2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
22 #include <linux/cleancache.h>
27 * do_invalidatepage - invalidate part or all of a page
28 * @page: the page which is affected
29 * @offset: the index of the truncation point
31 * do_invalidatepage() is called when all or part of the page has become
32 * invalidated by a truncate operation.
34 * do_invalidatepage() does not have to release all buffers, but it must
35 * ensure that no dirty buffer is left outside @offset and that no I/O
36 * is underway against any of the blocks which are outside the truncation
37 * point. Because the caller is about to free (and possibly reuse) those
40 void do_invalidatepage(struct page
*page
, unsigned long offset
)
42 void (*invalidatepage
)(struct page
*, unsigned long);
43 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
;
46 invalidatepage
= block_invalidatepage
;
49 (*invalidatepage
)(page
, offset
);
52 static inline void truncate_partial_page(struct page
*page
, unsigned partial
)
54 zero_user_segment(page
, partial
, PAGE_CACHE_SIZE
);
55 cleancache_invalidate_page(page
->mapping
, page
);
56 if (page_has_private(page
))
57 do_invalidatepage(page
, partial
);
61 * This cancels just the dirty bit on the kernel page itself, it
62 * does NOT actually remove dirty bits on any mmap's that may be
63 * around. It also leaves the page tagged dirty, so any sync
64 * activity will still find it on the dirty lists, and in particular,
65 * clear_page_dirty_for_io() will still look at the dirty bits in
68 * Doing this should *normally* only ever be done when a page
69 * is truncated, and is not actually mapped anywhere at all. However,
70 * fs/buffer.c does this when it notices that somebody has cleaned
71 * out all the buffers on a page without actually doing it through
72 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
74 void cancel_dirty_page(struct page
*page
, unsigned int account_size
)
76 if (TestClearPageDirty(page
)) {
77 struct address_space
*mapping
= page
->mapping
;
78 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
79 dec_zone_page_state(page
, NR_FILE_DIRTY
);
80 dec_bdi_stat(mapping
->backing_dev_info
,
83 task_io_account_cancelled_write(account_size
);
87 EXPORT_SYMBOL(cancel_dirty_page
);
90 * If truncate cannot remove the fs-private metadata from the page, the page
91 * becomes orphaned. It will be left on the LRU and may even be mapped into
92 * user pagetables if we're racing with filemap_fault().
94 * We need to bale out if page->mapping is no longer equal to the original
95 * mapping. This happens a) when the VM reclaimed the page while we waited on
96 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
97 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
100 truncate_complete_page(struct address_space
*mapping
, struct page
*page
)
102 if (page
->mapping
!= mapping
)
105 if (page_has_private(page
))
106 do_invalidatepage(page
, 0);
108 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
110 ClearPageMappedToDisk(page
);
111 delete_from_page_cache(page
);
116 * This is for invalidate_mapping_pages(). That function can be called at
117 * any time, and is not supposed to throw away dirty pages. But pages can
118 * be marked dirty at any time too, so use remove_mapping which safely
119 * discards clean, unused pages.
121 * Returns non-zero if the page was successfully invalidated.
124 invalidate_complete_page(struct address_space
*mapping
, struct page
*page
)
128 if (page
->mapping
!= mapping
)
131 if (page_has_private(page
) && !try_to_release_page(page
, 0))
134 ret
= remove_mapping(mapping
, page
);
139 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
)
141 if (page_mapped(page
)) {
142 unmap_mapping_range(mapping
,
143 (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
,
146 return truncate_complete_page(mapping
, page
);
150 * Used to get rid of pages on hardware memory corruption.
152 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
)
157 * Only punch for normal data pages for now.
158 * Handling other types like directories would need more auditing.
160 if (!S_ISREG(mapping
->host
->i_mode
))
162 return truncate_inode_page(mapping
, page
);
164 EXPORT_SYMBOL(generic_error_remove_page
);
167 * Safely invalidate one page from its pagecache mapping.
168 * It only drops clean, unused pages. The page must be locked.
170 * Returns 1 if the page is successfully invalidated, otherwise 0.
172 int invalidate_inode_page(struct page
*page
)
174 struct address_space
*mapping
= page_mapping(page
);
177 if (PageDirty(page
) || PageWriteback(page
))
179 if (page_mapped(page
))
181 return invalidate_complete_page(mapping
, page
);
185 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
186 * @mapping: mapping to truncate
187 * @lstart: offset from which to truncate
188 * @lend: offset to which to truncate
190 * Truncate the page cache, removing the pages that are between
191 * specified offsets (and zeroing out partial page
192 * (if lstart is not page aligned)).
