2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_mutex
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
41 * (code doesn't rely on that order so it could be switched around)
43 * anon_vma->lock (memory_failure, collect_procs_anon)
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
62 #include <asm/tlbflush.h>
66 static struct kmem_cache
*anon_vma_cachep
;
67 static struct kmem_cache
*anon_vma_chain_cachep
;
69 static inline struct anon_vma
*anon_vma_alloc(void)
71 struct anon_vma
*anon_vma
;
73 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
75 atomic_set(&anon_vma
->refcount
, 1);
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
80 anon_vma
->root
= anon_vma
;
86 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
88 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
89 kmem_cache_free(anon_vma_cachep
, anon_vma
);
92 static inline struct anon_vma_chain
*anon_vma_chain_alloc(void)
94 return kmem_cache_alloc(anon_vma_chain_cachep
, GFP_KERNEL
);
97 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
99 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
103 * anon_vma_prepare - attach an anon_vma to a memory region
104 * @vma: the memory region in question
106 * This makes sure the memory mapping described by 'vma' has
107 * an 'anon_vma' attached to it, so that we can associate the
108 * anonymous pages mapped into it with that anon_vma.
110 * The common case will be that we already have one, but if
111 * not we either need to find an adjacent mapping that we
112 * can re-use the anon_vma from (very common when the only
113 * reason for splitting a vma has been mprotect()), or we
114 * allocate a new one.
116 * Anon-vma allocations are very subtle, because we may have
117 * optimistically looked up an anon_vma in page_lock_anon_vma()
118 * and that may actually touch the spinlock even in the newly
119 * allocated vma (it depends on RCU to make sure that the
120 * anon_vma isn't actually destroyed).
122 * As a result, we need to do proper anon_vma locking even
123 * for the new allocation. At the same time, we do not want
124 * to do any locking for the common case of already having
127 * This must be called with the mmap_sem held for reading.
129 int anon_vma_prepare(struct vm_area_struct
*vma
)
131 struct anon_vma
*anon_vma
= vma
->anon_vma
;
132 struct anon_vma_chain
*avc
;
135 if (unlikely(!anon_vma
)) {
136 struct mm_struct
*mm
= vma
->vm_mm
;
137 struct anon_vma
*allocated
;
139 avc
= anon_vma_chain_alloc();
143 anon_vma
= find_mergeable_anon_vma(vma
);
146 anon_vma
= anon_vma_alloc();
147 if (unlikely(!anon_vma
))
148 goto out_enomem_free_avc
;
149 allocated
= anon_vma
;
152 anon_vma_lock(anon_vma
);
153 /* page_table_lock to protect against threads */
154 spin_lock(&mm
->page_table_lock
);
155 if (likely(!vma
->anon_vma
)) {
156 vma
->anon_vma
= anon_vma
;
157 avc
->anon_vma
= anon_vma
;
159 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
160 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
164 spin_unlock(&mm
->page_table_lock
);
165 anon_vma_unlock(anon_vma
);
167 if (unlikely(allocated
))
168 put_anon_vma(allocated
);
170 anon_vma_chain_free(avc
);
175 anon_vma_chain_free(avc
);
180 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
181 struct anon_vma_chain
*avc
,
182 struct anon_vma
*anon_vma
)
185 avc
->anon_vma
= anon_vma
;
186 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
188 anon_vma_lock(anon_vma
);
190 * It's critical to add new vmas to the tail of the anon_vma,
191 * see comment in huge_memory.c:__split_huge_page().
193 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
194 anon_vma_unlock(anon_vma
);
198 * Attach the anon_vmas from src to dst.
199 * Returns 0 on success, -ENOMEM on failure.
201 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
203 struct anon_vma_chain
*avc
, *pavc
;
205 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
206 avc
= anon_vma_chain_alloc();
209 anon_vma_chain_link(dst
, avc
, pavc
->anon_vma
);
214 unlink_anon_vmas(dst
);
219 * Attach vma to its own anon_vma, as well as to the anon_vmas that
220 * the corresponding VMA in the parent process is attached to.
221 * Returns 0 on success, non-zero on failure.
223 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
225 struct anon_vma_chain
*avc
;
226 struct anon_vma
*anon_vma
;
228 /* Don't bother if the parent process has no anon_vma here. */
233 * First, attach the new VMA to the parent VMA's anon_vmas,
234 * so rmap can find non-COWed pages in child processes.
236 if (anon_vma_clone(vma
, pvma
))
239 /* Then add our own anon_vma. */
240 anon_vma
= anon_vma_alloc();
243 avc
= anon_vma_chain_alloc();
245 goto out_error_free_anon_vma
;
248 * The root anon_vma's spinlock is the lock actually used when we
249 * lock any of the anon_vmas in this anon_vma tree.
251 anon_vma
->root
= pvma
->anon_vma
->root
;
253 * With refcounts, an anon_vma can stay around longer than the
254 * process it belongs to. The root anon_vma needs to be pinned until
255 * this anon_vma is freed, because the lock lives in the root.
