mm: use refcounts for page_lock_anon_vma()
[linux-2.6.git] / mm / rmap.c
blobd271845d7d15fd37ec55e92ff0cfdb9f821e5115
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_mutex
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
43 * anon_vma->lock (memory_failure, collect_procs_anon)
44 * pte map lock
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
62 #include <asm/tlbflush.h>
64 #include "internal.h"
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
69 static inline struct anon_vma *anon_vma_alloc(void)
71 struct anon_vma *anon_vma;
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
80 anon_vma->root = anon_vma;
83 return anon_vma;
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
89 kmem_cache_free(anon_vma_cachep, anon_vma);
92 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
94 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
97 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
99 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
103 * anon_vma_prepare - attach an anon_vma to a memory region
104 * @vma: the memory region in question
106 * This makes sure the memory mapping described by 'vma' has
107 * an 'anon_vma' attached to it, so that we can associate the
108 * anonymous pages mapped into it with that anon_vma.
110 * The common case will be that we already have one, but if
111 * not we either need to find an adjacent mapping that we
112 * can re-use the anon_vma from (very common when the only
113 * reason for splitting a vma has been mprotect()), or we
114 * allocate a new one.
116 * Anon-vma allocations are very subtle, because we may have
117 * optimistically looked up an anon_vma in page_lock_anon_vma()
118 * and that may actually touch the spinlock even in the newly
119 * allocated vma (it depends on RCU to make sure that the
120 * anon_vma isn't actually destroyed).
122 * As a result, we need to do proper anon_vma locking even
123 * for the new allocation. At the same time, we do not want
124 * to do any locking for the common case of already having
125 * an anon_vma.
127 * This must be called with the mmap_sem held for reading.
129 int anon_vma_prepare(struct vm_area_struct *vma)
131 struct anon_vma *anon_vma = vma->anon_vma;
132 struct anon_vma_chain *avc;
134 might_sleep();
135 if (unlikely(!anon_vma)) {
136 struct mm_struct *mm = vma->vm_mm;
137 struct anon_vma *allocated;
139 avc = anon_vma_chain_alloc();
140 if (!avc)
141 goto out_enomem;
143 anon_vma = find_mergeable_anon_vma(vma);
144 allocated = NULL;
145 if (!anon_vma) {
146 anon_vma = anon_vma_alloc();
147 if (unlikely(!anon_vma))
148 goto out_enomem_free_avc;
149 allocated = anon_vma;
152 anon_vma_lock(anon_vma);
153 /* page_table_lock to protect against threads */
154 spin_lock(&mm->page_table_lock);
155 if (likely(!vma->anon_vma)) {
156 vma->anon_vma = anon_vma;
157 avc->anon_vma = anon_vma;
158 avc->vma = vma;
159 list_add(&avc->same_vma, &vma->anon_vma_chain);
160 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
161 allocated = NULL;
162 avc = NULL;
164 spin_unlock(&mm->page_table_lock);
165 anon_vma_unlock(anon_vma);
167 if (unlikely(allocated))
168 put_anon_vma(allocated);
169 if (unlikely(avc))
170 anon_vma_chain_free(avc);
172 return 0;
174 out_enomem_free_avc:
175 anon_vma_chain_free(avc);
176 out_enomem:
177 return -ENOMEM;
180 static void anon_vma_chain_link(struct vm_area_struct *vma,
181 struct anon_vma_chain *avc,
182 struct anon_vma *anon_vma)
184 avc->vma = vma;
185 avc->anon_vma = anon_vma;
186 list_add(&avc->same_vma, &vma->anon_vma_chain);
188 anon_vma_lock(anon_vma);
190 * It's critical to add new vmas to the tail of the anon_vma,
191 * see comment in huge_memory.c:__split_huge_page().
193 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
194 anon_vma_unlock(anon_vma);
198 * Attach the anon_vmas from src to dst.
199 * Returns 0 on success, -ENOMEM on failure.
201 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
203 struct anon_vma_chain *avc, *pavc;
205 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
206 avc = anon_vma_chain_alloc();
207 if (!avc)
208 goto enomem_failure;
209 anon_vma_chain_link(dst, avc, pavc->anon_vma);
211 return 0;
213 enomem_failure:
214 unlink_anon_vmas(dst);
215 return -ENOMEM;
219 * Attach vma to its own anon_vma, as well as to the anon_vmas that
220 * the corresponding VMA in the parent process is attached to.
221 * Returns 0 on success, non-zero on failure.
223 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
225 struct anon_vma_chain *avc;
226 struct anon_vma *anon_vma;
228 /* Don't bother if the parent process has no anon_vma here. */
229 if (!pvma->anon_vma)
230 return 0;
233 * First, attach the new VMA to the parent VMA's anon_vmas,
234 * so rmap can find non-COWed pages in child processes.
236 if (anon_vma_clone(vma, pvma))
237 return -ENOMEM;
239 /* Then add our own anon_vma. */
240 anon_vma = anon_vma_alloc();
241 if (!anon_vma)
242 goto out_error;
243 avc = anon_vma_chain_alloc();
244 if (!avc)
245 goto out_error_free_anon_vma;
248 * The root anon_vma's spinlock is the lock actually used when we
249 * lock any of the anon_vmas in this anon_vma tree.
251 anon_vma->root = pvma->anon_vma->root;
253 * With refcounts, an anon_vma can stay around longer than the
254 * process it belongs to. The root anon_vma needs to be pinned until
255 * this anon_vma is freed, because the lock lives in the root.
