2 * sparse memory mappings.
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
18 * Permanent SPARSEMEM data:
20 * 1) mem_section - memory sections, mem_map's for valid memory
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
24 ____cacheline_internodealigned_in_smp
;
26 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
27 ____cacheline_internodealigned_in_smp
;
29 EXPORT_SYMBOL(mem_section
);
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
40 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
43 int page_to_nid(const struct page
*page
)
45 return section_to_node_table
[page_to_section(page
)];
47 EXPORT_SYMBOL(page_to_nid
);
49 static void set_section_nid(unsigned long section_nr
, int nid
)
51 section_to_node_table
[section_nr
] = nid
;
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr
, int nid
)
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok
*sparse_index_alloc(int nid
)
62 struct mem_section
*section
= NULL
;
63 unsigned long array_size
= SECTIONS_PER_ROOT
*
64 sizeof(struct mem_section
);
66 if (slab_is_available()) {
67 if (node_state(nid
, N_HIGH_MEMORY
))
68 section
= kzalloc_node(array_size
, GFP_KERNEL
, nid
);
70 section
= kzalloc(array_size
, GFP_KERNEL
);
72 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
78 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
80 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
81 struct mem_section
*section
;
84 if (mem_section
[root
])
87 section
= sparse_index_alloc(nid
);
91 mem_section
[root
] = section
;
95 #else /* !SPARSEMEM_EXTREME */
96 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
103 * Although written for the SPARSEMEM_EXTREME case, this happens
104 * to also work for the flat array case because
105 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 int __section_nr(struct mem_section
* ms
)
109 unsigned long root_nr
;
110 struct mem_section
* root
;
112 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
113 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
117 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
121 VM_BUG_ON(root_nr
== NR_SECTION_ROOTS
);
123 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
127 * During early boot, before section_mem_map is used for an actual
128 * mem_map, we use section_mem_map to store the section's NUMA
129 * node. This keeps us from having to use another data structure. The
130 * node information is cleared just before we store the real mem_map.
132 static inline unsigned long sparse_encode_early_nid(int nid
)
134 return (nid
<< SECTION_NID_SHIFT
);
137 static inline int sparse_early_nid(struct mem_section
*section
)
139 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
142 /* Validate the physical addressing limitations of the model */
143 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
144 unsigned long *end_pfn
)
146 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
149 * Sanity checks - do not allow an architecture to pass
150 * in larger pfns than the maximum scope of sparsemem:
152 if (*start_pfn
> max_sparsemem_pfn
) {
153 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
154 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
155 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
157 *start_pfn
= max_sparsemem_pfn
;
158 *end_pfn
= max_sparsemem_pfn
;
159 } else if (*end_pfn
> max_sparsemem_pfn
) {
160 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
161 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
162 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
164 *end_pfn
= max_sparsemem_pfn
;
168 /* Record a memory area against a node. */
169 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
173 start
&= PAGE_SECTION_MASK
;
174 mminit_validate_memmodel_limits(&start
, &end
);
175 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
176 unsigned long section
= pfn_to_section_nr(pfn
);
177 struct mem_section
*ms
;
179 sparse_index_init(section
, nid
);
180 set_section_nid(section
, nid
);
182 ms
= __nr_to_section(section
);
183 if (!ms
->section_mem_map
)
184 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
185 SECTION_MARKED_PRESENT
;
190 * Only used by the i386 NUMA architecures, but relatively
193 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
194 unsigned long end_pfn
)
197 unsigned long nr_pages
= 0;
199 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
200 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
201 if (nid
!= early_pfn_to_nid(pfn
))
204 if (pfn_present(pfn
))
205 nr_pages
+= PAGES_PER_SECTION
;
208 return nr_pages
* sizeof(struct page
);
212 * Subtle, we encode the real pfn into the mem_map such that
213 * the identity pfn - section_mem_map will return the actual
214 * physical page frame number.