257 get_anon_vma(anon_vma
->root
);
258 /* Mark this anon_vma as the one where our new (COWed) pages go. */
259 vma
->anon_vma
= anon_vma
;
260 anon_vma_chain_link(vma
, avc
, anon_vma
);
264 out_error_free_anon_vma
:
265 put_anon_vma(anon_vma
);
267 unlink_anon_vmas(vma
);
271 static void anon_vma_unlink(struct anon_vma_chain
*anon_vma_chain
)
273 struct anon_vma
*anon_vma
= anon_vma_chain
->anon_vma
;
276 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
280 anon_vma_lock(anon_vma
);
281 list_del(&anon_vma_chain
->same_anon_vma
);
283 /* We must garbage collect the anon_vma if it's empty */
284 empty
= list_empty(&anon_vma
->head
);
285 anon_vma_unlock(anon_vma
);
288 put_anon_vma(anon_vma
);
291 void unlink_anon_vmas(struct vm_area_struct
*vma
)
293 struct anon_vma_chain
*avc
, *next
;
296 * Unlink each anon_vma chained to the VMA. This list is ordered
297 * from newest to oldest, ensuring the root anon_vma gets freed last.
299 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
300 anon_vma_unlink(avc
);
301 list_del(&avc
->same_vma
);
302 anon_vma_chain_free(avc
);
306 static void anon_vma_ctor(void *data
)
308 struct anon_vma
*anon_vma
= data
;
310 spin_lock_init(&anon_vma
->lock
);
311 atomic_set(&anon_vma
->refcount
, 0);
312 INIT_LIST_HEAD(&anon_vma
->head
);
315 void __init
anon_vma_init(void)
317 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
318 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
319 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
323 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
325 * Since there is no serialization what so ever against page_remove_rmap()
326 * the best this function can do is return a locked anon_vma that might
327 * have been relevant to this page.
329 * The page might have been remapped to a different anon_vma or the anon_vma
330 * returned may already be freed (and even reused).
332 * All users of this function must be very careful when walking the anon_vma
333 * chain and verify that the page in question is indeed mapped in it
334 * [ something equivalent to page_mapped_in_vma() ].
336 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
337 * that the anon_vma pointer from page->mapping is valid if there is a
338 * mapcount, we can dereference the anon_vma after observing those.
340 struct anon_vma
*page_get_anon_vma(struct page
*page
)
342 struct anon_vma
*anon_vma
= NULL
;
343 unsigned long anon_mapping
;
346 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
347 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
349 if (!page_mapped(page
))
352 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
353 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
359 * If this page is still mapped, then its anon_vma cannot have been
360 * freed. But if it has been unmapped, we have no security against the
361 * anon_vma structure being freed and reused (for another anon_vma:
362 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
363 * above cannot corrupt).
365 if (!page_mapped(page
)) {
366 put_anon_vma(anon_vma
);
375 struct anon_vma
*page_lock_anon_vma(struct page
*page
)
377 struct anon_vma
*anon_vma
= page_get_anon_vma(page
);
380 anon_vma_lock(anon_vma
);
385 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
387 anon_vma_unlock(anon_vma
);
388 put_anon_vma(anon_vma
);
392 * At what user virtual address is page expected in @vma?
393 * Returns virtual address or -EFAULT if page's index/offset is not
394 * within the range mapped the @vma.
397 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
399 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
400 unsigned long address
;
402 if (unlikely(is_vm_hugetlb_page(vma
)))
403 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
404 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
405 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
406 /* page should be within @vma mapping range */
413 * At what user virtual address is page expected in vma?
414 * Caller should check the page is actually part of the vma.
416 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
418 if (PageAnon(page
)) {
419 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
421 * Note: swapoff's unuse_vma() is more efficient with this
422 * check, and needs it to match anon_vma when KSM is active.
424 if (!vma
->anon_vma
|| !page__anon_vma
||
425 vma
->anon_vma
->root
!= page__anon_vma
->root
)
427 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
429 vma
->vm_file
->f_mapping
!= page
->mapping
)
433 return vma_address(page
, vma
);
437 * Check that @page is mapped at @address into @mm.
439 * If @sync is false, page_check_address may perform a racy check to avoid
440 * the page table lock when the pte is not present (helpful when reclaiming
441 * highly shared pages).
443 * On success returns with pte mapped and locked.
445 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
446 unsigned long address
, spinlock_t
**ptlp
, int sync
)
454 if (unlikely(PageHuge(page
))) {
455 pte
= huge_pte_offset(mm
, address
);
456 ptl
= &mm
->page_table_lock
;
460 pgd
= pgd_offset(mm
, address
);
461 if (!pgd_present(*pgd
))
464 pud
= pud_offset(pgd
, address
);
465 if (!pud_present(*pud
))
468 pmd
= pmd_offset(pud
, address
);
469 if (!pmd_present(*pmd
))
471 if (pmd_trans_huge(*pmd
))
474 pte
= pte_offset_map(pmd
, address
);
475 /* Make a quick check before getting the lock */
476 if (!sync
&& !pte_present(*pte
)) {
481 ptl
= pte_lockptr(mm
, pmd
);
484 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
488 pte_unmap_unlock(pte
, ptl
);
493 * page_mapped_in_vma - check whether a page is really mapped in a VMA
494 * @page: the page to test
495 * @vma: the VMA to test
497 * Returns 1 if the page is mapped into the page tables of the VMA, 0
498 * if the page is not mapped into the page tables of this VMA. Only
499 * valid for normal file or anonymous VMAs.
