4 * Copyright (C) 2012 Texas Instruments, Inc.
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/platform_data/emif_plat.h>
17 #include <linux/device.h>
18 #include <linux/platform_device.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
22 #include <linux/debugfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/module.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <memory/jedec_ddr.h>
29 #include "of_memory.h"
32 * struct emif_data - Per device static data for driver's use
33 * @duplicate: Whether the DDR devices attached to this EMIF
34 * instance are exactly same as that on EMIF1. In
35 * this case we can save some memory and processing
36 * @temperature_level: Maximum temperature of LPDDR2 devices attached
37 * to this EMIF - read from MR4 register. If there
38 * are two devices attached to this EMIF, this
39 * value is the maximum of the two temperature
41 * @node: node in the device list
42 * @base: base address of memory-mapped IO registers.
43 * @dev: device pointer.
44 * @addressing table with addressing information from the spec
45 * @regs_cache: An array of 'struct emif_regs' that stores
46 * calculated register values for different
47 * frequencies, to avoid re-calculating them on
48 * each DVFS transition.
49 * @curr_regs: The set of register values used in the last
50 * frequency change (i.e. corresponding to the
51 * frequency in effect at the moment)
52 * @plat_data: Pointer to saved platform data.
53 * @debugfs_root: dentry to the root folder for EMIF in debugfs
54 * @np_ddr: Pointer to ddr device tree node
60 struct list_head node
;
61 unsigned long irq_state
;
64 const struct lpddr2_addressing
*addressing
;
65 struct emif_regs
*regs_cache
[EMIF_MAX_NUM_FREQUENCIES
];
66 struct emif_regs
*curr_regs
;
67 struct emif_platform_data
*plat_data
;
68 struct dentry
*debugfs_root
;
69 struct device_node
*np_ddr
;
72 static struct emif_data
*emif1
;
73 static spinlock_t emif_lock
;
74 static unsigned long irq_state
;
75 static u32 t_ck
; /* DDR clock period in ps */
76 static LIST_HEAD(device_list
);
78 #ifdef CONFIG_DEBUG_FS
79 static void do_emif_regdump_show(struct seq_file
*s
, struct emif_data
*emif
,
80 struct emif_regs
*regs
)
82 u32 type
= emif
->plat_data
->device_info
->type
;
83 u32 ip_rev
= emif
->plat_data
->ip_rev
;
85 seq_printf(s
, "EMIF register cache dump for %dMHz\n",
88 seq_printf(s
, "ref_ctrl_shdw\t: 0x%08x\n", regs
->ref_ctrl_shdw
);
89 seq_printf(s
, "sdram_tim1_shdw\t: 0x%08x\n", regs
->sdram_tim1_shdw
);
90 seq_printf(s
, "sdram_tim2_shdw\t: 0x%08x\n", regs
->sdram_tim2_shdw
);
91 seq_printf(s
, "sdram_tim3_shdw\t: 0x%08x\n", regs
->sdram_tim3_shdw
);
93 if (ip_rev
== EMIF_4D
) {
94 seq_printf(s
, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95 regs
->read_idle_ctrl_shdw_normal
);
96 seq_printf(s
, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 regs
->read_idle_ctrl_shdw_volt_ramp
);
98 } else if (ip_rev
== EMIF_4D5
) {
99 seq_printf(s
, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100 regs
->dll_calib_ctrl_shdw_normal
);
101 seq_printf(s
, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102 regs
->dll_calib_ctrl_shdw_volt_ramp
);
105 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
) {
106 seq_printf(s
, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107 regs
->ref_ctrl_shdw_derated
);
108 seq_printf(s
, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109 regs
->sdram_tim1_shdw_derated
);
110 seq_printf(s
, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111 regs
->sdram_tim3_shdw_derated
);
115 static int emif_regdump_show(struct seq_file
*s
, void *unused
)
117 struct emif_data
*emif
= s
->private;
118 struct emif_regs
**regs_cache
;
122 regs_cache
= emif1
->regs_cache
;
124 regs_cache
= emif
->regs_cache
;
126 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++) {
127 do_emif_regdump_show(s
, emif
, regs_cache
[i
]);
134 static int emif_regdump_open(struct inode
*inode
, struct file
*file
)
136 return single_open(file
, emif_regdump_show
, inode
->i_private
);
139 static const struct file_operations emif_regdump_fops
= {
140 .open
= emif_regdump_open
,
142 .release
= single_release
,
145 static int emif_mr4_show(struct seq_file
*s
, void *unused
)
147 struct emif_data
*emif
= s
->private;
149 seq_printf(s
, "MR4=%d\n", emif
->temperature_level
);
153 static int emif_mr4_open(struct inode
*inode
, struct file
*file
)
155 return single_open(file
, emif_mr4_show
, inode
->i_private
);
158 static const struct file_operations emif_mr4_fops
= {
159 .open
= emif_mr4_open
,
161 .release
= single_release
,
164 static int __init_or_module
emif_debugfs_init(struct emif_data
*emif
)
166 struct dentry
*dentry
;
169 dentry
= debugfs_create_dir(dev_name(emif
->dev
), NULL
);
174 emif
->debugfs_root
= dentry
;
176 dentry
= debugfs_create_file("regcache_dump", S_IRUGO
,
177 emif
->debugfs_root
, emif
, &emif_regdump_fops
);
183 dentry
= debugfs_create_file("mr4", S_IRUGO
,
184 emif
->debugfs_root
, emif
, &emif_mr4_fops
);
192 debugfs_remove_recursive(emif
->debugfs_root
);
197 static void __exit
emif_debugfs_exit(struct emif_data
*emif
)
199 debugfs_remove_recursive(emif
->debugfs_root
);
200 emif
->debugfs_root
= NULL
;
203 static inline int __init_or_module
emif_debugfs_init(struct emif_data
*emif
)
208 static inline void __exit
emif_debugfs_exit(struct emif_data
*emif
)
214 * Calculate the period of DDR clock from frequency value
216 static void set_ddr_clk_period(u32 freq
)
218 /* Divide 10^12 by frequency to get period in ps */
219 t_ck
= (u32
)DIV_ROUND_UP_ULL(1000000000000ull, freq
);
223 * Get bus width used by EMIF. Note that this may be different from the
224 * bus width of the DDR devices used. For instance two 16-bit DDR devices
225 * may be connected to a given CS of EMIF. In this case bus width as far
226 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
228 static u32
get_emif_bus_width(struct emif_data
*emif
)
231 void __iomem
*base
= emif
->base
;
233 width
= (readl(base
+ EMIF_SDRAM_CONFIG
) & NARROW_MODE_MASK
)
234 >> NARROW_MODE_SHIFT
;
235 width
= width
== 0 ? 32 : 16;
241 * Get the CL from SDRAM_CONFIG register
243 static u32
get_cl(struct emif_data
*emif
)
246 void __iomem
*base
= emif
->base
;
248 cl
= (readl(base
+ EMIF_SDRAM_CONFIG
) & CL_MASK
) >> CL_SHIFT
;
253 static void set_lpmode(struct emif_data
*emif
, u8 lpmode
)
256 void __iomem
*base
= emif
->base
;
258 temp
= readl(base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
259 temp
&= ~LP_MODE_MASK
;
260 temp
|= (lpmode
<< LP_MODE_SHIFT
);
261 writel(temp
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
264 static void do_freq_update(void)
266 struct emif_data
*emif
;
269 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
272 * The EMIF automatically puts the SDRAM into self-refresh mode
273 * after the EMIF has not performed accesses during
274 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
275 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
276 * to 0x2. If during a small window the following three events
278 * - The SR_TIMING counter expires
279 * - And frequency change is requested
280 * - And OCP access is requested
281 * Then it causes instable clock on the DDR interface.