216 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
218 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
222 * Decode mem_map from the coded memmap
224 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
226 /* mask off the extra low bits of information */
227 coded_mem_map
&= SECTION_MAP_MASK
;
228 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
231 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
232 unsigned long pnum
, struct page
*mem_map
,
233 unsigned long *pageblock_bitmap
)
235 if (!present_section(ms
))
238 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
239 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
241 ms
->pageblock_flags
= pageblock_bitmap
;
246 unsigned long usemap_size(void)
248 unsigned long size_bytes
;
249 size_bytes
= roundup(SECTION_BLOCKFLAGS_BITS
, 8) / 8;
250 size_bytes
= roundup(size_bytes
, sizeof(unsigned long));
254 #ifdef CONFIG_MEMORY_HOTPLUG
255 static unsigned long *__kmalloc_section_usemap(void)
257 return kmalloc(usemap_size(), GFP_KERNEL
);
259 #endif /* CONFIG_MEMORY_HOTPLUG */
261 #ifdef CONFIG_MEMORY_HOTREMOVE
262 static unsigned long * __init
263 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
266 unsigned long goal
, limit
;
270 * A page may contain usemaps for other sections preventing the
271 * page being freed and making a section unremovable while
272 * other sections referencing the usemap retmain active. Similarly,
273 * a pgdat can prevent a section being removed. If section A
274 * contains a pgdat and section B contains the usemap, both
275 * sections become inter-dependent. This allocates usemaps
276 * from the same section as the pgdat where possible to avoid
279 goal
= __pa(pgdat
) & (PAGE_SECTION_MASK
<< PAGE_SHIFT
);
280 limit
= goal
+ (1UL << PA_SECTION_SHIFT
);
281 nid
= early_pfn_to_nid(goal
>> PAGE_SHIFT
);
283 p
= ___alloc_bootmem_node_nopanic(NODE_DATA(nid
), size
,
284 SMP_CACHE_BYTES
, goal
, limit
);
292 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
294 unsigned long usemap_snr
, pgdat_snr
;
295 static unsigned long old_usemap_snr
= NR_MEM_SECTIONS
;
296 static unsigned long old_pgdat_snr
= NR_MEM_SECTIONS
;
297 struct pglist_data
*pgdat
= NODE_DATA(nid
);
300 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
301 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
302 if (usemap_snr
== pgdat_snr
)
305 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
306 /* skip redundant message */
309 old_usemap_snr
= usemap_snr
;
310 old_pgdat_snr
= pgdat_snr
;
312 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
313 if (usemap_nid
!= nid
) {
315 "node %d must be removed before remove section %ld\n",
320 * There is a circular dependency.
321 * Some platforms allow un-removable section because they will just
322 * gather other removable sections for dynamic partitioning.
323 * Just notify un-removable section's number here.
325 printk(KERN_INFO
"Section %ld and %ld (node %d)", usemap_snr
,
328 " have a circular dependency on usemap and pgdat allocations\n");
331 static unsigned long * __init
332 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
335 return alloc_bootmem_node_nopanic(pgdat
, size
);
338 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
341 #endif /* CONFIG_MEMORY_HOTREMOVE */
343 static void __init
sparse_early_usemaps_alloc_node(unsigned long**usemap_map
,
344 unsigned long pnum_begin
,
345 unsigned long pnum_end
,
346 unsigned long usemap_count
, int nodeid
)
350 int size
= usemap_size();
352 usemap
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid
),
353 size
* usemap_count
);
355 printk(KERN_WARNING
"%s: allocation failed\n", __func__
);
359 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
360 if (!present_section_nr(pnum
))
362 usemap_map
[pnum
] = usemap
;
364 check_usemap_section_nr(nodeid
, usemap_map
[pnum
]);
368 #ifndef CONFIG_SPARSEMEM_VMEMMAP
369 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
374 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
378 size
= PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
379 map
= __alloc_bootmem_node_high(NODE_DATA(nid
), size
,
380 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
383 void __init
sparse_mem_maps_populate_node(struct page
**map_map
,
384 unsigned long pnum_begin
,
385 unsigned long pnum_end
,
386 unsigned long map_count
, int nodeid
)
390 unsigned long size
= sizeof(struct page
) * PAGES_PER_SECTION
;
392 map
= alloc_remap(nodeid
, size
* map_count
);
394 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
395 if (!present_section_nr(pnum
))
403 size
= PAGE_ALIGN(size
);
404 map
= __alloc_bootmem_node_high(NODE_DATA(nodeid
), size
* map_count
,
405 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
407 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
408 if (!present_section_nr(pnum
))
417 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
418 struct mem_section
*ms
;
420 if (!present_section_nr(pnum
))
422 map_map
[pnum
] = sparse_mem_map_populate(pnum
, nodeid
);
425 ms
= __nr_to_section(pnum
);
426 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
427 "some memory will not be available.\n", __func__
);
428 ms
->section_mem_map
= 0;
431 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
433 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
434 static void __init
sparse_early_mem_maps_alloc_node(struct page
**map_map
,
435 unsigned long pnum_begin
,
436 unsigned long pnum_end
,
437 unsigned long map_count
, int nodeid
)
439 sparse_mem_maps_populate_node(map_map
, pnum_begin
, pnum_end
,
443 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
446 struct mem_section
*ms
= __nr_to_section(pnum
);
447 int nid
= sparse_early_nid(ms
);
449 map
= sparse_mem_map_populate(pnum
, nid
);
453 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
454 "some memory will not be available.\n", __func__
);
455 ms
->section_mem_map
= 0;
460 void __attribute__((weak
)) __meminit
vmemmap_populate_print_last(void)
465 * Allocate the accumulated non-linear sections, allocate a mem_map
466 * for each and record the physical to section mapping.