501 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
503 unsigned long address
;
507 address
= vma_address(page
, vma
);
508 if (address
== -EFAULT
) /* out of vma range */
510 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
511 if (!pte
) /* the page is not in this mm */
513 pte_unmap_unlock(pte
, ptl
);
519 * Subfunctions of page_referenced: page_referenced_one called
520 * repeatedly from either page_referenced_anon or page_referenced_file.
522 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
523 unsigned long address
, unsigned int *mapcount
,
524 unsigned long *vm_flags
)
526 struct mm_struct
*mm
= vma
->vm_mm
;
529 if (unlikely(PageTransHuge(page
))) {
532 spin_lock(&mm
->page_table_lock
);
534 * rmap might return false positives; we must filter
535 * these out using page_check_address_pmd().
537 pmd
= page_check_address_pmd(page
, mm
, address
,
538 PAGE_CHECK_ADDRESS_PMD_FLAG
);
540 spin_unlock(&mm
->page_table_lock
);
544 if (vma
->vm_flags
& VM_LOCKED
) {
545 spin_unlock(&mm
->page_table_lock
);
546 *mapcount
= 0; /* break early from loop */
547 *vm_flags
|= VM_LOCKED
;
551 /* go ahead even if the pmd is pmd_trans_splitting() */
552 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
554 spin_unlock(&mm
->page_table_lock
);
560 * rmap might return false positives; we must filter
561 * these out using page_check_address().
563 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
567 if (vma
->vm_flags
& VM_LOCKED
) {
568 pte_unmap_unlock(pte
, ptl
);
569 *mapcount
= 0; /* break early from loop */
570 *vm_flags
|= VM_LOCKED
;
574 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
576 * Don't treat a reference through a sequentially read
577 * mapping as such. If the page has been used in
578 * another mapping, we will catch it; if this other
579 * mapping is already gone, the unmap path will have
580 * set PG_referenced or activated the page.
582 if (likely(!VM_SequentialReadHint(vma
)))
585 pte_unmap_unlock(pte
, ptl
);
588 /* Pretend the page is referenced if the task has the
589 swap token and is in the middle of a page fault. */
590 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
591 rwsem_is_locked(&mm
->mmap_sem
))
597 *vm_flags
|= vma
->vm_flags
;
602 static int page_referenced_anon(struct page
*page
,
603 struct mem_cgroup
*mem_cont
,
604 unsigned long *vm_flags
)
606 unsigned int mapcount
;
607 struct anon_vma
*anon_vma
;
608 struct anon_vma_chain
*avc
;
611 anon_vma
= page_lock_anon_vma(page
);
615 mapcount
= page_mapcount(page
);
616 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
617 struct vm_area_struct
*vma
= avc
->vma
;
618 unsigned long address
= vma_address(page
, vma
);
619 if (address
== -EFAULT
)
622 * If we are reclaiming on behalf of a cgroup, skip
623 * counting on behalf of references from different
626 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
628 referenced
+= page_referenced_one(page
, vma
, address
,
629 &mapcount
, vm_flags
);
634 page_unlock_anon_vma(anon_vma
);
639 * page_referenced_file - referenced check for object-based rmap
640 * @page: the page we're checking references on.
641 * @mem_cont: target memory controller
642 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
644 * For an object-based mapped page, find all the places it is mapped and
645 * check/clear the referenced flag. This is done by following the page->mapping
646 * pointer, then walking the chain of vmas it holds. It returns the number
647 * of references it found.
649 * This function is only called from page_referenced for object-based pages.
651 static int page_referenced_file(struct page
*page
,
652 struct mem_cgroup
*mem_cont
,
653 unsigned long *vm_flags
)
655 unsigned int mapcount
;
656 struct address_space
*mapping
= page
->mapping
;
657 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
658 struct vm_area_struct
*vma
;
659 struct prio_tree_iter iter
;
663 * The caller's checks on page->mapping and !PageAnon have made
664 * sure that this is a file page: the check for page->mapping
665 * excludes the case just before it gets set on an anon page.
667 BUG_ON(PageAnon(page
));
670 * The page lock not only makes sure that page->mapping cannot
671 * suddenly be NULLified by truncation, it makes sure that the
672 * structure at mapping cannot be freed and reused yet,
673 * so we can safely take mapping->i_mmap_mutex.
675 BUG_ON(!PageLocked(page
));
677 mutex_lock(&mapping
->i_mmap_mutex
);
680 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
681 * is more likely to be accurate if we note it after spinning.