194 * Truncate takes two passes - the first pass is nonblocking. It will not
195 * block on page locks and it will not block on writeback. The second pass
196 * will wait. This is to prevent as much IO as possible in the affected region.
197 * The first pass will remove most pages, so the search cost of the second pass
200 * We pass down the cache-hot hint to the page freeing code. Even if the
201 * mapping is large, it is probably the case that the final pages are the most
202 * recently touched, and freeing happens in ascending file offset order.
204 void truncate_inode_pages_range(struct address_space
*mapping
,
205 loff_t lstart
, loff_t lend
)
207 const pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
208 const unsigned partial
= lstart
& (PAGE_CACHE_SIZE
- 1);
214 cleancache_invalidate_inode(mapping
);
215 if (mapping
->nrpages
== 0)
218 BUG_ON((lend
& (PAGE_CACHE_SIZE
- 1)) != (PAGE_CACHE_SIZE
- 1));
219 end
= (lend
>> PAGE_CACHE_SHIFT
);
221 pagevec_init(&pvec
, 0);
223 while (index
<= end
&& pagevec_lookup(&pvec
, mapping
, index
,
224 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1)) {
225 mem_cgroup_uncharge_start();
226 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
227 struct page
*page
= pvec
.pages
[i
];
229 /* We rely upon deletion not changing page->index */
234 if (!trylock_page(page
))
236 WARN_ON(page
->index
!= index
);
237 if (PageWriteback(page
)) {
241 truncate_inode_page(mapping
, page
);
244 pagevec_release(&pvec
);
245 mem_cgroup_uncharge_end();
251 struct page
*page
= find_lock_page(mapping
, start
- 1);
253 wait_on_page_writeback(page
);
254 truncate_partial_page(page
, partial
);
256 page_cache_release(page
);
263 if (!pagevec_lookup(&pvec
, mapping
, index
,
264 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1)) {
270 if (index
== start
&& pvec
.pages
[0]->index
> end
) {
271 pagevec_release(&pvec
);
274 mem_cgroup_uncharge_start();
275 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
276 struct page
*page
= pvec
.pages
[i
];
278 /* We rely upon deletion not changing page->index */
284 WARN_ON(page
->index
!= index
);
285 wait_on_page_writeback(page
);
286 truncate_inode_page(mapping
, page
);
289 pagevec_release(&pvec
);
290 mem_cgroup_uncharge_end();
293 cleancache_invalidate_inode(mapping
);
295 EXPORT_SYMBOL(truncate_inode_pages_range
);
298 * truncate_inode_pages - truncate *all* the pages from an offset
299 * @mapping: mapping to truncate
300 * @lstart: offset from which to truncate
302 * Called under (and serialised by) inode->i_mutex.
304 * Note: When this function returns, there can be a page in the process of
305 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
306 * mapping->nrpages can be non-zero when this function returns even after
307 * truncation of the whole mapping.
309 void truncate_inode_pages(struct address_space
*mapping
, loff_t lstart
)
311 truncate_inode_pages_range(mapping
, lstart
, (loff_t
)-1);
313 EXPORT_SYMBOL(truncate_inode_pages
);
316 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
317 * @mapping: the address_space which holds the pages to invalidate
318 * @start: the offset 'from' which to invalidate
319 * @end: the offset 'to' which to invalidate (inclusive)
321 * This function only removes the unlocked pages, if you want to
322 * remove all the pages of one inode, you must call truncate_inode_pages.
324 * invalidate_mapping_pages() will not block on IO activity. It will not
325 * invalidate pages which are dirty, locked, under writeback or mapped into
328 unsigned long invalidate_mapping_pages(struct address_space
*mapping
,
329 pgoff_t start
, pgoff_t end
)
332 pgoff_t index
= start
;
334 unsigned long count
= 0;
338 * Note: this function may get called on a shmem/tmpfs mapping:
339 * pagevec_lookup() might then return 0 prematurely (because it
340 * got a gangful of swap entries); but it's hardly worth worrying
341 * about - it can rarely have anything to free from such a mapping
342 * (most pages are dirty), and already skips over any difficulties.