257 get_anon_vma(anon_vma->root);
258 /* Mark this anon_vma as the one where our new (COWed) pages go. */
259 vma->anon_vma = anon_vma;
260 anon_vma_chain_link(vma, avc, anon_vma);
262 return 0;
264 out_error_free_anon_vma:
265 put_anon_vma(anon_vma);
266 out_error:
267 unlink_anon_vmas(vma);
268 return -ENOMEM;
271 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
273 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
274 int empty;
276 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
277 if (!anon_vma)
278 return;
280 anon_vma_lock(anon_vma);
281 list_del(&anon_vma_chain->same_anon_vma);
283 /* We must garbage collect the anon_vma if it's empty */
284 empty = list_empty(&anon_vma->head);
285 anon_vma_unlock(anon_vma);
287 if (empty)
288 put_anon_vma(anon_vma);
291 void unlink_anon_vmas(struct vm_area_struct *vma)
293 struct anon_vma_chain *avc, *next;
296 * Unlink each anon_vma chained to the VMA. This list is ordered
297 * from newest to oldest, ensuring the root anon_vma gets freed last.
299 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
300 anon_vma_unlink(avc);
301 list_del(&avc->same_vma);
302 anon_vma_chain_free(avc);
306 static void anon_vma_ctor(void *data)
308 struct anon_vma *anon_vma = data;
310 spin_lock_init(&anon_vma->lock);
311 atomic_set(&anon_vma->refcount, 0);
312 INIT_LIST_HEAD(&anon_vma->head);
315 void __init anon_vma_init(void)
317 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
318 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
319 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
323 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
325 * Since there is no serialization what so ever against page_remove_rmap()
326 * the best this function can do is return a locked anon_vma that might
327 * have been relevant to this page.
329 * The page might have been remapped to a different anon_vma or the anon_vma
330 * returned may already be freed (and even reused).
332 * All users of this function must be very careful when walking the anon_vma
333 * chain and verify that the page in question is indeed mapped in it
334 * [ something equivalent to page_mapped_in_vma() ].
336 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
337 * that the anon_vma pointer from page->mapping is valid if there is a
338 * mapcount, we can dereference the anon_vma after observing those.
340 struct anon_vma *page_get_anon_vma(struct page *page)
342 struct anon_vma *anon_vma = NULL;
343 unsigned long anon_mapping;
345 rcu_read_lock();
346 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
347 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
348 goto out;
349 if (!page_mapped(page))
350 goto out;
352 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
353 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
354 anon_vma = NULL;
355 goto out;
359 * If this page is still mapped, then its anon_vma cannot have been
360 * freed. But if it has been unmapped, we have no security against the
361 * anon_vma structure being freed and reused (for another anon_vma:
362 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
363 * above cannot corrupt).
365 if (!page_mapped(page)) {
366 put_anon_vma(anon_vma);
367 anon_vma = NULL;
369 out:
370 rcu_read_unlock();
372 return anon_vma;
375 struct anon_vma *page_lock_anon_vma(struct page *page)
377 struct anon_vma *anon_vma = page_get_anon_vma(page);
379 if (anon_vma)
380 anon_vma_lock(anon_vma);
382 return anon_vma;
385 void page_unlock_anon_vma(struct anon_vma *anon_vma)
387 anon_vma_unlock(anon_vma);
388 put_anon_vma(anon_vma);
392 * At what user virtual address is page expected in @vma?
393 * Returns virtual address or -EFAULT if page's index/offset is not
394 * within the range mapped the @vma.
396 inline unsigned long
397 vma_address(struct page *page, struct vm_area_struct *vma)
399 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
400 unsigned long address;
402 if (unlikely(is_vm_hugetlb_page(vma)))
403 pgoff = page->index << huge_page_order(page_hstate(page));
404 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
405 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
406 /* page should be within @vma mapping range */
407 return -EFAULT;
409 return address;
413 * At what user virtual address is page expected in vma?
414 * Caller should check the page is actually part of the vma.
416 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
418 if (PageAnon(page)) {
419 struct anon_vma *page__anon_vma = page_anon_vma(page);
421 * Note: swapoff's unuse_vma() is more efficient with this
422 * check, and needs it to match anon_vma when KSM is active.
424 if (!vma->anon_vma || !page__anon_vma ||
425 vma->anon_vma->root != page__anon_vma->root)
426 return -EFAULT;
427 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
428 if (!vma->vm_file ||
429 vma->vm_file->f_mapping != page->mapping)
430 return -EFAULT;
431 } else
432 return -EFAULT;
433 return vma_address(page, vma);
437 * Check that @page is mapped at @address into @mm.
439 * If @sync is false, page_check_address may perform a racy check to avoid
440 * the page table lock when the pte is not present (helpful when reclaiming
441 * highly shared pages).
443 * On success returns with pte mapped and locked.
445 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
446 unsigned long address, spinlock_t **ptlp, int sync)
448 pgd_t *pgd;
449 pud_t *pud;
450 pmd_t *pmd;
451 pte_t *pte;
452 spinlock_t *ptl;
454 if (unlikely(PageHuge(page))) {
455 pte = huge_pte_offset(mm, address);
456 ptl = &mm->page_table_lock;
457 goto check;
460 pgd = pgd_offset(mm, address);
461 if (!pgd_present(*pgd))
462 return NULL;
464 pud = pud_offset(pgd, address);
465 if (!pud_present(*pud))
466 return NULL;
468 pmd = pmd_offset(pud, address);
469 if (!pmd_present(*pmd))
470 return NULL;
471 if (pmd_trans_huge(*pmd))
472 return NULL;
474 pte = pte_offset_map(pmd, address);
475 /* Make a quick check before getting the lock */
476 if (!sync && !pte_present(*pte)) {
477 pte_unmap(pte);
478 return NULL;
481 ptl = pte_lockptr(mm, pmd);
482 check:
483 spin_lock(ptl);
484 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
485 *ptlp = ptl;
486 return pte;
488 pte_unmap_unlock(pte, ptl);
489 return NULL;
493 * page_mapped_in_vma - check whether a page is really mapped in a VMA
494 * @page: the page to test
495 * @vma: the VMA to test
497 * Returns 1 if the page is mapped into the page tables of the VMA, 0
498 * if the page is not mapped into the page tables of this VMA. Only
499 * valid for normal file or anonymous VMAs.