683 mapcount
= page_mapcount(page
);
685 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
686 unsigned long address
= vma_address(page
, vma
);
687 if (address
== -EFAULT
)
690 * If we are reclaiming on behalf of a cgroup, skip
691 * counting on behalf of references from different
694 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
696 referenced
+= page_referenced_one(page
, vma
, address
,
697 &mapcount
, vm_flags
);
702 mutex_unlock(&mapping
->i_mmap_mutex
);
707 * page_referenced - test if the page was referenced
708 * @page: the page to test
709 * @is_locked: caller holds lock on the page
710 * @mem_cont: target memory controller
711 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
713 * Quick test_and_clear_referenced for all mappings to a page,
714 * returns the number of ptes which referenced the page.
716 int page_referenced(struct page
*page
,
718 struct mem_cgroup
*mem_cont
,
719 unsigned long *vm_flags
)
725 if (page_mapped(page
) && page_rmapping(page
)) {
726 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
727 we_locked
= trylock_page(page
);
733 if (unlikely(PageKsm(page
)))
734 referenced
+= page_referenced_ksm(page
, mem_cont
,
736 else if (PageAnon(page
))
737 referenced
+= page_referenced_anon(page
, mem_cont
,
739 else if (page
->mapping
)
740 referenced
+= page_referenced_file(page
, mem_cont
,
746 if (page_test_and_clear_young(page_to_pfn(page
)))
752 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
753 unsigned long address
)
755 struct mm_struct
*mm
= vma
->vm_mm
;
760 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
764 if (pte_dirty(*pte
) || pte_write(*pte
)) {
767 flush_cache_page(vma
, address
, pte_pfn(*pte
));
768 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
769 entry
= pte_wrprotect(entry
);
770 entry
= pte_mkclean(entry
);
771 set_pte_at(mm
, address
, pte
, entry
);
775 pte_unmap_unlock(pte
, ptl
);
780 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
782 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
783 struct vm_area_struct
*vma
;
784 struct prio_tree_iter iter
;
787 BUG_ON(PageAnon(page
));
789 mutex_lock(&mapping
->i_mmap_mutex
);
790 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
791 if (vma
->vm_flags
& VM_SHARED
) {
792 unsigned long address
= vma_address(page
, vma
);
793 if (address
== -EFAULT
)
795 ret
+= page_mkclean_one(page
, vma
, address
);
798 mutex_unlock(&mapping
->i_mmap_mutex
);
802 int page_mkclean(struct page
*page
)
806 BUG_ON(!PageLocked(page
));
808 if (page_mapped(page
)) {
809 struct address_space
*mapping
= page_mapping(page
);
811 ret
= page_mkclean_file(mapping
, page
);
812 if (page_test_and_clear_dirty(page_to_pfn(page
), 1))
819 EXPORT_SYMBOL_GPL(page_mkclean
);
822 * page_move_anon_rmap - move a page to our anon_vma
823 * @page: the page to move to our anon_vma
824 * @vma: the vma the page belongs to
825 * @address: the user virtual address mapped
827 * When a page belongs exclusively to one process after a COW event,
828 * that page can be moved into the anon_vma that belongs to just that
829 * process, so the rmap code will not search the parent or sibling
832 void page_move_anon_rmap(struct page
*page
,
833 struct vm_area_struct
*vma
, unsigned long address
)
835 struct anon_vma
*anon_vma
= vma
->anon_vma
;
837 VM_BUG_ON(!PageLocked(page
));
838 VM_BUG_ON(!anon_vma
);
839 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
841 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
842 page
->mapping
= (struct address_space
*) anon_vma
;
846 * __page_set_anon_rmap - set up new anonymous rmap
847 * @page: Page to add to rmap
848 * @vma: VM area to add page to.
849 * @address: User virtual address of the mapping
850 * @exclusive: the page is exclusively owned by the current process
852 static void __page_set_anon_rmap(struct page
*page
,
853 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
855 struct anon_vma
*anon_vma
= vma
->anon_vma
;
863 * If the page isn't exclusively mapped into this vma,
864 * we must use the _oldest_ possible anon_vma for the
868 anon_vma
= anon_vma
->root
;
870 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
871 page
->mapping
= (struct address_space
*) anon_vma
;
872 page
->index
= linear_page_index(vma
, address
);
876 * __page_check_anon_rmap - sanity check anonymous rmap addition
877 * @page: the page to add the mapping to
878 * @vma: the vm area in which the mapping is added
879 * @address: the user virtual address mapped
881 static void __page_check_anon_rmap(struct page
*page
,
882 struct vm_area_struct
*vma
, unsigned long address
)
884 #ifdef CONFIG_DEBUG_VM
886 * The page's anon-rmap details (mapping and index) are guaranteed to
887 * be set up correctly at this point.
889 * We have exclusion against page_add_anon_rmap because the caller
890 * always holds the page locked, except if called from page_dup_rmap,
891 * in which case the page is already known to be setup.
893 * We have exclusion against page_add_new_anon_rmap because those pages
894 * are initially only visible via the pagetables, and the pte is locked
895 * over the call to page_add_new_anon_rmap.