284 * To avoid the occurrence of the three events, the workaround
285 * is to disable the self-refresh when requesting a frequency
286 * change. Before requesting a frequency change the software must
287 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
288 * frequency change has been done, the software can reprogram
289 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
291 list_for_each_entry(emif
, &device_list
, node
) {
292 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
293 set_lpmode(emif
, EMIF_LP_MODE_DISABLE
);
297 * TODO: Do FREQ_UPDATE here when an API
298 * is available for this as part of the new
302 list_for_each_entry(emif
, &device_list
, node
) {
303 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
304 set_lpmode(emif
, EMIF_LP_MODE_SELF_REFRESH
);
308 /* Find addressing table entry based on the device's type and density */
309 static const struct lpddr2_addressing
*get_addressing_table(
310 const struct ddr_device_info
*device_info
)
312 u32 index
, type
, density
;
314 type
= device_info
->type
;
315 density
= device_info
->density
;
318 case DDR_TYPE_LPDDR2_S4
:
321 case DDR_TYPE_LPDDR2_S2
:
323 case DDR_DENSITY_1Gb
:
324 case DDR_DENSITY_2Gb
:
335 return &lpddr2_jedec_addressing_table
[index
];
339 * Find the the right timing table from the array of timing
340 * tables of the device using DDR clock frequency
342 static const struct lpddr2_timings
*get_timings_table(struct emif_data
*emif
,
345 u32 i
, min
, max
, freq_nearest
;
346 const struct lpddr2_timings
*timings
= NULL
;
347 const struct lpddr2_timings
*timings_arr
= emif
->plat_data
->timings
;
348 struct device
*dev
= emif
->dev
;
350 /* Start with a very high frequency - 1GHz */
351 freq_nearest
= 1000000000;
354 * Find the timings table such that:
355 * 1. the frequency range covers the required frequency(safe) AND
356 * 2. the max_freq is closest to the required frequency(optimal)
358 for (i
= 0; i
< emif
->plat_data
->timings_arr_size
; i
++) {
359 max
= timings_arr
[i
].max_freq
;
360 min
= timings_arr
[i
].min_freq
;
361 if ((freq
>= min
) && (freq
<= max
) && (max
< freq_nearest
)) {
363 timings
= &timings_arr
[i
];
368 dev_err(dev
, "%s: couldn't find timings for - %dHz\n",
371 dev_dbg(dev
, "%s: timings table: freq %d, speed bin freq %d\n",
372 __func__
, freq
, freq_nearest
);
377 static u32
get_sdram_ref_ctrl_shdw(u32 freq
,
378 const struct lpddr2_addressing
*addressing
)
380 u32 ref_ctrl_shdw
= 0, val
= 0, freq_khz
, t_refi
;
382 /* Scale down frequency and t_refi to avoid overflow */
383 freq_khz
= freq
/ 1000;
384 t_refi
= addressing
->tREFI_ns
/ 100;
387 * refresh rate to be set is 'tREFI(in us) * freq in MHz
388 * division by 10000 to account for change in units
390 val
= t_refi
* freq_khz
/ 10000;
391 ref_ctrl_shdw
|= val
<< REFRESH_RATE_SHIFT
;
393 return ref_ctrl_shdw
;
396 static u32
get_sdram_tim_1_shdw(const struct lpddr2_timings
*timings
,
397 const struct lpddr2_min_tck
*min_tck
,
398 const struct lpddr2_addressing
*addressing
)
400 u32 tim1
= 0, val
= 0;
402 val
= max(min_tck
->tWTR
, DIV_ROUND_UP(timings
->tWTR
, t_ck
)) - 1;
403 tim1
|= val
<< T_WTR_SHIFT
;
405 if (addressing
->num_banks
== B8
)
406 val
= DIV_ROUND_UP(timings
->tFAW
, t_ck
*4);
408 val
= max(min_tck
->tRRD
, DIV_ROUND_UP(timings
->tRRD
, t_ck
));
409 tim1
|= (val
- 1) << T_RRD_SHIFT
;
411 val
= DIV_ROUND_UP(timings
->tRAS_min
+ timings
->tRPab
, t_ck
) - 1;
412 tim1
|= val
<< T_RC_SHIFT
;
414 val
= max(min_tck
->tRASmin
, DIV_ROUND_UP(timings
->tRAS_min
, t_ck
));
415 tim1
|= (val
- 1) << T_RAS_SHIFT
;
417 val
= max(min_tck
->tWR
, DIV_ROUND_UP(timings
->tWR
, t_ck
)) - 1;
418 tim1
|= val
<< T_WR_SHIFT
;
420 val
= max(min_tck
->tRCD
, DIV_ROUND_UP(timings
->tRCD
, t_ck
)) - 1;
421 tim1
|= val
<< T_RCD_SHIFT
;
423 val
= max(min_tck
->tRPab
, DIV_ROUND_UP(timings
->tRPab
, t_ck
)) - 1;
424 tim1
|= val
<< T_RP_SHIFT
;
429 static u32
get_sdram_tim_1_shdw_derated(const struct lpddr2_timings
*timings
,
430 const struct lpddr2_min_tck
*min_tck
,
431 const struct lpddr2_addressing
*addressing
)
433 u32 tim1
= 0, val
= 0;
435 val
= max(min_tck
->tWTR
, DIV_ROUND_UP(timings
->tWTR
, t_ck
)) - 1;
436 tim1
= val
<< T_WTR_SHIFT
;
439 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
440 * to tFAW for de-rating
442 if (addressing
->num_banks
== B8
) {
443 val
= DIV_ROUND_UP(timings
->tFAW
+ 7500, 4 * t_ck
) - 1;
445 val
= DIV_ROUND_UP(timings
->tRRD
+ 1875, t_ck
);
446 val
= max(min_tck
->tRRD
, val
) - 1;
448 tim1
|= val
<< T_RRD_SHIFT
;
450 val
= DIV_ROUND_UP(timings
->tRAS_min
+ timings
->tRPab
+ 1875, t_ck
);
451 tim1
|= (val
- 1) << T_RC_SHIFT
;
453 val
= DIV_ROUND_UP(timings
->tRAS_min
+ 1875, t_ck
);
454 val
= max(min_tck
->tRASmin
, val
) - 1;
455 tim1
|= val
<< T_RAS_SHIFT
;
457 val
= max(min_tck
->tWR
, DIV_ROUND_UP(timings
->tWR
, t_ck
)) - 1;
458 tim1
|= val
<< T_WR_SHIFT
;
460 val
= max(min_tck
->tRCD
, DIV_ROUND_UP(timings
->tRCD
+ 1875, t_ck
));
461 tim1
|= (val
- 1) << T_RCD_SHIFT
;
463 val
= max(min_tck
->tRPab
, DIV_ROUND_UP(timings
->tRPab
+ 1875, t_ck
));
464 tim1
|= (val
- 1) << T_RP_SHIFT
;
469 static u32
get_sdram_tim_2_shdw(const struct lpddr2_timings
*timings
,
470 const struct lpddr2_min_tck
*min_tck
,
471 const struct lpddr2_addressing
*addressing
,
474 u32 tim2
= 0, val
= 0;
476 val
= min_tck
->tCKE
- 1;
477 tim2
|= val
<< T_CKE_SHIFT
;
479 val
= max(min_tck
->tRTP
, DIV_ROUND_UP(timings
->tRTP
, t_ck
)) - 1;
480 tim2
|= val
<< T_RTP_SHIFT
;
482 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
483 val
= DIV_ROUND_UP(addressing
->tRFCab_ps
+ 10000, t_ck
) - 1;
484 tim2
|= val
<< T_XSNR_SHIFT
;
486 /* XSRD same as XSNR for LPDDR2 */
487 tim2
|= val
<< T_XSRD_SHIFT
;
489 val
= max(min_tck
->tXP
, DIV_ROUND_UP(timings
->tXP
, t_ck
)) - 1;
490 tim2
|= val
<< T_XP_SHIFT
;
495 static u32
get_sdram_tim_3_shdw(const struct lpddr2_timings
*timings
,
496 const struct lpddr2_min_tck
*min_tck
,
497 const struct lpddr2_addressing
*addressing
,
498 u32 type
, u32 ip_rev
, u32 derated
)
500 u32 tim3
= 0, val
= 0, t_dqsck
;
502 val
= timings
->tRAS_max_ns
/ addressing
->tREFI_ns
- 1;
503 val
= val
> 0xF ? 0xF : val
;
504 tim3
|= val
<< T_RAS_MAX_SHIFT
;
506 val
= DIV_ROUND_UP(addressing
->tRFCab_ps
, t_ck
) - 1;
507 tim3
|= val
<< T_RFC_SHIFT
;
509 t_dqsck
= (derated
== EMIF_DERATED_TIMINGS
) ?