501 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
503 unsigned long address;
504 pte_t *pte;
505 spinlock_t *ptl;
507 address = vma_address(page, vma);
508 if (address == -EFAULT) /* out of vma range */
509 return 0;
510 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
511 if (!pte) /* the page is not in this mm */
512 return 0;
513 pte_unmap_unlock(pte, ptl);
515 return 1;
519 * Subfunctions of page_referenced: page_referenced_one called
520 * repeatedly from either page_referenced_anon or page_referenced_file.
522 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
523 unsigned long address, unsigned int *mapcount,
524 unsigned long *vm_flags)
526 struct mm_struct *mm = vma->vm_mm;
527 int referenced = 0;
529 if (unlikely(PageTransHuge(page))) {
530 pmd_t *pmd;
532 spin_lock(&mm->page_table_lock);
534 * rmap might return false positives; we must filter
535 * these out using page_check_address_pmd().
537 pmd = page_check_address_pmd(page, mm, address,
538 PAGE_CHECK_ADDRESS_PMD_FLAG);
539 if (!pmd) {
540 spin_unlock(&mm->page_table_lock);
541 goto out;
544 if (vma->vm_flags & VM_LOCKED) {
545 spin_unlock(&mm->page_table_lock);
546 *mapcount = 0; /* break early from loop */
547 *vm_flags |= VM_LOCKED;
548 goto out;
551 /* go ahead even if the pmd is pmd_trans_splitting() */
552 if (pmdp_clear_flush_young_notify(vma, address, pmd))
553 referenced++;
554 spin_unlock(&mm->page_table_lock);
555 } else {
556 pte_t *pte;
557 spinlock_t *ptl;
560 * rmap might return false positives; we must filter
561 * these out using page_check_address().
563 pte = page_check_address(page, mm, address, &ptl, 0);
564 if (!pte)
565 goto out;
567 if (vma->vm_flags & VM_LOCKED) {
568 pte_unmap_unlock(pte, ptl);
569 *mapcount = 0; /* break early from loop */
570 *vm_flags |= VM_LOCKED;
571 goto out;
574 if (ptep_clear_flush_young_notify(vma, address, pte)) {
576 * Don't treat a reference through a sequentially read
577 * mapping as such. If the page has been used in
578 * another mapping, we will catch it; if this other
579 * mapping is already gone, the unmap path will have
580 * set PG_referenced or activated the page.
582 if (likely(!VM_SequentialReadHint(vma)))
583 referenced++;
585 pte_unmap_unlock(pte, ptl);
588 /* Pretend the page is referenced if the task has the
589 swap token and is in the middle of a page fault. */
590 if (mm != current->mm && has_swap_token(mm) &&
591 rwsem_is_locked(&mm->mmap_sem))
592 referenced++;
594 (*mapcount)--;
596 if (referenced)
597 *vm_flags |= vma->vm_flags;
598 out:
599 return referenced;
602 static int page_referenced_anon(struct page *page,
603 struct mem_cgroup *mem_cont,
604 unsigned long *vm_flags)
606 unsigned int mapcount;
607 struct anon_vma *anon_vma;
608 struct anon_vma_chain *avc;
609 int referenced = 0;
611 anon_vma = page_lock_anon_vma(page);
612 if (!anon_vma)
613 return referenced;
615 mapcount = page_mapcount(page);
616 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
617 struct vm_area_struct *vma = avc->vma;
618 unsigned long address = vma_address(page, vma);
619 if (address == -EFAULT)
620 continue;
622 * If we are reclaiming on behalf of a cgroup, skip
623 * counting on behalf of references from different
624 * cgroups
626 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
627 continue;
628 referenced += page_referenced_one(page, vma, address,
629 &mapcount, vm_flags);
630 if (!mapcount)
631 break;
634 page_unlock_anon_vma(anon_vma);
635 return referenced;
639 * page_referenced_file - referenced check for object-based rmap
640 * @page: the page we're checking references on.
641 * @mem_cont: target memory controller
642 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
644 * For an object-based mapped page, find all the places it is mapped and
645 * check/clear the referenced flag. This is done by following the page->mapping
646 * pointer, then walking the chain of vmas it holds. It returns the number
647 * of references it found.
649 * This function is only called from page_referenced for object-based pages.
651 static int page_referenced_file(struct page *page,
652 struct mem_cgroup *mem_cont,
653 unsigned long *vm_flags)
655 unsigned int mapcount;
656 struct address_space *mapping = page->mapping;
657 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
658 struct vm_area_struct *vma;
659 struct prio_tree_iter iter;
660 int referenced = 0;
663 * The caller's checks on page->mapping and !PageAnon have made
664 * sure that this is a file page: the check for page->mapping
665 * excludes the case just before it gets set on an anon page.
667 BUG_ON(PageAnon(page));
670 * The page lock not only makes sure that page->mapping cannot
671 * suddenly be NULLified by truncation, it makes sure that the
672 * structure at mapping cannot be freed and reused yet,
673 * so we can safely take mapping->i_mmap_mutex.
675 BUG_ON(!PageLocked(page));
677 mutex_lock(&mapping->i_mmap_mutex);
680 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
681 * is more likely to be accurate if we note it after spinning.
