847 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
848 local_bh_enable();
849 /* checksum error */
850 skb_free_datagram(svsk->sk_sk, skb);
851 return 0;
853 local_bh_enable();
854 skb_free_datagram(svsk->sk_sk, skb);
855 } else {
856 /* we can use it in-place */
857 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
858 rqstp->rq_arg.head[0].iov_len = len;
859 if (skb_checksum_complete(skb)) {
860 skb_free_datagram(svsk->sk_sk, skb);
861 return 0;
863 rqstp->rq_xprt_ctxt = skb;
866 rqstp->rq_arg.page_base = 0;
867 if (len <= rqstp->rq_arg.head[0].iov_len) {
868 rqstp->rq_arg.head[0].iov_len = len;
869 rqstp->rq_arg.page_len = 0;
870 rqstp->rq_respages = rqstp->rq_pages+1;
871 } else {
872 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
873 rqstp->rq_respages = rqstp->rq_pages + 1 +
874 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
877 if (serv->sv_stats)
878 serv->sv_stats->netudpcnt++;
880 return len;
883 static int
884 svc_udp_sendto(struct svc_rqst *rqstp)
886 int error;
888 error = svc_sendto(rqstp, &rqstp->rq_res);
889 if (error == -ECONNREFUSED)
890 /* ICMP error on earlier request. */
891 error = svc_sendto(rqstp, &rqstp->rq_res);
893 return error;
896 static struct svc_xprt_ops svc_udp_ops = {
897 .xpo_recvfrom = svc_udp_recvfrom,
898 .xpo_sendto = svc_udp_sendto,
899 .xpo_release_rqst = svc_release_skb,
900 .xpo_detach = svc_sock_detach,
901 .xpo_free = svc_sock_free,
904 static struct svc_xprt_class svc_udp_class = {
905 .xcl_name = "udp",
906 .xcl_ops = &svc_udp_ops,
907 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
910 static void
911 svc_udp_init(struct svc_sock *svsk)
913 int one = 1;
914 mm_segment_t oldfs;
916 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt);
917 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
918 svsk->sk_sk->sk_write_space = svc_write_space;
920 /* initialise setting must have enough space to
921 * receive and respond to one request.
922 * svc_udp_recvfrom will re-adjust if necessary
924 svc_sock_setbufsize(svsk->sk_sock,
925 3 * svsk->sk_server->sv_max_mesg,
926 3 * svsk->sk_server->sv_max_mesg);
928 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
929 set_bit(SK_CHNGBUF, &svsk->sk_flags);
931 oldfs = get_fs();
932 set_fs(KERNEL_DS);
933 /* make sure we get destination address info */
934 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
935 (char __user *)&one, sizeof(one));
936 set_fs(oldfs);
940 * A data_ready event on a listening socket means there's a connection
941 * pending. Do not use state_change as a substitute for it.
943 static void
944 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
946 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
948 dprintk("svc: socket %p TCP (listen) state change %d\n",
949 sk, sk->sk_state);
952 * This callback may called twice when a new connection
953 * is established as a child socket inherits everything
954 * from a parent LISTEN socket.
955 * 1) data_ready method of the parent socket will be called
956 * when one of child sockets become ESTABLISHED.
957 * 2) data_ready method of the child socket may be called
958 * when it receives data before the socket is accepted.
959 * In case of 2, we should ignore it silently.
961 if (sk->sk_state == TCP_LISTEN) {
962 if (svsk) {
963 set_bit(SK_CONN, &svsk->sk_flags);
964 svc_sock_enqueue(svsk);
965 } else
966 printk("svc: socket %p: no user data\n", sk);
969 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
970 wake_up_interruptible_all(sk->sk_sleep);
974 * A state change on a connected socket means it's dying or dead.