345 pagevec_init(&pvec
, 0);
346 while (index
<= end
&& pagevec_lookup(&pvec
, mapping
, index
,
347 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1)) {
348 mem_cgroup_uncharge_start();
349 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
350 struct page
*page
= pvec
.pages
[i
];
352 /* We rely upon deletion not changing page->index */
357 if (!trylock_page(page
))
359 WARN_ON(page
->index
!= index
);
360 ret
= invalidate_inode_page(page
);
363 * Invalidation is a hint that the page is no longer
364 * of interest and try to speed up its reclaim.
367 deactivate_page(page
);
370 pagevec_release(&pvec
);
371 mem_cgroup_uncharge_end();
377 EXPORT_SYMBOL(invalidate_mapping_pages
);
380 * This is like invalidate_complete_page(), except it ignores the page's
381 * refcount. We do this because invalidate_inode_pages2() needs stronger
382 * invalidation guarantees, and cannot afford to leave pages behind because
383 * shrink_page_list() has a temp ref on them, or because they're transiently
384 * sitting in the lru_cache_add() pagevecs.
387 invalidate_complete_page2(struct address_space
*mapping
, struct page
*page
)
389 if (page
->mapping
!= mapping
)
392 if (page_has_private(page
) && !try_to_release_page(page
, GFP_KERNEL
))
395 spin_lock_irq(&mapping
->tree_lock
);
399 BUG_ON(page_has_private(page
));
400 __delete_from_page_cache(page
);
401 spin_unlock_irq(&mapping
->tree_lock
);
402 mem_cgroup_uncharge_cache_page(page
);
404 if (mapping
->a_ops
->freepage
)
405 mapping
->a_ops
->freepage(page
);
407 page_cache_release(page
); /* pagecache ref */
410 spin_unlock_irq(&mapping
->tree_lock
);
414 static int do_launder_page(struct address_space
*mapping
, struct page
*page
)
416 if (!PageDirty(page
))
418 if (page
->mapping
!= mapping
|| mapping
->a_ops
->launder_page
== NULL
)
420 return mapping
->a_ops
->launder_page(page
);
424 * invalidate_inode_pages2_range - remove range of pages from an address_space
425 * @mapping: the address_space
426 * @start: the page offset 'from' which to invalidate
427 * @end: the page offset 'to' which to invalidate (inclusive)
429 * Any pages which are found to be mapped into pagetables are unmapped prior to
432 * Returns -EBUSY if any pages could not be invalidated.
434 int invalidate_inode_pages2_range(struct address_space
*mapping
,
435 pgoff_t start
, pgoff_t end
)
442 int did_range_unmap
= 0;
444 cleancache_invalidate_inode(mapping
);
445 pagevec_init(&pvec
, 0);
447 while (index
<= end
&& pagevec_lookup(&pvec
, mapping
, index
,
448 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1)) {
449 mem_cgroup_uncharge_start();
450 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
451 struct page
*page
= pvec
.pages
[i
];
453 /* We rely upon deletion not changing page->index */
459 WARN_ON(page
->index
!= index
);
460 if (page
->mapping
!= mapping
) {
464 wait_on_page_writeback(page
);
465 if (page_mapped(page
)) {
466 if (!did_range_unmap
) {
468 * Zap the rest of the file in one hit.
470 unmap_mapping_range(mapping
,
471 (loff_t
)index
<< PAGE_CACHE_SHIFT
,
472 (loff_t
)(1 + end
- index
)
480 unmap_mapping_range(mapping
,
481 (loff_t
)index
<< PAGE_CACHE_SHIFT
,
485 BUG_ON(page_mapped(page
));
486 ret2
= do_launder_page(mapping
, page
);
488 if (!invalidate_complete_page2(mapping
, page
))
495 pagevec_release(&pvec
);
496 mem_cgroup_uncharge_end();
500 cleancache_invalidate_inode(mapping
);
503 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range
);
506 * invalidate_inode_pages2 - remove all pages from an address_space
507 * @mapping: the address_space
509 * Any pages which are found to be mapped into pagetables are unmapped prior to
512 * Returns -EBUSY if any pages could not be invalidated.