683 mapcount = page_mapcount(page);
685 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
686 unsigned long address = vma_address(page, vma);
687 if (address == -EFAULT)
688 continue;
690 * If we are reclaiming on behalf of a cgroup, skip
691 * counting on behalf of references from different
692 * cgroups
694 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
695 continue;
696 referenced += page_referenced_one(page, vma, address,
697 &mapcount, vm_flags);
698 if (!mapcount)
699 break;
702 mutex_unlock(&mapping->i_mmap_mutex);
703 return referenced;
707 * page_referenced - test if the page was referenced
708 * @page: the page to test
709 * @is_locked: caller holds lock on the page
710 * @mem_cont: target memory controller
711 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
713 * Quick test_and_clear_referenced for all mappings to a page,
714 * returns the number of ptes which referenced the page.
716 int page_referenced(struct page *page,
717 int is_locked,
718 struct mem_cgroup *mem_cont,
719 unsigned long *vm_flags)
721 int referenced = 0;
722 int we_locked = 0;
724 *vm_flags = 0;
725 if (page_mapped(page) && page_rmapping(page)) {
726 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
727 we_locked = trylock_page(page);
728 if (!we_locked) {
729 referenced++;
730 goto out;
733 if (unlikely(PageKsm(page)))
734 referenced += page_referenced_ksm(page, mem_cont,
735 vm_flags);
736 else if (PageAnon(page))
737 referenced += page_referenced_anon(page, mem_cont,
738 vm_flags);
739 else if (page->mapping)
740 referenced += page_referenced_file(page, mem_cont,
741 vm_flags);
742 if (we_locked)
743 unlock_page(page);
745 out:
746 if (page_test_and_clear_young(page_to_pfn(page)))
747 referenced++;
749 return referenced;
752 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
753 unsigned long address)
755 struct mm_struct *mm = vma->vm_mm;
756 pte_t *pte;
757 spinlock_t *ptl;
758 int ret = 0;
760 pte = page_check_address(page, mm, address, &ptl, 1);
761 if (!pte)
762 goto out;
764 if (pte_dirty(*pte) || pte_write(*pte)) {
765 pte_t entry;
767 flush_cache_page(vma, address, pte_pfn(*pte));
768 entry = ptep_clear_flush_notify(vma, address, pte);
769 entry = pte_wrprotect(entry);
770 entry = pte_mkclean(entry);
771 set_pte_at(mm, address, pte, entry);
772 ret = 1;
775 pte_unmap_unlock(pte, ptl);
776 out:
777 return ret;
780 static int page_mkclean_file(struct address_space *mapping, struct page *page)
782 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
783 struct vm_area_struct *vma;
784 struct prio_tree_iter iter;
785 int ret = 0;
787 BUG_ON(PageAnon(page));
789 mutex_lock(&mapping->i_mmap_mutex);
790 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
791 if (vma->vm_flags & VM_SHARED) {
792 unsigned long address = vma_address(page, vma);
793 if (address == -EFAULT)
794 continue;
795 ret += page_mkclean_one(page, vma, address);
798 mutex_unlock(&mapping->i_mmap_mutex);
799 return ret;
802 int page_mkclean(struct page *page)
804 int ret = 0;
806 BUG_ON(!PageLocked(page));
808 if (page_mapped(page)) {
809 struct address_space *mapping = page_mapping(page);
810 if (mapping) {
811 ret = page_mkclean_file(mapping, page);
812 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
813 ret = 1;
817 return ret;
819 EXPORT_SYMBOL_GPL(page_mkclean);
822 * page_move_anon_rmap - move a page to our anon_vma
823 * @page: the page to move to our anon_vma
824 * @vma: the vma the page belongs to
825 * @address: the user virtual address mapped
827 * When a page belongs exclusively to one process after a COW event,
828 * that page can be moved into the anon_vma that belongs to just that
829 * process, so the rmap code will not search the parent or sibling
830 * processes.
832 void page_move_anon_rmap(struct page *page,
833 struct vm_area_struct *vma, unsigned long address)
835 struct anon_vma *anon_vma = vma->anon_vma;
837 VM_BUG_ON(!PageLocked(page));
838 VM_BUG_ON(!anon_vma);
839 VM_BUG_ON(page->index != linear_page_index(vma, address));
841 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
842 page->mapping = (struct address_space *) anon_vma;
846 * __page_set_anon_rmap - set up new anonymous rmap
847 * @page: Page to add to rmap
848 * @vma: VM area to add page to.
849 * @address: User virtual address of the mapping
850 * @exclusive: the page is exclusively owned by the current process
852 static void __page_set_anon_rmap(struct page *page,
853 struct vm_area_struct *vma, unsigned long address, int exclusive)
855 struct anon_vma *anon_vma = vma->anon_vma;
857 BUG_ON(!anon_vma);
859 if (PageAnon(page))
860 return;
863 * If the page isn't exclusively mapped into this vma,
864 * we must use the _oldest_ possible anon_vma for the
865 * page mapping!
867 if (!exclusive)
868 anon_vma = anon_vma->root;
870 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
871 page->mapping = (struct address_space *) anon_vma;
872 page->index = linear_page_index(vma, address);
876 * __page_check_anon_rmap - sanity check anonymous rmap addition
877 * @page: the page to add the mapping to
878 * @vma: the vm area in which the mapping is added
879 * @address: the user virtual address mapped
881 static void __page_check_anon_rmap(struct page *page,
882 struct vm_area_struct *vma, unsigned long address)
884 #ifdef CONFIG_DEBUG_VM
886 * The page's anon-rmap details (mapping and index) are guaranteed to
887 * be set up correctly at this point.
889 * We have exclusion against page_add_anon_rmap because the caller
890 * always holds the page locked, except if called from page_dup_rmap,
891 * in which case the page is already known to be setup.
893 * We have exclusion against page_add_new_anon_rmap because those pages
894 * are initially only visible via the pagetables, and the pte is locked
895 * over the call to page_add_new_anon_rmap.