510 timings
->tDQSCK_max_derated
: timings
->tDQSCK_max
;
511 if (ip_rev
== EMIF_4D5
)
512 val
= DIV_ROUND_UP(t_dqsck
+ 1000, t_ck
) - 1;
514 val
= DIV_ROUND_UP(t_dqsck
, t_ck
) - 1;
516 tim3
|= val
<< T_TDQSCKMAX_SHIFT
;
518 val
= DIV_ROUND_UP(timings
->tZQCS
, t_ck
) - 1;
519 tim3
|= val
<< ZQ_ZQCS_SHIFT
;
521 val
= DIV_ROUND_UP(timings
->tCKESR
, t_ck
);
522 val
= max(min_tck
->tCKESR
, val
) - 1;
523 tim3
|= val
<< T_CKESR_SHIFT
;
525 if (ip_rev
== EMIF_4D5
) {
526 tim3
|= (EMIF_T_CSTA
- 1) << T_CSTA_SHIFT
;
528 val
= DIV_ROUND_UP(EMIF_T_PDLL_UL
, 128) - 1;
529 tim3
|= val
<< T_PDLL_UL_SHIFT
;
535 static u32
get_zq_config_reg(const struct lpddr2_addressing
*addressing
,
536 bool cs1_used
, bool cal_resistors_per_cs
)
540 val
= EMIF_ZQCS_INTERVAL_US
* 1000 / addressing
->tREFI_ns
;
541 zq
|= val
<< ZQ_REFINTERVAL_SHIFT
;
543 val
= DIV_ROUND_UP(T_ZQCL_DEFAULT_NS
, T_ZQCS_DEFAULT_NS
) - 1;
544 zq
|= val
<< ZQ_ZQCL_MULT_SHIFT
;
546 val
= DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS
, T_ZQCL_DEFAULT_NS
) - 1;
547 zq
|= val
<< ZQ_ZQINIT_MULT_SHIFT
;
549 zq
|= ZQ_SFEXITEN_ENABLE
<< ZQ_SFEXITEN_SHIFT
;
551 if (cal_resistors_per_cs
)
552 zq
|= ZQ_DUALCALEN_ENABLE
<< ZQ_DUALCALEN_SHIFT
;
554 zq
|= ZQ_DUALCALEN_DISABLE
<< ZQ_DUALCALEN_SHIFT
;
556 zq
|= ZQ_CS0EN_MASK
; /* CS0 is used for sure */
558 val
= cs1_used
? 1 : 0;
559 zq
|= val
<< ZQ_CS1EN_SHIFT
;
564 static u32
get_temp_alert_config(const struct lpddr2_addressing
*addressing
,
565 const struct emif_custom_configs
*custom_configs
, bool cs1_used
,
566 u32 sdram_io_width
, u32 emif_bus_width
)
568 u32 alert
= 0, interval
, devcnt
;
570 if (custom_configs
&& (custom_configs
->mask
&
571 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
))
572 interval
= custom_configs
->temp_alert_poll_interval_ms
;
574 interval
= TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS
;
576 interval
*= 1000000; /* Convert to ns */
577 interval
/= addressing
->tREFI_ns
; /* Convert to refresh cycles */
578 alert
|= (interval
<< TA_REFINTERVAL_SHIFT
);
581 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
582 * also to this form and subtract to get TA_DEVCNT, which is
585 emif_bus_width
= __fls(emif_bus_width
) - 1;
586 devcnt
= emif_bus_width
- sdram_io_width
;
587 alert
|= devcnt
<< TA_DEVCNT_SHIFT
;
589 /* DEVWDT is in 'log2(x) - 3' form */
590 alert
|= (sdram_io_width
- 2) << TA_DEVWDT_SHIFT
;
592 alert
|= 1 << TA_SFEXITEN_SHIFT
;
593 alert
|= 1 << TA_CS0EN_SHIFT
;
594 alert
|= (cs1_used
? 1 : 0) << TA_CS1EN_SHIFT
;
599 static u32
get_read_idle_ctrl_shdw(u8 volt_ramp
)
601 u32 idle
= 0, val
= 0;
604 * Maximum value in normal conditions and increased frequency
605 * when voltage is ramping
608 val
= READ_IDLE_INTERVAL_DVFS
/ t_ck
/ 64 - 1;
613 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
614 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
616 idle
|= val
<< DLL_CALIB_INTERVAL_SHIFT
;
617 idle
|= EMIF_READ_IDLE_LEN_VAL
<< ACK_WAIT_SHIFT
;
622 static u32
get_dll_calib_ctrl_shdw(u8 volt_ramp
)
624 u32 calib
= 0, val
= 0;
626 if (volt_ramp
== DDR_VOLTAGE_RAMPING
)
627 val
= DLL_CALIB_INTERVAL_DVFS
/ t_ck
/ 16 - 1;
629 val
= 0; /* Disabled when voltage is stable */
631 calib
|= val
<< DLL_CALIB_INTERVAL_SHIFT
;
632 calib
|= DLL_CALIB_ACK_WAIT_VAL
<< ACK_WAIT_SHIFT
;
637 static u32
get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings
*timings
,
640 u32 phy
= EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY
, val
= 0;
642 val
= RL
+ DIV_ROUND_UP(timings
->tDQSCK_max
, t_ck
) - 1;
643 phy
|= val
<< READ_LATENCY_SHIFT_4D
;
645 if (freq
<= 100000000)
646 val
= EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY
;
647 else if (freq
<= 200000000)
648 val
= EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY
;
650 val
= EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY
;
652 phy
|= val
<< DLL_SLAVE_DLY_CTRL_SHIFT_4D
;
657 static u32
get_phy_ctrl_1_intelliphy_4d5(u32 freq
, u8 cl
)
659 u32 phy
= EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY
, half_delay
;
662 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
663 * half-delay is not needed else set half-delay
665 if (freq
>= 265000000 && freq
< 267000000)
670 phy
|= half_delay
<< DLL_HALF_DELAY_SHIFT_4D5
;
671 phy
|= ((cl
+ DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS
,
672 t_ck
) - 1) << READ_LATENCY_SHIFT_4D5
);
677 static u32
get_ext_phy_ctrl_2_intelliphy_4d5(void)
679 u32 fifo_we_slave_ratio
;
681 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
682 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256 , t_ck
);
684 return fifo_we_slave_ratio
| fifo_we_slave_ratio
<< 11 |
685 fifo_we_slave_ratio
<< 22;
688 static u32
get_ext_phy_ctrl_3_intelliphy_4d5(void)
690 u32 fifo_we_slave_ratio
;
692 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
693 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256 , t_ck
);
695 return fifo_we_slave_ratio
>> 10 | fifo_we_slave_ratio
<< 1 |
696 fifo_we_slave_ratio
<< 12 | fifo_we_slave_ratio
<< 23;
699 static u32