976 static void
977 svc_tcp_state_change(struct sock *sk)
979 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
981 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
982 sk, sk->sk_state, sk->sk_user_data);
984 if (!svsk)
985 printk("svc: socket %p: no user data\n", sk);
986 else {
987 set_bit(SK_CLOSE, &svsk->sk_flags);
988 svc_sock_enqueue(svsk);
990 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
991 wake_up_interruptible_all(sk->sk_sleep);
994 static void
995 svc_tcp_data_ready(struct sock *sk, int count)
997 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
999 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
1000 sk, sk->sk_user_data);
1001 if (svsk) {
1002 set_bit(SK_DATA, &svsk->sk_flags);
1003 svc_sock_enqueue(svsk);
1005 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1006 wake_up_interruptible(sk->sk_sleep);
1009 static inline int svc_port_is_privileged(struct sockaddr *sin)
1011 switch (sin->sa_family) {
1012 case AF_INET:
1013 return ntohs(((struct sockaddr_in *)sin)->sin_port)
1014 < PROT_SOCK;
1015 case AF_INET6:
1016 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1017 < PROT_SOCK;
1018 default:
1019 return 0;
1024 * Accept a TCP connection
1026 static void
1027 svc_tcp_accept(struct svc_sock *svsk)
1029 struct sockaddr_storage addr;
1030 struct sockaddr *sin = (struct sockaddr *) &addr;
1031 struct svc_serv *serv = svsk->sk_server;
1032 struct socket *sock = svsk->sk_sock;
1033 struct socket *newsock;
1034 struct svc_sock *newsvsk;
1035 int err, slen;
1036 char buf[RPC_MAX_ADDRBUFLEN];
1038 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1039 if (!sock)
1040 return;
1042 clear_bit(SK_CONN, &svsk->sk_flags);
1043 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1044 if (err < 0) {
1045 if (err == -ENOMEM)
1046 printk(KERN_WARNING "%s: no more sockets!\n",
1047 serv->sv_name);
1048 else if (err != -EAGAIN && net_ratelimit())
1049 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1050 serv->sv_name, -err);
1051 return;
1054 set_bit(SK_CONN, &svsk->sk_flags);
1055 svc_sock_enqueue(svsk);
1057 err = kernel_getpeername(newsock, sin, &slen);
1058 if (err < 0) {
1059 if (net_ratelimit())
1060 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1061 serv->sv_name, -err);
1062 goto failed; /* aborted connection or whatever */
1065 /* Ideally, we would want to reject connections from unauthorized
1066 * hosts here, but when we get encryption, the IP of the host won't
1067 * tell us anything. For now just warn about unpriv connections.
1069 if (!svc_port_is_privileged(sin)) {
1070 dprintk(KERN_WARNING
1071 "%s: connect from unprivileged port: %s\n",
1072 serv->sv_name,
1073 __svc_print_addr(sin, buf, sizeof(buf)));
1075 dprintk("%s: connect from %s\n", serv->sv_name,
1076 __svc_print_addr(sin, buf, sizeof(buf)));
1078 /* make sure that a write doesn't block forever when
1079 * low on memory
1081 newsock->sk->sk_sndtimeo = HZ*30;
1083 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1084 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1085 goto failed;
1086 memcpy(&newsvsk->sk_remote, sin, slen);
1087 newsvsk->sk_remotelen = slen;
1088 err = kernel_getsockname(newsock, sin, &slen);
1089 if (unlikely(err < 0)) {
1090 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1091 slen = offsetof(struct sockaddr, sa_data);
1093 memcpy(&newsvsk->sk_local, sin, slen);
1095 svc_sock_received(newsvsk);
1097 /* make sure that we don't have too many active connections.
1098 * If we have, something must be dropped.
1100 * There's no point in trying to do random drop here for
1101 * DoS prevention. The NFS clients does 1 reconnect in 15
1102 * seconds. An attacker can easily beat that.
1104 * The only somewhat efficient mechanism would be if drop
1105 * old connections from the same IP first. But right now
1106 * we don't even record the client IP in svc_sock.
1108 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1109 struct svc_sock *svsk = NULL;
1110 spin_lock_bh(&serv->sv_lock);
1111 if (!list_empty(&serv->sv_tempsocks)) {
1112 if (net_ratelimit()) {
1113 /* Try to help the admin */
1114 printk(KERN_NOTICE "%s: too many open TCP "
1115 "sockets, consider increasing the "
1116 "number of nfsd threads\n",
1117 serv->sv_name);
1118 printk(KERN_NOTICE
1119 "%s: last TCP connect from %s\n",
1120 serv->sv_name, __svc_print_addr(sin,
1121 buf, sizeof(buf)));
1124 * Always select the oldest socket. It's not fair,
1125 * but so is life
1127 svsk = list_entry(serv->sv_tempsocks.prev,
1128 struct svc_sock,
1129 sk_list);
1130 set_bit(SK_CLOSE, &svsk->sk_flags);
1131 atomic_inc(&svsk->sk_inuse);
1133 spin_unlock_bh(&serv->sv_lock);
1135 if (svsk) {
1136 svc_sock_enqueue(svsk);
1137 svc_sock_put(svsk);
1142 if (serv->sv_stats)
1143 serv->sv_stats->nettcpconn++;
1145 return;
1147 failed:
1148 sock_release(newsock);
1149 return;
1153 * Receive data from a TCP socket.