897 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
898 BUG_ON(page->index != linear_page_index(vma, address));
899 #endif
903 * page_add_anon_rmap - add pte mapping to an anonymous page
904 * @page: the page to add the mapping to
905 * @vma: the vm area in which the mapping is added
906 * @address: the user virtual address mapped
908 * The caller needs to hold the pte lock, and the page must be locked in
909 * the anon_vma case: to serialize mapping,index checking after setting,
910 * and to ensure that PageAnon is not being upgraded racily to PageKsm
911 * (but PageKsm is never downgraded to PageAnon).
913 void page_add_anon_rmap(struct page *page,
914 struct vm_area_struct *vma, unsigned long address)
916 do_page_add_anon_rmap(page, vma, address, 0);
920 * Special version of the above for do_swap_page, which often runs
921 * into pages that are exclusively owned by the current process.
922 * Everybody else should continue to use page_add_anon_rmap above.
924 void do_page_add_anon_rmap(struct page *page,
925 struct vm_area_struct *vma, unsigned long address, int exclusive)
927 int first = atomic_inc_and_test(&page->_mapcount);
928 if (first) {
929 if (!PageTransHuge(page))
930 __inc_zone_page_state(page, NR_ANON_PAGES);
931 else
932 __inc_zone_page_state(page,
933 NR_ANON_TRANSPARENT_HUGEPAGES);
935 if (unlikely(PageKsm(page)))
936 return;
938 VM_BUG_ON(!PageLocked(page));
939 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
940 if (first)
941 __page_set_anon_rmap(page, vma, address, exclusive);
942 else
943 __page_check_anon_rmap(page, vma, address);
947 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
948 * @page: the page to add the mapping to
949 * @vma: the vm area in which the mapping is added
950 * @address: the user virtual address mapped
952 * Same as page_add_anon_rmap but must only be called on *new* pages.
953 * This means the inc-and-test can be bypassed.
954 * Page does not have to be locked.
956 void page_add_new_anon_rmap(struct page *page,
957 struct vm_area_struct *vma, unsigned long address)
959 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
960 SetPageSwapBacked(page);
961 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
962 if (!PageTransHuge(page))
963 __inc_zone_page_state(page, NR_ANON_PAGES);
964 else
965 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
966 __page_set_anon_rmap(page, vma, address, 1);
967 if (page_evictable(page, vma))
968 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
969 else
970 add_page_to_unevictable_list(page);
974 * page_add_file_rmap - add pte mapping to a file page
975 * @page: the page to add the mapping to
977 * The caller needs to hold the pte lock.
979 void page_add_file_rmap(struct page *page)
981 if (atomic_inc_and_test(&page->_mapcount)) {
982 __inc_zone_page_state(page, NR_FILE_MAPPED);
983 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
988 * page_remove_rmap - take down pte mapping from a page
989 * @page: page to remove mapping from
991 * The caller needs to hold the pte lock.
993 void page_remove_rmap(struct page *page)
995 /* page still mapped by someone else? */
996 if (!atomic_add_negative(-1, &page->_mapcount))
997 return;
1000 * Now that the last pte has gone, s390 must transfer dirty
1001 * flag from storage key to struct page. We can usually skip
1002 * this if the page is anon, so about to be freed; but perhaps
1003 * not if it's in swapcache - there might be another pte slot
1004 * containing the swap entry, but page not yet written to swap.
1006 if ((!PageAnon(page) || PageSwapCache(page)) &&
1007 page_test_and_clear_dirty(page_to_pfn(page), 1))
1008 set_page_dirty(page);
1010 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1011 * and not charged by memcg for now.
1013 if (unlikely(PageHuge(page)))
1014 return;
1015 if (PageAnon(page)) {
1016 mem_cgroup_uncharge_page(page);
1017 if (!PageTransHuge(page))
1018 __dec_zone_page_state(page, NR_ANON_PAGES);
1019 else
1020 __dec_zone_page_state(page,
1021 NR_ANON_TRANSPARENT_HUGEPAGES);
1022 } else {
1023 __dec_zone_page_state(page, NR_FILE_MAPPED);
1024 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1027 * It would be tidy to reset the PageAnon mapping here,
1028 * but that might overwrite a racing page_add_anon_rmap
1029 * which increments mapcount after us but sets mapping
1030 * before us: so leave the reset to free_hot_cold_page,
1031 * and remember that it's only reliable while mapped.
1032 * Leaving it set also helps swapoff to reinstate ptes
1033 * faster for those pages still in swapcache.
1038 * Subfunctions of try_to_unmap: try_to_unmap_one called
1039 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1041 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1042 unsigned long address, enum ttu_flags flags)
1044 struct mm_struct *mm = vma->vm_mm;
1045 pte_t *pte;
1046 pte_t pteval;
1047 spinlock_t *ptl;
1048 int ret = SWAP_AGAIN;
1050 pte = page_check_address(page, mm, address, &ptl, 0);
1051 if (!pte)
1052 goto out;
1055 * If the page is mlock()d, we cannot swap it out.
1056 * If it's recently referenced (perhaps page_referenced
1057 * skipped over this mm) then we should reactivate it.
1059 if (!(flags & TTU_IGNORE_MLOCK)) {
1060 if (vma->vm_flags & VM_LOCKED)
1061 goto out_mlock;
1063 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1064 goto out_unmap;
1066 if (!(flags & TTU_IGNORE_ACCESS)) {
1067 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1068 ret = SWAP_FAIL;
1069 goto out_unmap;
1073 /* Nuke the page table entry. */
1074 flush_cache_page(vma, address, page_to_pfn(page));
1075 pteval = ptep_clear_flush_notify(vma, address, pte);
1077 /* Move the dirty bit to the physical page now the pte is gone. */
1078 if (pte_dirty(pteval))
1079 set_page_dirty(page);
1081 /* Update high watermark before we lower rss */
1082 update_hiwater_rss(mm);
1084 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1085 if (PageAnon(page))
1086 dec_mm_counter(mm, MM_ANONPAGES);
1087 else
1088 dec_mm_counter(mm, MM_FILEPAGES);
1089 set_pte_at(mm, address, pte,
1090 swp_entry_to_pte(make_hwpoison_entry(page)));
1091 } else if (PageAnon(page)) {
1092 swp_entry_t entry = { .val = page_private(page) };
1094 if (PageSwapCache(page)) {
1096 * Store the swap location in the pte.