get_ext_phy_ctrl_4_intelliphy_4d5(void)
701 u32 fifo_we_slave_ratio
;
703 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
704 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256 , t_ck
);
706 return fifo_we_slave_ratio
>> 9 | fifo_we_slave_ratio
<< 2 |
707 fifo_we_slave_ratio
<< 13;
710 static u32
get_pwr_mgmt_ctrl(u32 freq
, struct emif_data
*emif
, u32 ip_rev
)
712 u32 pwr_mgmt_ctrl
= 0, timeout
;
713 u32 lpmode
= EMIF_LP_MODE_SELF_REFRESH
;
714 u32 timeout_perf
= EMIF_LP_MODE_TIMEOUT_PERFORMANCE
;
715 u32 timeout_pwr
= EMIF_LP_MODE_TIMEOUT_POWER
;
716 u32 freq_threshold
= EMIF_LP_MODE_FREQ_THRESHOLD
;
718 struct emif_custom_configs
*cust_cfgs
= emif
->plat_data
->custom_configs
;
720 if (cust_cfgs
&& (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
)) {
721 lpmode
= cust_cfgs
->lpmode
;
722 timeout_perf
= cust_cfgs
->lpmode_timeout_performance
;
723 timeout_pwr
= cust_cfgs
->lpmode_timeout_power
;
724 freq_threshold
= cust_cfgs
->lpmode_freq_threshold
;
727 /* Timeout based on DDR frequency */
728 timeout
= freq
>= freq_threshold
? timeout_perf
: timeout_pwr
;
730 /* The value to be set in register is "log2(timeout) - 3" */
734 timeout
= __fls(timeout
) - 3;
735 if (timeout
& (timeout
- 1))
740 case EMIF_LP_MODE_CLOCK_STOP
:
741 pwr_mgmt_ctrl
= (timeout
<< CS_TIM_SHIFT
) |
742 SR_TIM_MASK
| PD_TIM_MASK
;
744 case EMIF_LP_MODE_SELF_REFRESH
:
745 /* Workaround for errata i735 */
749 pwr_mgmt_ctrl
= (timeout
<< SR_TIM_SHIFT
) |
750 CS_TIM_MASK
| PD_TIM_MASK
;
752 case EMIF_LP_MODE_PWR_DN
:
753 pwr_mgmt_ctrl
= (timeout
<< PD_TIM_SHIFT
) |
754 CS_TIM_MASK
| SR_TIM_MASK
;
756 case EMIF_LP_MODE_DISABLE
:
758 pwr_mgmt_ctrl
= CS_TIM_MASK
|
759 PD_TIM_MASK
| SR_TIM_MASK
;
762 /* No CS_TIM in EMIF_4D5 */
763 if (ip_rev
== EMIF_4D5
)
764 pwr_mgmt_ctrl
&= ~CS_TIM_MASK
;
766 pwr_mgmt_ctrl
|= lpmode
<< LP_MODE_SHIFT
;
768 return pwr_mgmt_ctrl
;
772 * Get the temperature level of the EMIF instance:
773 * Reads the MR4 register of attached SDRAM parts to find out the temperature
774 * level. If there are two parts attached(one on each CS), then the temperature
775 * level for the EMIF instance is the higher of the two temperatures.
777 static void get_temperature_level(struct emif_data
*emif
)
779 u32 temp
, temperature_level
;
784 /* Read mode register 4 */
785 writel(DDR_MR4
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
786 temperature_level
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
787 temperature_level
= (temperature_level
& MR4_SDRAM_REF_RATE_MASK
) >>
788 MR4_SDRAM_REF_RATE_SHIFT
;
790 if (emif
->plat_data
->device_info
->cs1_used
) {
791 writel(DDR_MR4
| CS_MASK
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
792 temp
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
793 temp
= (temp
& MR4_SDRAM_REF_RATE_MASK
)
794 >> MR4_SDRAM_REF_RATE_SHIFT
;
795 temperature_level
= max(temp
, temperature_level
);
798 /* treat everything less than nominal(3) in MR4 as nominal */
799 if (unlikely(temperature_level
< SDRAM_TEMP_NOMINAL
))
800 temperature_level
= SDRAM_TEMP_NOMINAL
;
802 /* if we get reserved value in MR4 persist with the existing value */
803 if (likely(temperature_level
!= SDRAM_TEMP_RESERVED_4
))
804 emif
->temperature_level
= temperature_level
;
808 * Program EMIF shadow registers that are not dependent on temperature
811 static void setup_registers(struct emif_data
*emif
, struct emif_regs
*regs
)
813 void __iomem
*base
= emif
->base
;
815 writel(regs
->sdram_tim2_shdw
, base
+ EMIF_SDRAM_TIMING_2_SHDW
);
816 writel(regs
->phy_ctrl_1_shdw
, base
+ EMIF_DDR_PHY_CTRL_1_SHDW
);
818 /* Settings specific for EMIF4D5 */
819 if (emif
->plat_data
->ip_rev
!= EMIF_4D5
)
821 writel(regs
->ext_phy_ctrl_2_shdw
, base
+ EMIF_EXT_PHY_CTRL_2_SHDW
);
822 writel(regs
->ext_phy_ctrl_3_shdw
, base
+ EMIF_EXT_PHY_CTRL_3_SHDW
);
823 writel(regs
->ext_phy_ctrl_4_shdw
, base
+ EMIF_EXT_PHY_CTRL_4_SHDW
);
827 * When voltage ramps dll calibration and forced read idle should
830 static void setup_volt_sensitive_regs(struct emif_data
*emif
,
831 struct emif_regs
*regs
, u32 volt_state
)
834 void __iomem
*base
= emif
->base
;
837 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
838 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
839 * is an alias of the respective read_idle_ctrl_shdw_* (members of
840 * a union). So, the below code takes care of both cases
842 if (volt_state
== DDR_VOLTAGE_RAMPING
)
843 calib_ctrl
= regs
->dll_calib_ctrl_shdw_volt_ramp
;
845 calib_ctrl
= regs
->dll_calib_ctrl_shdw_normal
;
847 writel(calib_ctrl
, base
+ EMIF_DLL_CALIB_CTRL_SHDW
);
851 * setup_temperature_sensitive_regs() - set the timings for temperature
852 * sensitive registers. This happens once at initialisation time based
853 * on the temperature at boot time and subsequently based on the temperature
854 * alert interrupt. Temperature alert can happen when the temperature
855 * increases or drops. So this function can have the effect of either
856 * derating the timings or going back to nominal values.