514 int invalidate_inode_pages2(struct address_space
*mapping
)
516 return invalidate_inode_pages2_range(mapping
, 0, -1);
518 EXPORT_SYMBOL_GPL(invalidate_inode_pages2
);
521 * truncate_pagecache - unmap and remove pagecache that has been truncated
523 * @oldsize: old file size
524 * @newsize: new file size
526 * inode's new i_size must already be written before truncate_pagecache
529 * This function should typically be called before the filesystem
530 * releases resources associated with the freed range (eg. deallocates
531 * blocks). This way, pagecache will always stay logically coherent
532 * with on-disk format, and the filesystem would not have to deal with
533 * situations such as writepage being called for a page that has already
534 * had its underlying blocks deallocated.
536 void truncate_pagecache(struct inode
*inode
, loff_t oldsize
, loff_t newsize
)
538 struct address_space
*mapping
= inode
->i_mapping
;
539 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
542 * unmap_mapping_range is called twice, first simply for
543 * efficiency so that truncate_inode_pages does fewer
544 * single-page unmaps. However after this first call, and
545 * before truncate_inode_pages finishes, it is possible for
546 * private pages to be COWed, which remain after
547 * truncate_inode_pages finishes, hence the second
548 * unmap_mapping_range call must be made for correctness.
550 unmap_mapping_range(mapping
, holebegin
, 0, 1);
551 truncate_inode_pages(mapping
, newsize
);
552 unmap_mapping_range(mapping
, holebegin
, 0, 1);
554 EXPORT_SYMBOL(truncate_pagecache
);
557 * truncate_setsize - update inode and pagecache for a new file size
559 * @newsize: new file size
561 * truncate_setsize updates i_size and performs pagecache truncation (if
562 * necessary) to @newsize. It will be typically be called from the filesystem's
563 * setattr function when ATTR_SIZE is passed in.
565 * Must be called with inode_mutex held and before all filesystem specific
566 * block truncation has been performed.
568 void truncate_setsize(struct inode
*inode
, loff_t newsize
)
572 oldsize
= inode
->i_size
;
573 i_size_write(inode
, newsize
);
575 truncate_pagecache(inode
, oldsize
, newsize
);
577 EXPORT_SYMBOL(truncate_setsize
);
580 * vmtruncate - unmap mappings "freed" by truncate() syscall
581 * @inode: inode of the file used
582 * @newsize: file offset to start truncating
584 * This function is deprecated and truncate_setsize or truncate_pagecache
585 * should be used instead, together with filesystem specific block truncation.
587 int vmtruncate(struct inode
*inode
, loff_t newsize
)
591 error
= inode_newsize_ok(inode
, newsize
);
595 truncate_setsize(inode
, newsize
);
596 if (inode
->i_op
->truncate
)
597 inode
->i_op
->truncate(inode
);
600 EXPORT_SYMBOL(vmtruncate
);
603 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
605 * @lstart: offset of beginning of hole
606 * @lend: offset of last byte of hole
608 * This function should typically be called before the filesystem
609 * releases resources associated with the freed range (eg. deallocates
610 * blocks). This way, pagecache will always stay logically coherent
611 * with on-disk format, and the filesystem would not have to deal with
612 * situations such as writepage being called for a page that has already
613 * had its underlying blocks deallocated.
615 void truncate_pagecache_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
617 struct address_space
*mapping
= inode
->i_mapping
;
618 loff_t unmap_start
= round_up(lstart
, PAGE_SIZE
);
619 loff_t unmap_end
= round_down(1 + lend
, PAGE_SIZE
) - 1;
621 * This rounding is currently just for example: unmap_mapping_range
622 * expands its hole outwards, whereas we want it to contract the hole
623 * inwards. However, existing callers of truncate_pagecache_range are
624 * doing their own page rounding first; and truncate_inode_pages_range
625 * currently BUGs if lend is not pagealigned-1 (it handles partial
626 * page at start of hole, but not partial page at end of hole). Note
627 * unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
631 * Unlike in truncate_pagecache, unmap_mapping_range is called only
632 * once (before truncating pagecache), and without "even_cows" flag:
633 * hole-punching should not remove private COWed pages from the hole.
635 if ((u64
)unmap_end
> (u64
)unmap_start
)
636 unmap_mapping_range(mapping
, unmap_start
,
637 1 + unmap_end
- unmap_start
, 0);
638 truncate_inode_pages_range(mapping
, lstart
, lend
);
640 EXPORT_SYMBOL(truncate_pagecache_range
);