1097 * See handle_pte_fault() ...
1099 if (swap_duplicate(entry) < 0) {
1100 set_pte_at(mm, address, pte, pteval);
1101 ret = SWAP_FAIL;
1102 goto out_unmap;
1104 if (list_empty(&mm->mmlist)) {
1105 spin_lock(&mmlist_lock);
1106 if (list_empty(&mm->mmlist))
1107 list_add(&mm->mmlist, &init_mm.mmlist);
1108 spin_unlock(&mmlist_lock);
1110 dec_mm_counter(mm, MM_ANONPAGES);
1111 inc_mm_counter(mm, MM_SWAPENTS);
1112 } else if (PAGE_MIGRATION) {
1114 * Store the pfn of the page in a special migration
1115 * pte. do_swap_page() will wait until the migration
1116 * pte is removed and then restart fault handling.
1118 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1119 entry = make_migration_entry(page, pte_write(pteval));
1121 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1122 BUG_ON(pte_file(*pte));
1123 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1124 /* Establish migration entry for a file page */
1125 swp_entry_t entry;
1126 entry = make_migration_entry(page, pte_write(pteval));
1127 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1128 } else
1129 dec_mm_counter(mm, MM_FILEPAGES);
1131 page_remove_rmap(page);
1132 page_cache_release(page);
1134 out_unmap:
1135 pte_unmap_unlock(pte, ptl);
1136 out:
1137 return ret;
1139 out_mlock:
1140 pte_unmap_unlock(pte, ptl);
1144 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1145 * unstable result and race. Plus, We can't wait here because
1146 * we now hold anon_vma->lock or mapping->i_mmap_mutex.
1147 * if trylock failed, the page remain in evictable lru and later
1148 * vmscan could retry to move the page to unevictable lru if the
1149 * page is actually mlocked.
1151 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1152 if (vma->vm_flags & VM_LOCKED) {
1153 mlock_vma_page(page);
1154 ret = SWAP_MLOCK;
1156 up_read(&vma->vm_mm->mmap_sem);
1158 return ret;
1162 * objrmap doesn't work for nonlinear VMAs because the assumption that
1163 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1164 * Consequently, given a particular page and its ->index, we cannot locate the
1165 * ptes which are mapping that page without an exhaustive linear search.
1167 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1168 * maps the file to which the target page belongs. The ->vm_private_data field
1169 * holds the current cursor into that scan. Successive searches will circulate
1170 * around the vma's virtual address space.
1172 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1173 * more scanning pressure is placed against them as well. Eventually pages
1174 * will become fully unmapped and are eligible for eviction.
1176 * For very sparsely populated VMAs this is a little inefficient - chances are
1177 * there there won't be many ptes located within the scan cluster. In this case
1178 * maybe we could scan further - to the end of the pte page, perhaps.
1180 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1181 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1182 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1183 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1185 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1186 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1188 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1189 struct vm_area_struct *vma, struct page *check_page)
1191 struct mm_struct *mm = vma->vm_mm;
1192 pgd_t *pgd;
1193 pud_t *pud;
1194 pmd_t *pmd;
1195 pte_t *pte;
1196 pte_t pteval;
1197 spinlock_t *ptl;
1198 struct page *page;
1199 unsigned long address;
1200 unsigned long end;
1201 int ret = SWAP_AGAIN;
1202 int locked_vma = 0;
1204 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1205 end = address + CLUSTER_SIZE;
1206 if (address < vma->vm_start)
1207 address = vma->vm_start;
1208 if (end > vma->vm_end)
1209 end = vma->vm_end;
1211 pgd = pgd_offset(mm, address);
1212 if (!pgd_present(*pgd))
1213 return ret;
1215 pud = pud_offset(pgd, address);
1216 if (!pud_present(*pud))
1217 return ret;
1219 pmd = pmd_offset(pud, address);
1220 if (!pmd_present(*pmd))
1221 return ret;
1224 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1225 * keep the sem while scanning the cluster for mlocking pages.
1227 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1228 locked_vma = (vma->vm_flags & VM_LOCKED);
1229 if (!locked_vma)
1230 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1233 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1235 /* Update high watermark before we lower rss */
1236 update_hiwater_rss(mm);
1238 for (; address < end; pte++, address += PAGE_SIZE) {
1239 if (!pte_present(*pte))
1240 continue;
1241 page = vm_normal_page(vma, address, *pte);
1242 BUG_ON(!page || PageAnon(page));
1244 if (locked_vma) {
1245 mlock_vma_page(page); /* no-op if already mlocked */
1246 if (page == check_page)
1247 ret = SWAP_MLOCK;
1248 continue; /* don't unmap */
1251 if (ptep_clear_flush_young_notify(vma, address, pte))
1252 continue;
1254 /* Nuke the page table entry. */
1255 flush_cache_page(vma, address, pte_pfn(*pte));
1256 pteval = ptep_clear_flush_notify(vma, address, pte);
1258 /* If nonlinear, store the file page offset in the pte. */
1259 if (page->index != linear_page_index(vma, address))
1260 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1262 /* Move the dirty bit to the physical page now the pte is gone. */
1263 if (pte_dirty(pteval))
1264 set_page_dirty(page);
1266 page_remove_rmap(page);
1267 page_cache_release(page);
1268 dec_mm_counter(mm, MM_FILEPAGES);
1269 (*mapcount)--;
1271 pte_unmap_unlock(pte - 1, ptl);
1272 if (locked_vma)
1273 up_read(&vma->vm_mm->mmap_sem);
1274 return ret;
1277 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1279 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1281 if (!maybe_stack)
1282 return false;
1284 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1285 VM_STACK_INCOMPLETE_SETUP)
1286 return true;
1288 return false;
1292 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1293 * rmap method
1294 * @page: the page to unmap/unlock
1295 * @flags: action and flags
1297 * Find all the mappings of a page using the mapping pointer and the vma chains
1298 * contained in the anon_vma struct it points to.