1155 static int
1156 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1158 struct svc_sock *svsk = rqstp->rq_sock;
1159 struct svc_serv *serv = svsk->sk_server;
1160 int len;
1161 struct kvec *vec;
1162 int pnum, vlen;
1164 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1165 svsk, test_bit(SK_DATA, &svsk->sk_flags),
1166 test_bit(SK_CONN, &svsk->sk_flags),
1167 test_bit(SK_CLOSE, &svsk->sk_flags));
1169 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1170 svc_sock_received(svsk);
1171 return svc_deferred_recv(rqstp);
1174 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1175 svc_delete_socket(svsk);
1176 return 0;
1179 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1180 svc_tcp_accept(svsk);
1181 svc_sock_received(svsk);
1182 return 0;
1185 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1186 /* sndbuf needs to have room for one request
1187 * per thread, otherwise we can stall even when the
1188 * network isn't a bottleneck.
1190 * We count all threads rather than threads in a
1191 * particular pool, which provides an upper bound
1192 * on the number of threads which will access the socket.
1194 * rcvbuf just needs to be able to hold a few requests.
1195 * Normally they will be removed from the queue
1196 * as soon a a complete request arrives.
1198 svc_sock_setbufsize(svsk->sk_sock,
1199 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1200 3 * serv->sv_max_mesg);
1202 clear_bit(SK_DATA, &svsk->sk_flags);
1204 /* Receive data. If we haven't got the record length yet, get
1205 * the next four bytes. Otherwise try to gobble up as much as
1206 * possible up to the complete record length.
1208 if (svsk->sk_tcplen < 4) {
1209 unsigned long want = 4 - svsk->sk_tcplen;
1210 struct kvec iov;
1212 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1213 iov.iov_len = want;
1214 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1215 goto error;
1216 svsk->sk_tcplen += len;
1218 if (len < want) {
1219 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1220 len, want);
1221 svc_sock_received(svsk);
1222 return -EAGAIN; /* record header not complete */
1225 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1226 if (!(svsk->sk_reclen & 0x80000000)) {
1227 /* FIXME: technically, a record can be fragmented,
1228 * and non-terminal fragments will not have the top
1229 * bit set in the fragment length header.
1230 * But apparently no known nfs clients send fragmented
1231 * records. */
1232 if (net_ratelimit())
1233 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1234 " (non-terminal)\n",
1235 (unsigned long) svsk->sk_reclen);
1236 goto err_delete;
1238 svsk->sk_reclen &= 0x7fffffff;
1239 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1240 if (svsk->sk_reclen > serv->sv_max_mesg) {
1241 if (net_ratelimit())
1242 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1243 " (large)\n",
1244 (unsigned long) svsk->sk_reclen);
1245 goto err_delete;
1249 /* Check whether enough data is available */
1250 len = svc_recv_available(svsk);
1251 if (len < 0)
1252 goto error;
1254 if (len < svsk->sk_reclen) {
1255 dprintk("svc: incomplete TCP record (%d of %d)\n",
1256 len, svsk->sk_reclen);
1257 svc_sock_received(svsk);
1258 return -EAGAIN; /* record not complete */
1260 len = svsk->sk_reclen;
1261 set_bit(SK_DATA, &svsk->sk_flags);
1263 vec = rqstp->rq_vec;
1264 vec[0] = rqstp->rq_arg.head[0];
1265 vlen = PAGE_SIZE;
1266 pnum = 1;
1267 while (vlen < len) {
1268 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1269 vec[pnum].iov_len = PAGE_SIZE;
1270 pnum++;
1271 vlen += PAGE_SIZE;
1273 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1275 /* Now receive data */
1276 len = svc_recvfrom(rqstp, vec, pnum, len);
1277 if (len < 0)
1278 goto error;
1280 dprintk("svc: TCP complete record (%d bytes)\n", len);
1281 rqstp->rq_arg.len = len;
1282 rqstp->rq_arg.page_base = 0;
1283 if (len <= rqstp->rq_arg.head[0].iov_len) {
1284 rqstp->rq_arg.head[0].iov_len = len;
1285 rqstp->rq_arg.page_len = 0;
1286 } else {
1287 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1290 rqstp->rq_xprt_ctxt = NULL;
1291 rqstp->rq_prot = IPPROTO_TCP;
1293 /* Reset TCP read info */
1294 svsk->sk_reclen = 0;
1295 svsk->sk_tcplen = 0;
1297 svc_sock_received(svsk);
1298 if (serv->sv_stats)
1299 serv->sv_stats->nettcpcnt++;
1301 return len;
1303 err_delete:
1304 svc_delete_socket(svsk);
1305 return -EAGAIN;
1307 error:
1308 if (len == -EAGAIN) {
1309 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1310 svc_sock_received(svsk);
1311 } else {
1312 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1313 svsk->sk_server->sv_name, -len);
1314 goto err_delete;
1317 return len;
1321 * Send out data on TCP socket.