858 static void setup_temperature_sensitive_regs(struct emif_data
*emif
,
859 struct emif_regs
*regs
)
861 u32 tim1
, tim3
, ref_ctrl
, type
;
862 void __iomem
*base
= emif
->base
;
865 type
= emif
->plat_data
->device_info
->type
;
867 tim1
= regs
->sdram_tim1_shdw
;
868 tim3
= regs
->sdram_tim3_shdw
;
869 ref_ctrl
= regs
->ref_ctrl_shdw
;
871 /* No de-rating for non-lpddr2 devices */
872 if (type
!= DDR_TYPE_LPDDR2_S2
&& type
!= DDR_TYPE_LPDDR2_S4
)
875 temperature
= emif
->temperature_level
;
876 if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH
) {
877 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
878 } else if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS
) {
879 tim1
= regs
->sdram_tim1_shdw_derated
;
880 tim3
= regs
->sdram_tim3_shdw_derated
;
881 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
885 writel(tim1
, base
+ EMIF_SDRAM_TIMING_1_SHDW
);
886 writel(tim3
, base
+ EMIF_SDRAM_TIMING_3_SHDW
);
887 writel(ref_ctrl
, base
+ EMIF_SDRAM_REFRESH_CTRL_SHDW
);
890 static irqreturn_t
handle_temp_alert(void __iomem
*base
, struct emif_data
*emif
)
893 irqreturn_t ret
= IRQ_HANDLED
;
895 spin_lock_irqsave(&emif_lock
, irq_state
);
896 old_temp_level
= emif
->temperature_level
;
897 get_temperature_level(emif
);
899 if (unlikely(emif
->temperature_level
== old_temp_level
)) {
901 } else if (!emif
->curr_regs
) {
902 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
906 if (emif
->temperature_level
< old_temp_level
||
907 emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
909 * Temperature coming down - defer handling to thread OR
910 * Temperature far too high - do kernel_power_off() from
913 ret
= IRQ_WAKE_THREAD
;
915 /* Temperature is going up - handle immediately */
916 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
921 spin_unlock_irqrestore(&emif_lock
, irq_state
);
925 static irqreturn_t
emif_interrupt_handler(int irq
, void *dev_id
)
928 struct emif_data
*emif
= dev_id
;
929 void __iomem
*base
= emif
->base
;
930 struct device
*dev
= emif
->dev
;
931 irqreturn_t ret
= IRQ_HANDLED
;
933 /* Save the status and clear it */
934 interrupts
= readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
935 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
938 * Handle temperature alert
939 * Temperature alert should be same for all ports
940 * So, it's enough to process it only for one of the ports
942 if (interrupts
& TA_SYS_MASK
)
943 ret
= handle_temp_alert(base
, emif
);
945 if (interrupts
& ERR_SYS_MASK
)
946 dev_err(dev
, "Access error from SYS port - %x\n", interrupts
);
948 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
949 /* Save the status and clear it */
950 interrupts
= readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
951 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
953 if (interrupts
& ERR_LL_MASK
)
954 dev_err(dev
, "Access error from LL port - %x\n",
961 static irqreturn_t
emif_threaded_isr(int irq
, void *dev_id
)
963 struct emif_data
*emif
= dev_id
;
965 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
966 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
971 spin_lock_irqsave(&emif_lock
, irq_state
);
973 if (emif
->curr_regs
) {
974 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
977 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
980 spin_unlock_irqrestore(&emif_lock
, irq_state
);
985 static void clear_all_interrupts(struct emif_data
*emif
)
987 void __iomem
*base
= emif
->base
;
989 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
),
990 base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
991 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
992 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
),
993 base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
996 static void disable_and_clear_all_interrupts(struct emif_data
*emif
)
998 void __iomem
*base
= emif
->base
;
1000 /* Disable all interrupts */
1001 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
),
1002 base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR
);
1003 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
1004 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
),
1005 base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR
);
1007 /* Clear all interrupts */
1008 clear_all_interrupts(emif
);
1011 static int __init_or_module
setup_interrupts(struct emif_data
*emif
, u32 irq
)
1013 u32 interrupts
, type
;
1014 void __iomem
*base
= emif
->base
;
1016 type
= emif
->plat_data
->device_info
->type
;
1018 clear_all_interrupts(emif
);
1020 /* Enable interrupts for SYS interface */
1021 interrupts
= EN_ERR_SYS_MASK
;
1022 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
)
1023 interrupts
|= EN_TA_SYS_MASK
;
1024 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
);
1026 /* Enable interrupts for LL interface */
1027 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
1028 /* TA need not be enabled for LL */
1029 interrupts
= EN_ERR_LL_MASK
;
1030 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
);
1033 /* setup IRQ handlers */
1034 return devm_request_threaded_irq(emif
->dev
, irq
,
1035 emif_interrupt_handler
,
1037 0, dev_name(emif
->dev
),
1042 static void __init_or_module
emif_onetime_settings(struct emif_data
*emif
)
1044 u32 pwr_mgmt_ctrl
, zq
, temp_alert_cfg
;
1045 void __iomem
*base
= emif
->base
;
1046 const struct lpddr2_addressing
*addressing
;
1047 const struct ddr_device_info
*device_info
;
1049 device_info
= emif
->plat_data
->device_info
;
1050 addressing
= get_addressing_table(device_info
);
1053 * Init power management settings
1054 * We don't know the frequency yet. Use a high frequency
1055 * value for a conservative timeout setting
1057 pwr_mgmt_ctrl
= get_pwr_mgmt_ctrl(1000000000, emif
,
1058 emif
->plat_data
->ip_rev
);
1059 emif
->lpmode
= (pwr_mgmt_ctrl
& LP_MODE_MASK
) >> LP_MODE_SHIFT
;
1060 writel(pwr_mgmt_ctrl
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
1062 /* Init ZQ calibration settings */
1063 zq
= get_zq_config_reg(addressing
, device_info
->cs1_used
,
1064 device_info
->cal_resistors_per_cs
);
1065 writel(zq
, base
+ EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG
);
1067 /* Check temperature level temperature level*/
1068 get_temperature_level(emif
);
1069 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
)
1070 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1072 /* Init temperature polling */
1073 temp_alert_cfg
= get_temp_alert_config(addressing
,
1074 emif
->plat_data
->custom_configs
, device_info
->cs1_used
,
1075 device_info
->io_width
, get_emif_bus_width(emif
));
1076 writel(temp_alert_cfg
, base
+ EMIF_TEMPERATURE_ALERT_CONFIG
);
1079 * Program external PHY control registers that are not frequency
1082 if (emif
->plat_data
->phy_type
!= EMIF_PHY_TYPE_INTELLIPHY
)
1084 writel(EMIF_EXT_PHY_CTRL_1_VAL
, base
+ EMIF_EXT_PHY_CTRL_1_SHDW
);
1085 writel(EMIF_EXT_PHY_CTRL_5_VAL
, base
+ EMIF_EXT_PHY_CTRL_5_SHDW
);
1086 writel(EMIF_EXT_PHY_CTRL_6_VAL
, base
+ EMIF_EXT_PHY_CTRL_6_SHDW
);
1087 writel(EMIF_EXT_PHY_CTRL_7_VAL
, base
+ EMIF_EXT_PHY_CTRL_7_SHDW
);
1088 writel(EMIF_EXT_PHY_CTRL_8_VAL
, base
+ EMIF_EXT_PHY_CTRL_8_SHDW
);
1089 writel(EMIF_EXT_PHY_CTRL_9_VAL
, base
+ EMIF_EXT_PHY_CTRL_9_SHDW
);
1090 writel(EMIF_EXT_PHY_CTRL_10_VAL
, base
+ EMIF_EXT_PHY_CTRL_10_SHDW
);
1091 writel(EMIF_EXT_PHY_CTRL_11_VAL
, base
+ EMIF_EXT_PHY_CTRL_11_SHDW
);
1092 writel(EMIF_EXT_PHY_CTRL_12_VAL
, base
+ EMIF_EXT_PHY_CTRL_12_SHDW
);
1093 writel(EMIF_EXT_PHY_CTRL_13_VAL
, base
+ EMIF_EXT_PHY_CTRL_13_SHDW
);
1094 writel(EMIF_EXT_PHY_CTRL_14_VAL
, base
+ EMIF_EXT_PHY_CTRL_14_SHDW
);
1095 writel(EMIF_EXT_PHY_CTRL_15_VAL
, base
+ EMIF_EXT_PHY_CTRL_15_SHDW
);
1096 writel(EMIF_EXT_PHY_CTRL_16_VAL
, base
+ EMIF_EXT_PHY_CTRL_16_SHDW
);
1097 writel(EMIF_EXT_PHY_CTRL_17_VAL