1300 * This function is only called from try_to_unmap/try_to_munlock for
1301 * anonymous pages.
1302 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1303 * where the page was found will be held for write. So, we won't recheck
1304 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1305 * 'LOCKED.
1307 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1309 struct anon_vma *anon_vma;
1310 struct anon_vma_chain *avc;
1311 int ret = SWAP_AGAIN;
1313 anon_vma = page_lock_anon_vma(page);
1314 if (!anon_vma)
1315 return ret;
1317 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1318 struct vm_area_struct *vma = avc->vma;
1319 unsigned long address;
1322 * During exec, a temporary VMA is setup and later moved.
1323 * The VMA is moved under the anon_vma lock but not the
1324 * page tables leading to a race where migration cannot
1325 * find the migration ptes. Rather than increasing the
1326 * locking requirements of exec(), migration skips
1327 * temporary VMAs until after exec() completes.
1329 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1330 is_vma_temporary_stack(vma))
1331 continue;
1333 address = vma_address(page, vma);
1334 if (address == -EFAULT)
1335 continue;
1336 ret = try_to_unmap_one(page, vma, address, flags);
1337 if (ret != SWAP_AGAIN || !page_mapped(page))
1338 break;
1341 page_unlock_anon_vma(anon_vma);
1342 return ret;
1346 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1347 * @page: the page to unmap/unlock
1348 * @flags: action and flags
1350 * Find all the mappings of a page using the mapping pointer and the vma chains
1351 * contained in the address_space struct it points to.
1353 * This function is only called from try_to_unmap/try_to_munlock for
1354 * object-based pages.
1355 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1356 * where the page was found will be held for write. So, we won't recheck
1357 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1358 * 'LOCKED.
1360 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1362 struct address_space *mapping = page->mapping;
1363 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1364 struct vm_area_struct *vma;
1365 struct prio_tree_iter iter;
1366 int ret = SWAP_AGAIN;
1367 unsigned long cursor;
1368 unsigned long max_nl_cursor = 0;
1369 unsigned long max_nl_size = 0;
1370 unsigned int mapcount;
1372 mutex_lock(&mapping->i_mmap_mutex);
1373 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1374 unsigned long address = vma_address(page, vma);
1375 if (address == -EFAULT)
1376 continue;
1377 ret = try_to_unmap_one(page, vma, address, flags);
1378 if (ret != SWAP_AGAIN || !page_mapped(page))
1379 goto out;
1382 if (list_empty(&mapping->i_mmap_nonlinear))
1383 goto out;
1386 * We don't bother to try to find the munlocked page in nonlinears.
1387 * It's costly. Instead, later, page reclaim logic may call
1388 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1390 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1391 goto out;
1393 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1394 shared.vm_set.list) {
1395 cursor = (unsigned long) vma->vm_private_data;
1396 if (cursor > max_nl_cursor)
1397 max_nl_cursor = cursor;
1398 cursor = vma->vm_end - vma->vm_start;
1399 if (cursor > max_nl_size)
1400 max_nl_size = cursor;
1403 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1404 ret = SWAP_FAIL;
1405 goto out;
1409 * We don't try to search for this page in the nonlinear vmas,
1410 * and page_referenced wouldn't have found it anyway. Instead
1411 * just walk the nonlinear vmas trying to age and unmap some.
1412 * The mapcount of the page we came in with is irrelevant,
1413 * but even so use it as a guide to how hard we should try?
1415 mapcount = page_mapcount(page);
1416 if (!mapcount)
1417 goto out;
1418 cond_resched();
1420 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1421 if (max_nl_cursor == 0)
1422 max_nl_cursor = CLUSTER_SIZE;
1424 do {
1425 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1426 shared.vm_set.list) {
1427 cursor = (unsigned long) vma->vm_private_data;
1428 while ( cursor < max_nl_cursor &&
1429 cursor < vma->vm_end - vma->vm_start) {
1430 if (try_to_unmap_cluster(cursor, &mapcount,
1431 vma, page) == SWAP_MLOCK)
1432 ret = SWAP_MLOCK;
1433 cursor += CLUSTER_SIZE;
1434 vma->vm_private_data = (void *) cursor;
1435 if ((int)mapcount <= 0)
1436 goto out;
1438 vma->vm_private_data = (void *) max_nl_cursor;
1440 cond_resched();
1441 max_nl_cursor += CLUSTER_SIZE;
1442 } while (max_nl_cursor <= max_nl_size);
1445 * Don't loop forever (perhaps all the remaining pages are
1446 * in locked vmas). Reset cursor on all unreserved nonlinear
1447 * vmas, now forgetting on which ones it had fallen behind.
1449 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1450 vma->vm_private_data = NULL;
1451 out:
1452 mutex_unlock(&mapping->i_mmap_mutex);
1453 return ret;
1457 * try_to_unmap - try to remove all page table mappings to a page
1458 * @page: the page to get unmapped
1459 * @flags: action and flags
1461 * Tries to remove all the page table entries which are mapping this
1462 * page, used in the pageout path. Caller must hold the page lock.