1323 static int
1324 svc_tcp_sendto(struct svc_rqst *rqstp)
1326 struct xdr_buf *xbufp = &rqstp->rq_res;
1327 int sent;
1328 __be32 reclen;
1330 /* Set up the first element of the reply kvec.
1331 * Any other kvecs that may be in use have been taken
1332 * care of by the server implementation itself.
1334 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1335 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1337 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1338 return -ENOTCONN;
1340 sent = svc_sendto(rqstp, &rqstp->rq_res);
1341 if (sent != xbufp->len) {
1342 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1343 rqstp->rq_sock->sk_server->sv_name,
1344 (sent<0)?"got error":"sent only",
1345 sent, xbufp->len);
1346 set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1347 svc_sock_enqueue(rqstp->rq_sock);
1348 sent = -EAGAIN;
1350 return sent;
1353 static struct svc_xprt_ops svc_tcp_ops = {
1354 .xpo_recvfrom = svc_tcp_recvfrom,
1355 .xpo_sendto = svc_tcp_sendto,
1356 .xpo_release_rqst = svc_release_skb,
1357 .xpo_detach = svc_sock_detach,
1358 .xpo_free = svc_sock_free,
1361 static struct svc_xprt_class svc_tcp_class = {
1362 .xcl_name = "tcp",
1363 .xcl_ops = &svc_tcp_ops,
1364 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1367 void svc_init_xprt_sock(void)
1369 svc_reg_xprt_class(&svc_tcp_class);
1370 svc_reg_xprt_class(&svc_udp_class);
1373 void svc_cleanup_xprt_sock(void)
1375 svc_unreg_xprt_class(&svc_tcp_class);
1376 svc_unreg_xprt_class(&svc_udp_class);
1379 static void
1380 svc_tcp_init(struct svc_sock *svsk)
1382 struct sock *sk = svsk->sk_sk;
1383 struct tcp_sock *tp = tcp_sk(sk);
1385 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt);
1387 if (sk->sk_state == TCP_LISTEN) {
1388 dprintk("setting up TCP socket for listening\n");
1389 sk->sk_data_ready = svc_tcp_listen_data_ready;
1390 set_bit(SK_CONN, &svsk->sk_flags);
1391 } else {
1392 dprintk("setting up TCP socket for reading\n");
1393 sk->sk_state_change = svc_tcp_state_change;
1394 sk->sk_data_ready = svc_tcp_data_ready;
1395 sk->sk_write_space = svc_write_space;
1397 svsk->sk_reclen = 0;
1398 svsk->sk_tcplen = 0;
1400 tp->nonagle = 1; /* disable Nagle's algorithm */
1402 /* initialise setting must have enough space to
1403 * receive and respond to one request.
1404 * svc_tcp_recvfrom will re-adjust if necessary
1406 svc_sock_setbufsize(svsk->sk_sock,
1407 3 * svsk->sk_server->sv_max_mesg,
1408 3 * svsk->sk_server->sv_max_mesg);
1410 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1411 set_bit(SK_DATA, &svsk->sk_flags);
1412 if (sk->sk_state != TCP_ESTABLISHED)
1413 set_bit(SK_CLOSE, &svsk->sk_flags);
1417 void
1418 svc_sock_update_bufs(struct svc_serv *serv)
1421 * The number of server threads has changed. Update
1422 * rcvbuf and sndbuf accordingly on all sockets
1424 struct list_head *le;
1426 spin_lock_bh(&serv->sv_lock);
1427 list_for_each(le, &serv->sv_permsocks) {
1428 struct svc_sock *svsk =
1429 list_entry(le, struct svc_sock, sk_list);
1430 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1432 list_for_each(le, &serv->sv_tempsocks) {
1433 struct svc_sock *svsk =
1434 list_entry(le, struct svc_sock, sk_list);
1435 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1437 spin_unlock_bh(&serv->sv_lock);
1441 * Receive the next request on any socket. This code is carefully
1442 * organised not to touch any cachelines in the shared svc_serv
1443 * structure, only cachelines in the local svc_pool.