, base
+ EMIF_EXT_PHY_CTRL_17_SHDW
);
1098 writel(EMIF_EXT_PHY_CTRL_18_VAL
, base
+ EMIF_EXT_PHY_CTRL_18_SHDW
);
1099 writel(EMIF_EXT_PHY_CTRL_19_VAL
, base
+ EMIF_EXT_PHY_CTRL_19_SHDW
);
1100 writel(EMIF_EXT_PHY_CTRL_20_VAL
, base
+ EMIF_EXT_PHY_CTRL_20_SHDW
);
1101 writel(EMIF_EXT_PHY_CTRL_21_VAL
, base
+ EMIF_EXT_PHY_CTRL_21_SHDW
);
1102 writel(EMIF_EXT_PHY_CTRL_22_VAL
, base
+ EMIF_EXT_PHY_CTRL_22_SHDW
);
1103 writel(EMIF_EXT_PHY_CTRL_23_VAL
, base
+ EMIF_EXT_PHY_CTRL_23_SHDW
);
1104 writel(EMIF_EXT_PHY_CTRL_24_VAL
, base
+ EMIF_EXT_PHY_CTRL_24_SHDW
);
1107 static void get_default_timings(struct emif_data
*emif
)
1109 struct emif_platform_data
*pd
= emif
->plat_data
;
1111 pd
->timings
= lpddr2_jedec_timings
;
1112 pd
->timings_arr_size
= ARRAY_SIZE(lpddr2_jedec_timings
);
1114 dev_warn(emif
->dev
, "%s: using default timings\n", __func__
);
1117 static int is_dev_data_valid(u32 type
, u32 density
, u32 io_width
, u32 phy_type
,
1118 u32 ip_rev
, struct device
*dev
)
1122 valid
= (type
== DDR_TYPE_LPDDR2_S4
||
1123 type
== DDR_TYPE_LPDDR2_S2
)
1124 && (density
>= DDR_DENSITY_64Mb
1125 && density
<= DDR_DENSITY_8Gb
)
1126 && (io_width
>= DDR_IO_WIDTH_8
1127 && io_width
<= DDR_IO_WIDTH_32
);
1129 /* Combinations of EMIF and PHY revisions that we support today */
1132 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_ATTILAPHY
);
1135 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_INTELLIPHY
);
1142 dev_err(dev
, "%s: invalid DDR details\n", __func__
);
1146 static int is_custom_config_valid(struct emif_custom_configs
*cust_cfgs
,
1151 if ((cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
) &&
1152 (cust_cfgs
->lpmode
!= EMIF_LP_MODE_DISABLE
))
1153 valid
= cust_cfgs
->lpmode_freq_threshold
&&
1154 cust_cfgs
->lpmode_timeout_performance
&&
1155 cust_cfgs
->lpmode_timeout_power
;
1157 if (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
)
1158 valid
= valid
&& cust_cfgs
->temp_alert_poll_interval_ms
;
1161 dev_warn(dev
, "%s: invalid custom configs\n", __func__
);
1166 #if defined(CONFIG_OF)
1167 static void __init_or_module
of_get_custom_configs(struct device_node
*np_emif
,
1168 struct emif_data
*emif
)
1170 struct emif_custom_configs
*cust_cfgs
= NULL
;
1172 const int *lpmode
, *poll_intvl
;
1174 lpmode
= of_get_property(np_emif
, "low-power-mode", &len
);
1175 poll_intvl
= of_get_property(np_emif
, "temp-alert-poll-interval", &len
);
1177 if (lpmode
|| poll_intvl
)
1178 cust_cfgs
= devm_kzalloc(emif
->dev
, sizeof(*cust_cfgs
),
1185 cust_cfgs
->mask
|= EMIF_CUSTOM_CONFIG_LPMODE
;
1186 cust_cfgs
->lpmode
= *lpmode
;
1187 of_property_read_u32(np_emif
,
1188 "low-power-mode-timeout-performance",
1189 &cust_cfgs
->lpmode_timeout_performance
);
1190 of_property_read_u32(np_emif
,
1191 "low-power-mode-timeout-power",
1192 &cust_cfgs
->lpmode_timeout_power
);
1193 of_property_read_u32(np_emif
,
1194 "low-power-mode-freq-threshold",
1195 &cust_cfgs
->lpmode_freq_threshold
);
1200 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
;
1201 cust_cfgs
->temp_alert_poll_interval_ms
= *poll_intvl
;
1204 if (!is_custom_config_valid(cust_cfgs
, emif
->dev
)) {
1205 devm_kfree(emif
->dev
, cust_cfgs
);
1209 emif
->plat_data
->custom_configs
= cust_cfgs
;
1212 static void __init_or_module
of_get_ddr_info(struct device_node
*np_emif
,
1213 struct device_node
*np_ddr
,
1214 struct ddr_device_info
*dev_info
)
1216 u32 density
= 0, io_width
= 0;
1219 if (of_find_property(np_emif
, "cs1-used", &len
))
1220 dev_info
->cs1_used
= true;
1222 if (of_find_property(np_emif
, "cal-resistor-per-cs", &len
))
1223 dev_info
->cal_resistors_per_cs
= true;
1225 if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s4"))
1226 dev_info
->type
= DDR_TYPE_LPDDR2_S4
;
1227 else if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s2"))
1228 dev_info
->type
= DDR_TYPE_LPDDR2_S2
;
1230 of_property_read_u32(np_ddr
, "density", &density
);
1231 of_property_read_u32(np_ddr
, "io-width", &io_width
);
1233 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1234 if (density
& (density
- 1))
1235 dev_info
->density
= 0;
1237 dev_info
->density
= __fls(density
) - 5;
1239 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1240 if (io_width
& (io_width
- 1))
1241 dev_info
->io_width
= 0;
1243 dev_info
->io_width
= __fls(io_width
) - 1;
1246 static struct emif_data
* __init_or_module
of_get_memory_device_details(
1247 struct device_node
*np_emif
, struct device
*dev
)
1249 struct emif_data
*emif
= NULL
;
1250 struct ddr_device_info
*dev_info
= NULL
;
1251 struct emif_platform_data
*pd
= NULL
;
1252 struct device_node
*np_ddr
;
1255 np_ddr
= of_parse_phandle(np_emif
, "device-handle", 0);
1258 emif
= devm_kzalloc(dev
, sizeof(struct emif_data
), GFP_KERNEL
);
1259 pd
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
1260 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
1262 if (!emif
|| !pd
|| !dev_info
) {
1263 dev_err(dev
, "%s: Out of memory!!\n",
1268 emif
->plat_data
= pd
;
1269 pd
->device_info
= dev_info
;
1271 emif
->np_ddr
= np_ddr
;
1272 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
1274 if (of_device_is_compatible(np_emif
, "ti,emif-4d"))
1275 emif
->plat_data
->ip_rev
= EMIF_4D
;
1276 else if (of_device_is_compatible(np_emif
, "ti,emif-4d5"))
1277 emif
->plat_data
->ip_rev
= EMIF_4D5
;
1279 of_property_read_u32(np_emif
, "phy-type", &pd
->phy_type
);
1281 if (of_find_property(np_emif
, "hw-caps-ll-interface", &len
))
1282 pd
->hw_caps
|= EMIF_HW_CAPS_LL_INTERFACE
;
1284 of_get_ddr_info(np_emif
, np_ddr
, dev_info
);
1285 if (!is_dev_data_valid(pd
->device_info
->type
, pd
->device_info
->density
,
1286 pd
->device_info
->io_width
, pd
->phy_type
, pd
->ip_rev
,
1288 dev_err(dev
, "%s: invalid device data!!\n", __func__
);
1292 * For EMIF instances other than EMIF1 see if the devices connected
1293 * are exactly same as on EMIF1(which is typically the case). If so,
1294 * mark it as a duplicate of EMIF1. This will save some memory and
1297 if (emif1
&& emif1
->np_ddr
== np_ddr
) {
1298 emif
->duplicate
= true;
1301 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
1305 of_get_custom_configs(np_emif
, emif
);
1306 emif
->plat_data
->timings
= of_get_ddr_timings(np_ddr
, emif
->dev
,
1307 emif
->plat_data
->device_info
->type
,
1308 &emif
->plat_data
->timings_arr_size
);
1310 emif
->plat_data
->min_tck
= of_get_min_tck(np_ddr
, emif
->dev
);
1321 static struct emif_data
* __init_or_module
of_get_memory_device_details(
1322 struct device_node
*np_emif
, struct device
*dev
)
1328 static struct emif_data
*__init_or_module
get_device_details(
1329 struct platform_device
*pdev
)
1332 struct emif_data
*emif
= NULL
;
1333 struct ddr_device_info
*dev_info
;
1334 struct emif_custom_configs
*cust_cfgs
;
1335 struct emif_platform_data
*pd
;
1339 pd
= pdev
->dev
.platform_data
;
1342 if (!(pd
&& pd
->device_info
&& is_dev_data_valid(pd
->device_info
->type
,
1343 pd
->device_info
->density
, pd
->device_info
->io_width
,
1344 pd
->phy_type
, pd
->ip_rev
, dev
))) {
1345 dev_err(dev
, "%s: invalid device data\n", __func__
);
1349 emif
= devm_kzalloc(dev
, sizeof(*emif
), GFP_KERNEL
);
1350 temp
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
1351 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
1353 if (!emif
|| !pd
|| !dev_info
) {
1354 dev_err(dev
, "%s:%d: allocation error\n", __func__
, __LINE__
);
1358 memcpy(temp
, pd
, sizeof(*pd
));
1360 memcpy(dev_info
, pd
->device_info
, sizeof(*dev_info
));
1362 pd
->device_info
= dev_info
;
1363 emif
->plat_data
= pd
;
1365 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
1368 * For EMIF instances other than EMIF1 see if the devices connected
1369 * are exactly same as on EMIF1(which is typically the case). If so,
1370 * mark it as a duplicate of EMIF1 and skip copying timings data.