897 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
898 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
903 * page_add_anon_rmap - add pte mapping to an anonymous page
904 * @page: the page to add the mapping to
905 * @vma: the vm area in which the mapping is added
906 * @address: the user virtual address mapped
908 * The caller needs to hold the pte lock, and the page must be locked in
909 * the anon_vma case: to serialize mapping,index checking after setting,
910 * and to ensure that PageAnon is not being upgraded racily to PageKsm
911 * (but PageKsm is never downgraded to PageAnon).
913 void page_add_anon_rmap(struct page
*page
,
914 struct vm_area_struct
*vma
, unsigned long address
)
916 do_page_add_anon_rmap(page
, vma
, address
, 0);
920 * Special version of the above for do_swap_page, which often runs
921 * into pages that are exclusively owned by the current process.
922 * Everybody else should continue to use page_add_anon_rmap above.
924 void do_page_add_anon_rmap(struct page
*page
,
925 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
927 int first
= atomic_inc_and_test(&page
->_mapcount
);
929 if (!PageTransHuge(page
))
930 __inc_zone_page_state(page
, NR_ANON_PAGES
);
932 __inc_zone_page_state(page
,
933 NR_ANON_TRANSPARENT_HUGEPAGES
);
935 if (unlikely(PageKsm(page
)))
938 VM_BUG_ON(!PageLocked(page
));
939 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
941 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
943 __page_check_anon_rmap(page
, vma
, address
);
947 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
948 * @page: the page to add the mapping to
949 * @vma: the vm area in which the mapping is added
950 * @address: the user virtual address mapped
952 * Same as page_add_anon_rmap but must only be called on *new* pages.
953 * This means the inc-and-test can be bypassed.
954 * Page does not have to be locked.
956 void page_add_new_anon_rmap(struct page
*page
,
957 struct vm_area_struct
*vma
, unsigned long address
)
959 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
960 SetPageSwapBacked(page
);
961 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
962 if (!PageTransHuge(page
))
963 __inc_zone_page_state(page
, NR_ANON_PAGES
);
965 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
966 __page_set_anon_rmap(page
, vma
, address
, 1);
967 if (page_evictable(page
, vma
))
968 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
970 add_page_to_unevictable_list(page
);
974 * page_add_file_rmap - add pte mapping to a file page
975 * @page: the page to add the mapping to
977 * The caller needs to hold the pte lock.
979 void page_add_file_rmap(struct page
*page
)
981 if (atomic_inc_and_test(&page
->_mapcount
)) {
982 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
983 mem_cgroup_inc_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
988 * page_remove_rmap - take down pte mapping from a page
989 * @page: page to remove mapping from
991 * The caller needs to hold the pte lock.
993 void page_remove_rmap(struct page
*page
)
995 /* page still mapped by someone else? */
996 if (!atomic_add_negative(-1, &page
->_mapcount
))
1000 * Now that the last pte has gone, s390 must transfer dirty
1001 * flag from storage key to struct page. We can usually skip
1002 * this if the page is anon, so about to be freed; but perhaps
1003 * not if it's in swapcache - there might be another pte slot
1004 * containing the swap entry, but page not yet written to swap.
1006 if ((!PageAnon(page
) || PageSwapCache(page
)) &&
1007 page_test_and_clear_dirty(page_to_pfn(page
), 1))
1008 set_page_dirty(page
);
1010 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1011 * and not charged by memcg for now.
1013 if (unlikely(PageHuge(page
)))
1015 if (PageAnon(page
)) {
1016 mem_cgroup_uncharge_page(page
);
1017 if (!PageTransHuge(page
))
1018 __dec_zone_page_state(page
, NR_ANON_PAGES
);
1020 __dec_zone_page_state(page
,
1021 NR_ANON_TRANSPARENT_HUGEPAGES
);
1023 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1024 mem_cgroup_dec_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1027 * It would be tidy to reset the PageAnon mapping here,
1028 * but that might overwrite a racing page_add_anon_rmap
1029 * which increments mapcount after us but sets mapping
1030 * before us: so leave the reset to free_hot_cold_page,
1031 * and remember that it's only reliable while mapped.
1032 * Leaving it set also helps swapoff to reinstate ptes
1033 * faster for those pages still in swapcache.
1038 * Subfunctions of try_to_unmap: try_to_unmap_one called
1039 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1041 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1042 unsigned long address
, enum ttu_flags flags
)
1044 struct mm_struct
*mm
= vma
->vm_mm
;
1048 int ret
= SWAP_AGAIN
;
1050 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1055 * If the page is mlock()d, we cannot swap it out.
1056 * If it's recently referenced (perhaps page_referenced
1057 * skipped over this mm) then we should reactivate it.