1446 svc_recv(struct svc_rqst *rqstp, long timeout)
1448 struct svc_sock *svsk = NULL;
1449 struct svc_serv *serv = rqstp->rq_server;
1450 struct svc_pool *pool = rqstp->rq_pool;
1451 int len, i;
1452 int pages;
1453 struct xdr_buf *arg;
1454 DECLARE_WAITQUEUE(wait, current);
1456 dprintk("svc: server %p waiting for data (to = %ld)\n",
1457 rqstp, timeout);
1459 if (rqstp->rq_sock)
1460 printk(KERN_ERR
1461 "svc_recv: service %p, socket not NULL!\n",
1462 rqstp);
1463 if (waitqueue_active(&rqstp->rq_wait))
1464 printk(KERN_ERR
1465 "svc_recv: service %p, wait queue active!\n",
1466 rqstp);
1469 /* now allocate needed pages. If we get a failure, sleep briefly */
1470 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1471 for (i=0; i < pages ; i++)
1472 while (rqstp->rq_pages[i] == NULL) {
1473 struct page *p = alloc_page(GFP_KERNEL);
1474 if (!p)
1475 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1476 rqstp->rq_pages[i] = p;
1478 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1479 BUG_ON(pages >= RPCSVC_MAXPAGES);
1481 /* Make arg->head point to first page and arg->pages point to rest */
1482 arg = &rqstp->rq_arg;
1483 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1484 arg->head[0].iov_len = PAGE_SIZE;
1485 arg->pages = rqstp->rq_pages + 1;
1486 arg->page_base = 0;
1487 /* save at least one page for response */
1488 arg->page_len = (pages-2)*PAGE_SIZE;
1489 arg->len = (pages-1)*PAGE_SIZE;
1490 arg->tail[0].iov_len = 0;
1492 try_to_freeze();
1493 cond_resched();
1494 if (signalled())
1495 return -EINTR;
1497 spin_lock_bh(&pool->sp_lock);
1498 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1499 rqstp->rq_sock = svsk;
1500 atomic_inc(&svsk->sk_inuse);
1501 rqstp->rq_reserved = serv->sv_max_mesg;
1502 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1503 } else {
1504 /* No data pending. Go to sleep */
1505 svc_thread_enqueue(pool, rqstp);
1508 * We have to be able to interrupt this wait
1509 * to bring down the daemons ...
1511 set_current_state(TASK_INTERRUPTIBLE);
1512 add_wait_queue(&rqstp->rq_wait, &wait);
1513 spin_unlock_bh(&pool->sp_lock);
1515 schedule_timeout(timeout);
1517 try_to_freeze();
1519 spin_lock_bh(&pool->sp_lock);
1520 remove_wait_queue(&rqstp->rq_wait, &wait);
1522 if (!(svsk = rqstp->rq_sock)) {
1523 svc_thread_dequeue(pool, rqstp);
1524 spin_unlock_bh(&pool->sp_lock);
1525 dprintk("svc: server %p, no data yet\n", rqstp);
1526 return signalled()? -EINTR : -EAGAIN;
1529 spin_unlock_bh(&pool->sp_lock);
1531 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1532 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1533 len = svsk->sk_xprt.xpt_ops->xpo_recvfrom(rqstp);
1534 dprintk("svc: got len=%d\n", len);
1536 /* No data, incomplete (TCP) read, or accept() */
1537 if (len == 0 || len == -EAGAIN) {
1538 rqstp->rq_res.len = 0;
1539 svc_sock_release(rqstp);
1540 return -EAGAIN;
1542 svsk->sk_lastrecv = get_seconds();
1543 clear_bit(SK_OLD, &svsk->sk_flags);
1545 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1546 rqstp->rq_chandle.defer = svc_defer;
1548 if (serv->sv_stats)
1549 serv->sv_stats->netcnt++;
1550 return len;
1554 * Drop request
1556 void
1557 svc_drop(struct svc_rqst *rqstp)
1559 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1560 svc_sock_release(rqstp);
1564 * Return reply to client.