1371 * This will save some memory and some computation later.
1373 emif
->duplicate
= emif1
&& (memcmp(dev_info
,
1374 emif1
->plat_data
->device_info
,
1375 sizeof(struct ddr_device_info
)) == 0);
1377 if (emif
->duplicate
) {
1382 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
1387 * Copy custom configs - ignore allocation error, if any, as
1388 * custom_configs is not very critical
1390 cust_cfgs
= pd
->custom_configs
;
1391 if (cust_cfgs
&& is_custom_config_valid(cust_cfgs
, dev
)) {
1392 temp
= devm_kzalloc(dev
, sizeof(*cust_cfgs
), GFP_KERNEL
);
1394 memcpy(temp
, cust_cfgs
, sizeof(*cust_cfgs
));
1396 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1398 pd
->custom_configs
= temp
;
1402 * Copy timings and min-tck values from platform data. If it is not
1403 * available or if memory allocation fails, use JEDEC defaults
1405 size
= sizeof(struct lpddr2_timings
) * pd
->timings_arr_size
;
1407 temp
= devm_kzalloc(dev
, size
, GFP_KERNEL
);
1409 memcpy(temp
, pd
->timings
, sizeof(*pd
->timings
));
1412 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1414 get_default_timings(emif
);
1417 get_default_timings(emif
);
1421 temp
= devm_kzalloc(dev
, sizeof(*pd
->min_tck
), GFP_KERNEL
);
1423 memcpy(temp
, pd
->min_tck
, sizeof(*pd
->min_tck
));
1426 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1428 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1431 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1441 static int __init_or_module
emif_probe(struct platform_device
*pdev
)
1443 struct emif_data
*emif
;
1444 struct resource
*res
;
1447 if (pdev
->dev
.of_node
)
1448 emif
= of_get_memory_device_details(pdev
->dev
.of_node
, &pdev
->dev
);
1450 emif
= get_device_details(pdev
);
1453 pr_err("%s: error getting device data\n", __func__
);
1457 list_add(&emif
->node
, &device_list
);
1458 emif
->addressing
= get_addressing_table(emif
->plat_data
->device_info
);
1460 /* Save pointers to each other in emif and device structures */
1461 emif
->dev
= &pdev
->dev
;
1462 platform_set_drvdata(pdev
, emif
);
1464 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1466 dev_err(emif
->dev
, "%s: error getting memory resource\n",
1471 emif
->base
= devm_request_and_ioremap(emif
->dev
, res
);
1473 dev_err(emif
->dev
, "%s: devm_request_and_ioremap() failed\n",
1478 irq
= platform_get_irq(pdev
, 0);
1480 dev_err(emif
->dev
, "%s: error getting IRQ resource - %d\n",
1485 emif_onetime_settings(emif
);
1486 emif_debugfs_init(emif
);
1487 disable_and_clear_all_interrupts(emif
);
1488 setup_interrupts(emif
, irq
);
1490 /* One-time actions taken on probing the first device */
1493 spin_lock_init(&emif_lock
);
1496 * TODO: register notifiers for frequency and voltage
1497 * change here once the respective frameworks are
1502 dev_info(&pdev
->dev
, "%s: device configured with addr = %p and IRQ%d\n",
1503 __func__
, emif
->base
, irq
);
1510 static int __exit
emif_remove(struct platform_device
*pdev
)
1512 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1514 emif_debugfs_exit(emif
);
1519 static void emif_shutdown(struct platform_device
*pdev
)
1521 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1523 disable_and_clear_all_interrupts(emif
);
1526 static int get_emif_reg_values(struct emif_data
*emif
, u32 freq
,
1527 struct emif_regs
*regs
)
1529 u32 cs1_used
, ip_rev
, phy_type
;
1531 const struct lpddr2_timings
*timings
;
1532 const struct lpddr2_min_tck
*min_tck
;
1533 const struct ddr_device_info
*device_info
;
1534 const struct lpddr2_addressing
*addressing
;
1535 struct emif_data
*emif_for_calc
;
1537 const struct emif_custom_configs
*custom_configs
;
1541 * If the devices on this EMIF instance is duplicate of EMIF1,
1542 * use EMIF1 details for the calculation
1544 emif_for_calc
= emif
->duplicate
? emif1
: emif
;
1545 timings
= get_timings_table(emif_for_calc
, freq
);
1546 addressing
= emif_for_calc
->addressing
;
1547 if (!timings
|| !addressing
) {
1548 dev_err(dev
, "%s: not enough data available for %dHz",
1553 device_info
= emif_for_calc
->plat_data
->device_info
;
1554 type
= device_info
->type
;
1555 cs1_used
= device_info
->cs1_used
;
1556 ip_rev
= emif_for_calc
->plat_data
->ip_rev
;
1557 phy_type
= emif_for_calc
->plat_data
->phy_type
;
1559 min_tck
= emif_for_calc
->plat_data
->min_tck
;
1560 custom_configs
= emif_for_calc
->plat_data
->custom_configs
;
1562 set_ddr_clk_period(freq
);
1564 regs
->ref_ctrl_shdw
= get_sdram_ref_ctrl_shdw(freq
, addressing
);
1565 regs
->sdram_tim1_shdw
= get_sdram_tim_1_shdw(timings
, min_tck
,
1567 regs
->sdram_tim2_shdw
= get_sdram_tim_2_shdw(timings
, min_tck
,
1569 regs
->sdram_tim3_shdw
= get_sdram_tim_3_shdw(timings
, min_tck
,
1570 addressing
, type
, ip_rev
, EMIF_NORMAL_TIMINGS
);
1574 if (phy_type
== EMIF_PHY_TYPE_ATTILAPHY
&& ip_rev
== EMIF_4D
) {
1575 regs
->phy_ctrl_1_shdw
= get_ddr_phy_ctrl_1_attilaphy_4d(
1577 } else if (phy_type
== EMIF_PHY_TYPE_INTELLIPHY
&& ip_rev
== EMIF_4D5
) {
1578 regs
->phy_ctrl_1_shdw
= get_phy_ctrl_1_intelliphy_4d5(freq
, cl
);
1579 regs
->ext_phy_ctrl_2_shdw
= get_ext_phy_ctrl_2_intelliphy_4d5();
1580 regs
->ext_phy_ctrl_3_shdw
= get_ext_phy_ctrl_3_intelliphy_4d5();
1581 regs
->ext_phy_ctrl_4_shdw
= get_ext_phy_ctrl_4_intelliphy_4d5();
1586 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1587 regs
->pwr_mgmt_ctrl_shdw
=
1588 get_pwr_mgmt_ctrl(freq
, emif_for_calc
, ip_rev
) &
1589 (CS_TIM_MASK
| SR_TIM_MASK
| PD_TIM_MASK
);
1591 if (ip_rev
& EMIF_4D
) {
1592 regs
->read_idle_ctrl_shdw_normal
=
1593 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE
);
1595 regs
->read_idle_ctrl_shdw_volt_ramp
=
1596 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING
);
1597 } else if (ip_rev
& EMIF_4D5
) {
1598 regs
->dll_calib_ctrl_shdw_normal
=
1599 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE
);
1601 regs
->dll_calib_ctrl_shdw_volt_ramp
=
1602 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING
);
1605 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
) {
1606 regs
->ref_ctrl_shdw_derated
= get_sdram_ref_ctrl_shdw(freq
/ 4,
1609 regs
->sdram_tim1_shdw_derated
=
1610 get_sdram_tim_1_shdw_derated(timings
, min_tck
,
1613 regs
->sdram_tim3_shdw_derated
= get_sdram_tim_3_shdw(timings
,
1614 min_tck
, addressing
, type
, ip_rev
,
1615 EMIF_DERATED_TIMINGS
);
1624 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1625 * given frequency(freq):
1627 * As an optimisation, every EMIF instance other than EMIF1 shares the
1628 * register cache with EMIF1 if the devices connected on this instance
1629 * are same as that on EMIF1(indicated by the duplicate flag)
1631 * If we do not have an entry corresponding to the frequency given, we
1632 * allocate a new entry and calculate the values
1634 * Upon finding the right reg dump, save it in curr_regs. It can be
1635 * directly used for thermal de-rating and voltage ramping changes.