1059 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1060 if (vma
->vm_flags
& VM_LOCKED
)
1063 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1066 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1067 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1073 /* Nuke the page table entry. */
1074 flush_cache_page(vma
, address
, page_to_pfn(page
));
1075 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1077 /* Move the dirty bit to the physical page now the pte is gone. */
1078 if (pte_dirty(pteval
))
1079 set_page_dirty(page
);
1081 /* Update high watermark before we lower rss */
1082 update_hiwater_rss(mm
);
1084 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1086 dec_mm_counter(mm
, MM_ANONPAGES
);
1088 dec_mm_counter(mm
, MM_FILEPAGES
);
1089 set_pte_at(mm
, address
, pte
,
1090 swp_entry_to_pte(make_hwpoison_entry(page
)));
1091 } else if (PageAnon(page
)) {
1092 swp_entry_t entry
= { .val
= page_private(page
) };
1094 if (PageSwapCache(page
)) {
1096 * Store the swap location in the pte.
1097 * See handle_pte_fault() ...
1099 if (swap_duplicate(entry
) < 0) {
1100 set_pte_at(mm
, address
, pte
, pteval
);
1104 if (list_empty(&mm
->mmlist
)) {
1105 spin_lock(&mmlist_lock
);
1106 if (list_empty(&mm
->mmlist
))
1107 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1108 spin_unlock(&mmlist_lock
);
1110 dec_mm_counter(mm
, MM_ANONPAGES
);
1111 inc_mm_counter(mm
, MM_SWAPENTS
);
1112 } else if (PAGE_MIGRATION
) {
1114 * Store the pfn of the page in a special migration
1115 * pte. do_swap_page() will wait until the migration
1116 * pte is removed and then restart fault handling.
1118 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1119 entry
= make_migration_entry(page
, pte_write(pteval
));
1121 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1122 BUG_ON(pte_file(*pte
));
1123 } else if (PAGE_MIGRATION
&& (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1124 /* Establish migration entry for a file page */
1126 entry
= make_migration_entry(page
, pte_write(pteval
));
1127 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1129 dec_mm_counter(mm
, MM_FILEPAGES
);
1131 page_remove_rmap(page
);
1132 page_cache_release(page
);
1135 pte_unmap_unlock(pte
, ptl
);
1140 pte_unmap_unlock(pte
, ptl
);
1144 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1145 * unstable result and race. Plus, We can't wait here because
1146 * we now hold anon_vma->lock or mapping->i_mmap_mutex.
1147 * if trylock failed, the page remain in evictable lru and later
1148 * vmscan could retry to move the page to unevictable lru if the
1149 * page is actually mlocked.
1151 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1152 if (vma
->vm_flags
& VM_LOCKED
) {
1153 mlock_vma_page(page
);
1156 up_read(&vma
->vm_mm
->mmap_sem
);
1162 * objrmap doesn't work for nonlinear VMAs because the assumption that
1163 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1164 * Consequently, given a particular page and its ->index, we cannot locate the
1165 * ptes which are mapping that page without an exhaustive linear search.
1167 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1168 * maps the file to which the target page belongs. The ->vm_private_data field
1169 * holds the current cursor into that scan. Successive searches will circulate
1170 * around the vma's virtual address space.
1172 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1173 * more scanning pressure is placed against them as well. Eventually pages
1174 * will become fully unmapped and are eligible for eviction.
1176 * For very sparsely populated VMAs this is a little inefficient - chances are
1177 * there there won't be many ptes located within the scan cluster. In this case
1178 * maybe we could scan further - to the end of the pte page, perhaps.
1180 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1181 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1182 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1183 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1185 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1186 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1188 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1189 struct vm_area_struct
*vma
, struct page
*check_page
)
1191 struct mm_struct
*mm
= vma
->vm_mm
;
1199 unsigned long address
;
1201 int ret
= SWAP_AGAIN
;
1204 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1205 end
= address
+ CLUSTER_SIZE
;
1206 if (address
< vma
->vm_start
)
1207 address
= vma
->vm_start
;
1208 if (end
> vma
->vm_end
)
1211 pgd
= pgd_offset(mm
, address
);
1212 if (!pgd_present(*pgd
))
1215 pud
= pud_offset(pgd
, address
);
1216 if (!pud_present(*pud
))
1219 pmd
= pmd_offset(pud
, address
);
1220 if (!pmd_present(*pmd
))
1224 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1225 * keep the sem while scanning the cluster for mlocking pages.
1227 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1228 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1230 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1233 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1235 /* Update high watermark before we lower rss */
1236 update_hiwater_rss(mm
);
1238 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1239 if (!pte_present(*pte
))
1241 page
= vm_normal_page(vma
, address
, *pte
);
1242 BUG_ON(!page
|| PageAnon(page
));
1245 mlock_vma_page(page
); /* no-op if already mlocked */
1246 if (page
== check_page
)
1248 continue; /* don't unmap */
1251 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1254 /* Nuke the page table entry. */
1255 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1256 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1258 /* If nonlinear, store the file page offset in the pte. */
1259 if (page
->index
!= linear_page_index(vma
, address
))
1260 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
1262 /* Move the dirty bit to the physical page now the pte is gone. */
1263 if (pte_dirty(pteval
))
1264 set_page_dirty(page
);
1266 page_remove_rmap(page
);
1267 page_cache_release(page
);
1268 dec_mm_counter(mm
, MM_FILEPAGES
);
1271 pte_unmap_unlock(pte
- 1, ptl
);
1273 up_read(&vma
->vm_mm
->mmap_sem
);
1277 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1279 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1284 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1285 VM_STACK_INCOMPLETE_SETUP
)
1292 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1294 * @page: the page to unmap/unlock
1295 * @flags: action and flags
1297 * Find all the mappings of a page using the mapping pointer and the vma chains
1298 * contained in the anon_vma struct it points to.