1567 svc_send(struct svc_rqst *rqstp)
1569 struct svc_sock *svsk;
1570 int len;
1571 struct xdr_buf *xb;
1573 if ((svsk = rqstp->rq_sock) == NULL) {
1574 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1575 __FILE__, __LINE__);
1576 return -EFAULT;
1579 /* release the receive skb before sending the reply */
1580 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
1582 /* calculate over-all length */
1583 xb = & rqstp->rq_res;
1584 xb->len = xb->head[0].iov_len +
1585 xb->page_len +
1586 xb->tail[0].iov_len;
1588 /* Grab svsk->sk_mutex to serialize outgoing data. */
1589 mutex_lock(&svsk->sk_mutex);
1590 if (test_bit(SK_DEAD, &svsk->sk_flags))
1591 len = -ENOTCONN;
1592 else
1593 len = svsk->sk_xprt.xpt_ops->xpo_sendto(rqstp);
1594 mutex_unlock(&svsk->sk_mutex);
1595 svc_sock_release(rqstp);
1597 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1598 return 0;
1599 return len;
1603 * Timer function to close old temporary sockets, using
1604 * a mark-and-sweep algorithm.
1606 static void
1607 svc_age_temp_sockets(unsigned long closure)
1609 struct svc_serv *serv = (struct svc_serv *)closure;
1610 struct svc_sock *svsk;
1611 struct list_head *le, *next;
1612 LIST_HEAD(to_be_aged);
1614 dprintk("svc_age_temp_sockets\n");
1616 if (!spin_trylock_bh(&serv->sv_lock)) {
1617 /* busy, try again 1 sec later */
1618 dprintk("svc_age_temp_sockets: busy\n");
1619 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1620 return;
1623 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1624 svsk = list_entry(le, struct svc_sock, sk_list);
1626 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1627 continue;
1628 if (atomic_read(&svsk->sk_inuse) > 1 || test_bit(SK_BUSY, &svsk->sk_flags))
1629 continue;
1630 atomic_inc(&svsk->sk_inuse);
1631 list_move(le, &to_be_aged);
1632 set_bit(SK_CLOSE, &svsk->sk_flags);
1633 set_bit(SK_DETACHED, &svsk->sk_flags);
1635 spin_unlock_bh(&serv->sv_lock);
1637 while (!list_empty(&to_be_aged)) {
1638 le = to_be_aged.next;
1639 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1640 list_del_init(le);
1641 svsk = list_entry(le, struct svc_sock, sk_list);
1643 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1644 svsk, get_seconds() - svsk->sk_lastrecv);
1646 /* a thread will dequeue and close it soon */
1647 svc_sock_enqueue(svsk);
1648 svc_sock_put(svsk);
1651 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1655 * Initialize socket for RPC use and create svc_sock struct
1656 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1658 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1659 struct socket *sock,
1660 int *errp, int flags)
1662 struct svc_sock *svsk;
1663 struct sock *inet;
1664 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1665 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1667 dprintk("svc: svc_setup_socket %p\n", sock);
1668 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1669 *errp = -ENOMEM;
1670 return NULL;
1673 inet = sock->sk;
1675 /* Register socket with portmapper */
1676 if (*errp >= 0 && pmap_register)
1677 *errp = svc_register(serv, inet->sk_protocol,
1678 ntohs(inet_sk(inet)->sport));
1680 if (*errp < 0) {
1681 kfree(svsk);
1682 return NULL;
1685 set_bit(SK_BUSY, &svsk->sk_flags);
1686 inet->sk_user_data = svsk;
1687 svsk->sk_sock = sock;
1688 svsk->sk_sk = inet;
1689 svsk->sk_ostate = inet->sk_state_change;
1690 svsk->sk_odata = inet->sk_data_ready;
1691 svsk->sk_owspace = inet->sk_write_space;
1692 svsk->sk_server = serv;
1693 atomic_set(&svsk->sk_inuse, 1);
1694 svsk->sk_lastrecv = get_seconds();
1695 spin_lock_init(&svsk->sk_lock);
1696 INIT_LIST_HEAD(&svsk->sk_deferred);
1697 INIT_LIST_HEAD(&svsk->sk_ready);
1698 mutex_init(&svsk->sk_mutex);
1700 /* Initialize the socket */
1701 if (sock->type == SOCK_DGRAM)
1702 svc_udp_init(svsk);
1703 else
1704 svc_tcp_init(svsk);
1706 spin_lock_bh(&serv->sv_lock);
1707 if (is_temporary) {
1708 set_bit(SK_TEMP, &svsk->sk_flags);
1709 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1710 serv->sv_tmpcnt++;
1711 if (serv->sv_temptimer.function == NULL) {
1712 /* setup timer to age temp sockets */
1713 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1714 (unsigned long)serv);
1715 mod_timer(&serv->sv_temptimer,
1716 jiffies + svc_conn_age_period * HZ);
1718 } else {
1719 clear_bit(SK_TEMP, &svsk->sk_flags);
1720 list_add(&svsk->sk_list, &serv->sv_permsocks);
1722 spin_unlock_bh(&serv->sv_lock);
1724 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1725 svsk, svsk->sk_sk);
1727 return svsk;
1730 int svc_addsock(struct svc_serv *serv,
1731 int fd,
1732 char *name_return,
1733 int *proto)
1735 int err = 0;
1736 struct socket *so = sockfd_lookup(fd, &err);
1737 struct svc_sock *svsk = NULL;
1739 if (!so)
1740 return err;
1741 if (so->sk->sk_family != AF_INET)
1742 err = -EAFNOSUPPORT;
1743 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1744 so->sk->sk_protocol != IPPROTO_UDP)
1745 err = -EPROTONOSUPPORT;
1746 else if (so->state > SS_UNCONNECTED)
1747 err = -EISCONN;
1748 else {
1749 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1750 if (svsk) {
1751 svc_sock_received(svsk);
1752 err = 0;
1755 if (err) {
1756 sockfd_put(so);
1757 return err;
1759 if (proto) *proto = so->sk->sk_protocol;
1760 return one_sock_name(name_return, svsk);
1762 EXPORT_SYMBOL_GPL(svc_addsock);
1765 * Create socket for RPC service.