1463 * Return values are:
1465 * SWAP_SUCCESS - we succeeded in removing all mappings
1466 * SWAP_AGAIN - we missed a mapping, try again later
1467 * SWAP_FAIL - the page is unswappable
1468 * SWAP_MLOCK - page is mlocked.
1470 int try_to_unmap(struct page *page, enum ttu_flags flags)
1472 int ret;
1474 BUG_ON(!PageLocked(page));
1475 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1477 if (unlikely(PageKsm(page)))
1478 ret = try_to_unmap_ksm(page, flags);
1479 else if (PageAnon(page))
1480 ret = try_to_unmap_anon(page, flags);
1481 else
1482 ret = try_to_unmap_file(page, flags);
1483 if (ret != SWAP_MLOCK && !page_mapped(page))
1484 ret = SWAP_SUCCESS;
1485 return ret;
1489 * try_to_munlock - try to munlock a page
1490 * @page: the page to be munlocked
1492 * Called from munlock code. Checks all of the VMAs mapping the page
1493 * to make sure nobody else has this page mlocked. The page will be
1494 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1496 * Return values are:
1498 * SWAP_AGAIN - no vma is holding page mlocked, or,
1499 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1500 * SWAP_FAIL - page cannot be located at present
1501 * SWAP_MLOCK - page is now mlocked.
1503 int try_to_munlock(struct page *page)
1505 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1507 if (unlikely(PageKsm(page)))
1508 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1509 else if (PageAnon(page))
1510 return try_to_unmap_anon(page, TTU_MUNLOCK);
1511 else
1512 return try_to_unmap_file(page, TTU_MUNLOCK);
1515 void __put_anon_vma(struct anon_vma *anon_vma)
1517 struct anon_vma *root = anon_vma->root;
1519 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1520 anon_vma_free(root);
1522 anon_vma_free(anon_vma);
1525 #ifdef CONFIG_MIGRATION
1527 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1528 * Called by migrate.c to remove migration ptes, but might be used more later.
1530 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1531 struct vm_area_struct *, unsigned long, void *), void *arg)
1533 struct anon_vma *anon_vma;
1534 struct anon_vma_chain *avc;
1535 int ret = SWAP_AGAIN;
1538 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1539 * because that depends on page_mapped(); but not all its usages
1540 * are holding mmap_sem. Users without mmap_sem are required to
1541 * take a reference count to prevent the anon_vma disappearing
1543 anon_vma = page_anon_vma(page);
1544 if (!anon_vma)
1545 return ret;
1546 anon_vma_lock(anon_vma);
1547 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1548 struct vm_area_struct *vma = avc->vma;
1549 unsigned long address = vma_address(page, vma);
1550 if (address == -EFAULT)
1551 continue;
1552 ret = rmap_one(page, vma, address, arg);
1553 if (ret != SWAP_AGAIN)
1554 break;
1556 anon_vma_unlock(anon_vma);
1557 return ret;
1560 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1561 struct vm_area_struct *, unsigned long, void *), void *arg)
1563 struct address_space *mapping = page->mapping;
1564 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1565 struct vm_area_struct *vma;
1566 struct prio_tree_iter iter;
1567 int ret = SWAP_AGAIN;
1569 if (!mapping)
1570 return ret;
1571 mutex_lock(&mapping->i_mmap_mutex);
1572 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1573 unsigned long address = vma_address(page, vma);
1574 if (address == -EFAULT)
1575 continue;
1576 ret = rmap_one(page, vma, address, arg);
1577 if (ret != SWAP_AGAIN)
1578 break;
1581 * No nonlinear handling: being always shared, nonlinear vmas
1582 * never contain migration ptes. Decide what to do about this
1583 * limitation to linear when we need rmap_walk() on nonlinear.
1585 mutex_unlock(&mapping->i_mmap_mutex);
1586 return ret;
1589 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1590 struct vm_area_struct *, unsigned long, void *), void *arg)
1592 VM_BUG_ON(!PageLocked(page));
1594 if (unlikely(PageKsm(page)))
1595 return rmap_walk_ksm(page, rmap_one, arg);
1596 else if (PageAnon(page))
1597 return rmap_walk_anon(page, rmap_one, arg);
1598 else
1599 return rmap_walk_file(page, rmap_one, arg);
1601 #endif /* CONFIG_MIGRATION */
1603 #ifdef CONFIG_HUGETLB_PAGE
1605 * The following three functions are for anonymous (private mapped) hugepages.
1606 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1607 * and no lru code, because we handle hugepages differently from common pages.
1609 static void __hugepage_set_anon_rmap(struct page *page,
1610 struct vm_area_struct *vma, unsigned long address, int exclusive)
1612 struct anon_vma *anon_vma = vma->anon_vma;
1614 BUG_ON(!anon_vma);
1616 if (PageAnon(page))
1617 return;
1618 if (!exclusive)
1619 anon_vma = anon_vma->root;
1621 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1622 page->mapping = (struct address_space *) anon_vma;
1623 page->index = linear_page_index(vma, address);
1626 void hugepage_add_anon_rmap(struct page *page,
1627 struct vm_area_struct *vma, unsigned long address)
1629 struct anon_vma *anon_vma = vma->anon_vma;
1630 int first;
1632 BUG_ON(!PageLocked(page));
1633 BUG_ON(!anon_vma);
1634 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1635 first = atomic_inc_and_test(&page->_mapcount);
1636 if (first)
1637 __hugepage_set_anon_rmap(page, vma, address, 0);
1640 void hugepage_add_new_anon_rmap(struct page *page,
1641 struct vm_area_struct *vma, unsigned long address)
1643 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1644 atomic_set(&page->_mapcount, 0);
1645 __hugepage_set_anon_rmap(page, vma, address, 1);
1647 #endif /* CONFIG_HUGETLB_PAGE */