1300 * This function is only called from try_to_unmap/try_to_munlock for
1302 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1303 * where the page was found will be held for write. So, we won't recheck
1304 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1307 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1309 struct anon_vma
*anon_vma
;
1310 struct anon_vma_chain
*avc
;
1311 int ret
= SWAP_AGAIN
;
1313 anon_vma
= page_lock_anon_vma(page
);
1317 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1318 struct vm_area_struct
*vma
= avc
->vma
;
1319 unsigned long address
;
1322 * During exec, a temporary VMA is setup and later moved.
1323 * The VMA is moved under the anon_vma lock but not the
1324 * page tables leading to a race where migration cannot
1325 * find the migration ptes. Rather than increasing the
1326 * locking requirements of exec(), migration skips
1327 * temporary VMAs until after exec() completes.
1329 if (PAGE_MIGRATION
&& (flags
& TTU_MIGRATION
) &&
1330 is_vma_temporary_stack(vma
))
1333 address
= vma_address(page
, vma
);
1334 if (address
== -EFAULT
)
1336 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1337 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1341 page_unlock_anon_vma(anon_vma
);
1346 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1347 * @page: the page to unmap/unlock
1348 * @flags: action and flags
1350 * Find all the mappings of a page using the mapping pointer and the vma chains
1351 * contained in the address_space struct it points to.
1353 * This function is only called from try_to_unmap/try_to_munlock for
1354 * object-based pages.
1355 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1356 * where the page was found will be held for write. So, we won't recheck
1357 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1360 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1362 struct address_space
*mapping
= page
->mapping
;
1363 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1364 struct vm_area_struct
*vma
;
1365 struct prio_tree_iter iter
;
1366 int ret
= SWAP_AGAIN
;
1367 unsigned long cursor
;
1368 unsigned long max_nl_cursor
= 0;
1369 unsigned long max_nl_size
= 0;
1370 unsigned int mapcount
;
1372 mutex_lock(&mapping
->i_mmap_mutex
);
1373 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1374 unsigned long address
= vma_address(page
, vma
);
1375 if (address
== -EFAULT
)
1377 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1378 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1382 if (list_empty(&mapping
->i_mmap_nonlinear
))
1386 * We don't bother to try to find the munlocked page in nonlinears.
1387 * It's costly. Instead, later, page reclaim logic may call
1388 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1390 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1393 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1394 shared
.vm_set
.list
) {
1395 cursor
= (unsigned long) vma
->vm_private_data
;
1396 if (cursor
> max_nl_cursor
)
1397 max_nl_cursor
= cursor
;
1398 cursor
= vma
->vm_end
- vma
->vm_start
;
1399 if (cursor
> max_nl_size
)
1400 max_nl_size
= cursor
;
1403 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1409 * We don't try to search for this page in the nonlinear vmas,
1410 * and page_referenced wouldn't have found it anyway. Instead
1411 * just walk the nonlinear vmas trying to age and unmap some.
1412 * The mapcount of the page we came in with is irrelevant,
1413 * but even so use it as a guide to how hard we should try?
1415 mapcount
= page_mapcount(page
);
1420 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1421 if (max_nl_cursor
== 0)
1422 max_nl_cursor
= CLUSTER_SIZE
;
1425 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1426 shared
.vm_set
.list
) {
1427 cursor
= (unsigned long) vma
->vm_private_data
;
1428 while ( cursor
< max_nl_cursor
&&
1429 cursor
< vma
->vm_end
- vma
->vm_start
) {
1430 if (try_to_unmap_cluster(cursor
, &mapcount
,
1431 vma
, page
) == SWAP_MLOCK
)
1433 cursor
+= CLUSTER_SIZE
;
1434 vma
->vm_private_data
= (void *) cursor
;
1435 if ((int)mapcount
<= 0)
1438 vma
->vm_private_data
= (void *) max_nl_cursor
;
1441 max_nl_cursor
+= CLUSTER_SIZE
;
1442 } while (max_nl_cursor
<= max_nl_size
);
1445 * Don't loop forever (perhaps all the remaining pages are
1446 * in locked vmas). Reset cursor on all unreserved nonlinear
1447 * vmas, now forgetting on which ones it had fallen behind.
1449 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1450 vma
->vm_private_data
= NULL
;
1452 mutex_unlock(&mapping
->i_mmap_mutex
);
1457 * try_to_unmap - try to remove all page table mappings to a page
1458 * @page: the page to get unmapped
1459 * @flags: action and flags
1461 * Tries to remove all the page table entries which are mapping this
1462 * page, used in the pageout path. Caller must hold the page lock.