468 void __init
sparse_init(void)
472 unsigned long *usemap
;
473 unsigned long **usemap_map
;
475 int nodeid_begin
= 0;
476 unsigned long pnum_begin
= 0;
477 unsigned long usemap_count
;
478 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
479 unsigned long map_count
;
481 struct page
**map_map
;
484 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
485 set_pageblock_order();
488 * map is using big page (aka 2M in x86 64 bit)
489 * usemap is less one page (aka 24 bytes)
490 * so alloc 2M (with 2M align) and 24 bytes in turn will
491 * make next 2M slip to one more 2M later.
492 * then in big system, the memory will have a lot of holes...
493 * here try to allocate 2M pages continuously.
495 * powerpc need to call sparse_init_one_section right after each
496 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
498 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
499 usemap_map
= alloc_bootmem(size
);
501 panic("can not allocate usemap_map\n");
503 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
504 struct mem_section
*ms
;
506 if (!present_section_nr(pnum
))
508 ms
= __nr_to_section(pnum
);
509 nodeid_begin
= sparse_early_nid(ms
);
514 for (pnum
= pnum_begin
+ 1; pnum
< NR_MEM_SECTIONS
; pnum
++) {
515 struct mem_section
*ms
;
518 if (!present_section_nr(pnum
))
520 ms
= __nr_to_section(pnum
);
521 nodeid
= sparse_early_nid(ms
);
522 if (nodeid
== nodeid_begin
) {
526 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
527 sparse_early_usemaps_alloc_node(usemap_map
, pnum_begin
, pnum
,
528 usemap_count
, nodeid_begin
);
529 /* new start, update count etc*/
530 nodeid_begin
= nodeid
;
535 sparse_early_usemaps_alloc_node(usemap_map
, pnum_begin
, NR_MEM_SECTIONS
,
536 usemap_count
, nodeid_begin
);
538 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
539 size2
= sizeof(struct page
*) * NR_MEM_SECTIONS
;
540 map_map
= alloc_bootmem(size2
);
542 panic("can not allocate map_map\n");
544 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
545 struct mem_section
*ms
;
547 if (!present_section_nr(pnum
))
549 ms
= __nr_to_section(pnum
);
550 nodeid_begin
= sparse_early_nid(ms
);
555 for (pnum
= pnum_begin
+ 1; pnum
< NR_MEM_SECTIONS
; pnum
++) {
556 struct mem_section
*ms
;
559 if (!present_section_nr(pnum
))
561 ms
= __nr_to_section(pnum
);
562 nodeid
= sparse_early_nid(ms
);
563 if (nodeid
== nodeid_begin
) {
567 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
568 sparse_early_mem_maps_alloc_node(map_map
, pnum_begin
, pnum
,
569 map_count
, nodeid_begin
);
570 /* new start, update count etc*/
571 nodeid_begin
= nodeid
;
576 sparse_early_mem_maps_alloc_node(map_map
, pnum_begin
, NR_MEM_SECTIONS
,
577 map_count
, nodeid_begin
);
580 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
581 if (!present_section_nr(pnum
))
584 usemap
= usemap_map
[pnum
];
588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591 map
= sparse_early_mem_map_alloc(pnum
);
596 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
600 vmemmap_populate_print_last();
602 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
603 free_bootmem(__pa(map_map
), size2
);
605 free_bootmem(__pa(usemap_map
), size
);
608 #ifdef CONFIG_MEMORY_HOTPLUG
609 #ifdef CONFIG_SPARSEMEM_VMEMMAP
610 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
611 unsigned long nr_pages
)
613 /* This will make the necessary allocations eventually. */
614 return sparse_mem_map_populate(pnum
, nid
);
616 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
618 return; /* XXX: Not implemented yet */
620 static void free_map_bootmem(struct page
*memmap
, unsigned long nr_pages
)
624 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
626 struct page
*page
, *ret
;
627 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