1637 static struct emif_regs
*get_regs(struct emif_data
*emif
, u32 freq
)
1640 struct emif_regs
**regs_cache
;
1641 struct emif_regs
*regs
= NULL
;
1645 if (emif
->curr_regs
&& emif
->curr_regs
->freq
== freq
) {
1646 dev_dbg(dev
, "%s: using curr_regs - %u Hz", __func__
, freq
);
1647 return emif
->curr_regs
;
1650 if (emif
->duplicate
)
1651 regs_cache
= emif1
->regs_cache
;
1653 regs_cache
= emif
->regs_cache
;
1655 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++) {
1656 if (regs_cache
[i
]->freq
== freq
) {
1657 regs
= regs_cache
[i
];
1659 "%s: reg dump found in reg cache for %u Hz\n",
1666 * If we don't have an entry for this frequency in the cache create one
1667 * and calculate the values
1670 regs
= devm_kzalloc(emif
->dev
, sizeof(*regs
), GFP_ATOMIC
);
1674 if (get_emif_reg_values(emif
, freq
, regs
)) {
1675 devm_kfree(emif
->dev
, regs
);
1680 * Now look for an un-used entry in the cache and save the
1681 * newly created struct. If there are no free entries
1682 * over-write the last entry
1684 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++)
1687 if (i
>= EMIF_MAX_NUM_FREQUENCIES
) {
1688 dev_warn(dev
, "%s: regs_cache full - reusing a slot!!\n",
1690 i
= EMIF_MAX_NUM_FREQUENCIES
- 1;
1691 devm_kfree(emif
->dev
, regs_cache
[i
]);
1693 regs_cache
[i
] = regs
;
1699 static void do_volt_notify_handling(struct emif_data
*emif
, u32 volt_state
)
1701 dev_dbg(emif
->dev
, "%s: voltage notification : %d", __func__
,
1704 if (!emif
->curr_regs
) {
1706 "%s: volt-notify before registers are ready: %d\n",
1707 __func__
, volt_state
);
1711 setup_volt_sensitive_regs(emif
, emif
->curr_regs
, volt_state
);
1715 * TODO: voltage notify handling should be hooked up to
1716 * regulator framework as soon as the necessary support
1717 * is available in mainline kernel. This function is un-used
1720 static void __attribute__((unused
)) volt_notify_handling(u32 volt_state
)
1722 struct emif_data
*emif
;
1724 spin_lock_irqsave(&emif_lock
, irq_state
);
1726 list_for_each_entry(emif
, &device_list
, node
)
1727 do_volt_notify_handling(emif
, volt_state
);
1730 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1733 static void do_freq_pre_notify_handling(struct emif_data
*emif
, u32 new_freq
)
1735 struct emif_regs
*regs
;
1737 regs
= get_regs(emif
, new_freq
);
1741 emif
->curr_regs
= regs
;
1744 * Update the shadow registers:
1745 * Temperature and voltage-ramp sensitive settings are also configured
1746 * in terms of DDR cycles. So, we need to update them too when there
1749 dev_dbg(emif
->dev
, "%s: setting up shadow registers for %uHz",
1750 __func__
, new_freq
);
1751 setup_registers(emif
, regs
);
1752 setup_temperature_sensitive_regs(emif
, regs
);
1753 setup_volt_sensitive_regs(emif
, regs
, DDR_VOLTAGE_STABLE
);
1756 * Part of workaround for errata i728. See do_freq_update()
1759 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
1760 set_lpmode(emif
, EMIF_LP_MODE_DISABLE
);
1764 * TODO: frequency notify handling should be hooked up to
1765 * clock framework as soon as the necessary support is
1766 * available in mainline kernel. This function is un-used
1769 static void __attribute__((unused
)) freq_pre_notify_handling(u32 new_freq
)
1771 struct emif_data
*emif
;
1774 * NOTE: we are taking the spin-lock here and releases it
1775 * only in post-notifier. This doesn't look good and
1776 * Sparse complains about it, but this seems to be
1777 * un-avoidable. We need to lock a sequence of events
1778 * that is split between EMIF and clock framework.
1780 * 1. EMIF driver updates EMIF timings in shadow registers in the
1781 * frequency pre-notify callback from clock framework
1782 * 2. clock framework sets up the registers for the new frequency
1783 * 3. clock framework initiates a hw-sequence that updates
1784 * the frequency EMIF timings synchronously.
1786 * All these 3 steps should be performed as an atomic operation
1787 * vis-a-vis similar sequence in the EMIF interrupt handler
1788 * for temperature events. Otherwise, there could be race
1789 * conditions that could result in incorrect EMIF timings for
1792 spin_lock_irqsave(&emif_lock
, irq_state
);
1794 list_for_each_entry(emif
, &device_list
, node
)
1795 do_freq_pre_notify_handling(emif
, new_freq
);
1798 static void do_freq_post_notify_handling(struct emif_data
*emif
)
1801 * Part of workaround for errata i728. See do_freq_update()
1804 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
1805 set_lpmode(emif
, EMIF_LP_MODE_SELF_REFRESH
);
1809 * TODO: frequency notify handling should be hooked up to
1810 * clock framework as soon as the necessary support is
1811 * available in mainline kernel. This function is un-used
1814 static void __attribute__((unused
)) freq_post_notify_handling(void)
1816 struct emif_data
*emif
;
1818 list_for_each_entry(emif
, &device_list
, node
)
1819 do_freq_post_notify_handling(emif
);
1822 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1825 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1828 #if defined(CONFIG_OF)
1829 static const struct of_device_id emif_of_match
[] = {
1830 { .compatible
= "ti,emif-4d" },
1831 { .compatible
= "ti,emif-4d5" },
1834 MODULE_DEVICE_TABLE(of
, emif_of_match
);
1837 static struct platform_driver emif_driver
= {
1838 .remove
= __exit_p(emif_remove
),
1839 .shutdown
= emif_shutdown
,
1842 .of_match_table
= of_match_ptr(emif_of_match
),
1846 static int __init_or_module
emif_register(void)
1848 return platform_driver_probe(&emif_driver
, emif_probe
);
1851 static void __exit
emif_unregister(void)
1853 platform_driver_unregister(&emif_driver
);
1856 module_init(emif_register
);
1857 module_exit(emif_unregister
);
1858 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1859 MODULE_LICENSE("GPL");
1860 MODULE_ALIAS("platform:emif");
1861 MODULE_AUTHOR("Texas Instruments Inc");