1463 * Return values are:
1465 * SWAP_SUCCESS - we succeeded in removing all mappings
1466 * SWAP_AGAIN - we missed a mapping, try again later
1467 * SWAP_FAIL - the page is unswappable
1468 * SWAP_MLOCK - page is mlocked.
1470 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1474 BUG_ON(!PageLocked(page
));
1475 VM_BUG_ON(!PageHuge(page
) && PageTransHuge(page
));
1477 if (unlikely(PageKsm(page
)))
1478 ret
= try_to_unmap_ksm(page
, flags
);
1479 else if (PageAnon(page
))
1480 ret
= try_to_unmap_anon(page
, flags
);
1482 ret
= try_to_unmap_file(page
, flags
);
1483 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1489 * try_to_munlock - try to munlock a page
1490 * @page: the page to be munlocked
1492 * Called from munlock code. Checks all of the VMAs mapping the page
1493 * to make sure nobody else has this page mlocked. The page will be
1494 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1496 * Return values are:
1498 * SWAP_AGAIN - no vma is holding page mlocked, or,
1499 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1500 * SWAP_FAIL - page cannot be located at present
1501 * SWAP_MLOCK - page is now mlocked.
1503 int try_to_munlock(struct page
*page
)
1505 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1507 if (unlikely(PageKsm(page
)))
1508 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1509 else if (PageAnon(page
))
1510 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1512 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1515 void __put_anon_vma(struct anon_vma
*anon_vma
)
1517 struct anon_vma
*root
= anon_vma
->root
;
1519 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1520 anon_vma_free(root
);
1522 anon_vma_free(anon_vma
);
1525 #ifdef CONFIG_MIGRATION
1527 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1528 * Called by migrate.c to remove migration ptes, but might be used more later.
1530 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1531 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1533 struct anon_vma
*anon_vma
;
1534 struct anon_vma_chain
*avc
;
1535 int ret
= SWAP_AGAIN
;
1538 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1539 * because that depends on page_mapped(); but not all its usages
1540 * are holding mmap_sem. Users without mmap_sem are required to
1541 * take a reference count to prevent the anon_vma disappearing
1543 anon_vma
= page_anon_vma(page
);
1546 anon_vma_lock(anon_vma
);
1547 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1548 struct vm_area_struct
*vma
= avc
->vma
;
1549 unsigned long address
= vma_address(page
, vma
);
1550 if (address
== -EFAULT
)
1552 ret
= rmap_one(page
, vma
, address
, arg
);
1553 if (ret
!= SWAP_AGAIN
)
1556 anon_vma_unlock(anon_vma
);
1560 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1561 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1563 struct address_space
*mapping
= page
->mapping
;
1564 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1565 struct vm_area_struct
*vma
;
1566 struct prio_tree_iter iter
;
1567 int ret
= SWAP_AGAIN
;
1571 mutex_lock(&mapping
->i_mmap_mutex
);
1572 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1573 unsigned long address
= vma_address(page
, vma
);
1574 if (address
== -EFAULT
)
1576 ret
= rmap_one(page
, vma
, address
, arg
);
1577 if (ret
!= SWAP_AGAIN
)
1581 * No nonlinear handling: being always shared, nonlinear vmas
1582 * never contain migration ptes. Decide what to do about this
1583 * limitation to linear when we need rmap_walk() on nonlinear.
1585 mutex_unlock(&mapping
->i_mmap_mutex
);
1589 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1590 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1592 VM_BUG_ON(!PageLocked(page
));
1594 if (unlikely(PageKsm(page
)))
1595 return rmap_walk_ksm(page
, rmap_one
, arg
);
1596 else if (PageAnon(page
))
1597 return rmap_walk_anon(page
, rmap_one
, arg
);
1599 return rmap_walk_file(page
, rmap_one
, arg
);
1601 #endif /* CONFIG_MIGRATION */
1603 #ifdef CONFIG_HUGETLB_PAGE
1605 * The following three functions are for anonymous (private mapped) hugepages.
1606 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1607 * and no lru code, because we handle hugepages differently from common pages.
1609 static void __hugepage_set_anon_rmap(struct page
*page
,
1610 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1612 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1619 anon_vma
= anon_vma
->root
;
1621 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1622 page
->mapping
= (struct address_space
*) anon_vma
;
1623 page
->index
= linear_page_index(vma
, address
);
1626 void hugepage_add_anon_rmap(struct page
*page
,
1627 struct vm_area_struct
*vma
, unsigned long address
)
1629 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1632 BUG_ON(!PageLocked(page
));
1634 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1635 first
= atomic_inc_and_test(&page
->_mapcount
);
1637 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1640 void hugepage_add_new_anon_rmap(struct page
*page
,
1641 struct vm_area_struct
*vma
, unsigned long address
)
1643 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1644 atomic_set(&page
->_mapcount
, 0);
1645 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1647 #endif /* CONFIG_HUGETLB_PAGE */