629 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
633 ret
= vmalloc(memmap_size
);
639 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
645 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
646 unsigned long nr_pages
)
648 return __kmalloc_section_memmap(nr_pages
);
651 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
653 if (is_vmalloc_addr(memmap
))
656 free_pages((unsigned long)memmap
,
657 get_order(sizeof(struct page
) * nr_pages
));
660 static void free_map_bootmem(struct page
*memmap
, unsigned long nr_pages
)
662 unsigned long maps_section_nr
, removing_section_nr
, i
;
664 struct page
*page
= virt_to_page(memmap
);
666 for (i
= 0; i
< nr_pages
; i
++, page
++) {
667 magic
= (unsigned long) page
->lru
.next
;
669 BUG_ON(magic
== NODE_INFO
);
671 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
672 removing_section_nr
= page
->private;
675 * When this function is called, the removing section is
676 * logical offlined state. This means all pages are isolated
677 * from page allocator. If removing section's memmap is placed
678 * on the same section, it must not be freed.
679 * If it is freed, page allocator may allocate it which will
680 * be removed physically soon.
682 if (maps_section_nr
!= removing_section_nr
)
683 put_page_bootmem(page
);
686 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
688 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
690 struct page
*usemap_page
;
691 unsigned long nr_pages
;
696 usemap_page
= virt_to_page(usemap
);
698 * Check to see if allocation came from hot-plug-add
700 if (PageSlab(usemap_page
)) {
703 __kfree_section_memmap(memmap
, PAGES_PER_SECTION
);
708 * The usemap came from bootmem. This is packed with other usemaps
709 * on the section which has pgdat at boot time. Just keep it as is now.
713 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
716 free_map_bootmem(memmap
, nr_pages
);
721 * returns the number of sections whose mem_maps were properly
722 * set. If this is <=0, then that means that the passed-in
723 * map was not consumed and must be freed.
725 int __meminit
sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
728 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
729 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
730 struct mem_section
*ms
;
732 unsigned long *usemap
;
737 * no locking for this, because it does its own
738 * plus, it does a kmalloc
740 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
741 if (ret
< 0 && ret
!= -EEXIST
)
743 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
, nr_pages
);
746 usemap
= __kmalloc_section_usemap();
748 __kfree_section_memmap(memmap
, nr_pages
);
752 pgdat_resize_lock(pgdat
, &flags
);
754 ms
= __pfn_to_section(start_pfn
);
755 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
760 memset(memmap
, 0, sizeof(struct page
) * nr_pages
);
762 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
764 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
767 pgdat_resize_unlock(pgdat
, &flags
);
770 __kfree_section_memmap(memmap
, nr_pages
);
775 #ifdef CONFIG_MEMORY_FAILURE
776 static void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
783 for (i
= 0; i
< PAGES_PER_SECTION
; i
++) {
784 if (PageHWPoison(&memmap
[i
])) {
785 atomic_long_sub(1, &mce_bad_pages
);
786 ClearPageHWPoison(&memmap
[i
]);
791 static inline void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
796 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
)
798 struct page
*memmap
= NULL
;
799 unsigned long *usemap
= NULL
;
801 if (ms
->section_mem_map
) {
802 usemap
= ms
->pageblock_flags
;
803 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
805 ms
->section_mem_map
= 0;
806 ms
->pageblock_flags
= NULL
;
809 clear_hwpoisoned_pages(memmap
, PAGES_PER_SECTION
);
810 free_section_usemap(memmap
, usemap
);