1767 static int svc_create_socket(struct svc_serv *serv, int protocol,
1768 struct sockaddr *sin, int len, int flags)
1770 struct svc_sock *svsk;
1771 struct socket *sock;
1772 int error;
1773 int type;
1774 char buf[RPC_MAX_ADDRBUFLEN];
1776 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1777 serv->sv_program->pg_name, protocol,
1778 __svc_print_addr(sin, buf, sizeof(buf)));
1780 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1781 printk(KERN_WARNING "svc: only UDP and TCP "
1782 "sockets supported\n");
1783 return -EINVAL;
1785 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1787 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1788 if (error < 0)
1789 return error;
1791 svc_reclassify_socket(sock);
1793 if (type == SOCK_STREAM)
1794 sock->sk->sk_reuse = 1; /* allow address reuse */
1795 error = kernel_bind(sock, sin, len);
1796 if (error < 0)
1797 goto bummer;
1799 if (protocol == IPPROTO_TCP) {
1800 if ((error = kernel_listen(sock, 64)) < 0)
1801 goto bummer;
1804 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1805 svc_sock_received(svsk);
1806 return ntohs(inet_sk(svsk->sk_sk)->sport);
1809 bummer:
1810 dprintk("svc: svc_create_socket error = %d\n", -error);
1811 sock_release(sock);
1812 return error;
1816 * Detach the svc_sock from the socket so that no
1817 * more callbacks occur.
1819 static void svc_sock_detach(struct svc_xprt *xprt)
1821 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1822 struct sock *sk = svsk->sk_sk;
1824 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1826 /* put back the old socket callbacks */
1827 sk->sk_state_change = svsk->sk_ostate;
1828 sk->sk_data_ready = svsk->sk_odata;
1829 sk->sk_write_space = svsk->sk_owspace;
1833 * Free the svc_sock's socket resources and the svc_sock itself.
1835 static void svc_sock_free(struct svc_xprt *xprt)
1837 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1838 dprintk("svc: svc_sock_free(%p)\n", svsk);
1840 if (svsk->sk_info_authunix != NULL)
1841 svcauth_unix_info_release(svsk->sk_info_authunix);
1842 if (svsk->sk_sock->file)
1843 sockfd_put(svsk->sk_sock);
1844 else
1845 sock_release(svsk->sk_sock);
1846 kfree(svsk);
1850 * Remove a dead socket
1852 static void
1853 svc_delete_socket(struct svc_sock *svsk)
1855 struct svc_serv *serv;
1856 struct sock *sk;
1858 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1860 serv = svsk->sk_server;
1861 sk = svsk->sk_sk;
1863 svsk->sk_xprt.xpt_ops->xpo_detach(&svsk->sk_xprt);
1865 spin_lock_bh(&serv->sv_lock);
1867 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1868 list_del_init(&svsk->sk_list);
1870 * We used to delete the svc_sock from whichever list
1871 * it's sk_ready node was on, but we don't actually
1872 * need to. This is because the only time we're called
1873 * while still attached to a queue, the queue itself
1874 * is about to be destroyed (in svc_destroy).
1876 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1877 BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1878 atomic_dec(&svsk->sk_inuse);
1879 if (test_bit(SK_TEMP, &svsk->sk_flags))
1880 serv->sv_tmpcnt--;
1883 spin_unlock_bh(&serv->sv_lock);
1886 static void svc_close_socket(struct svc_sock *svsk)
1888 set_bit(SK_CLOSE, &svsk->sk_flags);
1889 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1890 /* someone else will have to effect the close */
1891 return;
1893 atomic_inc(&svsk->sk_inuse);
1894 svc_delete_socket(svsk);
1895 clear_bit(SK_BUSY, &svsk->sk_flags);
1896 svc_sock_put(svsk);
1899 void svc_force_close_socket(struct svc_sock *svsk)
1901 set_bit(SK_CLOSE, &svsk->sk_flags);
1902 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1903 /* Waiting to be processed, but no threads left,
1904 * So just remove it from the waiting list
1906 list_del_init(&svsk->sk_ready);
1907 clear_bit(SK_BUSY, &svsk->sk_flags);
1909 svc_close_socket(svsk);
1913 * svc_makesock - Make a socket for nfsd and lockd
1914 * @serv: RPC server structure
1915 * @protocol: transport protocol to use
1916 * @port: port to use
1917 * @flags: requested socket characteristics
1920 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1921 int flags)
1923 struct sockaddr_in sin = {
1924 .sin_family = AF_INET,
1925 .sin_addr.s_addr = INADDR_ANY,
1926 .sin_port = htons(port),
1929 dprintk("svc: creating socket proto = %d\n", protocol);
1930 return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1931 sizeof(sin), flags);
1935 * Handle defer and revisit of requests
1938 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1940 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1941 struct svc_sock *svsk;
1943 if (too_many) {
1944 svc_sock_put(dr->svsk);
1945 kfree(dr);
1946 return;
1948 dprintk("revisit queued\n");
1949 svsk = dr->svsk;
1950 dr->svsk = NULL;
1951 spin_lock(&svsk->sk_lock);
1952 list_add(&dr->handle.recent, &svsk->sk_deferred);
1953 spin_unlock(&svsk->sk_lock);
1954 set_bit(SK_DEFERRED, &svsk->sk_flags);
1955 svc_sock_enqueue(svsk);
1956 svc_sock_put(svsk);
1959 static struct cache_deferred_req *
1960 svc_defer(struct cache_req *req)
1962 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1963 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1964 struct svc_deferred_req *dr;
1966 if (rqstp->rq_arg.page_len)
1967 return NULL; /* if more than a page, give up FIXME */
1968 if (rqstp->rq_deferred) {
1969 dr = rqstp->rq_deferred;
1970 rqstp->rq_deferred = NULL;
1971 } else {
1972 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1973 /* FIXME maybe discard if size too large */
1974 dr = kmalloc(size, GFP_KERNEL);
1975 if (dr == NULL)
1976 return NULL;
1978 dr->handle.owner = rqstp->rq_server;
1979 dr->prot = rqstp->rq_prot;
1980 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1981 dr->addrlen = rqstp->rq_addrlen;
1982 dr->daddr = rqstp->rq_daddr;
1983 dr->argslen = rqstp->rq_arg.len >> 2;
1984 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1986 atomic_inc(&rqstp->rq_sock->sk_inuse);
1987 dr->svsk = rqstp->rq_sock;
1989 dr->handle.revisit = svc_revisit;
1990 return &dr->handle;
1994 * recv data from a deferred request into an active one
1996 static int svc_deferred_recv(struct svc_rqst *rqstp)
1998 struct svc_deferred_req *dr = rqstp->rq_deferred;
2000 rqstp->rq_arg.head[0].iov_base = dr->args;
2001 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
2002 rqstp->rq_arg.page_len = 0;
2003 rqstp->rq_arg.len = dr->argslen<<2;
2004 rqstp->rq_prot = dr->prot;
2005 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
2006 rqstp->rq_addrlen = dr->addrlen;
2007 rqstp->rq_daddr = dr->daddr;
2008 rqstp->rq_respages = rqstp->rq_pages;
2009 return dr->argslen<<2;
2013 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
2015 struct svc_deferred_req *dr = NULL;
2017 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
2018 return NULL;
2019 spin_lock(&svsk->sk_lock);
2020 clear_bit(SK_DEFERRED, &svsk->sk_flags);
2021 if (!list_empty(&svsk->sk_deferred)) {
2022 dr = list_entry(svsk->sk_deferred.next,
2023 struct svc_deferred_req,
2024 handle.recent);
2025 list_del_init(&dr->handle.recent);
2026 set_bit(SK_DEFERRED, &svsk->sk_flags);
2028 spin_unlock(&svsk->sk_lock);
2029 return dr;